JP3777878B2 - Method for producing metal matrix composite material - Google Patents

Method for producing metal matrix composite material Download PDF

Info

Publication number
JP3777878B2
JP3777878B2 JP16860899A JP16860899A JP3777878B2 JP 3777878 B2 JP3777878 B2 JP 3777878B2 JP 16860899 A JP16860899 A JP 16860899A JP 16860899 A JP16860899 A JP 16860899A JP 3777878 B2 JP3777878 B2 JP 3777878B2
Authority
JP
Japan
Prior art keywords
powder
metal
particles
alloy
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16860899A
Other languages
Japanese (ja)
Other versions
JP2000144281A (en
Inventor
和明 佐藤
幸男 大河内
裕幸 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16860899A priority Critical patent/JP3777878B2/en
Publication of JP2000144281A publication Critical patent/JP2000144281A/en
Application granted granted Critical
Publication of JP3777878B2 publication Critical patent/JP3777878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化合物粒子を多量に含む金属基複合材料の製造方法に関し、更に、上記の複合材料を母材(化合物粒子添加媒体)として用いる金属基複合材料の製造方法に関する。
【0002】
【従来の技術】
分散強化型金属基複合材料の製造方法として、特開昭63−83239号公報に記載されている方法を用いて、例えばTi粉末粒子とC(黒鉛)粉末粒子とAlまたはAl合金粉末粒子とから成る成形体を不活性雰囲気中にて加熱することによりAlまたはAl合金から成る金属マトリクス中にTiC粒子が多量に分散した金属基複合材料を母材(分散粒子添加媒体)として製造し、この母材をAlまたはAl合金の溶湯中に溶解した後、凝固させる方法が知られている。この方法によれば、溶湯中への母材の溶解量により最終的な複合材料中のTiC粒子(分散強化粒子)の含有量を所望値に制御することができる。
【0003】
しかし、本出願人が上記方法に従ってTiC粒子分散強化型Al基複合材料を実際に製造したところ、上記の方法には下記の問題があることが判明した。
(1) 母材が多孔質で比重が小さいため溶湯表面に浮いてしまい、溶湯に完全に溶解させ難い。(2) 母材が多孔質で熱伝導が悪いため母材全体が溶湯温度に到達して溶解するのに長時間を要する。(3) 溶湯が表面張力と粘性のため多孔質の母材中に浸透し難い。(4) 成形体中でTi粒子とC粒子とが直接接触し易く、TiC粒子が過度に成長して粗大化し易い。(5) 成形体の加熱時に成形体中に残存する酸素や窒素とAlが反応してAl粒子の表面にAl23 やAlNが生成し、溶湯中への母材の溶解を妨げる。
【0004】
そこで本出願人は、上記問題を解消した方法として、日本特許第2734891号に開示したように、Ti粉末もしくはZr粉末とC粉末とAl粉末またはAl合金粉末とから成る成形体を形成し、前記成形体中にAlまたはAl合金の溶湯を含浸させ、前記成形体を不活性雰囲気中にて1000〜1800℃に加熱して前記成形体中にTiC粒子もしくはZrC粒子を生成させ、しかる後前記成形体をAlまたはAl合金の溶湯中に溶解する方法を開発した。
【0005】
この方法によれば、粉末成形体中へ溶湯を含浸する際に、TiあるいはZrが空隙内に残存する酸素や窒素を吸着するゲッターとして作用して空隙の内圧を低下させるので、溶湯は空隙内へ吸引されるため、特に加圧も必要とせず良好に含浸を行うことができる。上記ゲッター作用により更に、Al23 やAlNの生成が防止されるので、それらの生成による溶解性の低下が起きない。
【0006】
これにより得られた成形体は空隙がAlまたはAl合金で充填された中実状態なので、比重がAlまたはAl合金溶湯と同等となり且つ熱伝導性も高いため、溶湯表面に浮かぶことがなく且つ成形体全体が短時間で溶湯温度に達して容易に溶湯中に溶解する。
このように本出願人により開発された上記日本特許第2734891号の方法は、前記特開昭63−83239号公報の方法に不可避であった前記の諸問題を解消することができ、溶湯中への溶解性(分散性)が極めて高い成形体を得ることができ、それによってAlまたはAl合金マトリクス中に微細なTiC粒子が均一に分散した複合材料を容易に且つ能率良く製造することができる優れた方法である。
【0007】
ただ上記の方法は、1000〜1800℃という高温で、通常3時間以上の加熱を必要とする上、適用できる成形体のサイズも重力偏析防止等の必要から必然的に制限され、20〜30g程度が限界であるため、生産性の観点から更に改良が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明は、粉末成形体に溶湯を含浸した後に加熱して成形体中に化合物粒子を生成させる方法を改良し、高温・長時間の加熱を必要とせず且つ適用できる成形体のサイズを拡大して、金属基複合材料を高い生産性で製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本願第1発明による金属基複合材料の製造方法は、金属または金属の合金から成る金属マトリクス中に第1元素と第2元素との化合物粒子が分散している金属基複合材料の製造方法において、下記の工程:
該第1元素の粉末と、該第2元素または該第2元素の化合物の粉末と、該金属または金属の合金の粉末とから成る成形体を形成する工程、
該成形体中に該金属または金属の合金の溶湯を含浸させる工程、および
該含浸済の成形体の全体を不活性雰囲気中にて急速加熱することにより該成形体中で発熱反応である該第1元素と該金属との化合反応を生じさせ、この化合反応の発熱により該成形体を自動的に急速昇温させて該成形体中で前記化合物粒子の生成反応を生じさせる工程であって、該急速加熱の加熱速度は、該第1元素と該金属との化合反応で発生する熱から外部への放散および生じ得る吸熱反応による熱損失を差し引いた残余の熱により該成形体全体が前記化合物粒子の生成反応の生じる温度にまで自動的に昇温できるように十分な短時間で該第1元素と該金属との化合反応を進行させる加熱速度であり、該急速加熱による加熱到達温度は該第1元素と該金属との化合反応の生じ得る下限温度から前記化合物粒子の生成反応の生じ得る上限温度までの範囲内である工程、
を含むことを特徴とする。
【0010】
第1発明の方法により製造される金属基複合材料は、金属マトリクス中に極めて多量の化合物粒子を含有した形で得ることができるので、もちろん耐磨耗摺動部材のような特殊な用途で最終的な粒子分散型金属基複合材料として直接用いることもできるし、あるいは最終的な粒子分散型金属基複合材料を製造するために、そのマトリクスを構成する金属または合金の溶湯中へ化合物粒子(典型的には分散強化粒子)を円滑に導入するための粒子添加材(典型的には分散強化粒子導入媒体)として用いることもできる。
【0011】
すなわち、第2発明によれば、第1発明の方法により生成した前記化合物粒子を含む金属基複合材料を粒子添加材として金属または金属の合金の溶湯中に導入し、該金属基複合材料の金属マトリクスを該溶湯中に溶解させると共に該化合物粒子を該溶湯中に分散させた後、該溶湯を凝固させることを特徴とする金属基複合材料の製造方法が提供される。
【0012】
第1発明または第2発明により製造される典型的な金属基複合材料は、種々の用途に適用される粒子分散型金属基複合材料であり、代表的なものは分散強化型金属基複合材料である。
一般に、第1発明による金属基複合材料を粒子添加材として第2発明において溶湯中に導入する場合、この溶湯は第1発明において成形体に含浸させたものと同種の金属または合金の溶湯を用いる。ただし、粒子添加材を含浸金属または含浸合金とは異種の金属または合金の溶湯中へ導入してもよい。この場合、溶湯の組成に含浸金属または含浸合金の成分が合金成分として添加された組成が最終的な金属基複合材料の金属マトリクスの組成となる。
【0013】
第1発明の第1態様によれば、AlまたはAl合金から成る金属マトリクス中にTiC粒子が分散している金属基複合材料の製造方法が提供される。
すなわち、第1発明の第1態様による金属基複合材料の製造方法は、AlまたはAl合金から成る金属マトリクス中にTiC粒子が分散している金属基複合材料の製造方法において、下記の工程:
Ti粉末とC粉末(黒鉛粉末)とAlまたはAl合金粉末とから成る成形体を形成する工程、
該成形体中にAlまたはAl合金の溶湯を含浸させる工程、および
該含浸済の成形体の全体を不活性雰囲気中にて急速加熱することにより該成形体中で該AlまたはAl合金の融点直近で起きるTiAl3 生成反応を生じさせ、該TiAl3 生成反応の発熱により該成形体を自動的に急速昇温させて該成形体中でTiC粒子生成反応を生じさせる工程であって、該急速加熱の加熱速度は、該TiAl3 生成反応で発生する熱から外部への放散および生じうる吸熱反応による熱損失を差し引いた残余の熱により該成形体全体が該TiC粒子生成反応の生じる温度にまで自動的に昇温できるように十分な短時間で該TiAl3 生成反応を進行させる加熱速度であり、該急速加熱による加熱到達温度は該TiAl3 生成反応の生じ得る下限温度から該TiC粒子生成反応の生じ得る上限温度までの範囲内である工程、
を含むことを特徴とする。
【0014】
第1発明の第1態様においては、前記急速加熱の加熱速度は、一般に20℃/分以上とすることが望ましい。また、前記急速加熱の加熱到達温度は、典型的には、固体Alと固体Tiとの化合によるTiAl3 生成反応の生じうる下限温度617℃から、固体TiAl3 と固体Cとの反応による固体TiC粒子生成反応の生じうる上限温度992℃までの範囲内の温度である。このような急速加熱は誘導加熱により容易に実現できる。
【0015】
また、第1発明の第1態様においては、成形体を形成するためにC粉末に代えてSiC粉末を用いることができる。
更に、第1発明の第2、第3、第4、第5態様によれば、AlまたはAl合金から成る金属マトリクス中にZrC粒子、Hf粒子、NbC粒子、TiB2 粒子のいずれかが分散している金属基複合材料の製造方法が提供される。
【0016】
第1発明の第2態様による金属基複合材料の製造方法は、AlまたはAlの合金から成る前記金属マトリクス中にZrCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がZr、前記第2元素がCであり、前記成形体を形成する工程においてZr粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする。
【0017】
第1発明の第3態様による金属基複合材料の製造方法は、AlまたはAlの合金から成る前記金属マトリクス中にHfCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がHf、前記第2元素がCであり、前記成形体を形成する工程においてHf粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする。
【0018】
第1発明の第4態様による金属基複合材料の製造方法は、AlまたはAlの合金から成る前記金属マトリクス中にNbCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がNb、前記第2元素がCであり、前記成形体を形成する工程においてNb粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする。
【0019】
第1発明の第5態様による金属基複合材料の製造方法は、AlまたはAlの合金から成る前記金属マトリクス中にTiB2 から成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がTi、前記第2元素がBであり、前記成形体を形成する工程においてTi粉末とAlB2 またはAlB12粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする。
【0020】
第1発明の第2、第3、第4、第5態様においては、前記急速加熱の加熱速度は、一般に20℃/分以上とすることが望ましい。このような急速加熱は誘導加熱により容易に実現できる。
第2発明の第1、第2、第3、第4、第5態様によれば、それぞれ第1発明の第1、第2、第3、第4、第5態様の方法により生成したTiC粒子、ZrC粒子、HfC粒子、NbC粒子、TiB2 粒子を含む成形体を、Al、Al合金、Mg、またはMg合金の溶湯中に導入し、該成形体の金属マトリクスを該溶湯中に溶解させると共にそれぞれ該TiC粒子、該ZrC粒子、該HfC粒子、該NbC粒子、該TiB2 粒子を該溶湯中に分散させた後、該溶湯を凝固させることを特徴とする粒子分散強化型の金属基複合材料の製造方法が提供される。MgまたはMg合金の溶湯を用いた場合、成形体に含浸されているAlまたはAl合金は、第2発明により製造される金属基複合材料のMg基金属マトリクスの合金成分の一部を成す。
【0021】
【発明の実施の形態】
本発明による化合物粒子の生成原理を、Al基マトリクス中にTiC粒子を生成させる場合を典型例として以下に説明する。
Ti粉末と黒鉛粉末とAlまたはAl合金粉末とから成る成形体を形成し、この成形体中にAlまたはAl合金の溶湯を含浸させる。
【0022】
次いで、該成形体を加熱すると、昇温過程でTi、Al、Cの間で下記化学反応 (1)〜(5) が起きる。

Figure 0003777878
図1に、上記の各反応をDTA(differential thermal analysis:示差熱分析)で観測した一例を示す。同図は、各反応を明確に分離して検出できるように、5℃/min 程度の遅い昇温速度で観測した結果である。
【0023】
図中の左寄り(低温寄り)に、上向きの大きな2つの発熱ピークと、その間に挟まれて下向きの大きな一つの吸熱ピークが生じている。これらのピークは、低温側から順に、(1) 固体Tiと固体Alとが化合して固体TiAl3 が生成する反応の発熱ピーク(617℃で開始)、(2) Alが溶融する吸熱ピーク(657℃で開始)、(3) 液体Alと固体Tiとが化合して固体TiAl3 が生成する反応の発熱ピーク(667℃で開始し747℃で終了)である。
【0024】
更に温度上昇に伴い、(4) および(5) の反応により固体TiAl3 と固体Al43 または固体Cとが化合して固体TiCが生成する発熱ピークと中間生成物の生成・分解による発熱および吸熱ピークが882℃〜992℃の温度領域に観察される。
本発明においては、成形体を不活性雰囲気中にて急速加熱することにより、成形体中でAlまたはAl合金の融点(反応(2) )直近で起きるTiAl3 生成反応(反応(1) 、反応(3) )を生じさせ、このTiAl3 生成反応(1) (3) の発熱により成形体を自動的に急速昇温させて成形体中でTiC粒子生成反応(反応(4) 、反応(5) )を生じさせる。
【0025】
そのために、急速加熱の加熱速度は、TiAl3 生成反応(1) (3) で発生する熱から外部への放散および生じうる吸熱反応(反応(2) 等)による熱損失を差し引いた残余の熱により、成形体全体がTiC粒子生成反応(4) (5) の生じる温度(882℃〜992℃)にまで自動的に昇温できるように、十分な短時間でTiAl3 生成反応(1) (3) を進行させる加熱速度とする。また、急速加熱による加熱到達温度はTiAl3 生成反応(1) (3) の生じ得る下限温度(=反応(1) の起きる下限温度617℃)からTiC粒子生成反応(4) (5) の生じ得る上限温度(=反応(5) の起きる上限温度992℃)までの範囲内とする。
【0026】
上記のように急速加熱を行うことにより、本来は図1のように各々独立した反応である(1) 〜(5) の反応が連続的に生じ、見掛け上一つの発熱反応となり、反応(1) の開始から1〜2分程度の極めて短時間で反応(5) まで完了する。
図2に、本発明による急速加熱を行った場合の時間に対するDTA挙動を、図1のような緩速加熱時の挙動と比較して模式的に示す(横軸は時間である。)
このような急速加熱は、誘導加熱により容易に行うことができ、加熱装置を到達温度700℃に設定し、加熱速度20℃/min で行えば反応(1) 〜(5) を自動的に連続進行させるには十分である。この場合、設定温度の700℃に到達する直前(617℃)から反応(1) により発熱が始まり、成形体の温度は実際には設定温度の700℃で停留することなく連続昇温が進行し、1〜2分程度で1200℃程度まで到達する。反応(5) によるTiC生成が完了すると、成形体は急速に温度降下する。
【0027】
上記のように急速加熱により発熱反応を誘起して短時間でTiC粒子の生成を完遂させる上で、含浸を行うことは下記2点で決定的に重要である。
(1)化合物粒子の微細化
含浸により成形体中の空隙は殆どAlで充填される。これにより、Ti粉末粒子、C粉末粒子、Alとの化合物粒子の間には含浸されたAlが介在するため、急速加熱による反応中に各生成物粒子、特に最終的なTiC粒子同士の凝集による粗大化が防止され、微細なTiC粒子が分散した金属基複合材料が得られる。粒子の微細分散は、この金属基複合材料を直接実用に供する場合には優れた機械特性を付与するし、また、この金属基複合材料を粒子添加材として溶湯中に導入する場合には粒子が溶湯中に容易に微細分散し、凝固により得られる金属基複合材料の機械特性の向上に寄与する。
【0028】
(2)急速加熱時の反応促進
含浸時にAl溶湯とTi粉末粒子とが反応してTi粒子の周囲に微細なTiAl3 粒子が生成し、急速加熱時に最終反応であるTiAl3 +C→TiC+3Alが促進される。これにより見掛け上の反応開始温度が低下し、本発明の急速加熱によるTiC粒子の効率的な生成を可能とする。
【0029】
また、含浸により成形体中の空隙が殆どAlで充填されるので、急速加熱時に成形体全体に渡って熱伝導が促進され反応が促進される。
このように本発明によれば、従来のように高温・長時間の加熱を必要とせず、例えば分単位の極めて短時間でTiC粒子の生成反応を完遂させられる。
