JP3788304B2 - Electron irradiation treatment method - Google Patents

Electron irradiation treatment method Download PDF

Info

Publication number
JP3788304B2
JP3788304B2 JP2001303196A JP2001303196A JP3788304B2 JP 3788304 B2 JP3788304 B2 JP 3788304B2 JP 2001303196 A JP2001303196 A JP 2001303196A JP 2001303196 A JP2001303196 A JP 2001303196A JP 3788304 B2 JP3788304 B2 JP 3788304B2
Authority
JP
Japan
Prior art keywords
electron beam
gas
processing
processed
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001303196A
Other languages
Japanese (ja)
Other versions
JP2003107200A (en
Inventor
真典 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2001303196A priority Critical patent/JP3788304B2/en
Publication of JP2003107200A publication Critical patent/JP2003107200A/en
Application granted granted Critical
Publication of JP3788304B2 publication Critical patent/JP3788304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子線を被処理物に照射して所定の処理を行う電子線照射処理方法に係わり、例えば、レジスト等の被処理物の硬化や被処理物の成膜等を行う電子線照射処理方法に関する。
【0002】
【従来の技術】
近年、半導体ウエハ等に塗布されたレジストの硬化や、基板等に塗布された塗料、インキ、接着剤、保護用樹脂の乾燥や硬化に、電子線照射が利用されている。
【0003】
電子線を照射する処理装置としては、特表平10−512092号に記載されているような電子線管を利用するものが知られている。この電子線管は、真空容器内に熱電子放出部と電子線加速部とが設けられており、この熱電子放出部から放出された熱電子を電子線加速部で加速して、電子線を透過させる出射窓部から外部に放出するように構成されている。このような電子線管を利用した電子線照射処理装置は、従来の装置に比べて、電子源を配置する雰囲気を減圧する必要がなく、そのため、減圧のための真空ポンプや真空チャンバが不要となり、その結果、電子線照射処理装置の構成が簡単となり、またその取扱いも容易となる。
【0004】
通常、このような電子線照射処理装置を用いて、被処理物であるレジストや有機SOG等の有機成分を含む膜が塗布されたウエハに電子線を照射して処理する場合は、電子線管から電子線を出射する出射窓部は、処理室内に露出して配置されており、この出射窓部の直下には被処理物が載置される処理台が配置されている。
【0005】
この処理台は、被処理物が電子線で照射される前に予め加熱しておくための加熱源が備えられており、被処理物は、例えば、400℃程度にまで加熱された後に、電子線が照射され処理される。
【0006】
この電子線照射前の予備加熱は、電子線による被処理物の処理を効率良く行うために、処理台を常時加熱しておき、処理室内に搬入された未処理の被処理物が処理台に載置され、該被処理物が加熱された後、電子線照射処理を開始する。
【0007】
図5および図6は、このような電子線照射処理装置の一例を示す図である。この装置では、図5に示すように、予め処理台は図示されていない何等かの加熱手段によって所定温度まで加熱されており、処理室内に搬入された被処理物は上下動可能な支持部材上に支持されている。その後、図6に示すように、支持部材の下降に伴って被処理物は加熱されている処理台に載置されるように構成されている。
【0008】
【発明が解決しようとする課題】
しかし、上記のような電子線照射処理装置では、図6に示すように、支持部材を下降して被処理物が処理台に載置されるとほぼ同時に、被処理物の有機成分を含む膜等から揮発性の汚染物質が一時に多量に放出されるため、飛散した汚染物質によって処理室内が汚染されるという問題を発生していた。
【0009】
また、図5および図6に示す電子線照射処理装置とは異なり、予め未処理の被処理物を処理台に載置してから被処理物を急速に加熱するような場合も、先の場合と同様に、被処理物の加熱に伴って、一時に多量の汚染物質が発生し、処理室内が汚染物質によって汚染されるという問題があった。
【0010】
このようにして発生した汚染物質が、電子線管の電子線出射窓部に付着すると、出射窓部が酸化したり炭化されるために、破損し易くなり使用寿命が短くなる。また、出射窓部に汚染物質が付着すると、電子線が出射窓部を通過する際に、そのエネルギーが奪われ、電子線管から出射される電子線量が低下したり、出射窓部が高温になって破損する問題があった。
【0011】
本発明の目的は、上記の種々の問題点に鑑み、上記のごとく被処理物の加熱時に多量の汚染物質が発生するようなことがあっても、処理室内、特に電子線管の出射窓部の汚染物質による汚染を防止することを可能にした電子線照射処理方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、次のような手段を採用した。
【0013】
第1の手段は、電子線管から放射される電子線を加熱される被処理物に照射して処理する電子線照射処理方法において、被処理物が加熱される以前または直後から、酸素、フッ素、塩素及び臭素のうち1種類またはそれらを複数種類混合した洗浄ガス、若しくは該洗浄ガスと不活性ガスとの混合ガスよりなりなる汚染防止ガス流を前記電子線出射窓に生成させ、前記電子線管から被処理物が照射処理されない程度の線量を有する電子線を放射して前記汚染防止ガスに照射し、その後前記被処理物を、加熱した状態で被処理物が照射処理される程度の線量を有する電子線を該被処理物に照射して処理するようにしたことを特徴とする。
【0017】
【発明の実施の形態】
本発明の第1の実施形態を図1を用いて説明する。
図1は、本実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
同図において、1は図示していない高圧電源が供給されて電子線を生成し、処理室2内の被処理物6に電子線を放射する電子線管、2は電子線管1から処理室2内に向けて放射される電子線を透過させるシリコン等からなる数μm程度の薄膜で形成された出射窓部、3は処理室、4は被処理物6を載置して処理台5上を上下に伸縮可能な可動支持部材、5は図示されていない加熱源を備え被処理物を載置する処理台、6は被処理物、61は塗布されたレジストや有機SOG等の有機成分を含む被処理物の膜、7はガス排気管、8は図示していないガス供給管等から供給され電子線管1の出射窓部2近傍から噴出されてガス排気管7から排出される汚染防止ガス流である。
【0018】
ここで、上記電子線管1の出射窓部2に噴出される汚染防止ガスは、不活性ガス、洗浄ガス、または不活性ガスと洗浄ガスとの混合ガスのいずれかが用いられ、不活性ガスとしては窒素ガス等が、また洗浄ガスとしては、酸素、フッ素、塩素、臭素等のガスの1種類またはそれらを複数種類混合したものが用いられる。なお、不活性ガスと洗浄ガスとの混合ガスの供給は、初めから両者を混合して供給してもよいし、また複数のガス供給管からそれぞれ供給し、噴出時に混合するように構成してもよい。
次に、本実施形態に係る電子線照射処理方法を図1に基づいて説明する。
【0019】
まず、処理室3内に搬入された未処理の被処理物6は、可動支持部材4によって処理室3内の中空に支持される。一方、処理台5は加熱源によって所定の温度まで加熱されている。次に、汚染防止ガスが図示されていないガス供給管によって供給されて、電子線管1の出射窓部2付近から噴出され、処理室3内を流下してガス排気管7の排気口から排出されるので、図示するような汚染防止ガス流8が生成される。このような汚染防止ガス流8が生成されている状態で、被処理物6が載置された可動支持部材4を下降させて被処理物6を処理台5に載置する。次に、被処理物6が処理台5に載置されるとほぼ同時に、電子線管1から電子線を被処理物6に照射し、被処理物6の硬化処理や成膜処理を行う。
【0020】
上記の処理過程で、被処理物6が処理台5に載置されたとき、処理台5は高温に加熱されているので、被処理物6から多量の汚染物質が放出されるが、放出された汚染物質は汚染防止ガス流8によって汚染防止ガスと共にガス排気管7から排出されるので処理室3内での汚染物質による汚染が防止される。
【0021】
また、電子線管1の出射窓部2は、被処理物6が処理台5上で加熱される以前から、出射窓部2付近から噴出された汚染防止ガス流8によって、吹き付けられるので、出射窓部2の汚染物質による汚染を防止することができる。
【0022】
また、本実施形態では、被処理物6が処理台5上で加熱される以前に、出射窓部2付近から汚染防止ガスを噴出させるようにしたが、被処理物6が処理台5上で加熱され始めても、汚染物質が電子線管1の出射窓部2に到達するまでの間に、即ち、被処理物6が処理台5上で加熱された直後に出射窓部2付近から汚染防止ガスを噴出させるようにしても上記と同様の効果が得られる。
【0023】
また、本実施形態では、処理台5を常時加熱しておき、可動支持部材4に載せた被処理物6を処理台5に載せたときから被処理物6を加熱するようにしたが、処理室3に搬入された被処理物6を初めから処理台5に載せておき、その後処理台5を急速加熱して被処理物6を加熱するような場合も、本実施形態の電子線照射処理方法を適用できることはいうまでもない。
【0024】
なお、洗浄ガスを用いることによる特有の効果については、後に第2の実施形態において詳述する。
【0025】
本実施形態の効果は、実施例として、電子線を放射するために電子線管1に印加される加速電圧が50kV、入力電流が200μA、電子線管1の出射窓部2の厚さは3μmのものを用い、汚染防止ガスとしては、窒素ガス27kPa(200Torr)、ガス流量1L/M、処理台5の加熱温度400℃、被処理物として有機SOGを用いて確認された。
【0026】
次に、本発明の第2の実施形態を図2ないし図4を用いて説明する。
図2ないし図4は、本実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
【0027】
同図において、9、11は電子線、10は電子線9の照射によって生成された洗浄ガスのプラズマ、12汚染物質であり、その他の構成は図1に示した同符号の構成に対応するので説明を省略する。
【0028】
本実施形態は、第1の実施形態と比べて、電子線管1の出射窓部2に噴出される汚染防止ガスが、洗浄ガスまたは不活性ガスと洗浄ガスとの混合ガスのいずれかが用いられる点で相違する。なお、洗浄ガスとしては、第1の実施形態のものと同様のものが用いられる。
【0029】
次に、本実施形態に係る電子線照射処理方法を図2ないし図4に基づいて説明する。
【0030】
まず、図2に示すように、処理室3内に搬入された未処理の被処理物6は、可動支持部材4によって処理室3内の中空に支持される。一方、処理台5は加熱源によって所定の温度まで加熱されている。次いで、洗浄ガスまたは洗浄ガスを含む混合ガスが電子線管1の出射窓部2付近から噴出され、ガス排気管7の排気口から排出されるので、図示するような汚染防止ガス流8が生成される。汚染防止ガス流8が生成されると同時にまたは直後に電子線管1の出射窓部2から被処理物6が照射処理されない程度の線量を有する電子線9を放射する。この電子線9によって流入されている洗浄ガスが照射されプラズマ10を発生する。このプラズマ化された洗浄ガス10によつて出射窓部2が常時洗浄される状態となる。次いで、図3に示すように、被処理物6が載置された可動支持部材4を下降させて被処理物6を加熱された処理台5に載置する。被処理物6の処理台5への載置後、図4に示すように、電子線管1から被処理物6を照射処理するための電子線11を照射し、被処理物6の硬化処理や成膜処理を行う。
【0031】
上記の処理過程で、図3に示すように、被処理物6が処理台5に載置されると、処理台5は高温に加熱されているので、被処理物6から多量の汚染物質12が放出されるが、放出された汚染物質12は洗浄ガスまたは洗浄ガスとの混合ガスと共にガス排気管7から排出されるので処理室3内での汚染物質による汚染を防止することができる。
【0032】
また、電子線管1の出射窓部2は、被処理物6が処理台5上で加熱される以前に、出射窓部2付近から噴出される洗浄ガス流8または洗浄ガスを含む混合ガス流8によって、吹き付けられるているので、出射窓部2の汚染物質による汚染をほぼ確実に防止することができる。
【0033】
さらに、本実施形態では、図2に示すように、汚染物質の発生以前からプラズマ化された洗浄ガスによって出射窓部2が洗浄される状態にあるので、図3に示すように、その後、被処理物6から汚染物質12が発生して、たとえ出射窓部2が汚染物質12によって汚染されるような事態が発生しても、プラズマ化された洗浄ガス10の分解作用により汚染物質が分解され、出射窓部2への汚染物質の付着が防止される。なお、洗浄ガスとして酸素を用いた場合は、酸素はプラズマ化されてオゾンが発生し、これによって汚染物質が分解洗浄される。また、洗浄ガスとして、キセノン等の希ガスを用いた場合は、紫外線が発生し、紫外線によって汚染物質が分解除去される。
【0034】
このように、本実施形態の電子線照射処理方法によれば、洗浄ガスまたは洗浄ガスを含む混合ガスの汚染防止ガス流によって電子線管1の出射窓部2の汚染が防止されると共に、プラズマ化された洗浄ガスの分解作用ににより、出射窓部2に付着した汚染物質を分解除去することができるで、第1の実施形態のものに比べて、より確実に出射窓部2への汚染を防止することができる。
【0035】
また、本実施形態のものも、第1の実施形態の場合と同様に、被処理物6が処理台5上で加熱された直後までに出射窓部2付近から汚染防止ガスを噴出させるようにしてもよい。
【0036】
また、第1の実施形態と同様に、処理室3に搬入された被処理物6を初めから処理台5に載せておき、その後処理台5を急速加熱して被処理物6を加熱するような場合も、本実施形態の電子線照射処理方法を適用できることはいうまでもない。
【0037】
なお、本実施形態の効果は、実施例として、電子線を放射するために電子線管1に印加される加速電圧は処理前(プラズマ生成時)は30kV、処理中は50kV、入力電流は処理前、処理後共に200μA、電子線管1の出射窓部2の厚さは3μmのものを用い、汚染防止ガスは、不活性ガスとして窒素27kPa(200Torr)と洗浄ガスとして酸素1kPa(10Torr)の混合ガスを用い、混合ガス流量20L/M、ガスフロー時間20秒、処理台5の加熱温度400℃、被処理物として有機SOGを用いて確認された。
【0038】
【発明の効果】
請求項1に記載の発明によれば、被処理物が加熱される以前または直後から、酸素、フッ素、塩素及び臭素のうち1種類またはそれらを複数種類混合した洗浄ガス、若しくは該洗浄ガスと不活性ガスとの混合ガスよりなりなる汚染防止ガス流を前記電子線出射窓に生成させ、前記電子線管から被処理物が照射処理されない程度の線量を有する電子線を放射して前記汚染防止ガスに照射し、その後前記被処理物を、加熱した状態で被処理物が照射処理される程度の線量を有する電子線を該被処理物に照射して処理するようにしたので、被処理物が加熱されて汚染物質が多量に放出されても、処理室内の汚染を防止することができ、また、電子線出射窓の汚染物質による汚染を確実に防止することができる。さらに、被処理物が処理される以前、に洗浄ガスが電子線によって照射されるので、プラズマ化された洗浄ガスの洗浄作用によって電子線出射窓を常時洗浄状態にすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
【図2】 本発明の第2の実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
【図3】 本発明の第2の実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
【図4】 本発明の第2の実施形態に係る電子線照射処理方法が適用される電子線照射処理装置の構成を示す図である。
【図5】従来技術に係る電子線照射処理装置の構成を示す図である。
【図6】従来技術に係る電子線照射処理装置の構成を示す図である。
【符号の説明】
1 電子線管
2 出射窓部
3 処理室
4 可動支持部材
5 処理台
6 被処理物
7 ガス排気管
8 汚染防止ガス流
9 電子線
10 プラズマ
11 電子線
12 汚染物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam irradiation processing method for irradiating an object to be processed with an electron beam and performing a predetermined process, for example, electron beam irradiation for curing an object to be processed such as a resist or forming a film on the object to be processed. It relates to the processing method.
[0002]
[Prior art]
In recent years, electron beam irradiation has been used for curing a resist applied to a semiconductor wafer or the like, and drying or curing a paint, ink, adhesive, or protective resin applied to a substrate or the like.
[0003]
As a processing apparatus for irradiating an electron beam, an apparatus using an electron beam tube as described in JP-T-10-512092 is known. This electron beam tube is provided with a thermionic emission part and an electron beam acceleration part in a vacuum vessel. The electron beam acceleration part accelerates thermionic electrons emitted from the thermal electron emission part to It is comprised so that it may discharge | release outside from the output window part made to permeate | transmit. The electron beam irradiation processing apparatus using such an electron beam tube does not need to depressurize the atmosphere in which the electron source is arranged, as compared with the conventional apparatus, and therefore, a vacuum pump and a vacuum chamber for depressurization are not required. As a result, the configuration of the electron beam irradiation processing apparatus becomes simple and the handling thereof becomes easy.
[0004]
Usually, using such an electron beam irradiation processing apparatus, when processing a wafer coated with a film containing an organic component such as a resist or organic SOG by irradiating an electron beam, The exit window that emits the electron beam from is disposed so as to be exposed in the processing chamber, and a processing table on which an object to be processed is placed is disposed immediately below the exit window.
[0005]
This processing table is provided with a heating source for preheating the object to be processed before being irradiated with the electron beam, and the object to be processed is, for example, heated to about 400 ° C. A line is irradiated and processed.
[0006]
This preheating prior to the electron beam irradiation is to heat the processing table at all times in order to efficiently process the processing object with the electron beam, and the unprocessed processing object carried into the processing chamber becomes the processing table. After being placed and the object to be processed being heated, the electron beam irradiation process is started.
[0007]
5 and 6 are diagrams illustrating an example of such an electron beam irradiation processing apparatus. In this apparatus, as shown in FIG. 5, the processing table is preheated to a predetermined temperature by some heating means (not shown), and the object to be processed carried in the processing chamber is placed on a support member that can move up and down. It is supported by. Thereafter, as shown in FIG. 6, the workpiece is placed on a heated processing table as the support member is lowered.
[0008]
[Problems to be solved by the invention]
However, in the electron beam irradiation processing apparatus as described above, as shown in FIG. 6, a film containing the organic component of the object to be processed is almost at the same time as the object to be processed is placed on the processing table by lowering the support member. Since a large amount of volatile pollutants are released at a time from, etc., the processing chamber is contaminated by the scattered pollutants.
[0009]
Further, unlike the electron beam irradiation processing apparatus shown in FIGS. 5 and 6, the case where the object to be processed is rapidly heated after placing the object to be processed on the processing table in advance is also the case in the previous case. Similarly, there is a problem that a large amount of pollutant is generated at a time as the workpiece is heated, and the processing chamber is contaminated by the pollutant.
[0010]
When the pollutants generated in this way adhere to the electron beam exit window of the electron tube, the exit window is oxidized or carbonized, so that it is easily damaged and the service life is shortened. Also, if contaminants adhere to the exit window, when the electron beam passes through the exit window, the energy is taken away, and the electron dose emitted from the electron beam tube decreases, or the exit window becomes hot. There was a problem of becoming damaged.
[0011]
In view of the various problems described above, the object of the present invention is to provide a processing chamber, particularly an emission window portion of an electron beam tube, even if a large amount of contaminants may be generated when the workpiece is heated as described above. It is an object of the present invention to provide an electron beam irradiation processing method that can prevent contamination by other contaminants.
[0012]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
[0013]
The first means is an electron beam irradiation processing method in which an object to be heated is irradiated with an electron beam radiated from an electron beam tube, and then, oxygen or fluorine is added before or after the object is heated. , one or them more kinds mixed cleaning gas of chlorine and bromine, or a pollution gas stream comprising becomes a mixed gas of the cleaning gas and the inert gas is generated in the electron beam exit window, the electron beam An electron beam having a dose that does not irradiate the object to be processed is emitted from the tube to irradiate the contamination-preventing gas, and then the object to be processed is irradiated with the object being heated . The object to be processed is processed by being irradiated with an electron beam having a dose .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a diagram illustrating a configuration of an electron beam irradiation processing apparatus to which the electron beam irradiation processing method according to the present embodiment is applied.
In the figure, reference numeral 1 denotes an electron beam tube that generates an electron beam by being supplied with a high-voltage power supply (not shown), and emits an electron beam to an object 6 in the processing chamber 2. 2 is an emission window portion formed of a thin film of about several μm made of silicon or the like that transmits an electron beam radiated into the interior of the substrate 2, 3 is a processing chamber, 4 is an object to be processed 6 placed on the processing table 5. 5 is a movable support member that can be expanded and contracted up and down, 5 is a treatment table provided with a heating source (not shown), 6 is a treatment object, 61 is an object to be treated, 61 is an organic component such as a coated resist or organic SOG. Contamination prevention film 7, 7 is a gas exhaust pipe, 8 is supplied from a gas supply pipe (not shown), etc., and is ejected from the vicinity of the exit window 2 of the electron beam tube 1 and discharged from the gas exhaust pipe 7. Gas flow.
[0018]
Here, as the pollution preventing gas ejected to the exit window 2 of the electron beam tube 1, any one of an inert gas, a cleaning gas, or a mixed gas of an inert gas and a cleaning gas is used. As the cleaning gas, one kind of gas such as oxygen, fluorine, chlorine, bromine or a mixture of them is used as the cleaning gas. The mixed gas of the inert gas and the cleaning gas may be supplied by mixing them from the beginning, or may be supplied from a plurality of gas supply pipes and mixed at the time of ejection. Also good.
Next, the electron beam irradiation processing method according to the present embodiment will be described with reference to FIG.
[0019]
First, the unprocessed workpiece 6 carried into the processing chamber 3 is supported by the movable support member 4 in the hollow inside the processing chamber 3. On the other hand, the processing table 5 is heated to a predetermined temperature by a heating source. Next, the anti-contamination gas is supplied by a gas supply pipe (not shown), ejected from the vicinity of the emission window 2 of the electron beam tube 1, flows down in the processing chamber 3, and is discharged from the exhaust port of the gas exhaust pipe 7. As a result, a pollution control gas stream 8 as shown is generated. In a state where such a pollution prevention gas flow 8 is generated, the movable support member 4 on which the object 6 is placed is lowered and the object 6 is placed on the treatment table 5. Next, when the workpiece 6 is placed on the processing table 5, the workpiece 6 is irradiated with an electron beam from the electron beam tube 1 to perform a curing process or a film forming process on the workpiece 6.
[0020]
In the above process, when the workpiece 6 is placed on the processing table 5, the processing table 5 is heated to a high temperature, so that a large amount of pollutants are released from the workpiece 6. Since the pollutant is discharged from the gas exhaust pipe 7 together with the pollution prevention gas by the pollution prevention gas flow 8, the contamination by the pollution in the processing chamber 3 is prevented.
[0021]
Further, the emission window portion 2 of the electron beam tube 1 is blown by the contamination-preventing gas flow 8 ejected from the vicinity of the emission window portion 2 before the workpiece 6 is heated on the processing table 5. Contamination of the window 2 due to the contaminant can be prevented.
[0022]
Further, in this embodiment, before the object 6 is heated on the processing table 5, the contamination prevention gas is ejected from the vicinity of the exit window portion 2. However, the object 6 is processed on the processing table 5. Even if the heating starts, the contamination is prevented from coming near the exit window 2 until the contaminant reaches the exit window 2 of the electron beam tube 1, that is, immediately after the workpiece 6 is heated on the processing table 5. Even if gas is ejected, the same effect as described above can be obtained.
[0023]
In the present embodiment, the processing table 5 is always heated, and the processing object 6 is heated from when the processing object 6 placed on the movable support member 4 is placed on the processing table 5. The electron beam irradiation process of the present embodiment is also applicable to the case where the workpiece 6 carried into the chamber 3 is placed on the treatment table 5 from the beginning, and then the workpiece 6 is heated by rapidly heating the treatment table 5. It goes without saying that the method can be applied.
[0024]
In addition, the specific effect by using cleaning gas is explained in full detail later in 2nd Embodiment.
[0025]
As an example, the effect of this embodiment is that the acceleration voltage applied to the electron beam tube 1 to emit an electron beam is 50 kV, the input current is 200 μA, and the thickness of the emission window portion 2 of the electron beam tube 1 is 3 μm. As a pollution prevention gas, it was confirmed using nitrogen gas 27 kPa (200 Torr), gas flow rate 1 L / M, heating temperature 400 ° C. of the treatment table 5, and organic SOG as the object to be treated.
[0026]
Next, a second embodiment of the present invention will be described with reference to FIGS.
2 to 4 are diagrams showing a configuration of an electron beam irradiation processing apparatus to which the electron beam irradiation processing method according to the present embodiment is applied.
[0027]
In the figure, 9 and 11 are electron beams, 10 is a cleaning gas plasma generated by irradiation of the electron beam 9, and 12 pollutants, and the other configurations correspond to the configurations of the same symbols shown in FIG. Description is omitted.
[0028]
Compared with the first embodiment, this embodiment uses either a cleaning gas or a mixed gas of an inert gas and a cleaning gas as the anti-contamination gas ejected to the exit window 2 of the electron beam tube 1. Is different. Note that the same cleaning gas as that of the first embodiment is used.
[0029]
Next, the electron beam irradiation processing method according to the present embodiment will be described with reference to FIGS.
[0030]
First, as shown in FIG. 2, the unprocessed workpiece 6 carried into the processing chamber 3 is supported by the movable support member 4 in the hollow inside the processing chamber 3. On the other hand, the processing table 5 is heated to a predetermined temperature by a heating source. Next, the cleaning gas or the mixed gas containing the cleaning gas is ejected from the vicinity of the exit window 2 of the electron beam tube 1 and discharged from the exhaust port of the gas exhaust tube 7, so that a pollution prevention gas flow 8 as shown is generated. Is done. At the same time as or immediately after the generation of the pollution-preventing gas flow 8, an electron beam 9 having a dose such that the object 6 is not irradiated is emitted from the exit window 2 of the electron beam tube 1. The cleaning gas flowing in by the electron beam 9 is irradiated to generate plasma 10. The emission window 2 is always cleaned by the plasma-ized cleaning gas 10. Next, as shown in FIG. 3, the movable support member 4 on which the workpiece 6 is placed is lowered and the workpiece 6 is placed on the heated processing table 5. After placing the processing object 6 on the processing table 5, as shown in FIG. 4, the electron beam 11 for irradiating the processing object 6 is irradiated from the electron beam tube 1 to cure the processing object 6. And a film forming process is performed.
[0031]
In the above process, as shown in FIG. 3, when the workpiece 6 is placed on the treatment table 5, the treatment table 5 is heated to a high temperature. However, since the released pollutant 12 is discharged from the gas exhaust pipe 7 together with the cleaning gas or the mixed gas with the cleaning gas, contamination by the pollutant in the processing chamber 3 can be prevented.
[0032]
Further, the exit window 2 of the electron beam tube 1 has a cleaning gas stream 8 or a mixed gas stream containing a cleaning gas ejected from the vicinity of the exit window 2 before the workpiece 6 is heated on the processing table 5. 8 is sprayed, so that the contamination of the exit window 2 by the contaminant can be almost surely prevented.
[0033]
Furthermore, in this embodiment, as shown in FIG. 2, since the exit window 2 is cleaned by the cleaning gas that has been converted to plasma before the generation of the contaminants, as shown in FIG. Even if the pollutant 12 is generated from the treated product 6 and the exit window 2 is contaminated by the pollutant 12, the pollutant is decomposed by the decomposition action of the cleaning gas 10 that has been converted to plasma. Thus, the contaminants are prevented from adhering to the exit window 2. In the case where oxygen is used as the cleaning gas, the oxygen is turned into plasma and ozone is generated, whereby the contaminants are decomposed and cleaned. Further, when a rare gas such as xenon is used as the cleaning gas, ultraviolet rays are generated, and contaminants are decomposed and removed by the ultraviolet rays.
[0034]
As described above, according to the electron beam irradiation processing method of the present embodiment, the contamination of the emission window portion 2 of the electron beam tube 1 is prevented by the contamination gas flow of the cleaning gas or the mixed gas containing the cleaning gas, and the plasma. As a result of the decomposed action of the cleaning gas, the contaminants adhering to the exit window portion 2 can be decomposed and removed, and the exit window portion 2 can be more reliably contaminated than that of the first embodiment. Can be prevented.
[0035]
Further, in the present embodiment as well, in the same manner as in the first embodiment, the contamination prevention gas is ejected from the vicinity of the emission window portion 2 immediately after the object 6 is heated on the treatment table 5. May be.
[0036]
In addition, as in the first embodiment, the workpiece 6 carried into the processing chamber 3 is placed on the processing table 5 from the beginning, and then the processing table 5 is rapidly heated to heat the workpiece 6. In this case, it goes without saying that the electron beam irradiation processing method of the present embodiment can be applied.
[0037]
As an example, the effect of this embodiment is that the acceleration voltage applied to the electron beam tube 1 to emit an electron beam is 30 kV before processing (during plasma generation), 50 kV during processing, and the input current is processed. Before and after the treatment, 200 μA is used, and the emission window portion 2 of the electron beam tube 1 has a thickness of 3 μm. The pollution prevention gas is 27 kPa (200 Torr) nitrogen as an inert gas and 1 kPa (10 Torr) oxygen as a cleaning gas. It was confirmed using a mixed gas, a mixed gas flow rate of 20 L / M, a gas flow time of 20 seconds, a heating temperature of the processing table 5 of 400 ° C., and an organic SOG as a workpiece.
[0038]
【The invention's effect】
According to the first aspect of the present invention, a cleaning gas obtained by mixing one or more of oxygen, fluorine, chlorine and bromine, or a combination of the cleaning gas and the cleaning gas before or immediately after the workpiece is heated. An anti-contamination gas flow comprising a mixed gas with an active gas is generated in the electron beam exit window, and an electron beam having a dose that does not irradiate the object to be processed is emitted from the electron beam tube to emit the anti-contamination gas. irradiating the, then, the processing object, since the object to be treated in a heated state electron beam having a dose enough to be irradiation treatment was to process by irradiating to said treated, the object to be treated Even if a large amount of contaminants are released by heating, contamination of the processing chamber can be prevented, and contamination of the electron beam emission window due to contaminants can be reliably prevented. Further, since the cleaning gas is irradiated by the electron beam before the object to be processed is processed, the electron beam emission window can be always in a cleaning state by the cleaning action of the plasmaized cleaning gas.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an electron beam irradiation processing apparatus to which an electron beam irradiation processing method according to a first embodiment of the present invention is applied.
FIG. 2 is a diagram showing a configuration of an electron beam irradiation processing apparatus to which an electron beam irradiation processing method according to a second embodiment of the present invention is applied.
FIG. 3 is a diagram showing a configuration of an electron beam irradiation processing apparatus to which an electron beam irradiation processing method according to a second embodiment of the present invention is applied.
FIG. 4 is a diagram showing a configuration of an electron beam irradiation processing apparatus to which an electron beam irradiation processing method according to a second embodiment of the present invention is applied.
FIG. 5 is a diagram showing a configuration of an electron beam irradiation processing apparatus according to a conventional technique.
FIG. 6 is a diagram showing a configuration of an electron beam irradiation processing apparatus according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electron beam tube 2 Output window part 3 Processing chamber 4 Movable support member 5 Processing stand 6 Processed object 7 Gas exhaust pipe 8 Pollution prevention gas flow 9 Electron beam 10 Plasma 11 Electron beam 12 Contaminant

Claims (1)

電子線管から放射される電子線を加熱される被処理物に照射して処理する電子線照射処理方法において、
被処理物が加熱される以前または直後から、酸素、フッ素、塩素及び臭素のうち1種類またはそれらを複数種類混合した洗浄ガス、若しくは該洗浄ガスと不活性ガスとの混合ガスよりなりなる汚染防止ガス流を前記電子線出射窓に生成させ、
前記電子線管から被処理物が照射処理されない程度の線量を有する電子線を放射して前記汚染防止ガスに照射し、
その後前記被処理物を、加熱した状態で被処理物が照射処理される程度の線量を有する電子線を該被処理物に照射して処理するようにした
ことを特徴とする電子線照射処理方法。
In an electron beam irradiation processing method of irradiating an object to be heated with an electron beam emitted from an electron beam tube,
Prevention of contamination consisting of a cleaning gas obtained by mixing one or more of oxygen, fluorine, chlorine and bromine, or a mixed gas of the cleaning gas and an inert gas, immediately before or after the workpiece is heated A gas flow is generated in the electron beam exit window;
Irradiating the anti-contamination gas by irradiating an electron beam having a dose not to be irradiated from the electron beam tube;
Thereafter , the object to be processed is processed by irradiating the object with an electron beam having a dose sufficient to irradiate the object to be processed in a heated state. Method.
JP2001303196A 2001-09-28 2001-09-28 Electron irradiation treatment method Expired - Fee Related JP3788304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303196A JP3788304B2 (en) 2001-09-28 2001-09-28 Electron irradiation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303196A JP3788304B2 (en) 2001-09-28 2001-09-28 Electron irradiation treatment method

Publications (2)

Publication Number Publication Date
JP2003107200A JP2003107200A (en) 2003-04-09
JP3788304B2 true JP3788304B2 (en) 2006-06-21

Family

ID=19123324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303196A Expired - Fee Related JP3788304B2 (en) 2001-09-28 2001-09-28 Electron irradiation treatment method

Country Status (1)

Country Link
JP (1) JP3788304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747557B2 (en) * 2004-10-25 2011-08-17 パナソニック電工株式会社 Electron beam irradiation apparatus and ion generator

Also Published As

Publication number Publication date
JP2003107200A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US6350391B1 (en) Laser stripping improvement by modified gas composition
JP3253675B2 (en) Charged beam irradiation apparatus and method
US5709754A (en) Method and apparatus for removing photoresist using UV and ozone/oxygen mixture
CN1479175A (en) Method for etching surface material with induced chemical reaction by focused electron beam on surface
US6627846B1 (en) Laser-driven cleaning using reactive gases
US20060180173A1 (en) System and method for removal of materials from an article
JP3788304B2 (en) Electron irradiation treatment method
US6489590B2 (en) Laser removal of foreign materials from surfaces
WO2008026366A1 (en) Surface treatment method and apparatus
TW201711764A (en) Optical treatment device and optical treatment method
KR20210110579A (en) Light-assisted chemical vapor etching for selective removal of ruthenium
JP4000762B2 (en) Processing equipment
JP3194441B2 (en) Resist curing method and resist processing apparatus
US20080302400A1 (en) System and Method for Removal of Materials from an Article
JP4406311B2 (en) Energy beam irradiation apparatus and pattern making method using the same
JP3294242B2 (en) Charged beam irradiation method
JP2003107199A (en) Electron beam irradiation treatment device
JP3176349B2 (en) UV processing equipment
JP3852627B2 (en) UV treatment equipment
JPS6370429A (en) Ashing apparatus
JPH10209132A (en) Eliminating method of organic matter
JPS6127635A (en) High efficiency dry type removing device of photoresist
KR100540519B1 (en) A processing apparatus and A processing method
JP2892049B2 (en) Resist ashing method
JP2000323455A (en) Ashing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees