JP3787220B2 - Chip light emitting device - Google Patents

Chip light emitting device Download PDF

Info

Publication number
JP3787220B2
JP3787220B2 JP20468597A JP20468597A JP3787220B2 JP 3787220 B2 JP3787220 B2 JP 3787220B2 JP 20468597 A JP20468597 A JP 20468597A JP 20468597 A JP20468597 A JP 20468597A JP 3787220 B2 JP3787220 B2 JP 3787220B2
Authority
JP
Japan
Prior art keywords
chip
light emitting
voltage
emitting element
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20468597A
Other languages
Japanese (ja)
Other versions
JPH1154801A (en
Inventor
慎二 磯川
秀和 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP20468597A priority Critical patent/JP3787220B2/en
Priority to US09/003,145 priority patent/US6054716A/en
Publication of JPH1154801A publication Critical patent/JPH1154801A/en
Application granted granted Critical
Publication of JP3787220B2 publication Critical patent/JP3787220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

【0001】
【発明の属する技術分野】
本発明は携帯電話機やPHSなどの携帯用電子機器の照明や表示用などの光源に用いられるのに適した小型で、基板からの高さが非常に低い薄型のチップ型発光素子に関する。さらに詳しくは、交流電圧駆動または静電気などにより発光素子に逆方向電圧や所定の電圧以上の順方向電圧が印加される場合にも発光素子がその静電気などにより破壊しにくいように保護素子が設けられているチップ型発光素子に関する。
【0002】
【従来の技術】
携帯電話機やPHSなどの携帯機器の小形化に伴い、それらに用いられる発光素子なども軽薄短小化が要求され、とくに高さが低い薄型のチップ型発光素子が要求されている。
【0003】
この種の小形で薄型のチップ型発光素子は図5(a)に示されるように、基板10の両端部に端子電極1、2が形成され、一方の端子電極1と接続され端子電極の一部となる電極上に発光ダイオード(以下、LEDという)チップ3がボンディングされてその下部電極が端子電極1と直接接続され、その上部電極が金線4により他方の端子電極2とワイヤボンディングされて、それぞれ電気的に接続されている。LEDチップ3は、たとえば図5(b)に示されるように、GaAsやGaPなどからなるn型半導体層41とp型半導体層42との接合によるpn接合面(発光層)43が形成され、その両面に電極44、45が設けられることにより構成されている。この基板10の表面側には、透明または乳白色のエポキシ樹脂などからなる樹脂によりLEDチップ3や金線4を被覆して保護するパッケージ6が形成されている。
【0004】
このような発光素子は、ダイオード構造になっているため、逆方向の電圧が印加されても電流が流れない整流作用を利用して、直流電圧を両電極間に印加しないで交流電圧を印加することにより、交流で順方向電圧になる場合にのみ電流が流れて発光する光を利用する使用方法も採用されている。
【0005】
【発明が解決しようとする課題】
従来のチップ型発光素子は、LEDチップの厚さが0.3mm程度はあり、しかもワイヤボンディングがなされているため、基板からの高さを0.6mm程度より薄くすることは難しく、最終製品としては0.8〜1mm程度となってしまう。一方において、発光素子として用いられるGaAs系やGaP系やチッ化ガリウム系などの化合物半導体では、逆方向に印加される電圧や高電圧に対して弱く、半導体層が破壊することがある。とくに、チッ化ガリウム系化合物半導体においては、その逆方向の耐圧が50V程度と低く逆方向の印加電圧に対してとくに破壊しやすいこと、またバンドギャップエネルギーが大きいため、GaAs系などを用いた発光素子より動作電圧も高くなること、などのため交流電圧の印加で半導体発光素子が破損したり、その特性が劣化するという問題がある。
【0006】
また、交流電圧を印加する駆動でなくても、外部からサージ電圧などの大きな電圧が印加される場合、チッ化ガリウム系化合物半導体では順方向電圧でも150V程度で破壊されやすいという問題がある。
【0007】
これらの逆方向電圧や静電気の印加に対する破壊を防止するため、半導体発光素子が組み込まれる回路内で、半導体発光素子と並列で半導体発光素子と逆方向にツェナーダイオードを組み込むことが行われる場合もある。しかし、回路内に組み込まれる前の製造工程や出荷に伴う搬送工程、または回路基板に組み込む際などのハンドリング時に静電気で破壊したり、外部回路でLEDの他にダイオードなどを組み込むスペースや工数を必要とするという問題がある。
【0008】
本発明はこのような問題を解決するためになされたもので、小形で非常に薄型でありながら、逆方向電圧や静電気などのサージ電圧の印加に対して強く、取扱が容易なチップ型発光素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明によるチップ型発光素子は、絶縁性基板と、該絶縁性基板の表面の両端部にそれらの一端部が一定間隙を有して対向するように設けられる第1および第2の端子電極と、前記第1および第2の端子電極にそれぞれ第1および第2の電極が導電性接着剤により直接接続される発光素子チップと、前記第1および第2の端子電極間に2つの電極がそれぞれ導電性接着剤により直接接続されるようにボンディングされる保護素子と、透光性樹脂からなり該保護素子および前記発光素子チップを被覆する樹脂パッケージとからなり、該保護素子は前記発光素子チップに印加され得る少なくとも逆方向電圧に対して前記発光素子チップを保護する素子であると共に、前記発光素子チップおよび前記保護素子が並置してそれぞれの両電極が前記第1および第2の端子電極上に直接接続して設けられることにより、前記絶縁性基板の表面から前記樹脂パッケージの表面までの高さが0 . 5mm以下の薄さに形成されている。
【0010】
ここに保護素子とは、発光素子チップに印加され得る逆方向電圧を短絡したり、発光素子チップの動作電圧より高い所定の電圧以上の順方向電圧をショートさせ得る素子を意味し、ツェナーダイオードやトランジスタのダイオード接続、MOSFETのゲートとソースまたはドレインとを短絡した素子またはこれらの複合素子、ICなどを含む。また、電極が直接接続されるとは、金線などのワイヤを介することなく、接触または導電性接着剤により接続されることを意味する。また、端子電極には発光素子が組み込まれる回路基板などと接続される電極部分と一体に形成されている金属部分のすべてを含む。
【0011】
この構造にすることにより、LEDチップおよび保護素子の両方ともが直接第1および第2の端子電極に接続されているため、ワイヤボンディングを必要としない。そのため、LEDチップの上方にワイヤを張るスペースを必要としなくなり、非常に薄型のチップ型発光素子になると共に、保護素子が内蔵されているため、逆方向電圧や静電気のサージなどに対して破壊しにくい。
【0012】
前記発光素子チップがチッ化ガリウム系化合物半導体からなり、前記保護素子がツェナーダイオードであれば、とくに逆電圧に弱く、また順方向でも高電圧の印加に弱いチッ化ガリウム系化合物半導体が用いられる青色系のチップ型発光素子において、逆方向電圧やサージ電圧などの印加に対して保護されるため好ましい。とくに保護素子としてツェナーダイオードが用いられることにより、発光素子チップに順方向にサージなどの高電圧が印加されてもツェナーダイオードのツェナー特性により、発光素子チップにダメージを与えることなく保護されると共に、通常の動作には何等の異常を来さない。ここにチッ化ガリウム系化合物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物からなる半導体をいう。
【0013】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体発光素子について説明をする。
【0014】
本発明の半導体発光素子は、その一実施形態の平面および断面の説明図が図1に示されるように、絶縁性基板10の表面の両端部に第1および第2の端子電極1、2がそれらの一端部が一定間隙を有して対向するように設けられている。そして、第1および第2の端子電極1、2に直接n側電極39およびp側電極38がそれぞれ接続されるようにLEDチップ3がボンディングされている。さらに、第1および第2の端子電極1、2間に2つの電極がそれぞれ直接電気的に接続されるように保護素子であるツェナーダイオードチップ5がボンディングされ、第1および第2の端子電極1、2間にLEDチップ3と逆方向になるように電気的に接続されている。そしてその周囲が樹脂パッケージ6により覆われている。
【0015】
絶縁性基板10は、たとえばガラスクロスに耐熱性のBT樹脂を含浸させたBTレジンなどの絶縁性の基板からなっている。また、端子電極1、2は基板状態でその表面と裏面にスクリーン印刷などにより銀ペーストが塗布され、乾燥させることにより表面および裏面の電極が形成される。この電極形成は複数個のチップ分をまとめて大きな基板の状態で行われ、各チップの電極側の境界の側面にはスロットが形成されている。そのため、表面および裏面の電極を形成する際にスロット内にも銀ペーストが付着して、図1(b)に示されるように、側面にも電極が形成され、表面から裏面に亘って端子電極が形成される。
【0016】
LEDチップ3は、たとえば青色系(紫外線から黄色)の発光色を有するチップの一例の断面図が図3に示されるように形成される。すなわち、たとえばサファイア(Al2 3 単結晶)などからなる基板31の表面に、GaNからなる低温バッファ層32が0.01〜0.2μm程度、クラッド層となるn形層33が1〜5μm程度、InGaN系(InとGaの比率が種々変わり得ることを意味する、以下同じ)化合物半導体からなる活性層34が0.05〜0.3μm程度、p形のAlGaN系(AlとGaの比率が種々変わり得ることを意味する、以下同じ)化合物半導体層35aおよびGaN層35bからなるp形層(クラッド層)35が0.2〜1μm程度、それぞれ順次積層されて、その表面に電流拡散層37を介してp側電極38が形成されている。また、積層された半導体層33〜35の一部が除去されて露出したn形層33にn側電極39が設けられることにより形成されている。
【0017】
ツェナーダイオードチップ5は、通常のシリコン半導体などからなり、不純物濃度の高い半導体のpn接合に大きい逆方向電圧を印加すると電子がトンネル効果によってpn接合を通って流れる現象を利用したものである。この逆方向の電流が流れ始める電圧(ツェナー電圧)はその不純物濃度により設定される。したがって、このツェナー電圧をLEDチップ3の動作電圧より高い所定の電圧に設定しておき、LEDチップ3とツェナーダイオードチップ5とが並列で逆方向になるように第1および第2の端子電極1、2に接続することにより、LEDチップ3の動作に支障を来すことはない。
【0018】
このLEDチップ3が図1に示されるように、裏向きにしてn側電極39とp側電極38がそれぞれ第1および第2の端子電極1、2の上にそれぞれ位置するように載置され、予め塗布されている銀ペーストなどの導電性接着剤により接着されている。なお、ボンディングの際にLEDチップ3の表面でn側電極とp形層との短絡の虞れがあるときは、電極以外のLEDチップ3の表面に絶縁性の保護膜を設けておくことにより、その虞れはなくなる。また、ツェナーダイオードチップ5は横向きにしてその正電極が第1の端子電極に接触し、負電極が第2の端子電極2と接触するように載置されて銀ペーストなどの導電性接着剤によりボンディングされている。なお、LEDチップ3も上下両面にそれぞれn側電極およびp側電極が設けられる構造のものであれば、ツェナーダイオードチップ5と同様に横向きにしてそれぞれの電極が直接第1および第2の端子電極と接触するようにダイボンディングされる。そして、ツェナーダイオードチップ5を含めたこれらの周囲がLEDチップ3により発光する光を透過する透明または乳白色のエポキシ樹脂などによりモールドされることにより、樹脂パッケージ6で被覆された本発明のチップ型発光素子が得られる。
【0019】
本発明のチップ型発光素子によれば、ツェナーダイオードチップ5が内蔵されて図4にその等価回路図が示されているように、LEDチップ3とツェナーダイオードチップ5とが並列で、かつ、その極性が相互に逆になるように接続されている。そのため、LEDチップ3を駆動する電源が交流電源であっても、LEDチップ3に順方向の電圧になる位相のときは、ツェナーダイオードチップ5には逆方向電圧でツェナー電圧より低い電圧であるため電流は流れず、LEDチップ3に電流が流れて発光する。また、交流電源がLEDチップ3に逆方向の電圧になる位相のときは、ツェナーダイオードチップ5を介して電流が流れる。そのため、交流電圧がLEDチップ3に対して逆方向の電圧の位相となるときでも、LEDチップ3には逆方向の電圧は殆ど印加されない。また、静電気が印加される場合、その静電気がLEDチップ3の逆方向であればツェナーダイオードチップ5を介して放電し、LEDチップ3に順方向である場合はその電圧がツェナー電圧より高ければツェナーダイオードチップ5を介して放電するためLEDチップ3を保護し、ツェナー電圧より低ければLEDチップ3を介して放電するが、その電圧は低い電圧であるためLEDチップ3を損傷することはない。その結果、逆方向の電圧や静電気のサージに対して弱いLEDチップ3であってもLEDチップ3に高い電圧が印加されず、LEDチップ3を破損したり、劣化させたりすることがない。
【0020】
一方、本発明のチップ型発光素子では、LEDチップ3およびツェナーダイオードチップ5は共にそれらの電極が第1および第2の端子電極1、2に直接接続されているため、全然ワイヤボンディングを必要としない。そのため、基板10からの高さはLEDチップ3およびツェナーダイオード5の高さより僅かに高い範囲で収まり、基板表面からの高さHが0.5mmより低い超薄型にもなし得る。また、横方向もLEDチップ3とツェナーダイオードとを並べてボンディングすることができ、ワイヤボンディングの必要がないため、全然大きくする必要はない。その結果、小形で超薄型の、しかも静電気や逆方向の電圧の印加に対して保護し得る保護素子が内蔵されたチップ型の発光素子が得られる。
【0021】
前述の例では、保護素子としてツェナーダイオードチップを用いたが、チップでなくてパッケージングされた製品状のものを使用してもよい。また、ツェナーダイオードでなくても通常のダイオードでも、LEDチップに対する逆方向の電圧に対して保護することができる。さらに、ダイオードでなくても、トランジスタをダイオード接続したものや、MOSFETのゲートとソースまたはドレインとを接続したもの、またはこれらを組み合わせてツェナーダイオードと同様に両方向に保護する複合素子またはICなど、ダイオードと同様にLEDチップを保護することができる素子であればよい。
【0022】
また、前述の例では、発光素子としてチッ化ガリウム系化合物半導体を用いた青色系の半導体発光素子であったが、チッ化ガリウム系化合物半導体はとくに逆方向の電圧や高電圧により破壊されやすいため効果が大きい。しかし、これに限定されるものではなく、GaAs系、AlGaAs系、AlGaInP系、InP系などの赤色系や緑色系の発光素子についても、保護素子が設けられることにより同様に逆方向電圧や静電気に対して強い半導体発光素子が得られる。
【0023】
さらに、前述の例では、LEDチップ3の周囲を被覆する樹脂パッケージ6がLEDチップ3で発光する光に対して透明な樹脂だけで被覆する構造のチップ型発光素子であったが、図2に示されるように、周囲が反射ケース9で囲まれて、上方に光を集光させる構造のものでも同様に保護素子を内蔵し、超薄型とすることができる。なお、図2で図1と同じ部分には同じ符号を付してその説明を省略する。
【0024】
【発明の効果】
本発明によれば、LEDチップと保護素子が直接、端子電極に接続されているため、逆方向電圧の印加や静電気による高電圧の印加に対しても損傷することがなく、信頼性が大幅に向上する超薄型の発光素子が得られる。その結果、携帯電話機やPHSなどの携帯機器のスイッチボタンなどに用いられる光源を非常に薄くすることができ、携帯機器などのさらなる軽薄短小に寄与すると共に、半製品や製品の状態での取扱もアースバンドの使用や静電気除去の特別な注意を払う必要がなくなり、作業効率が大幅に向上する。
【図面の簡単な説明】
【図1】本発明の半導体発光素子の一実施形態の平面および断面の説明図である。
【図2】図1の変形例を示す図である。
【図3】図1のLEDチップの一例の断面説明図である。
【図4】図1の半導体発光素子の接続関係の等価回路図である。
【図5】従来のチップ型発光素子の一例の斜視説明図である。
【符号の説明】
1 第1の端子電極
2 第2の端子電極
3 LEDチップ
5 ツェナーダイオードチップ
10 絶縁性基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small chip light-emitting element that is suitable for use as a light source for illumination or display of portable electronic devices such as a mobile phone and a PHS and has a very low height from a substrate. More specifically, a protective element is provided to prevent the light emitting element from being damaged by static electricity even when a reverse voltage or a forward voltage higher than a predetermined voltage is applied to the light emitting element due to AC voltage driving or static electricity. The present invention relates to a chip type light emitting device.
[0002]
[Prior art]
With the downsizing of portable devices such as mobile phones and PHS, light-emitting elements used for them are required to be light and thin, and particularly thin chip-type light-emitting elements with low height are required.
[0003]
As shown in FIG. 5A, this type of small and thin chip-type light emitting element has terminal electrodes 1 and 2 formed on both ends of a substrate 10 and is connected to one terminal electrode 1 and is connected to one terminal electrode. A light emitting diode (hereinafter referred to as LED) chip 3 is bonded on the electrode to be a part, its lower electrode is directly connected to the terminal electrode 1, and its upper electrode is wire bonded to the other terminal electrode 2 by a gold wire 4. , Each is electrically connected. For example, as shown in FIG. 5B, the LED chip 3 has a pn junction surface (light emitting layer) 43 formed by joining an n-type semiconductor layer 41 made of GaAs or GaP and a p-type semiconductor layer 42, The electrodes 44 and 45 are provided on both surfaces thereof. On the surface side of the substrate 10 is formed a package 6 that covers and protects the LED chip 3 and the gold wire 4 with a resin made of a transparent or milky white epoxy resin or the like.
[0004]
Since such a light emitting element has a diode structure, an AC voltage is applied without applying a DC voltage between both electrodes by using a rectifying action in which no current flows even when a reverse voltage is applied. Accordingly, a method of using light that emits light when a current flows only when a forward voltage is generated by alternating current is also employed.
[0005]
[Problems to be solved by the invention]
In the conventional chip type light emitting device, the thickness of the LED chip is about 0.3 mm, and since wire bonding is performed, it is difficult to make the height from the substrate thinner than about 0.6 mm. Becomes about 0.8 to 1 mm. On the other hand, compound semiconductors such as GaAs, GaP, and gallium nitride that are used as light-emitting elements are vulnerable to voltages applied in the reverse direction or high voltages, and the semiconductor layer may be destroyed. In particular, gallium nitride-based compound semiconductors have a breakdown voltage in the reverse direction as low as about 50 V, and are particularly susceptible to breakdown with respect to an applied voltage in the reverse direction. Since the operating voltage is higher than that of the device, there is a problem in that the semiconductor light emitting device is damaged or its characteristics are deteriorated by application of an AC voltage.
[0006]
Further, even when driving is not performed by applying an AC voltage, when a large voltage such as a surge voltage is applied from the outside, there is a problem that a gallium nitride compound semiconductor is easily broken even at a forward voltage of about 150V.
[0007]
In order to prevent breakdown due to application of reverse voltage or static electricity, a Zener diode may be incorporated in the circuit in which the semiconductor light emitting element is incorporated in parallel with the semiconductor light emitting element in the opposite direction to the semiconductor light emitting element. . However, there is a need for space and man-hours to break down by static electricity during handling such as manufacturing process before being built into the circuit, transport process accompanying shipment, or when being built into the circuit board, or to incorporate diodes other than LEDs in the external circuit There is a problem that.
[0008]
The present invention has been made to solve such problems, and is a chip-type light emitting device that is small and very thin, but is strong against application of a surge voltage such as reverse voltage or static electricity, and easy to handle. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The chip-type light emitting device according to the present invention includes an insulating substrate, and first and second terminal electrodes provided at both ends of the surface of the insulating substrate so that one end thereof is opposed to each other with a certain gap. A light emitting element chip in which the first and second electrodes are directly connected to the first and second terminal electrodes by a conductive adhesive, respectively, and two electrodes between the first and second terminal electrodes, respectively. A protective element that is bonded so as to be directly connected by a conductive adhesive, and a resin package that is made of a translucent resin and covers the protective element and the light emitting element chip. The protective element is attached to the light emitting element chip. with respect to the applied may at least reverse voltage is an element for protecting the light emitting element chip, the light emitting device chip and the protective element and the respective two electrodes juxtaposed first By provided directly connected to the spare on the second terminal electrode, the insulating height from the surface of the substrate to the surface of the resin package is 0. 5 mm is formed in the following thin.
[0010]
Here, the protective element means an element that can short-circuit a reverse voltage that can be applied to the light-emitting element chip, or can short-circuit a forward voltage that is higher than a predetermined voltage that is higher than the operating voltage of the light-emitting element chip. It includes a diode connection of a transistor, a device in which a gate and a source or drain of a MOSFET are short-circuited, or a composite device thereof, an IC, or the like. Moreover, that an electrode is directly connected means that it is connected by contact or a conductive adhesive without using a wire such as a gold wire. In addition, the terminal electrode includes all metal portions formed integrally with an electrode portion connected to a circuit board in which a light emitting element is incorporated.
[0011]
With this structure, since both the LED chip and the protection element are directly connected to the first and second terminal electrodes, wire bonding is not required. This eliminates the need for a space over the LED chip to provide a wire, resulting in a very thin chip-type light emitting device and a built-in protective device that can be destroyed against reverse voltage and electrostatic surges. Hateful.
[0012]
If the light-emitting element chip is made of a gallium nitride compound semiconductor and the protective element is a Zener diode, a blue gallium nitride compound semiconductor that is particularly weak against reverse voltage and weak against high voltage application in the forward direction is used. In the case of the chip type light emitting device, it is preferable because it is protected against application of reverse voltage or surge voltage. In particular, by using a Zener diode as a protective element, even if a high voltage such as a surge is applied to the light emitting element chip in the forward direction, the Zener diode is protected without damaging the light emitting element chip, There is no abnormality in normal operation. Here, the gallium nitride compound semiconductor is a compound in which a group III element Ga and a group V element N or a part of the group III element Ga is substituted with another group III element such as Al or In, and A semiconductor composed of a compound in which a part of N of the group V element is substituted with another group V element such as P or As.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the semiconductor light emitting device of the present invention will be described with reference to the drawings.
[0014]
The semiconductor light emitting device of the present invention has first and second terminal electrodes 1 and 2 at both ends of the surface of the insulating substrate 10 as shown in FIG. Their one end portions are provided to face each other with a certain gap. The LED chip 3 is bonded so that the n-side electrode 39 and the p-side electrode 38 are directly connected to the first and second terminal electrodes 1 and 2, respectively. Further, a Zener diode chip 5 as a protection element is bonded so that the two electrodes are directly electrically connected between the first and second terminal electrodes 1 and 2, respectively, and the first and second terminal electrodes 1 and 2 are bonded. 2 is electrically connected to the LED chip 3 in the opposite direction. The periphery is covered with a resin package 6.
[0015]
The insulating substrate 10 is made of an insulating substrate such as BT resin in which a glass cloth is impregnated with a heat-resistant BT resin. Further, the terminal electrodes 1 and 2 are coated with a silver paste on the front and back surfaces by screen printing or the like in a substrate state, and dried to form front and back electrodes. This electrode formation is performed on a large substrate by putting together a plurality of chips, and a slot is formed on the side surface of the electrode side boundary of each chip. Therefore, when the front and back electrodes are formed, the silver paste adheres to the inside of the slot, and as shown in FIG. 1B, the electrodes are also formed on the side surfaces, and the terminal electrodes extend from the front surface to the back surface. Is formed.
[0016]
The LED chip 3 is formed, for example, as shown in FIG. 3 in a cross-sectional view of an example of a chip having a blue-based (ultraviolet to yellow) emission color. That is, for example, on the surface of the substrate 31 made of sapphire (Al 2 O 3 single crystal) or the like, the low-temperature buffer layer 32 made of GaN is about 0.01 to 0.2 μm, and the n-type layer 33 that becomes the cladding layer is 1 to 5 μm. The active layer 34 made of an InGaN-based compound semiconductor (meaning that the ratio of In and Ga can be changed variously, the same applies hereinafter) compound semiconductor is about 0.05 to 0.3 μm, p-type AlGaN-based (ratio of Al to Ga) P-type layer (cladding layer) 35 composed of a compound semiconductor layer 35a and a GaN layer 35b is sequentially stacked in a thickness of about 0.2 to 1 μm, and a current diffusion layer is formed on the surface thereof. A p-side electrode 38 is formed via 37. Further, the n-side electrode 39 is provided on the n-type layer 33 exposed by removing a part of the stacked semiconductor layers 33 to 35.
[0017]
The Zener diode chip 5 is made of a normal silicon semiconductor or the like, and utilizes a phenomenon in which electrons flow through the pn junction by a tunnel effect when a large reverse voltage is applied to a pn junction of a semiconductor having a high impurity concentration. The voltage at which the reverse current starts to flow (zener voltage) is set by the impurity concentration. Accordingly, the Zener voltage is set to a predetermined voltage higher than the operating voltage of the LED chip 3, and the first and second terminal electrodes 1 are arranged so that the LED chip 3 and the Zener diode chip 5 are in parallel and in opposite directions. By connecting to 2, the operation of the LED chip 3 is not hindered.
[0018]
As shown in FIG. 1, the LED chip 3 is placed face down so that the n-side electrode 39 and the p-side electrode 38 are positioned on the first and second terminal electrodes 1 and 2, respectively. It is adhered by a conductive adhesive such as silver paste applied in advance. When there is a risk of short circuit between the n-side electrode and the p-type layer on the surface of the LED chip 3 during bonding, an insulating protective film is provided on the surface of the LED chip 3 other than the electrodes. The fear disappears. Further, the Zener diode chip 5 is placed sideways so that its positive electrode is in contact with the first terminal electrode and its negative electrode is in contact with the second terminal electrode 2, and is attached by a conductive adhesive such as silver paste. Bonded. In addition, if the LED chip 3 has a structure in which an n-side electrode and a p-side electrode are provided on both upper and lower surfaces, respectively, the first and second terminal electrodes are arranged directly in the horizontal direction like the Zener diode chip 5. Die-bonded to contact Then, the periphery of these including the Zener diode chip 5 is molded with a transparent or milky white epoxy resin that transmits light emitted by the LED chip 3, so that the chip-type light emission of the present invention covered with the resin package 6 is performed. An element is obtained.
[0019]
According to the chip type light emitting device of the present invention, the Zener diode chip 5 is incorporated, and as shown in the equivalent circuit diagram of FIG. 4, the LED chip 3 and the Zener diode chip 5 are arranged in parallel, and They are connected so that their polarities are opposite to each other. Therefore, even if the power source for driving the LED chip 3 is an AC power source, the Zener diode chip 5 has a reverse voltage lower than the Zener voltage when the LED chip 3 has a phase that becomes a forward voltage. No current flows, and current flows through the LED chip 3 to emit light. Further, when the AC power supply has a phase in which the reverse voltage is applied to the LED chip 3, a current flows through the Zener diode chip 5. Therefore, even when the AC voltage is in the reverse voltage phase with respect to the LED chip 3, the reverse voltage is hardly applied to the LED chip 3. In addition, when static electricity is applied, if the static electricity is in the reverse direction of the LED chip 3, it is discharged through the Zener diode chip 5, and in the forward direction to the LED chip 3, if the voltage is higher than the Zener voltage, the Zener is discharged. The LED chip 3 is protected to discharge through the diode chip 5, and if it is lower than the Zener voltage, it is discharged through the LED chip 3. However, since the voltage is low, the LED chip 3 is not damaged. As a result, even if the LED chip 3 is weak against reverse voltage or electrostatic surge, a high voltage is not applied to the LED chip 3, and the LED chip 3 is not damaged or deteriorated.
[0020]
On the other hand, in the chip-type light emitting device of the present invention, both the LED chip 3 and the Zener diode chip 5 have their electrodes connected directly to the first and second terminal electrodes 1 and 2, and therefore require wire bonding at all. do not do. For this reason, the height from the substrate 10 is within a range slightly higher than the height of the LED chip 3 and the Zener diode 5, and the height H from the substrate surface can be made ultra-thin lower than 0.5 mm. Also, in the lateral direction, the LED chip 3 and the Zener diode can be bonded side by side, and there is no need for wire bonding. As a result, it is possible to obtain a chip-type light-emitting element that is small and ultra-thin and that has a built-in protective element that can protect against static electricity and application of a reverse voltage.
[0021]
In the above example, a Zener diode chip is used as the protective element, but a packaged product may be used instead of the chip. Moreover, even if it is not a Zener diode but a normal diode, it can protect with respect to the voltage of the reverse direction with respect to a LED chip. Furthermore, even if it is not a diode, a diode such as a diode-connected transistor, a MOSFET gate connected to a source or drain, or a composite element or IC that combines these to protect in both directions like a Zener diode Any element can be used as long as it can protect the LED chip.
[0022]
In the above example, a blue semiconductor light emitting device using a gallium nitride compound semiconductor as the light emitting device is used. However, a gallium nitride compound semiconductor is particularly susceptible to destruction by a reverse voltage or a high voltage. Great effect. However, the present invention is not limited to this, and red and green light emitting elements such as GaAs, AlGaAs, AlGaInP, and InP are also protected against reverse voltage and static electricity by providing protective elements. In contrast, a strong semiconductor light emitting device can be obtained.
[0023]
Furthermore, in the above-described example, the resin package 6 covering the periphery of the LED chip 3 is a chip-type light emitting element having a structure in which only the resin transparent to the light emitted from the LED chip 3 is covered. As shown in the figure, the protective element is similarly built in the structure in which the periphery is surrounded by the reflection case 9 and the light is condensed upward, and can be made ultra-thin. In FIG. 2, the same parts as those in FIG.
[0024]
【The invention's effect】
According to the present invention, since the LED chip and the protection element are directly connected to the terminal electrode, there is no damage even when a reverse voltage is applied or a high voltage is applied due to static electricity. An improved ultra-thin light-emitting element can be obtained. As a result, the light source used for switch buttons of portable devices such as mobile phones and PHS can be made very thin, contributing to further lightness and thinness of portable devices and the like, and handling in the state of semi-finished products and products There is no need to pay special attention to the use of an earth band or static electricity removal, greatly improving work efficiency.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a plane and a cross section of an embodiment of a semiconductor light emitting device of the present invention.
FIG. 2 is a diagram showing a modification of FIG.
FIG. 3 is a cross-sectional explanatory diagram of an example of the LED chip of FIG. 1;
4 is an equivalent circuit diagram of a connection relationship of the semiconductor light emitting device of FIG. 1. FIG.
FIG. 5 is a perspective view illustrating an example of a conventional chip-type light emitting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st terminal electrode 2 2nd terminal electrode 3 LED chip 5 Zener diode chip 10 Insulating board

Claims (1)

絶縁性基板と、該絶縁性基板の表面の両端部にそれらの一端部が一定間隙を有して対向するように設けられる第1および第2の端子電極と、前記第1および第2の端子電極にそれぞれ第1および第2の電極が導電性接着剤により直接接続される発光素子チップと、前記第1および第2の端子電極間に2つの電極がそれぞれ導電性接着剤により直接接続されるようにボンディングされる保護素子と、透光性樹脂からなり該保護素子および前記発光素子チップを被覆する樹脂パッケージとからなり、該保護素子は前記発光素子チップに印加され得る少なくとも逆方向電圧に対して前記発光素子チップを保護する素子であると共に、前記発光素子チップおよび前記保護素子が並置してそれぞれの両電極が前記第1および第2の端子電極上に直接接続して設けられることにより、前記絶縁性基板の表面から前記樹脂パッケージの表面までの高さが0 . 5mm以下の薄さに形成されてなるチップ型発光素子。An insulating substrate, first and second terminal electrodes provided at opposite ends of the surface of the insulating substrate such that one end thereof is opposed with a constant gap, and the first and second terminals A light emitting element chip in which the first and second electrodes are directly connected to the electrode by a conductive adhesive, and two electrodes are directly connected by the conductive adhesive between the first and second terminal electrodes, respectively. A protective element made of a transparent resin and a resin package covering the protective element and the light emitting element chip , the protective element against at least a reverse voltage that can be applied to the light emitting element chip wherein with the light emitting element is an element for protecting the chip, connecting the light emitting element chip and the protection device each both electrodes juxtaposed directly to the first and the second terminal electrodes Te By provided Te, height from the surface of the insulating substrate to the surface of the resin package is 0. 5 mm formed by forming the following thin chip type light emitting element.
JP20468597A 1997-01-10 1997-07-30 Chip light emitting device Expired - Lifetime JP3787220B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20468597A JP3787220B2 (en) 1997-07-30 1997-07-30 Chip light emitting device
US09/003,145 US6054716A (en) 1997-01-10 1998-01-06 Semiconductor light emitting device having a protecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20468597A JP3787220B2 (en) 1997-07-30 1997-07-30 Chip light emitting device

Publications (2)

Publication Number Publication Date
JPH1154801A JPH1154801A (en) 1999-02-26
JP3787220B2 true JP3787220B2 (en) 2006-06-21

Family

ID=16494621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20468597A Expired - Lifetime JP3787220B2 (en) 1997-01-10 1997-07-30 Chip light emitting device

Country Status (1)

Country Link
JP (1) JP3787220B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603368B2 (en) 2003-02-28 2010-12-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device having a package body with a structured metallization, a method for producing such a device, and a method for applying a structured metallization to a body comprising plastic
US7718451B2 (en) 2003-02-28 2010-05-18 Osram Opto Semiconductor Gmbh Method for producing an optoelectronic device with patterned-metallized package body and method for the patterned metalization of a plastic-containing body
JP3841092B2 (en) 2003-08-26 2006-11-01 住友電気工業株式会社 Light emitting device
JP2005191530A (en) 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd Light emitting device
JP2005347080A (en) * 2004-06-02 2005-12-15 Sanyo Electric Co Ltd Battery
JP2006156588A (en) * 2004-11-26 2006-06-15 Seiwa Electric Mfg Co Ltd Light emitting diode
JP2006179511A (en) 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd Light emitting device
DE102009015963A1 (en) 2009-04-02 2010-10-07 Osram Opto Semiconductors Gmbh Optoelectronic component

Also Published As

Publication number Publication date
JPH1154801A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3673621B2 (en) Chip light emitting device
KR100765075B1 (en) Semiconductor light-emitting device and manufacturing method thereof
US7683396B2 (en) High power light emitting device assembly utilizing ESD protective means sandwiched between dual sub-mounts
KR100686416B1 (en) Composite light-emitting device, semiconductor light-emitting unit and method for fabricating the unit
JP3686569B2 (en) Semiconductor light emitting device and display device using the same
JP3559435B2 (en) Semiconductor light emitting device
US20060267040A1 (en) High-brightness LED with protective function of electrostatic discharge damage
US7456438B2 (en) Nitride-based semiconductor light emitting diode
JP2002314138A (en) Light emitting device
JP2001015815A (en) Semiconductor light-emitting device
JPH10200159A (en) Semiconductor light emitting element
JP2011249411A (en) Semiconductor light-emitting element, light-emitting device, illumination device, display device, signal light unit and road information device
JP3348843B2 (en) Light emitting diode and dot matrix display using the same
JP2000124506A (en) Semiconductor light-emitting element
JP2001217461A (en) Compound light-emitting device
KR19990013508A (en) Semiconductor light emitting device
JP2001036140A (en) Static countermeasure devised surface-mounting led
JP3787220B2 (en) Chip light emitting device
JP3911839B2 (en) Semiconductor light emitting device
JP3764255B2 (en) Semiconductor light emitting device
KR102131853B1 (en) Light emitting diode array
JP2002185049A (en) Flip-chip light-emitting diode and method for directly bonding flip-chip electrostatic discharge protection chip to electrode in package
JPH11354836A (en) Full color semiconductor light emitting device
JP3723328B2 (en) Semiconductor light emitting device
JPH11214747A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term