更に、従来のような重力偏析等の問題が生じないので、成形体のサイズをかなり大きくすることができる。
【0030】
すなわち、従来の高温・長時間の加熱では、一因としては、マトリクス成分であるAlまたはAl合金が溶融状態で長時間維持されるので、各粉末からの成分元素や生成した化合物粒子の重力偏析が生じ易いため、またもう一つの原因としては、成形体のサイズが大きくなると温度分布が不均一になるため、サイズの大きい成形体では体積全体に渡ってTiC粒子の生成反応を完遂させることができなくなる。
【0031】
本発明では、成形体全体を加熱反応開始温度まで急速に、すなわち短時間加熱して、TiC生成に到る各反応を自動進行させることにより、上記従来の問題が解消され、成形体のサイズに対する制限が大幅に緩和される。
第1観点のTiC粒子に代えて、第2、第3、第4、第5観点によりZrC粒子、HfC粒子、NbC粒子、TiB2 粒子を生成させる場合にも、同様な原理により極めて短時間で大きな成形体中に各粒子を生成させることができる。
【0032】
【実施例】
〔実施例1〕
第1発明の第1態様に従って、純アルミニウム中にTiC粒子を生成させた金属基複合材料を下記の手順で製造した。TiCのC源としてC粉末を用いた。
〔成形体の作製〕
純アルミニウム粉(−45μm、99.3%)、純チタン粉(−45μm、99.4%)、純黒鉛粉(−45μm、99.4%)をそれぞれ7g、11.2g、2.8g秤量して混合し、成形圧7t/cm2 でφ30mmの円柱状成形体を作製した。得られた成形体の空隙率は約10%であった。
【0033】
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.9%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は含浸前の18.5gから約30gに増加した。
【0034】
含浸したアルミニウム溶湯は、成形体の内部の密着性・熱伝導性を高める効果に加え、チタン粉末粒子と反応してTi粒子の周囲に微細なAl3 Ti粒子を生成し、後にの急速加熱によるTiC生成までの反応を効率良く進め、TiC粒径の微細化に寄与する。
図3に、含浸後の成形体の顕微鏡組織の一例を示す。Alマトリクス(黒色)中に分散したTi粒子(白色)の周囲に1μm程度の微細なTiAl3 (灰色)が多数生成している。
【0035】
これ対して、作製した含浸なしの成形体は、後の高周波加熱において加熱効率が著しく低く、健全なAl−TiCペレットが得られなかった。
また、同じ比較材を、5℃/min の昇温速度で1300℃まで昇温させてTiCを生成させたが、生成したTiC粒子は平均粒径3μmと大きかった。
〔TiC粒子の生成〕
TiC粒子生成のための急速加熱を、周波数3600Hz、出力20kWの高周波電動発電機を備えた真空溶解炉を用いて行った。
【0036】
炉内に上記含浸後の成形体を7個重ねて装入し(計210g)、炉内を10-2Torrまで真空引きした後、Arガスを−20cmHgまで導入し、高周波誘導加熱により急速加熱を行った。
加熱速度は、高周波出力の設定により制御した。表1に示したように、試料の加熱速度および装置の設定到達温度はそれぞれ、発明例1:30℃/min ,700℃、発明例2:50℃/min ,800℃、発明例3:100℃/min ,650℃とした。
【0037】
比較例1は、加熱設定温度を本発明の範囲(TiAl3 生成反応下限温度である617℃以上)より低い600℃とした以外は、発明例1と同じ条件で処理を行った例である。
比較例2〜5では、加熱速度が本発明の範囲(一旦TiAl3 生成反応が開始した後はTiC粒子生成反応の生じる温度にまで自動的に昇温できる加熱速度)より遅い例として、従来と同様に通常の電気炉にて加熱を行った。加熱速度は炉の能力上限一杯の10℃/min とし、加熱設定温度は比較例2では800℃、比較例3、4、5では1200℃とした。加熱保持は行なわず、設定温度到達後に炉内で冷却した。
【0038】
比較例6は、含浸を行わず、本発明の範囲の加熱条件で高周波加熱を行った例である。
試料サイズは、比較例2、3では30g(成形体1個)、比較例4では60g(成形体2個)、比較例5では90g(成形体3個)と変化させた。比較例6の試料サイズは60g(成形体2個)とした。
【0039】
本発明による急速加熱を行った発明例1、2、3では、昇温過程において600℃を超えた温度付近から急激な試料温度の上昇が始まり、20秒〜40秒でそれぞれ1215℃、1235℃、1320℃に達し、その後、急激に温度が降下した。これは、反応(1) 〜(5) が連続的に生じることにより自己発熱で試料の温度が短時間で上昇し、最後の反応(5) の完了とともに温度が急速に降下したためである。このように、反応による自己発熱の方が高周波装置による人為的な加熱を遙かに上回るため、本実施例の範囲内の設定温度であれば、TiC生成に要する時間はほぼ同程度の極めて短時間である。
【0040】
発明例1〜3および比較例1〜6による処理後の試料について、X線回折による相同定およびSEMミクロ組織写真の画像処理による粒径測定を行った。これらの調査結果も併せて表1に示す。
本発明による急速加熱を行った発明例1〜3は、Alマトリクス中に平均粒径0.2μmのTiC粒子が均一に分散した組織であった。他の相は検出されなかった。
【0041】
比較例1では、加熱速度は発明例1と同等であったが、加熱設定温度600℃が反応(1) のAl3 Ti生成反応開始温度617℃に達しなかったため、この反応による自己発熱が起きず、その後の昇温はなく試料到達温度は加熱設定温度の600℃止まりであり、TiCの生成には到らなかった。処理後の試料は、含浸によるAl凝固相、Al粒子(含浸時未溶解分)、Ti粒子、C粒子、TiAl3 粒子が混在した組織であった。
【0042】
比較例2は、加熱設定温度は800℃であり反応(1) (3) によるTiAl3 生成による発熱はあったが、加熱速度が本発明の範囲より遅かったため、反応(1) (3) から反応(4) (5) が連続して生ずることがなく、TiCは生成しなかった。処理後の試料は、Al凝固相中にTi、C、TiAl3 の各粒子が混在した組織であった。
【0043】
比較例3、4、5は、本出願人が開発した日本特許第2734891号による従来の処理条件を満たしており、発明例1〜3と同様にAlマトリクス中に平均粒径0.2μmのTiC粒子が均一に分散した組織が得られた。ただし、試料サイズが30gの比較例3ではAl相とTiC粒子のみが観察されたが、試料サイズを60g、90gと増加させた比較例4、5では、Al相およびTiC粒子以外にTiAl3 相が混在しており、その量は試料サイズの増加に伴い増加していた。処理炉内で試料の下部であった部位にTiAl3 粒子が存在する傾向が強かったことから、その存在理由は次のように考えられる。
【0044】
すなわち、従来のような加熱保持によるTiC生成処理においては、(A)反応(1) 〜(5) が全て完了するのに要する時間が長いため、1200℃で溶融状態にあるAlの溶湯中で重力偏析により組成のばらつきが生じ、反応(1) (3) で生成した中間生成物であるべきTiAl3 が反応(4) (5) へ進行せずに残留したか、(B)試料サイズが大きいため温度分布が不均一になり易く、局所的に反応の進行が不完全になったか、あるいはこれら両者が併行したか、である。
【0045】
発明例1〜3では、試料全体を少なくとも反応(1) が生じ得る温度にまで急速加熱し、以降の反応(2) 〜(5) を自動的に連続進行させることにより、短時間でTiC生成反応(5) まで完全に行わせるので、上記のような長時間加熱保持による重力偏析や温度不均一によるTiAl3 の残留が起きることがない。
更に、発明例1〜3による成形体総重量が増加してもTiC粒径は平均0.2μmであり、表1には示していないが粒径は均一で0.3μm以上のTiC粒子は存在しない。
【0046】
これに対し、従来の高温熱処理を行った比較例3〜5では、TiC粒径は平均0.2μmではあるが、0.1μm〜1.5μmの粒径分布が認められた。
このように本発明により均一なTiC粒径が得られたのは、TiC生成が極めて短時間で完了したことに加え、成形体内で温度差が殆ど生じないためであると考えられる。
【0047】
【表1】
Figure 0003777878
【0048】
〔実施例2〕
第1発明の第1態様に従って、TiC粒子添加材として、純アルミニウム中にTiC粒子を生成させた金属基複合材料を下記の手順で製造した。TiCのC源としてSiC粉末を用いた。
〔成形体の作製〕
純アルミニウム粉(−45μm、99.3%)、純チタン粉(−45μm、99.4%)、SiC粉(13μm、50μm)をそれぞれ表2の配合で混合し、成形圧7t/cm2 でφ30mmの円柱状成形体を作製した。発明例1および3は、全てのSiCがTiと反応するモル比として配合であり、SiC粉の粒径を2水準とした。発明例2は、Tiとの反応に必要な量の2倍のモル比のSiC量とした。得られた成形体の空隙率は約7%であった。
【0049】
【表2】
Figure 0003777878
【0050】
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.9%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は、発明例1では含浸前の27.6gから約31gに、発明例2では37gから42gに、発明例3では27.6gから30gに、それぞれ増加した。含浸後の成形体中には、Al、Ti、SiC、Al3 Tiが存在していた。Al3 Tiは、Ti粒子の周囲に微細粒(直径1μm程度)として生成していた。
【0051】
〔TiC粒子の生成〕
TiC粒子生成のための急速加熱を、実施例1と同じ真空溶解炉を用いて行った。
炉内に上記含浸後の成形体を、表3に示した重量・個数で炉内に装入し、炉内を10-2Torrまで真空引きした後、Arガスを−20cmHgまで導入し、高周波加熱により急速加熱を行った。
【0052】
加熱速度は、高周波出力の設定により制御した。試料の加熱速度および装置の設定到達温度は全て100℃/min 、700℃とした。
発明例1〜3のいずれの場合も、昇温過程において700℃付近から急激な試料温度の上昇が始まり20秒〜40秒で約1300℃に達し、その後、急激に温度が低下した。この急激な昇温は、下記の発熱反応によると考えられる。
【0053】
Ti+3Al → TiAl3
TiAl3 +SiC → 3Al+TiC +Si(*)
Ti+SiC → TiC+Si(*)
(*:Ti粉末に対してSiC 粉末の配合量が過剰な場合にSiC が残留)
すなわち、上記の発熱反応が連続的に起きることによる自己発熱で試料の温度が上昇し、極めて短時間でTiCの生成反応が進行したものである。
【0054】
上記処理後の発明例1〜3の試料について、X線回折による相同定およびSEMミクロ組織写真の画像処理による粒径測定を行った。これらの調査結果を表3に示す。
【0055】
【表3】
Figure 0003777878
【0056】
発明例1〜3のいずれにおいても、Alマトリクス中に平均粒径0.2μmのTiC粒子が均一に分散した組織であった。また、反応副生成物としてSi相(5〜50μm)が存在するが、SiはAl合金の強度、耐摩耗性、鋳造性を向上させる効果がある。
発明例2においては、過剰に添加したSiC粒子が残存しており、TiC粒子とSiC粒子の2種類の分散粒子(強化粒子)を有するアルミニウム基複合材料が得られた。
【0057】
本実施例においては、TiC粒子のC源として黒鉛粉末に代えてSiC粉末を用いたことにより下記の点で有利である。
▲1▼SiC粉末は黒鉛粉末に比べて価格が数分の1と安価である。
▲2▼SiCとTiとの反応による副生成物であるSiは、Al溶湯の流動性、鋳造性を高める元素であり、成形体をTiC粒子添加材としてAl溶湯中に添加した際の溶湯中への溶解性とTiC粒子(およびSiC粒子)の溶湯中への分散性を高める。Al−Si系2元状態図からも分かるように、純Alの融点660℃はSiの添加により最低577℃まで低下するので、この低融点化による直接的な溶解性および分散性の向上効果も得られる。
【0058】
発明例2のように、意図的にSiCをTiに対して過剰量とすることにより、TiC生成処理後の成形体中にSiCを共存させると、TiC粒子よりもSiC粒子の方がAl溶湯中での分散性が高いことを、下記のように利用できる利点がある。
TiC粒子を生成させた成形体を添加する溶湯の合金組成が、例えばAl−Sn−Si等である場合、成形体の添加および溶解後の凝固時に、TiC粒子がAl相から排出されて最終凝固部である粒界に偏析する傾向がある。偏析によりTiC粒子は本来の分散効果を十分に発揮できず、複合材料として所期の強度特性が得られない場合がある。特に、偏析が顕著な場合には、粒界に偏析したTiC粒子により粒界脆化が起きてしまい、むしろ強度が低下する危険もある。
【0059】
このような組成のAl合金に対しては、TiC粒子とSiC粒子が共存することにより、TiC粒子よりも分散性の高いSiC粒子により分散強化を行い、同時に、TiC粒子によりAlマトリクスの微細化と耐摩耗性向上を行うことができる。
〔実施例3〕
第2発明の第1態様に従い、下記の手順により、TiC粒子含有成形体をMgまたはMg合金の溶湯に添加して、金属基複合材料を製造した。
【0060】
純MgおよびAZ91Mg合金をそれぞれSF6 ガス雰囲気中で溶解した。
得られたMgまたはMg合金の溶湯に、上記発明例1および発明例3により作成したTiC粒子含有成形体を添加し、5分間の機械的攪拌を行った後、JIS4号舟金型に750℃で鋳造した。成形体の添加量を種々に変えることにより、鋳造材中のTiC含有量を0〜5 vol%の範囲で変化させた。各鋳造材について、硬さ、引張特性、耐摩耗性を調べた結果を図4〜7に示す。純MgおよびAZ91Mg合金のいずれについても、TiC粒子による分散強化が得られた。なお、引張強度特性および耐摩耗特性は下記条件での試験により求めた。
【0061】
<引張試験条件>
試験片形状:平行部、φ5×25(mm)
引張速度:1mm/min
<摩耗試験条件>
試験片形状:15.7×10.1×6.3
相手材形状:φ35リング状
相手材材質:SUJ−2
回転速度:160rpm
荷重:196N
試験時間:60分
潤滑:5W−30基油
また、TiC粒子の添加により鋳造材の結晶粒が微細化した。図8に純Mg鋳造材の鋳造組織を示す。TiC粒子添加なしの鋳造材(A)に比べて、上記のようにTiC粒子を1 vol%添加した鋳造材(B)は鋳造組織が顕著に微細化している。
【0062】
従来、MgおよびMg合金の鋳造組織微細化には、ヘキサクロロエタン(C2 Cl6 )等が微細化材として広く用いられており、微細化機構としてはAl4 3 による異種核生成説が一般的に取られている。
本発明によれば、分散強化による強度特性の向上と同時に鋳造組織の微細化による強度特性および耐食性の向上が可能になる。
【0063】
〔実施例4〕
第1発明の第2態様に従って、純アルミニウム中にZrC粒子を生成させた金属基複合材料を下記の手順で製造した。
〔成形体の作製〕
純アルミニウム粉(−45μm、99.99%)、純ジルコニウム粉(−147μm、99.9%)、純黒鉛粉(−45μm、99%)をそれぞれ7g、16.85g、2.22g秤量して混合し、成形圧7t/cm2 でφ30mmの円柱状成形体を作製した。得られた成形体の空隙率は約3%であった。
【0064】
この際、Zr粉末とC粉末との混合比はZrCの化学量論比(モル比)に対応させることが望ましい。Zr粉末およびC粉末とAl粉末との混合比は特に限定されない。粉末の混合比は最終的に作成するZrC粒子含有成形体の目標ZrC濃度に応じて調整することができる。
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.99%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は含浸前の26.07gから約50gに増加した。比較のため、含浸を行わない試料も用意した。
【0065】
〔ZrC粒子の生成〕
ZrC粒子生成のための急速加熱を、実施例1と同じ真空溶解炉を用いて高周波誘導加熱により行った。ただし、比較のため通常の電気炉による加熱も行った。生成粒子について、X線回折による相同定およびSEMミクロ組織写真の画像処理による粒径測定を行った。表4に、加熱条件および生成相を示す。
【0066】
【表4】
Figure 0003777878
【0067】
〔金属溶湯への添加〕
第2発明の第2態様に従って、発明例1により作製したZrC粒子含有成形体を、800℃に保持したAl−Si合金(AC8A)の溶湯(重量500g)中に添加し(添加量:40g)、5分間攪拌した後、溶湯温度750℃で、80℃に予熱したJIS4号舟金型に鋳造した。比較のため、上記添加を行わずに同様に鋳造を行った。ZrC粒子の添加により、硬さ、耐摩耗性、引張強さが向上することを確認した。
【0068】
上記ZrC粒子を添加した合金溶湯をアトマイズすることにより、ZrC粒子含有金属基複合材料粉末を作製することができる。
ZrC粒子はAl合金溶湯に溶け込まないため、ZrC粒子の添加量を増加することにより、更に高強度の金属基複合材料を得ることもできる。
〔実施例5〕
第1発明の第3態様に従って、純アルミニウム中にHfC粒子を生成させた金属基複合材料を下記の手順で製造した。
【0069】
〔成形体の作製〕
純アルミニウム粉(−45μm、99.99%)、純ハフニウム粉(−45μm、98%)、純黒鉛粉(−45μm、99%)をそれぞれ7g、31.73g、2.14g秤量して混合し、成形圧7t/cm2 でφ30mmの円柱状成形体を作製した。得られた成形体の空隙率は約6%であった。
【0070】
この際、Hf粉末とC粉末との混合比はHfCの化学量論比(モル比)に対応させることが望ましい。Hf粉末およびC粉末とAl粉末との混合比は特に限定されない。粉末の混合比は最終的に作成するHfC粒子含有成形体の目標HfC濃度に応じて調整することができる。
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.99%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は含浸前の40.87gから約65gに増加した。
【0071】
〔HfC粒子の生成〕
HfC粒子生成のための急速加熱を、実施例1と同じ真空溶解炉を用いて高周波誘導加熱により行った。ただし、比較のため通常の電気炉による加熱も行った。生成粒子について、X線回折による相同定およびSEMミクロ組織写真の画像解析による粒径測定を行った。表5に、加熱条件および生成相を示す。
【0072】
【表5】
Figure 0003777878
【0073】
HfC粒子の生成は、約650℃以上の温度域で、低温側から順に下記の反応が起きることによる。
Hf +3Al → HfAl3 (1)
HfAl3 +C → HfC+ 3Al (2)
粉末成形体にAl溶湯を含浸すると、Hf粉末粒子とAl溶湯とが上記(1) の反応をして、Hf粉末粒子の周囲に微細なHfAl3 粒子が生成する。この状態で次の急速加熱をすると(2) の反応が促進される。
【0074】
反応(2) によるHfC生成には、通常は1000℃以上の高温域まで加熱する必要がある。本発明に従って昇温速度20℃/分以上で急速加熱することにより、反応(1) が起きる約650℃まで加熱すれば、反応(1) による自己発熱で自動的に昇温し、反応(2) が起きてHfCが生成する。要した加熱時間は20秒〜2分であった。
【0075】
本実施例では、加熱雰囲気として不活性ガス雰囲気を用いたが、例え大気中で加熱しても、本発明の急速加熱であれば成形体の表面が僅かに酸化されるだけなので、問題はない。
〔金属溶湯への添加〕
第2発明の第3態様に従って、発明例1により作製したHfC粒子含有成形体を、800℃に保持したAl−Si合金(AC8A)の溶湯(重量500g)中に添加し(添加量:45g)、5分間攪拌した後、溶湯温度750℃で、80℃に予熱したJIS4号舟金型に鋳造した。比較のため、上記添加を行わずに同様に鋳造を行った。HfC粒子の添加により、硬さ、耐摩耗性、引張強さが向上することを確認した。
【0076】
上記HfC粒子を添加した合金溶湯をアトマイズすることにより、HfC粒子含有金属基複合材料粉末を作製することができる。
HfC粒子はAl合金溶湯に溶け込まないため、HfC粒子の添加量を増加することにより、更に高強度の金属基複合材料を得ることもできる。
〔実施例6〕
第1発明の第4態様に従って、純アルミニウム中にNbC粒子を生成させた金属基複合材料を下記の手順で製造した。
【0077】
〔成形体の作製〕
純アルミニウム粉(−45μm、99.99%)、純ニオブ粉(−150μm、99.9%)、純黒鉛粉(−45μm、99%)をそれぞれ7g,19.49g,2.52g秤量して混合し、成形圧7t/cm2 でφ30mmの円柱状成形体を作製した。得られた成形体の空隙率は約10%であった。
【0078】
この際、Nb粉末と黒鉛粉末との混合比はNbCの化学量論比(モル比)に対応させることが望ましい。Nb粉末および黒鉛粉末とAl粉末との混合比は特に限定されない。粉末の混合比は最終的に作成するNbC粒子含有成形体の目標NbC濃度に応じて調整することができる。
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.99%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は含浸前の29.01gから約35gに増加した。
【0079】
〔NbC粒子の生成〕
NbC粒子生成のための急速加熱を、実施例1と同じ真空溶解炉を用いて高周波誘導加熱により行った。ただし、比較のため通常の電気炉による加熱も行った。生成粒子について、X線回折による相同定およびSEMミクロ組織写真の画像解析による粒径測定を行った。表6に、加熱条件および生成相を示す。
【0080】
【表6】
Figure 0003777878
【0081】
NbC粒子の生成は、約650℃以上の温度域で、低温側から順に下記の反応が起きることによる。
Nb +3Al → NbAl3 (1)
NbAl3 +C → NbC+ 3Al (2)
粉末成形体にAl溶湯を含浸すると、Nb粉末粒子とAl溶湯とが上記(1) の反応をして、Nb粉末粒子の周囲に微細なNbAl3 粒子が生成する。この状態で次の急速加熱をすると(2) の反応が促進される。
【0082】
反応(2) によるNbC生成には、通常は1000℃以上の高温域まで加熱する必要がある。本発明に従って昇温速度20℃/分以上で急速加熱することにより、反応(1) が起きる約650℃まで加熱すれば、反応(1) による自己発熱で自動的に昇温し、反応(2) が起きてNbCが生成する。要した加熱時間は20秒〜2分であった。
【0083】
本実施例では、加熱雰囲気として不活性ガス雰囲気を用いたが、例え大気中で加熱しても、本発明の急速加熱であれば成形体の表面が僅かに酸化されるだけなので、問題はない。
〔金属溶湯への添加〕
第2発明の第4態様に従って、発明例1により作製したNbC粒子含有成形 体を、800℃に保持したAl−Si合金(AC8A)の溶湯(重量500g)中に添加し(添加量:35g)、5分間攪拌した後、溶湯温度750℃で、80℃に予熱したJIS4号舟金型に鋳造した。比較のため、上記添加を行わずに同様に鋳造を行った。NbC粒子の添加により、硬さ、耐摩耗性、引張強さが向上することを確認した。
【0084】
上記NbC粒子を添加した合金溶湯をアトマイズすることにより、NbC粒子含有金属基複合材料粉末を作製することができる。
NbC粒子はAl合金溶湯に溶け込まないため、NbC粒子の添加量を増加することにより、更に高強度の金属基複合材料を得ることもできる。
〔実施例7〕
第1発明の第5態様に従って、純アルミニウム中にTiB2 粒子を生成させた金属基複合材料を下記の手順で製造した。
【0085】
〔成形体の作製〕
純アルミニウム粉(−45μm、99.99%)、純チタン粉(−150μm、99.4%)、AlB2 粉(−45μm、99%)を重量比で5:8:8の割合で混合し、成形圧7t/cm2 でφ30×10mmの円柱状成形体を作製した。得られた成形体の空隙率は約10%であった。
【0086】
この際、Ti粉末とAlB2 粉末との混合比はTiB2 の化学量論比(モル比)に対応させることが望ましい。Ti粉末およびAlB2 粉末とAl粉末との混合比は特に限定されない。粉末の混合比は最終的に作成するTiB2 粒子含有成形体の目標TiB2 濃度に応じて調整することができる。
〔アルミニウム溶湯の含浸〕
上記の成形体を730℃の純アルミニウム溶湯(純度99.99%)に30秒浸漬させた後、速やかに溶湯より取り出し、成形体の空隙中に純アルミニウム溶湯を含浸させた。この含浸により、成形体の重量は含浸前の24.87gから約35gに増加した。
【0087】
〔TiB2 粒子の生成〕
TiB2 粒子生成のための急速加熱を、実施例1と同じ真空溶解炉を用いて高周波誘導加熱により行った。ただし、比較のため通常の電気炉による加熱も行った。生成粒子について、X線回折による相同定およびSEMミクロ組織写真の画像解析による粒径測定を行った。表7に、加熱条件および生成相を示す。
【0088】
【表7】
Figure 0003777878
【0089】
TiB2 粒子の生成は、617℃以上の温度域で、低温側から順に下記の反応が起きることによる。
Ti +3Al → TiAl3 (1)
TiAl3 +AlB2→ TiB2 + 3Al (2)
AlB2+T → Al +TiB2 (3)
粉末成形体にAl溶湯を含浸すると、Ti粉末粒子とAl溶湯とが上記(1) の反応をして、Ti粉末粒子の周囲に微細なTiAl3 粒子が生成する。この状態で次の急速加熱をすると(2) の反応が促進される。
【0090】
反応(2) および(3) によるTiB2 生成には、通常は1000℃以上の高温域まで加熱する必要がある。本発明に従って昇温速度20℃/分以上で急速加熱することにより、反応(1) が起きる617℃まで加熱すれば、反応(1) による自己発熱で自動的に昇温し、反応(2) および(3) が起きてTiB2 が生成する。生成にようする加熱時間は20秒〜2分であった。
【0091】
表7において、発明例1は、アルミニウム溶湯含浸後に高周波加熱により20℃/分で700℃まで加熱したもので、700℃に到達した後は上記反応(1) 〜(3) の連鎖による自己発熱で1350℃まで自動的に昇温し、その後急激に温度低下した。700℃から1350℃までの所要時間は約20秒であった。加熱後の試料は、Alマトリクス中に平均粒径0.2μm(最大粒径3μm)のTiB2 粒子が均一に分散していた。
【0092】
比較例1は、アルミニウム溶湯含浸後に高周波加熱により20℃/分で600℃まで加熱したもので、反応(1) の温度に達していないため、自己発熱は起きなかった。加熱後の試料は、TiB2 は生成しておらず、原料粉末のAl,Ti,AlB2 と、含浸時に生成したAl3 Tiとが混在した状態であった。
比較例2は、アルミニウム溶湯含浸後に電気炉にて10℃/分で1100℃まで加熱したもので、1100℃に到達した後に炉の出力を切って、室温まで炉冷した。加熱後の試料は、Alマトリクス中に平均粒径0.5μm(最大粒径3μm)のTiB2 粒子が均一に分散していたが、未反応のAlB2 およびTiが残存していた。
【0093】
比較例3は、アルミニウム溶湯の含浸を行わずに、比較例2と同様に電気炉で加熱した。ただし、加熱雰囲気は大気中であった。加熱後の試料は、多孔質のAlマトリクス中に平均粒径3μm(最大粒径10μm)のTiB2 粒子が分散していた。また、試料表面にAl2 3 等の酸化物が生成していた。
〔金属溶湯への添加〕
第2発明の第5態様に従って、発明例1により作製したTiB2 粒子含有成形体(TiB2 濃度:約33 vol%(45wt%))を、それぞれ800℃に保持したAl−4.5Cu合金およびAl−Si合金(AC8A)の溶湯(重量500g)中に添加し(TiB2 添加量:0.05〜5 vol%)、5分間攪拌した後、溶湯温度750℃で、80℃に予熱したJIS4号舟金型に鋳造した。比較のため、上記添加を行わずに同様に鋳造を行った。
【0094】
TiB2 の添加により鋳造材のマクロ組織が著しく微細化されることを確認した。この微細化効果は上記範囲の添加量について同等であった。Al−4.5Cu合金の平均結晶粒径は、無添加材で約3mmであったのが、TiB2 添加材では30μmまで微細化されており、結晶粒の形状はデンドライト構造から全て等軸晶に変化していた。AC8A合金では、デンドライト構造が残っており、結晶粒径の定量的な測定はできなかったが、図9に示すようにTiB2 添加により著しく微細化していることが分かる。
【0095】
表8に機械的性質を示す。発明例2〜7および比較例4,5は上記鋳造により作製した鋳造材である。発明例8,9は上記TiB2 添加後の溶湯を下記条件でアトマイズした粉末から熱間押出により作製した粉末冶金材である。引張強度特性および耐摩耗特性は実施例3と同様の試験により評価した。
<アトマイズ条件>
溶湯温度:1100℃
噴霧圧力:9.8MPa(N2 ガス)
噴霧ノズル径:φ2mm
<熱間押出条件>
アトマイズ粉末30gをφ30mmの銅缶に入れ、3ton /cm2 の圧力でプリフォームを作製し、これを窒素ガス雰囲気中で1時間加熱して脱気した後、間接押出を行った。
【0096】
温度:400℃
押出比:12
ラム速度:0.2mm/秒
【0097】
【表8】
Figure 0003777878
【0098】
表8の結果から、鋳造材の全てにおいて、TiB2 添加により強度と延性が大幅に向上していることが分かる。このように本発明は、組織微細化と分散強化とにより、強度と延性を同時に向上させることができるという、顕著な効果が得られる。
粉末冶金材についても、高い強度と延性が両立できることが分かる。本実施例では、鋳造材と同じ組成での評価しか行っていないが、TiB2 粒子はAl合金溶湯に溶け込まないため、TiB2 粒子の添加量を増加することにより、更に高強度の金属基複合材料を得ることもできる。
【0099】
上記各実施例では、AlまたはAl合金マトリクス中にTiC、ZrC、HfC、NbC、またはTiB2 粒子が分散したAl基複合材料を製造する場合について説明しが、本発明はこれに限定されることなく、急速加熱した際に化合物生成反応の自己発熱により最終的な化合物粒子の生成反応まで連続的に自動進行し得るマトリクス組成および化合物組成であれば、本発明を適用できることは勿論である。
【0100】
【発明の効果】
以上説明したように、本発明によれば、粉末成形体に溶湯を含浸した後に加熱して分散強化用化合物粒子を生成させる方法を改良し、高温・長時間の加熱を必要とせず極めて短時間の処理で、且つ一度に処理できる成形体のサイズを拡大し、高い生産性で金属基複合材料を製造することができる。
【図面の簡単な説明】
【図1】図1は、Ti粉、黒鉛粉、Al粉から成る圧粉成形体にAlを含浸させた試料について、常温からゆっくりと昇温させる過程で生ずる発熱ピークと吸熱ピークを示す示差熱分析(DTA)チャートである。横軸は温度であり、縦軸は標準試料(測定温度範囲に発熱反応も吸熱反応もない物質)との温度差ΔTである。
【図2】図2は、本発明の急速加熱時に自己発熱により一連の反応が見掛け上一体として連続的に進行する場合の発熱ピークを、図1のDTA曲線と対比して模式的に示すグラフである。ただし、横軸は時間である。
【図3】図3は、含浸後の成形体のミクロ組織の一例を示す金属組織写真である。Alマトリクス(黒色)中に分散したTi粒子(白色)の周囲に1μm程度の微細なTiAl3 (灰色)が多数生成している。
【図4】図4は、純MgおよびAZ91合金の硬さとTiC粒子の添加量の関係を示すグラフである。
【図5】図5は、純MgおよびAZ91合金の摩耗深さとTiC粒子の添加量の関係を示すグラフである。
【図6】図6は、純MgおよびAZ91合金の引張強さとTiC粒子の添加量の関係を示すグラフである。
【図7】図7は、純MgおよびAZ91合金の伸びとTiC粒子の添加量の関係を示すグラフである。
【図8】図8は、TiC粒子添加(A)ありおよび(B)なしの純Mg鋳造材のマクロ組織を示す金属組織写真である。
【図9】図9は、TiB2 粒子添加(A)ありおよび(B)なしのAC8C合金鋳造材のマクロ組織を示す金属組織写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal matrix composite material containing a large amount of compound particles, and further relates to a method for producing a metal matrix composite material using the above composite material as a base material (compound particle addition medium).
[0002]
[Prior art]
As a method for producing a dispersion strengthened metal matrix composite material, a method described in JP-A-63-83239 is used, for example, from Ti powder particles, C (graphite) powder particles, and Al or Al alloy powder particles. By heating the formed body in an inert atmosphere, a metal matrix composite material in which a large amount of TiC particles are dispersed in a metal matrix made of Al or an Al alloy is produced as a base material (dispersed particle added medium). A method is known in which a material is dissolved in an Al or Al alloy melt and then solidified. According to this method, the content of TiC particles (dispersion strengthening particles) in the final composite material can be controlled to a desired value by the amount of the base material dissolved in the molten metal.
[0003]
However, when the present applicant actually manufactured a TiC particle dispersion-strengthened Al-based composite material according to the above method, it has been found that the above method has the following problems.
(1) Since the base material is porous and has a small specific gravity, it floats on the surface of the molten metal and is difficult to be completely dissolved in the molten metal. (2) Since the base material is porous and has poor heat conduction, it takes a long time for the entire base material to reach the melt temperature and melt. (3) The molten metal is difficult to penetrate into the porous base material due to surface tension and viscosity. (4) Ti particles and C particles are easily in direct contact with each other in the molded body, and TiC particles grow excessively and become coarse. (5) When the molded body is heated, oxygen and nitrogen remaining in the molded body react with Al to cause Al on the surface of the Al particles.2 OThree And AlN are generated, which hinders the dissolution of the base material in the molten metal.
[0004]
Therefore, as a method for solving the above problems, the present applicant formed a molded body made of Ti powder or Zr powder, C powder, Al powder or Al alloy powder as disclosed in Japanese Patent No. 2734891, The molded body is impregnated with a molten Al or Al alloy, and the molded body is heated to 1000 to 1800 ° C. in an inert atmosphere to generate TiC particles or ZrC particles in the molded body, and then the molded body is formed. A method has been developed for melting the body in molten Al or Al alloy.
[0005]
According to this method, when impregnating the molten metal into the powder molded body, Ti or Zr acts as a getter that adsorbs oxygen or nitrogen remaining in the voids and lowers the internal pressure of the voids. Therefore, the impregnation can be satisfactorily performed without requiring any pressure. The getter action further adds Al2 OThree And AlN are prevented from being produced, so that the solubility is not lowered by the production thereof.
[0006]
Since the molded body thus obtained is a solid state in which the voids are filled with Al or Al alloy, the specific gravity is equivalent to Al or Al alloy molten metal and high thermal conductivity, so that it does not float on the molten metal surface and is molded. The whole body reaches the molten metal temperature in a short time and easily dissolves in the molten metal.
Thus, the method of the above-mentioned Japanese Patent No. 2734891 developed by the present applicant can solve the above-mentioned problems that were unavoidable with the method of the above-mentioned JP-A-63-83239, and into the molten metal. Excellent in ability to easily and efficiently produce a composite material in which fine TiC particles are uniformly dispersed in an Al or Al alloy matrix. It is a method.
[0007]
However, the above method requires heating at a high temperature of 1000 to 1800 ° C. and usually 3 hours or more, and the size of the molded product that can be applied is inevitably limited due to the necessity of preventing gravity segregation and the like, and about 20 to 30 g. Therefore, further improvement has been desired from the viewpoint of productivity.
[0008]
[Problems to be solved by the invention]
The present invention improves the method of generating compound particles in a molded body by impregnating a powder molded body with a molten metal and increasing the size of the molded body that does not require heating at a high temperature for a long period of time. An object of the present invention is to provide a method for producing a metal matrix composite material with high productivity.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the method for producing a metal matrix composite material according to the first invention of the present application, compound particles of a first element and a second element are dispersed in a metal matrix made of a metal or a metal alloy. In the method for producing a metal matrix composite material, the following steps:
Forming a molded body comprising the powder of the first element, the powder of the second element or the compound of the second element, and the powder of the metal or metal alloy;
Impregnating the molded body with a molten metal or a metal alloy; and
By rapidly heating the entire impregnated molded body in an inert atmosphere, a combined reaction between the first element and the metal, which is an exothermic reaction, is caused in the molded body. The step of automatically raising the temperature of the molded body to cause the formation reaction of the compound particles in the molded body, wherein the heating rate of the rapid heating is a compound reaction between the first element and the metal It is sufficient that the entire molded body can be automatically heated up to the temperature at which the formation reaction of the compound particles occurs due to the residual heat obtained by subtracting the heat loss from the heat generated by the heat dissipation and the endothermic reaction that may occur. The compound particle has a heating rate that allows the compounding reaction between the first element and the metal to proceed in a short time, and the temperature reached by the rapid heating is lower than the lower limit temperature at which the compounding reaction between the first element and the metal can occur. Maximum temperature at which the formation reaction of Process, which is within the range of up to,
It is characterized by including.
[0010]
Since the metal matrix composite material produced by the method of the first invention can be obtained in a form containing a very large amount of compound particles in the metal matrix, of course, the metal matrix composite material is finally used for special applications such as wear-resistant sliding members. It can be used directly as a typical particle-dispersed metal matrix composite, or compound particles (typically into the metal or alloy melts that make up the matrix to produce the final particle-dispersed metal matrix composite. In particular, it can be used as a particle additive (typically a dispersion strengthened particle introduction medium) for smoothly introducing dispersion strengthened particles.
[0011]
That is, according to the second invention, the metal matrix composite material containing the compound particles produced by the method of the first invention is introduced into a molten metal or metal alloy as a particle additive, and the metal of the metal matrix composite material There is provided a method for producing a metal matrix composite material, wherein a matrix is dissolved in the molten metal and the compound particles are dispersed in the molten metal, and then the molten metal is solidified.
[0012]
A typical metal matrix composite material produced according to the first invention or the second invention is a particle-dispersed metal matrix composite material applied to various applications, and a typical one is a dispersion strengthened metal matrix composite material. is there.
In general, when the metal matrix composite material according to the first invention is introduced as a particle additive into the molten metal in the second invention, the molten metal of the same type as that impregnated in the molded body in the first invention is used. . However, the particle additive may be introduced into a melt of a metal or alloy different from the impregnated metal or impregnated alloy. In this case, a composition obtained by adding an impregnated metal or impregnated alloy component as an alloy component to the molten metal composition is the final metal matrix composition of the metal matrix composite material.
[0013]
According to the first aspect of the first invention, there is provided a method for producing a metal matrix composite material in which TiC particles are dispersed in a metal matrix made of Al or an Al alloy.
That is, the method for producing a metal matrix composite material according to the first aspect of the first invention is a method for producing a metal matrix composite material in which TiC particles are dispersed in a metal matrix made of Al or an Al alloy.
Forming a molded body composed of Ti powder, C powder (graphite powder), and Al or Al alloy powder;
Impregnating the molded body with a molten Al or Al alloy; and
TiAl generated in the compact immediately after the melting point of the Al or Al alloy by rapidly heating the entire impregnated compact in an inert atmosphere.Three Causing the formation reaction, the TiAlThree A step of automatically raising the temperature of the molded body by heat generation of the formation reaction to generate a TiC particle generation reaction in the molded body, wherein the heating rate of the rapid heating is the TiAlThree Sufficient so that the entire molded body can be automatically heated up to the temperature at which the TiC particle formation reaction occurs by the residual heat after subtracting heat dissipation from the heat generated in the formation reaction and heat loss due to the endothermic reaction that may occur TiAl in a short timeThree The heating rate at which the production reaction proceeds, and the temperature reached by the rapid heating is the TiAlThree A step within a range from a lower limit temperature at which the formation reaction can occur to an upper limit temperature at which the TiC particle generation reaction can occur,
It is characterized by including.
[0014]
In the first aspect of the first invention, it is generally desirable that the heating rate of the rapid heating is 20 ° C./min or more. Further, the heating ultimate temperature of the rapid heating is typically TiAl obtained by a combination of solid Al and solid Ti.Three From the minimum temperature 617 ° C. at which the production reaction can occur, solid TiAlThree Is a temperature within a range up to an upper limit temperature of 992 ° C. at which a solid TiC particle formation reaction due to the reaction of C and solid C can occur. Such rapid heating can be easily realized by induction heating.
[0015]
Moreover, in the 1st aspect of 1st invention, it can replace with C powder and can use SiC powder in order to form a molded object.
Furthermore, according to the second, third, fourth, and fifth aspects of the first invention, ZrC particles, Hf particles, NbC particles, TiB in a metal matrix made of Al or an Al alloy.2A method for producing a metal matrix composite in which any of the particles are dispersed is provided.
[0016]
The method for producing a metal matrix composite material according to the second aspect of the first invention is a method for producing a metal matrix composite material in which the compound particles made of ZrC are dispersed in the metal matrix made of Al or an alloy of Al. The first element is Zr and the second element is C. In the step of forming the compact, a compact composed of Zr powder, C powder and Al or Al alloy powder is formed.
[0017]
A method for producing a metal matrix composite material according to a third aspect of the first invention is a method for producing a metal matrix composite material in which the compound particles made of HfC are dispersed in the metal matrix made of Al or an alloy of Al. The first element is Hf and the second element is C, and in the step of forming the compact, a compact composed of Hf powder, C powder, and Al or Al alloy powder is formed.
[0018]
A method for producing a metal matrix composite material according to a fourth aspect of the first invention is a method for producing a metal matrix composite material in which the compound particles composed of NbC are dispersed in the metal matrix composed of Al or an alloy of Al. The first element is Nb and the second element is C, and in the step of forming the compact, a compact composed of Nb powder, C powder, and Al or Al alloy powder is formed.
[0019]
According to a fifth aspect of the first invention of the present invention, there is provided a metal matrix composite manufacturing method comprising:2A method for producing a metal matrix composite material in which the compound particles are dispersed, wherein the first element is Ti and the second element is B, and Ti powder and AlB are formed in the step of forming the molded body.2Or AlB12It is characterized by forming a compact made of powder and Al or Al alloy powder.
[0020]
In the second, third, fourth, and fifth aspects of the first invention, the heating rate of the rapid heating is generally preferably 20 ° C./min or more. Such rapid heating can be easily realized by induction heating.
According to the first, second, third, fourth, and fifth aspects of the second invention, TiC particles produced by the methods of the first, second, third, fourth, and fifth aspects of the first invention, respectively. , ZrC particles, HfC particles, NbC particles, TiB2A molded body containing particles is introduced into a molten metal of Al, Al alloy, Mg, or Mg alloy, and the metal matrix of the molded body is dissolved in the molten metal, and the TiC particles, the ZrC particles, and the HfC particles, respectively. , The NbC particles, the TiB2There is provided a method for producing a particle dispersion-strengthening type metal matrix composite, characterized in that particles are dispersed in the molten metal and then the molten metal is solidified. When a molten metal of Mg or Mg alloy is used, the Al or Al alloy impregnated in the compact forms a part of the alloy component of the Mg-based metal matrix of the metal-based composite material produced according to the second invention.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The generation principle of the compound particles according to the present invention will be described below using a case where TiC particles are generated in an Al-based matrix as a typical example.
A formed body composed of Ti powder, graphite powder, and Al or Al alloy powder is formed, and the molten body of Al or Al alloy is impregnated into the formed body.
[0022]
Next, when the molded body is heated, the following chemical reactions (1) to (5) occur between Ti, Al, and C during the temperature rising process.
Figure 0003777878
FIG. 1 shows an example in which each of the above reactions is observed by DTA (differential thermal analysis). The figure shows the results of observation at a slow temperature increase rate of about 5 ° C./min so that each reaction can be clearly separated and detected.
[0023]
Two large exothermic peaks that are upward and one large endothermic peak that is sandwiched between them are generated on the left side (lower temperature) in the figure. These peaks are, in order from the low temperature side: (1) Solid Ti and solid Al combine to form solid TiAlThree Exothermic peak (starting at 617 ° C) of the reaction produced by (2) Endothermic peak (starting at 657 ° C) where Al melts, (3) Liquid Ti and solid Ti combine to form solid TiAlThree Is an exothermic peak (starting at 667 ° C. and ending at 747 ° C.).
[0024]
As the temperature rises further, solid TiAl is produced by the reactions of (4) and (5).Three And solid AlFour CThree Alternatively, an exothermic peak in which solid C is combined to form solid TiC and an exothermic and endothermic peak due to generation / decomposition of an intermediate product are observed in a temperature range of 882 ° C. to 992 ° C.
In the present invention, by rapidly heating the molded body in an inert atmosphere, TiAl that occurs immediately in the molded body at the melting point of Al or Al alloy (reaction (2)).Three Formation reaction (reaction (1), reaction (3))Three Formation reaction (1) The formed body is automatically heated rapidly by the heat generated in (3) to cause TiC particle formation reaction (reaction (4), reaction (5)) in the formed body.
[0025]
Therefore, the heating rate of rapid heating is TiAlThree Formation reaction (1) The heat generated in (3) is dissipated to the outside and the remaining heat minus the heat loss due to the endothermic reaction that can occur (reaction (2), etc.) causes the entire compact to generate TiC particle formation reaction (4 ) TiAl in a sufficiently short time so that the temperature can be automatically raised to the temperature (882) to 992 ° C.Three The heating rate is such that the production reaction (1) (3) proceeds. Also, the temperature reached by rapid heating is TiAlThree From the lower limit temperature at which the formation reaction (1) (3) can occur (= the lower limit temperature at which the reaction (1) occurs 617 ° C.) to the upper limit temperature at which the TiC particle formation reaction (4) (5) can occur (= the occurrence of the reaction (5)) Within the range up to an upper limit temperature of 992 ° C.
[0026]
By carrying out rapid heating as described above, the reactions (1) to (5), which are originally independent reactions as shown in FIG. 1, occur continuously, and apparently become one exothermic reaction. ) The reaction (5) is completed in a very short time of about 1 to 2 minutes from the start of the reaction.
FIG. 2 schematically shows the DTA behavior with respect to time when the rapid heating according to the present invention is performed in comparison with the behavior during the slow heating as shown in FIG. 1 (the horizontal axis is time).
Such rapid heating can be easily performed by induction heating. If the heating device is set to an ultimate temperature of 700 ° C. and the heating rate is 20 ° C./min, the reactions (1) to (5) are automatically continued. It is enough to make it progress. In this case, heat generation starts from the reaction (1) immediately before reaching the set temperature of 700 ° C. (617 ° C.), and the temperature of the molded body actually increases continuously without stopping at the set temperature of 700 ° C. The temperature reaches about 1200 ° C. in about 1 to 2 minutes. When the formation of TiC by reaction (5) is completed, the temperature of the compact rapidly decreases.
[0027]
As described above, in order to induce an exothermic reaction by rapid heating and complete the production of TiC particles in a short time, it is critically important to perform impregnation in the following two points.
(1) Refinement of compound particles
Due to the impregnation, the voids in the molded body are almost filled with Al. Thereby, since impregnated Al is interposed between Ti powder particles, C powder particles, and compound particles with Al, each product particle, particularly the final TiC particles are aggregated during the reaction by rapid heating. It is possible to obtain a metal matrix composite material in which coarsening is prevented and fine TiC particles are dispersed. The fine dispersion of the particles gives excellent mechanical properties when the metal matrix composite material is directly put into practical use, and when the metal matrix composite material is introduced into the molten metal as a particle additive, the particles are not dispersed. It is finely dispersed in the molten metal and contributes to improving the mechanical properties of the metal matrix composite material obtained by solidification.
[0028]
(2) Promotion of reaction during rapid heating
During impregnation, the molten Al and Ti powder particles react to form fine TiAl around the Ti particles.Three TiAl is the final reaction when particles are produced and rapidly heatedThree + C → TiC + 3Al is promoted. As a result, the apparent reaction start temperature is lowered, and TiC particles can be efficiently produced by rapid heating according to the present invention.
[0029]
Further, since the voids in the molded body are almost filled with Al due to the impregnation, thermal conduction is promoted throughout the molded body during rapid heating, and the reaction is promoted.
As described above, according to the present invention, it is not necessary to perform heating at a high temperature for a long time as in the prior art, and for example, the formation reaction of TiC particles can be completed in an extremely short time of minutes.
Furthermore, since problems such as gravity segregation as in the prior art do not occur, the size of the molded body can be considerably increased.
[0030]
That is, in the conventional high-temperature / long-time heating, one reason is that the matrix component Al or Al alloy is maintained in a molten state for a long time, so that the component elements from each powder and the generated compound particles are gravity segregated. Another cause is that the temperature distribution becomes non-uniform as the size of the compact increases, so that the formation reaction of TiC particles can be completed over the entire volume of the large size compact. become unable.
[0031]
In the present invention, the above-mentioned conventional problem is solved by heating the entire molded body rapidly to the heating reaction start temperature, that is, for a short time, and automatically proceeding with each reaction leading to TiC generation. The restrictions are greatly relaxed.
Instead of the TiC particles according to the first aspect, ZrC particles, HfC particles, NbC particles, TiB according to the second, third, fourth, and fifth viewpoints.2In the case of generating particles, each particle can be generated in a large molded body in a very short time by the same principle.
[0032]
【Example】
[Example 1]
According to the first aspect of the first invention, a metal matrix composite material in which TiC particles were produced in pure aluminum was produced by the following procedure. C powder was used as the C source of TiC.
[Production of molded body]
Pure aluminum powder (-45 μm, 99.3%), pure titanium powder (-45 μm, 99.4%) and pure graphite powder (-45 μm, 99.4%) were weighed 7 g, 11.2 g and 2.8 g, respectively. And mix, forming pressure 7t / cm2 A cylindrical shaped body with a diameter of 30 mm was prepared. The porosity of the obtained molded body was about 10%.
[0033]
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.9%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. By this impregnation, the weight of the molded body increased from 18.5 g before impregnation to about 30 g.
[0034]
The impregnated molten aluminum has the effect of increasing the adhesion and thermal conductivity inside the molded body, and reacts with the titanium powder particles to form fine Al around the Ti particles.Three Ti particles are generated, and the reaction up to TiC generation by rapid heating later is efficiently advanced to contribute to the refinement of the TiC particle size.
FIG. 3 shows an example of the microstructure of the molded article after impregnation. Fine TiAl of about 1 μm around Ti particles (white) dispersed in an Al matrix (black)Three Many (gray) are generated.
[0035]
On the other hand, the produced non-impregnated molded body had a remarkably low heating efficiency in the subsequent high-frequency heating, and a sound Al—TiC pellet could not be obtained.
Further, the same comparative material was heated to 1300 ° C. at a temperature rising rate of 5 ° C./min to generate TiC. The generated TiC particles had a large average particle diameter of 3 μm.
[Production of TiC particles]
Rapid heating for generating TiC particles was performed using a vacuum melting furnace equipped with a high-frequency motor generator with a frequency of 3600 Hz and an output of 20 kW.
[0036]
Seven pieces of the above-mentioned impregnated compacts were placed in the furnace in a stacked manner (total 210 g), and the furnace was filled with 10 parts.-2After evacuating to Torr, Ar gas was introduced to −20 cmHg, and rapid heating was performed by high-frequency induction heating.
The heating rate was controlled by setting the high frequency output. As shown in Table 1, the heating rate of the sample and the set temperature reached by the apparatus are, respectively, Invention Example 1: 30 ° C./min, 700 ° C., Invention Example 2: 50 ° C./min, 800 ° C., Invention Example 3: 100 The temperature was set to 650 ° C./min.
[0037]
In Comparative Example 1, the heating set temperature is within the range of the present invention (TiAlThree This is an example in which the treatment was carried out under the same conditions as in Invention Example 1 except that the lower temperature was set to 600 ° C., which was lower than the production reaction lower limit temperature of 617 ° C. or higher.
In Comparative Examples 2 to 5, the heating rate is within the range of the present invention (once TiAlThree After the start of the formation reaction, heating was performed in a normal electric furnace as in the conventional case, as an example slower than the heating rate at which the temperature can be automatically raised to the temperature at which the TiC particle generation reaction occurs. The heating rate was 10 ° C./min, which is the upper limit of the capacity of the furnace, and the heating set temperature was 800 ° C. in Comparative Example 2, and 1200 ° C. in Comparative Examples 3, 4, and 5. Heating and holding were not performed, and cooling was performed in the furnace after reaching the set temperature.
[0038]
Comparative Example 6 is an example in which high-frequency heating was performed under heating conditions within the range of the present invention without impregnation.
The sample size was changed to 30 g (1 molded body) in Comparative Examples 2 and 3, 60 g (2 molded bodies) in Comparative Example 4, and 90 g (3 molded bodies) in Comparative Example 5. The sample size of Comparative Example 6 was 60 g (2 molded bodies).
[0039]
In Invention Examples 1, 2, and 3 in which rapid heating was performed according to the present invention, a rapid increase in sample temperature started from around the temperature exceeding 600 ° C. in the temperature rising process, and 1215 ° C. and 1235 ° C. in 20 to 40 seconds, respectively. 1320 ° C., and then the temperature dropped rapidly. This is because the reaction temperature (1) to (5) is continuously generated, the temperature of the sample rises in a short time due to self-heating, and the temperature rapidly drops with the completion of the last reaction (5). Thus, since the self-heating due to the reaction far exceeds the artificial heating by the high-frequency device, the time required for TiC generation is extremely short, which is almost the same at the set temperature within the range of the present embodiment. It's time.
[0040]
Samples treated according to Invention Examples 1 to 3 and Comparative Examples 1 to 6 were subjected to phase identification by X-ray diffraction and particle size measurement by image processing of SEM microstructure photographs. These survey results are also shown in Table 1.
Inventive Examples 1 to 3, which were rapidly heated according to the present invention, had a structure in which TiC particles having an average particle diameter of 0.2 μm were uniformly dispersed in an Al matrix. No other phase was detected.
[0041]
In Comparative Example 1, the heating rate was the same as that of Invention Example 1, but the heating set temperature of 600 ° C. was the reaction (1) Al.Three Since the Ti generation reaction start temperature did not reach 617 ° C., self-heating due to this reaction did not occur, there was no subsequent temperature rise, and the sample temperature reached 600 ° C., which was the heating set temperature, and TiC was not generated. . Samples after the treatment were Al solidified phase by impregnation, Al particles (undissolved part during impregnation), Ti particles, C particles, TiAlThree The structure was a mixture of particles.
[0042]
In Comparative Example 2, the heating set temperature is 800 ° C., and TiAl by reaction (1) (3)Three Although there was an exotherm due to formation, since the heating rate was slower than the range of the present invention, reaction (1) (3) to reaction (4) (5) did not occur continuously, and TiC was not formed. Samples after treatment were Ti, C, TiAl in the Al solidification phase.Three It was a structure in which each particle was mixed.
[0043]
Comparative Examples 3, 4, and 5 satisfy the conventional processing conditions according to Japanese Patent No. 2734891 developed by the present applicant, and TiC having an average particle diameter of 0.2 μm in the Al matrix as in Invention Examples 1 to 3. A structure in which the particles were uniformly dispersed was obtained. However, in Comparative Example 3 in which the sample size was 30 g, only the Al phase and TiC particles were observed, but in Comparative Examples 4 and 5 in which the sample size was increased to 60 g and 90 g, in addition to the Al phase and TiC particles, TiAlThree The phases were mixed and the amount increased with increasing sample size. TiAl in the lower part of the sample in the processing furnaceThree Since there was a strong tendency for particles to exist, the reason for their existence is considered as follows.
[0044]
That is, in the TiC generation process by heating and holding as in the prior art, since it takes a long time to complete all of the reactions (1) to (5), in the molten Al at 1200 ° C. Gravity segregation causes compositional variation, and TiAl should be an intermediate product generated in reactions (1) and (3).Three Remains in the reaction (4) or (5) without proceeding, or (B) the sample size is large and the temperature distribution tends to be non-uniform, and the reaction progress is locally incomplete, or both Is that?
[0045]
In Invention Examples 1 to 3, the entire sample is rapidly heated to at least a temperature at which reaction (1) can occur, and subsequent reactions (2) to (5) are automatically and continuously progressed to generate TiC in a short time. Since reaction (5) is completely performed, TiAl due to gravity segregation and temperature non-uniformity due to long-time heating as described above.Three There will be no residue.
Further, even if the total weight of the molded products according to Invention Examples 1 to 3 increases, the average TiC particle size is 0.2 μm, and although not shown in Table 1, there are uniform TiC particles having a particle size of 0.3 μm or more. do not do.
[0046]
On the other hand, in Comparative Examples 3 to 5 in which conventional high-temperature heat treatment was performed, the average particle size distribution of 0.1 μm to 1.5 μm was recognized although the average particle size of TiC was 0.2 μm.
Thus, the reason why the uniform TiC particle size was obtained by the present invention is considered that TiC generation was completed in a very short time and that there was almost no temperature difference in the molded body.
[0047]
[Table 1]
Figure 0003777878
[0048]
[Example 2]
In accordance with the first aspect of the first invention, a metal matrix composite material in which TiC particles were generated in pure aluminum was produced as the TiC particle additive by the following procedure. SiC powder was used as the TiC C source.
[Production of molded body]
Pure aluminum powder (-45 μm, 99.3%), pure titanium powder (-45 μm, 99.4%), SiC powder (13 μm, 50 μm) were mixed in the composition shown in Table 2, respectively, and the molding pressure was 7 t / cm.2A cylindrical shaped body with a diameter of 30 mm was prepared. Invention Examples 1 and 3 were blended as a molar ratio in which all SiC reacts with Ti, and the particle size of the SiC powder was set to two levels. Inventive Example 2 was set to a SiC amount having a molar ratio twice that required for the reaction with Ti. The porosity of the obtained molded body was about 7%.
[0049]
[Table 2]
Figure 0003777878
[0050]
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.9%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. By this impregnation, the weight of the molded body was increased from 27.6 g before impregnation to about 31 g in Invention Example 1, from 37 g to 42 g in Invention Example 2, and from 27.6 g to 30 g in Invention Example 3. In the molded body after impregnation, Al, Ti, SiC, AlThreeTi was present. AlThreeTi was generated as fine particles (about 1 μm in diameter) around the Ti particles.
[0051]
[Production of TiC particles]
Rapid heating for generating TiC particles was performed using the same vacuum melting furnace as in Example 1.
The molded article after impregnation described above was charged into the furnace with the weight and number shown in Table 3, and 10% inside the furnace.-2After evacuating to Torr, Ar gas was introduced to −20 cmHg, and rapid heating was performed by high-frequency heating.
[0052]
The heating rate was controlled by setting the high frequency output. The heating rate of the sample and the set temperature reached by the apparatus were all 100 ° C./min and 700 ° C.
In any case of Invention Examples 1 to 3, the sample temperature started to increase rapidly from around 700 ° C. in the temperature rising process, reached about 1300 ° C. in 20 seconds to 40 seconds, and then the temperature rapidly decreased. This rapid temperature increase is considered to be due to the following exothermic reaction.
[0053]
Ti + 3Al → TiAlThree
TiAlThree+ SiC → 3Al + TiC + Si (*)
  Ti + SiC → TiC + Si (*)
(*: SiC remains when the amount of SiC powder is excessive with respect to Ti powder)
That is, the temperature of the sample rises due to self-heating due to the continuous occurrence of the exothermic reaction, and the TiC formation reaction proceeds in an extremely short time.
[0054]
The samples of Invention Examples 1 to 3 after the above treatment were subjected to phase identification by X-ray diffraction and particle size measurement by image processing of SEM microstructure photographs. Table 3 shows the results of these investigations.
[0055]
[Table 3]
Figure 0003777878
[0056]
In any of Invention Examples 1 to 3, the structure was obtained by uniformly dispersing TiC particles having an average particle diameter of 0.2 μm in the Al matrix. Moreover, although Si phase (5-50 micrometers) exists as a reaction by-product, Si has the effect of improving the strength, wear resistance, and castability of the Al alloy.
In Invention Example 2, excessively added SiC particles remained, and an aluminum-based composite material having two kinds of dispersed particles (strengthened particles) of TiC particles and SiC particles was obtained.
[0057]
In this example, the use of SiC powder instead of graphite powder as the C source of TiC particles is advantageous in the following points.
(1) SiC powder is a fraction of the price compared with graphite powder.
(2) Si, which is a by-product of the reaction between SiC and Ti, is an element that improves the fluidity and castability of the Al molten metal. In the molten metal when the compact is added to the Al molten metal as a TiC particle additive. And the dispersibility of TiC particles (and SiC particles) in the melt. As can be seen from the Al-Si binary phase diagram, the melting point of pure Al, which is 660 ° C, decreases to 577 ° C as a result of the addition of Si. can get.
[0058]
As in Invention Example 2, when SiC is intentionally made excessive with respect to Ti, if SiC is allowed to coexist in the formed body after the TiC generation treatment, SiC particles are in the Al melt rather than TiC particles. The high dispersibility in can be used as follows.
When the alloy composition of the molten metal to which the compact that has generated TiC particles is added is, for example, Al-Sn-Si, the TiC particles are discharged from the Al phase during the solidification after the addition and dissolution of the compact. There is a tendency to segregate at the grain boundaries. Due to segregation, the TiC particles cannot sufficiently exhibit the original dispersion effect, and the desired strength characteristics may not be obtained as a composite material. In particular, when segregation is remarkable, grain boundary embrittlement occurs due to TiC particles segregated at the grain boundary, and there is a risk that the strength is rather lowered.
[0059]
For an Al alloy having such a composition, TiC particles and SiC particles coexist to enhance dispersion by SiC particles having higher dispersibility than TiC particles, and at the same time, refinement of the Al matrix by TiC particles. Abrasion resistance can be improved.
Example 3
In accordance with the first aspect of the second invention, the metal-based composite material was manufactured by adding the TiC particle-containing compact to the molten metal of Mg or Mg alloy according to the following procedure.
[0060]
Pure Mg and AZ91Mg alloy are each SF6Dissolved in a gas atmosphere.
To the obtained molten metal of Mg or Mg alloy, the TiC particle-containing molded body prepared according to Invention Example 1 and Invention Example 3 was added, and after mechanical stirring for 5 minutes, it was applied to a JIS No. 4 boat mold at 750 ° C. Casted with. The TiC content in the cast material was changed in the range of 0 to 5 vol% by changing the amount of the compact added. The results of examining the hardness, tensile properties, and wear resistance of each cast material are shown in FIGS. Dispersion strengthening with TiC particles was obtained for both pure Mg and AZ91Mg alloy. The tensile strength characteristics and wear resistance characteristics were determined by tests under the following conditions.
[0061]
<Tensile test conditions>
Specimen shape: Parallel part, φ5 × 25 (mm)
Tensile speed: 1mm / min
<Wear test conditions>
Test piece shape: 15.7 × 10.1 × 6.3
Opposite material shape: φ35 ring shape
Mating material: SUJ-2
Rotation speed: 160rpm
Load: 196N
Test time: 60 minutes
Lubrication: 5W-30 base oil
Moreover, the crystal grains of the cast material were refined by the addition of TiC particles. FIG. 8 shows a cast structure of a pure Mg cast material. Compared to the cast material (A) without addition of TiC particles, the cast material (B) to which 1 vol% of TiC particles are added as described above has a remarkably refined cast structure.
[0062]
Conventionally, for refinement of cast structure of Mg and Mg alloy, hexachloroethane (C2Cl6) Etc. are widely used as a refining material, and the refining mechanism is Al.FourCThreeHeterogeneous nucleation theory is generally taken.
According to the present invention, it is possible to improve strength characteristics and corrosion resistance by refinement of a cast structure at the same time as improving strength characteristics by dispersion strengthening.
[0063]
Example 4
According to the second aspect of the first invention, a metal matrix composite material in which ZrC particles were produced in pure aluminum was produced by the following procedure.
[Production of molded body]
Pure aluminum powder (−45 μm, 99.99%), pure zirconium powder (−147 μm, 99.9%), and pure graphite powder (−45 μm, 99%) were weighed 7 g, 16.85 g, and 2.22 g, respectively. Mix, forming pressure 7t / cm2A cylindrical shaped body with a diameter of 30 mm was prepared. The porosity of the obtained molded body was about 3%.
[0064]
At this time, it is desirable that the mixing ratio of the Zr powder and the C powder corresponds to the stoichiometric ratio (molar ratio) of ZrC. The mixing ratio of Zr powder and C powder to Al powder is not particularly limited. The mixing ratio of the powder can be adjusted according to the target ZrC concentration of the ZrC particle-containing molded article to be finally produced.
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.99%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. By this impregnation, the weight of the molded body increased from 26.07 g before impregnation to about 50 g. For comparison, a sample without impregnation was also prepared.
[0065]
[Generation of ZrC particles]
Rapid heating for generating ZrC particles was performed by high frequency induction heating using the same vacuum melting furnace as in Example 1. However, for the purpose of comparison, heating with a normal electric furnace was also performed. The produced particles were subjected to phase identification by X-ray diffraction and particle size measurement by image processing of SEM microstructure photographs. Table 4 shows the heating conditions and the product phase.
[0066]
[Table 4]
Figure 0003777878
[0067]
[Addition to molten metal]
In accordance with the second aspect of the second invention, the ZrC particle-containing compact produced according to Invention Example 1 was added to a molten Al-Si alloy (AC8A) maintained at 800 ° C. (weight 500 g) (addition amount: 40 g). After stirring for 5 minutes, it was cast into a JIS No. 4 boat mold preheated to 80 ° C. at a molten metal temperature of 750 ° C. For comparison, casting was performed in the same manner without the above addition. It was confirmed that the addition of ZrC particles improved the hardness, wear resistance, and tensile strength.
[0068]
By atomizing the molten alloy to which the ZrC particles are added, a ZrC particle-containing metal matrix composite material powder can be produced.
Since ZrC particles do not dissolve in the molten Al alloy, it is also possible to obtain a metal matrix composite material with higher strength by increasing the amount of ZrC particles added.
Example 5
According to the third aspect of the first invention, a metal matrix composite material in which HfC particles were produced in pure aluminum was produced by the following procedure.
[0069]
[Production of molded body]
Pure aluminum powder (−45 μm, 99.99%), pure hafnium powder (−45 μm, 98%), and pure graphite powder (−45 μm, 99%) were weighed and mixed, respectively, 7 g, 31.73 g and 2.14 g. , Molding pressure 7t / cm2A cylindrical shaped body with a diameter of 30 mm was prepared. The porosity of the obtained molded body was about 6%.
[0070]
At this time, it is desirable that the mixing ratio of the Hf powder and the C powder corresponds to the stoichiometric ratio (molar ratio) of HfC. The mixing ratio of Hf powder and C powder to Al powder is not particularly limited. The mixing ratio of the powder can be adjusted according to the target HfC concentration of the HfC particle-containing molded body to be finally produced.
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.99%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. By this impregnation, the weight of the molded body increased from 40.87 g before impregnation to about 65 g.
[0071]
[Generation of HfC particles]
Rapid heating for generating HfC particles was performed by high-frequency induction heating using the same vacuum melting furnace as in Example 1. However, for the purpose of comparison, heating with a normal electric furnace was also performed. The produced particles were subjected to phase identification by X-ray diffraction and particle size measurement by image analysis of SEM microstructure photographs. Table 5 shows the heating conditions and the product phase.
[0072]
[Table 5]
Figure 0003777878
[0073]
The generation of HfC particles is due to the following reactions occurring in order from the low temperature side in a temperature range of about 650 ° C. or higher.
Hf + 3Al → HfAlThree      (1)
HfAlThree+ C → HfC + 3Al (2)
When the powder compact is impregnated with molten Al, the Hf powder particles react with the molten Al (1), and fine HfAl is formed around the Hf powder particles.ThreeParticles are generated. When the next rapid heating is performed in this state, the reaction (2) is promoted.
[0074]
In order to produce HfC by reaction (2), it is usually necessary to heat to a high temperature range of 1000 ° C. or higher. By heating rapidly to a temperature of about 650 ° C. where reaction (1) takes place by rapid heating at a rate of temperature increase of 20 ° C./min or more according to the present invention, the temperature automatically rises due to self-heating by reaction (1). ) Occurs and HfC is generated. The required heating time was 20 seconds to 2 minutes.
[0075]
In this example, an inert gas atmosphere was used as the heating atmosphere, but even if heated in the atmosphere, there is no problem because the surface of the molded body is only slightly oxidized if the rapid heating of the present invention is used. .
[Addition to molten metal]
In accordance with the third aspect of the second invention, the HfC particle-containing molded body produced according to Invention Example 1 was added to a molten Al-Si alloy (AC8A) maintained at 800 ° C. (weight: 500 g) (addition amount: 45 g). After stirring for 5 minutes, it was cast into a JIS No. 4 boat mold preheated to 80 ° C. at a molten metal temperature of 750 ° C. For comparison, casting was performed in the same manner without the above addition. It was confirmed that the addition of HfC particles improved the hardness, wear resistance, and tensile strength.
[0076]
By atomizing the molten alloy to which the HfC particles are added, the HfC particle-containing metal matrix composite material powder can be produced.
Since HfC particles do not dissolve in the molten Al alloy, it is also possible to obtain a metal matrix composite material with higher strength by increasing the amount of HfC particles added.
Example 6
In accordance with the fourth aspect of the first invention, a metal matrix composite material in which NbC particles were produced in pure aluminum was produced by the following procedure.
[0077]
[Production of molded body]
Pure aluminum powder (−45 μm, 99.99%), pure niobium powder (−150 μm, 99.9%), and pure graphite powder (−45 μm, 99%) were weighed 7 g, 19.49 g, and 2.52 g, respectively. Mix, forming pressure 7t / cm2A cylindrical shaped body with a diameter of 30 mm was prepared. The porosity of the obtained molded body was about 10%.
[0078]
At this time, it is desirable that the mixing ratio of the Nb powder and the graphite powder corresponds to the stoichiometric ratio (molar ratio) of NbC. The mixing ratio of Nb powder, graphite powder and Al powder is not particularly limited. The mixing ratio of the powder can be adjusted according to the target NbC concentration of the NbC particle-containing molded body to be finally produced.
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.99%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. This impregnation increased the weight of the compact from 29.01 g before impregnation to about 35 g.
[0079]
[Generation of NbC particles]
Rapid heating for generating NbC particles was performed by high frequency induction heating using the same vacuum melting furnace as in Example 1. However, for the purpose of comparison, heating with a normal electric furnace was also performed. The produced particles were subjected to phase identification by X-ray diffraction and particle size measurement by image analysis of SEM microstructure photographs. Table 6 shows the heating conditions and the product phase.
[0080]
[Table 6]
Figure 0003777878
[0081]
NbC particles are produced by the following reactions in order from the low temperature side in a temperature range of about 650 ° C. or higher.
Nb + 3Al → NbAlThree      (1)
NbAlThree+ C → NbC + 3Al (2)
When the powder compact is impregnated with molten Al, Nb powder particles and Al molten metal react as described in (1) above, and fine NbAl is formed around the Nb powder particles.ThreeParticles are generated. When the next rapid heating is performed in this state, the reaction (2) is promoted.
[0082]
In order to produce NbC by reaction (2), it is usually necessary to heat to a high temperature range of 1000 ° C. or higher. By heating rapidly to a temperature of about 650 ° C. where reaction (1) takes place by rapid heating at a rate of temperature increase of 20 ° C./min or more according to the present invention, the temperature automatically rises due to self-heating by reaction (1). ) Occurs and NbC is generated. The required heating time was 20 seconds to 2 minutes.
[0083]
In this example, an inert gas atmosphere was used as the heating atmosphere, but even if heated in the atmosphere, there is no problem because the surface of the molded body is only slightly oxidized if the rapid heating of the present invention is used. .
[Addition to molten metal]
In accordance with the fourth aspect of the second invention, the NbC particle-containing compact produced according to Invention Example 1 was added to a molten Al-Si alloy (AC8A) maintained at 800 ° C. (weight: 500 g) (addition amount: 35 g). After stirring for 5 minutes, it was cast into a JIS No. 4 boat mold preheated to 80 ° C. at a molten metal temperature of 750 ° C. For comparison, casting was performed in the same manner without the above addition. It was confirmed that the addition of NbC particles improved the hardness, wear resistance, and tensile strength.
[0084]
By atomizing the molten alloy to which the NbC particles are added, the NbC particle-containing metal matrix composite material powder can be produced.
Since NbC particles do not dissolve in the Al alloy melt, it is also possible to obtain a metal matrix composite material with higher strength by increasing the amount of NbC particles added.
Example 7
In accordance with the fifth aspect of the first invention, TiB in pure aluminum2The metal matrix composite material in which the particles were produced was produced by the following procedure.
[0085]
[Production of molded body]
Pure aluminum powder (−45 μm, 99.99%), pure titanium powder (−150 μm, 99.4%), AlB2Powder (−45 μm, 99%) is mixed at a weight ratio of 5: 8: 8, and molding pressure is 7 t / cm.2A cylindrical shaped body of φ30 × 10 mm was prepared. The porosity of the obtained molded body was about 10%.
[0086]
At this time, Ti powder and AlB2Mixing ratio with powder is TiB2It is desirable to correspond to the stoichiometric ratio (molar ratio). Ti powder and AlB2The mixing ratio of the powder and the Al powder is not particularly limited. The final mixing ratio of powder is TiB2Target TiB of particle-containing compact2It can be adjusted according to the concentration.
[Impregnation of molten aluminum]
The molded body was immersed in a pure aluminum melt (purity 99.99%) at 730 ° C. for 30 seconds, and then quickly removed from the molten metal, and the voids of the molded body were impregnated with the pure aluminum melt. By this impregnation, the weight of the molded body was increased from 24.87 g before impregnation to about 35 g.
[0087]
[TiB2Particle generation)
TiB2Rapid heating for particle generation was performed by high frequency induction heating using the same vacuum melting furnace as in Example 1. However, for the purpose of comparison, heating with a normal electric furnace was also performed. The produced particles were subjected to phase identification by X-ray diffraction and particle size measurement by image analysis of SEM microstructure photographs. Table 7 shows the heating conditions and the product phase.
[0088]
[Table 7]
Figure 0003777878
[0089]
TiB2The generation of particles is due to the following reactions occurring in order from the low temperature side in a temperature range of 617 ° C. or higher.
Ti + 3Al → TiAlThree          (1)
TiAlThree+ AlB2→ TiB2+ 3Al (2)
AlB2+ T → Al + TiB2        (3)
When the powder compact is impregnated with molten Al, Ti powder particles and Al molten metal react as described in (1) above, and fine TiAl is formed around the Ti powder particles.ThreeParticles are generated. When the next rapid heating is performed in this state, the reaction (2) is promoted.
[0090]
TiB by reaction (2) and (3)2For production, it is usually necessary to heat to a high temperature range of 1000 ° C. or higher. When heated to 617 ° C. where reaction (1) takes place by rapid heating at a heating rate of 20 ° C./min or more according to the present invention, the temperature automatically rises due to self-heating by reaction (1) and reaction (2) And (3) happen and TiB2Produces. The heating time for production was 20 seconds to 2 minutes.
[0091]
In Table 7, Invention Example 1 was heated to 700 ° C. at 20 ° C./min after high-temperature heating after impregnation with molten aluminum. The temperature was automatically raised to 1350 ° C. and then the temperature dropped rapidly. The time required from 700 ° C. to 1350 ° C. was about 20 seconds. The sample after heating was TiB with an average particle size of 0.2 μm (maximum particle size of 3 μm) in an Al matrix.2The particles were uniformly dispersed.
[0092]
Comparative Example 1 was heated to 20O <0> C / min to 600 [deg.] C. by high-frequency heating after impregnation with molten aluminum, and since it did not reach the temperature of reaction (1), self-heating did not occur. The sample after heating is TiB2Is not produced, Al, Ti, AlB of raw material powder2Al produced during impregnationThreeTi was mixed.
Comparative Example 2 was heated to 1100 ° C. at 10 ° C./min after impregnation with molten aluminum, and after reaching 1100 ° C., the power of the furnace was turned off and the furnace was cooled to room temperature. The sample after heating was TiB with an average particle size of 0.5 μm (maximum particle size of 3 μm) in an Al matrix.2The particles were uniformly dispersed, but unreacted AlB2And Ti remained.
[0093]
Comparative Example 3 was heated in an electric furnace in the same manner as Comparative Example 2 without impregnating the molten aluminum. However, the heating atmosphere was in the air. The sample after heating was TiB having an average particle size of 3 μm (maximum particle size of 10 μm) in a porous Al matrix.2The particles were dispersed. In addition, Al on the sample surface2OThreeEtc. were generated.
[Addition to molten metal]
TiB produced according to Invention Example 1 according to the fifth aspect of the second invention2Particle-containing compact (TiB2Concentration: about 33 vol% (45 wt%)) was added to each of the molten Al-4.5Cu alloy and Al-Si alloy (AC8A) held at 800 ° C. (weight: 500 g) (TiB2(Addition amount: 0.05 to 5 vol%) After stirring for 5 minutes, a molten metal temperature of 750 ° C. was cast into a JIS No. 4 boat mold preheated to 80 ° C. For comparison, casting was performed in the same manner without the above addition.
[0094]
TiB2It was confirmed that the macrostructure of the cast material was remarkably refined by the addition of. This refinement effect was equivalent for the addition amount in the above range. The average grain size of the Al-4.5Cu alloy was about 3 mm with no additive, but TiB2The additive was refined to 30 μm, and the shape of the crystal grains was all changed from a dendrite structure to an equiaxed crystal. In the AC8A alloy, a dendrite structure remains and the crystal grain size cannot be measured quantitatively. However, as shown in FIG.2It turns out that it refines remarkably by addition.
[0095]
Table 8 shows the mechanical properties. Invention Examples 2 to 7 and Comparative Examples 4 and 5 are cast materials produced by the above casting. Invention Examples 8 and 9 are the above TiB2It is a powder metallurgical material produced by hot extrusion from powder obtained by atomizing the molten metal under the following conditions. The tensile strength characteristics and the wear resistance characteristics were evaluated by the same test as in Example 3.
<Atomization conditions>
Molten metal temperature: 1100 ° C
Spray pressure: 9.8 MPa (N2gas)
Spray nozzle diameter: φ2mm
<Hot extrusion conditions>
Put 30g of atomized powder in a copper can of φ30mm, 3ton / cm2A preform was prepared at a pressure of 1 mm, and this was heated in a nitrogen gas atmosphere for 1 hour for deaeration, and then indirect extrusion was performed.
[0096]
Temperature: 400 ° C
Extrusion ratio: 12
Ram speed: 0.2mm / sec
[0097]
[Table 8]
Figure 0003777878
[0098]
From the results of Table 8, it can be seen that in all cast materials, TiB2It can be seen that the strength and ductility are greatly improved by the addition. As described above, the present invention provides a remarkable effect that the strength and ductility can be improved at the same time by refining the structure and strengthening the dispersion.
It can be seen that the powder metallurgy material can achieve both high strength and ductility. In this example, only the evaluation with the same composition as the cast material was performed.2Since the particles do not dissolve in the Al alloy melt, TiB2By increasing the amount of particles added, it is also possible to obtain a metal matrix composite material with higher strength.
[0099]
In each of the above embodiments, TiC, ZrC, HfC, NbC, or TiB in the Al or Al alloy matrix.2The case of producing an Al-based composite material in which particles are dispersed will be described. However, the present invention is not limited to this, and when heated rapidly, the compound formation reaction self-heats until the final compound particle formation reaction. Of course, the present invention can be applied to any matrix composition and compound composition that can proceed automatically.
[0100]
【The invention's effect】
As described above, according to the present invention, the method for producing a dispersion-strengthening compound particle by impregnating a powder molded body with a molten metal is improved, and it is extremely short without requiring high temperature and long time heating. In this process, the size of the molded body that can be processed at one time can be increased, and a metal matrix composite can be manufactured with high productivity.
[Brief description of the drawings]
FIG. 1 shows differential heat showing an exothermic peak and an endothermic peak generated in a process of slowly raising temperature from room temperature for a sample in which Al is impregnated with a green compact made of Ti powder, graphite powder, and Al powder. It is an analysis (DTA) chart. The horizontal axis represents temperature, and the vertical axis represents the temperature difference ΔT with respect to a standard sample (a substance having no exothermic or endothermic reaction in the measurement temperature range).
FIG. 2 is a graph schematically showing an exothermic peak when a series of reactions apparently and continuously proceed due to self-heating during rapid heating according to the present invention, in contrast to the DTA curve of FIG. It is. However, the horizontal axis is time.
FIG. 3 is a metallographic photograph showing an example of the microstructure of a molded article after impregnation. Fine TiAl of about 1 μm around Ti particles (white) dispersed in an Al matrix (black)ThreeMany (gray) are generated.
FIG. 4 is a graph showing the relationship between the hardness of pure Mg and AZ91 alloy and the amount of TiC particles added.
FIG. 5 is a graph showing the relationship between the wear depth of pure Mg and AZ91 alloy and the amount of TiC particles added.
FIG. 6 is a graph showing the relationship between the tensile strength of pure Mg and AZ91 alloy and the addition amount of TiC particles.
FIG. 7 is a graph showing the relationship between the elongation of pure Mg and AZ91 alloy and the amount of TiC particles added.
FIG. 8 is a metallographic photograph showing a macrostructure of a pure Mg cast material with and without TiC particle addition (A) and (B).
FIG. 9 shows TiB2It is a metal structure photograph which shows the macro structure of AC8C alloy cast material with and without particle addition (A) and (B).

Claims (13)

金属または金属の合金から成る金属マトリクス中に第1元素と第2元素との化合物粒子が分散している金属基複合材料の製造方法において、下記の工程:
該第1元素の粉末と、該第2元素または該第2元素の化合物の粉末と、該金属または金属の合金の粉末とから成る成形体を形成する工程、
該成形体中に該金属または金属の合金の溶湯を含浸させる工程、および
該含浸済の成形体の全体を不活性雰囲気中にて急速加熱することにより該成形体中で発熱反応である該第1元素と該金属との化合反応を生じさせ、この化合反応の発熱により該成形体を自動的に急速昇温させて該成形体中で前記化合物粒子の生成反応を生じさせる工程であって、該急速加熱の加熱速度は、該第1元素と該金属との化合反応で発生する熱から外部への放散および生じ得る吸熱反応による熱損失を差し引いた残余の熱により該成形体全体が前記化合物粒子の生成反応の生じる温度にまで自動的に昇温できるように十分な短時間で該第1元素と該金属との化合反応を進行させる加熱速度であり、該急速加熱による加熱到達温度は該第1元素と該金属との化合反応の生じ得る下限温度から前記化合物粒子の生成反応の生じ得る上限温度までの範囲内である工程、
を含むことを特徴とする金属基複合材料の製造方法。
In a method for producing a metal matrix composite material in which compound particles of a first element and a second element are dispersed in a metal matrix made of a metal or a metal alloy, the following steps are performed:
Forming a molded body comprising the powder of the first element, the powder of the second element or the compound of the second element, and the powder of the metal or metal alloy;
A step of impregnating a molten metal or metal alloy in the molded body, and rapid heating of the entire impregnated molded body in an inert atmosphere in the molded body. A step of causing a compounding reaction between one element and the metal, and automatically raising the temperature of the compact by heat generated by the compounding reaction to generate a reaction for generating the compound particles in the compact, The heating rate of the rapid heating is such that the entire molded body is made of the compound by the residual heat obtained by subtracting the heat loss from the heat generated by the combination reaction of the first element and the metal to the outside and the endothermic reaction that can occur. A heating rate at which the combination reaction of the first element and the metal proceeds in a sufficiently short time so that the temperature can be automatically raised to the temperature at which the particle formation reaction occurs. Compound of the first element and the metal Step in the range of up to an upper limit temperature at which the can occur in the lower limit temperature may occur in production reaction of the compound particles,
A method for producing a metal matrix composite material, comprising:
請求項1記載の方法により生成した前記化合物粒子を含む成形体を金属または金属の合金の溶湯中に導入し、該成形体の金属マトリクスを該溶湯中に溶解させると共に該化合物粒子を該溶湯中に分散させた後、該溶湯を凝固させることを特徴とする金属基複合材料の製造方法。A molded body containing the compound particles produced by the method according to claim 1 is introduced into a molten metal or metal alloy, and a metal matrix of the molded body is dissolved in the molten metal, and the compound particles are dissolved in the molten metal. A method for producing a metal matrix composite material, characterized in that the molten metal is solidified after being dispersed in the metal. 請求項1記載の方法において、AlまたはAlの合金から成る前記金属マトリクス中にTiCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がTi、前記第2元素がCであり、前記成形体を形成する工程においてTi粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする金属基複合材料の製造方法。The method according to claim 1, wherein the compound particles made of TiC are dispersed in the metal matrix made of Al or an Al alloy, wherein the first element is Ti, A method for producing a metal matrix composite material, wherein the second element is C, and a formed body comprising Ti powder, C powder, and Al or Al alloy powder is formed in the step of forming the formed body. 請求項3記載の方法において、前記成形体を形成する工程において前記C粉末に代えてSiC粉末を用いることを特徴とする金属基複合材料の製造方法。4. The method for producing a metal matrix composite material according to claim 3, wherein SiC powder is used in place of the C powder in the step of forming the molded body. 請求項1記載の方法において、AlまたはAlの合金から成る前記金属マトリクス中にZrCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がZr、前記第2元素がCであり、前記成形体を形成する工程においてZr粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする金属基複合材料の製造方法。The method according to claim 1, wherein the compound particles made of ZrC are dispersed in the metal matrix made of Al or an alloy of Al, wherein the first element is Zr, A method for producing a metal matrix composite material, wherein the second element is C, and in the step of forming the formed body, a formed body comprising Zr powder, C powder, and Al or Al alloy powder is formed. 請求項1記載の方法において、AlまたはAlの合金から成る前記金属マトリクス中にHfCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がHf、前記第2元素がCであり、前記成形体を形成する工程においてHf粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする金属基複合材料の製造方法。The method according to claim 1, wherein the compound particles made of HfC are dispersed in the metal matrix made of Al or an alloy of Al, wherein the first element is Hf, A method for producing a metal matrix composite material, wherein the second element is C, and in the step of forming the formed body, a formed body comprising Hf powder, C powder, and Al or Al alloy powder is formed. 請求項1記載の方法において、AlまたはAlの合金から成る前記金属マトリクス中にNbCから成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がNb、前記第2元素がCであり、前記成形体を形成する工程においてNb粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする金属基複合材料の製造方法。The method according to claim 1, wherein the compound particles made of NbC are dispersed in the metal matrix made of Al or an Al alloy, wherein the first element is Nb, A method for producing a metal matrix composite material, wherein the second element is C, and in the step of forming the formed body, a formed body comprising Nb powder, C powder, and Al or Al alloy powder is formed. 請求項1記載の方法において、AlまたはAlの合金から成る前記金属マトリクス中にTiB2 から成る前記化合物粒子が分散している金属基複合材料の製造方法であって、前記第1元素がTi、前記第2元素がBであり、前記成形体を形成する工程においてTi粉末とAlB2 またはAlB12粉末とAlまたはAl合金粉末とから成る成形体を形成することを特徴とする金属基複合材料の製造方法。The method according to claim 1, wherein the compound particles made of TiB 2 are dispersed in the metal matrix made of Al or an Al alloy, wherein the first element is Ti, A metal-based composite material, wherein the second element is B, and a formed body comprising Ti powder, AlB 2 or AlB 12 powder, and Al or Al alloy powder is formed in the step of forming the formed body. Production method. AlまたはAl合金から成る金属マトリクス中にTiC粒子が分散している金属基複合材料の製造方法において、下記の工程:
Ti粉末とC粉末とAlまたはAl合金粉末とから成る成形体を形成する工程、
該成形体中にAlまたはAl合金の溶湯を含浸させる工程、および
該含浸済の成形体の全体を不活性雰囲気中にて急速加熱することにより該成形体中で該AlまたはAl合金の融点直近で起きるTiAl3 生成反応を生じさせ、該TiAl3 生成反応の発熱により該成形体を自動的に急速昇温させて該成形体中でTiC粒子生成反応を生じさせる工程であって、該急速加熱の加熱速度は、該TiAl3 生成反応で発生する熱から外部への放散および生じうる吸熱反応による熱損失を差し引いた残余の熱により該成形体全体が該TiC粒子生成反応の生じる温度にまで自動的に昇温できるように十分な短時間で該TiAl3 生成反応を進行させる加熱速度であり、該急速加熱による加熱到達温度は該TiAl3 生成反応の生じ得る下限温度から該TiC粒子生成反応の生じ得る上限温度までの範囲内である工程、
を含むことを特徴とする金属基複合材料の製造方法。
In the method for producing a metal matrix composite in which TiC particles are dispersed in a metal matrix made of Al or an Al alloy, the following steps are performed:
Forming a molded body composed of Ti powder, C powder and Al or Al alloy powder;
A step of impregnating the molten body of Al or Al alloy in the molded body, and a rapid heating of the entire impregnated molded body in an inert atmosphere to bring the Al or Al alloy close to the melting point in the molded body. causing TiAl 3 generation reaction occurring in, a process to produce a TiC particle formation reaction in the molded article automatically by rapidly heating the shaped article by heating of the TiAl 3 formation reaction, the sudden speed heating The heating rate is automatically reduced to the temperature at which the entire formed body reaches the TiC particle formation reaction due to the heat generated in the TiAl 3 formation reaction and the remaining heat minus the heat loss due to the endothermic reaction that can occur. The heating rate is such that the TiAl 3 production reaction proceeds in a sufficiently short time so that the temperature can be increased, and the temperature reached by the rapid heating is lower than the lower limit temperature at which the TiAl 3 production reaction can occur. a step within a range up to an upper limit temperature at which iC particle generation reaction can occur,
A method for producing a metal matrix composite material, comprising:
前記急速加熱の加熱到達温度が、固体Alと固体Tiとの化合によるTiAl3 生成反応の生じうる下限温度617℃から、固体TiAl3 と固体Cとの反応による固体TiC粒子生成反応の生じうる上限温度992℃までの範囲内の温度であることを特徴とする請求項9記載の金属基複合材料の製造方法。From the lower limit temperature 617 ° C. at which the reaction temperature of the rapid heating can reach a TiAl 3 formation reaction due to the combination of solid Al and solid Ti, an upper limit at which a solid TiC particle formation reaction due to the reaction between solid TiAl 3 and solid C can occur The method for producing a metal matrix composite material according to claim 9, wherein the temperature is within a range up to 992 ° C. 前記急速加熱の加熱速度が20℃/分以上であることを特徴とする請求項3から10までのいずれか1項記載の金属基複合材料の製造方法。The method for producing a metal matrix composite material according to any one of claims 3 to 10, wherein a heating rate of the rapid heating is 20 ° C / min or more. 前記急速加熱を誘導加熱により行うことを特徴とする請求項3から11までのいずれか1項に記載の金属基複合材料の製造方法。The method for producing a metal matrix composite material according to any one of claims 3 to 11, wherein the rapid heating is performed by induction heating. 請求項3から12までのいずれか1項記載の方法により生成したTiC粒子、ZrC粒子、HfC粒子、NbC粒子、TiB2 粒子のいずれかを含む前記成形体を、Al、Al合金、Mg、またはMg合金の溶湯中に導入し、該成形体の金属マトリクスを該溶湯中に溶解させると共に該粒子を該溶湯中に分散させた後、該溶湯を凝固させることを特徴とする金属基複合材料の製造方法。The molded body containing any one of TiC particles, ZrC particles, HfC particles, NbC particles, and TiB 2 particles produced by the method according to any one of claims 3 to 12, is made of Al, Al alloy, Mg, or A metal matrix composite material, wherein the metal matrix composite material is introduced into a molten Mg alloy, the metal matrix of the compact is dissolved in the molten metal, and the particles are dispersed in the molten metal, and then the molten metal is solidified. Production method.
JP16860899A 1998-08-26 1999-06-15 Method for producing metal matrix composite material Expired - Fee Related JP3777878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16860899A JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-240102 1998-08-26
JP24010298 1998-08-26
JP16860899A JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Publications (2)

Publication Number Publication Date
JP2000144281A JP2000144281A (en) 2000-05-26
JP3777878B2 true JP3777878B2 (en) 2006-05-24

Family

ID=26492250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16860899A Expired - Fee Related JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Country Status (1)

Country Link
JP (1) JP3777878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018200270A1 (en) * 2017-04-25 2018-11-01 Nanoscale Powders, LLC Metal matrix composites and methods of making the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778860B2 (en) 2002-03-05 2006-05-24 トヨタ自動車株式会社 Aluminum alloy and plain bearing
JP6722089B2 (en) * 2016-10-17 2020-07-15 富士先端技術株式会社 Method for producing aluminum-graphite-carbide composite
CN115354182A (en) * 2022-08-29 2022-11-18 哈尔滨工业大学 TiAl in-situ growth 3 Texture of the skeleton Ti 3 AlC 2 Preparation method of reinforced aluminum-based composite material
CN115404373B (en) * 2022-10-10 2023-03-10 中北大学 Method for preparing in-situ synthesis aluminum carbide and titanium trialuminate reinforced aluminum/titanium laminated material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018200270A1 (en) * 2017-04-25 2018-11-01 Nanoscale Powders, LLC Metal matrix composites and methods of making the same

Also Published As

Publication number Publication date
JP2000144281A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
Kumar et al. Synthesis and characterization of TiB 2 reinforced aluminium matrix composites: a review
Tjong et al. Microstructural and mechanical characteristics of in situ metal matrix composites
Chak et al. Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites
Almadhoni et al. Review of effective parameters of stir casting process on metallurgical properties of ceramics particulate Al composites
JPH04231435A (en) Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation
US5722033A (en) Fabrication methods for metal matrix composites
CA2660484A1 (en) Metal injection moulding method
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
AU1051895A (en) Semi-solid processed magnesium-beryllium alloys
JP4451913B2 (en) Method for producing Ti particle-dispersed magnesium-based composite material
US20120244034A1 (en) Production method and production device for a composite metal powder using the gas spraying method
US20140170013A1 (en) IN-SITU COMBUSTION SYNTHESIS OF TITANIUM CARBIDE (TiC) REINFORCED ALUMINUM MATRIX COMPOSITE
EP2526214A2 (en) Particulate aluminium matrix nano-composites and a process for producing the same
JP3777878B2 (en) Method for producing metal matrix composite material
JP3246363B2 (en) Forming method of semi-molten metal
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
Sonia et al. A review of magnesium based MMC fabrication techniques for biomedical applications
CN113652565B (en) Preparation method of high-strength high-thermal-conductivity magnesium alloy
JP3246358B2 (en) Forming method of semi-molten metal
RU2716566C1 (en) Method of producing deformed semi-finished products from aluminum-calcium composite alloy
JP2000303133A (en) Aluminum alloy for pressure casting, excellent in fatigue strength
JP2001200322A (en) Metal matrix composite and producing method therefor
JP2000345254A (en) Aluminum base composite material and its production
EP0601694A2 (en) Method for the production of dispersion strengthened metal matrix composites
EP1877589A1 (en) Grain refinement agent comprising titanium nitride and method for making same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Ref document number: 3777878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees