JP3771791B2 - Waste incinerator with high water content and high volatility such as sewage sludge - Google Patents

Waste incinerator with high water content and high volatility such as sewage sludge Download PDF

Info

Publication number
JP3771791B2
JP3771791B2 JP2000318535A JP2000318535A JP3771791B2 JP 3771791 B2 JP3771791 B2 JP 3771791B2 JP 2000318535 A JP2000318535 A JP 2000318535A JP 2000318535 A JP2000318535 A JP 2000318535A JP 3771791 B2 JP3771791 B2 JP 3771791B2
Authority
JP
Japan
Prior art keywords
furnace
desulfurization
sewage sludge
water content
waste incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000318535A
Other languages
Japanese (ja)
Other versions
JP2002130641A (en
Inventor
季男 吉田
史郎 笹谷
博 大貫
裕姫 本多
義仁 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000318535A priority Critical patent/JP3771791B2/en
Publication of JP2002130641A publication Critical patent/JP2002130641A/en
Application granted granted Critical
Publication of JP3771791B2 publication Critical patent/JP3771791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は下水汚泥等の高含水率・高揮発性の廃棄物焼却炉に係り、特に下水汚泥の廃棄物を焼却するために外部循環型流動層炉を用いて下水汚泥を処理する装置に関する。
【0002】
【従来の技術】
従来より、産業廃棄物や都市ゴミ、下水汚泥等の焼却処理には、流動層焼却炉が広く用いられている。流動層焼却炉は、流動層(砂層)の熱吸収力が強いため、汚泥の様な高含水率の廃棄物の燃焼に適している。
【0003】
ここで、流動層焼却炉は、気泡流動層炉と循環型流動層炉とに分類される。このうち、気泡流動層炉は、炉床に砂等の流動砂を敷き、一次空気の吹き込みにより砂を流動化させて層内を沸騰(バブリング)状態にし、流動層上部約1〜1.5mのところから汚泥等の廃棄物を投入して燃焼させるように構成されている。
【0004】
しかし、この気泡流動層炉では、廃棄物燃焼の一部をフリーボードに頼っており、フリーボードの過熱を招く傾向があった。これは、下水汚泥のように高含水率・高揮発性の廃棄物を焼却する場合には、炉砂層部(濃厚層部)で廃棄物中の水分を蒸発させるため温度が低下傾向となり、反対にフリーボード部では砂層部でガス化した可燃分が燃焼し過熱傾向となり、結果として、フリーボード容積を大きくとる必要があった。
そこで、炉内温度差が小さく、かつ流動砂を循環させることによって、排ガス量の低減や設備のコンパクト化を図ることが可能な循環流動炉が提案された。
【0005】
このような循環流動炉の一例について、図2を参照しながら説明する。
この循環流動炉は、フリーボード1と流動層2とからなる流動層炉本体3と、該フリーボード1に吹き上げられた流動砂を出口ダクト4を介して捕集するホットサイクロン5と、流動砂を返送するダウンカマー6と、炉内の未燃ガスのホットサイクロン5への吹き抜けを防止するシールポット7と、戻し管8とから構成されている。
【0006】
かかる流動炉においては、一次空気投入口9から導入される一次空気により流動化されている流動層2に、廃棄物を投入口10から供給すると、廃棄物は流動層2内で混合攪拌されつつ、流動砂との接触により微細化され、該流動砂と混合状態で流動しつつ乾燥及び熱分解しながら燃焼される。一方、前記流動層2から吹き上げる流動砂と汚泥中の未燃ガスや揮発分等の軽い廃棄物は、二次空気投入口11より供給された二次空気とともにフリーボード1へ導かれ、該フリーボード1でその未燃分が燃焼される。この後、流動砂は、出口ダクト4を介してサイクロン5で流動砂が捕集され、ダウンカマー6、シールポット7及び戻し管8を経て流動層炉本体3に還流される。
【0007】
また、流動層2の上部約1〜1.5mのところには、廃棄物の投入口10が設けられている。この投入口10から供給された汚泥等の廃棄物は、循環流動炉の下部の濃厚層部(砂層部)において水分が蒸発され、その揮発分がガス化された後、燃焼される。なお、このガス化した揮発分の一部は、フリーボード1において流動砂による攪拌効果により完全燃焼され、ホットサイクロン5において流動砂が回収されて、炉外へ排出される。
【0008】
【発明が解決しようとする課題】
しかしながら、このような循環流動炉においては、ダイオキシン類対策措置法や地球温暖化防止推進法等の法規制が強化される中、廃棄物中の成分が燃焼過程で転換する一酸化二窒素(NO)や硫黄酸化物(SOx)、ダイオキシン類(DXNs)等の有害ガスや温室効果ガスを低減化することが求められている。
【0009】
本発明は、かかる課題に鑑み、一酸化二窒素(NO)や硫黄酸化物(SOx)、ダイオキシン類(DXNs)等の有害ガスや温室効果ガスを低減化することが出来る下水汚泥等の高含水率・高揮発性の廃棄物焼却炉を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記したような課題を解決するためになされたものであり、外部循環型流動炉において、石灰石(CaCO)を投入し、炉内脱硫すること、更に循環砂の濃度(顕濁濃度)管理による炉内温度均一化、更には高温化燃焼を行うことにより、有害ガスや温室効果ガスの低減を図るものである。
即ち請求項1記載の発明は、下水汚泥等の高含水率・高揮発性の廃棄物焼却炉に外部循環流動炉を用い、該循環流動炉のフリーボード部内温度を850〜950℃に維持するように、圧力計によりフリーボード懸濁密度を監視し、一次空気、二次空気及び外部循環域で投入される循環用空気の3種の空気吹き込みバランスにより、これを4〜16kg/m 、好ましくは5〜10kg/m にコントロールすることを特徴とする。
【0011】
かかる発明によれば、前記外部循環流動炉で、高温の砂が炉内全域に分散しているため、然も焼却炉全域において約850〜950℃の均一な高温場が形成されており、地球温暖化係数が二酸化炭素(CO)の310倍である一酸化二窒素(NO)を図6の通り低減化するができる。更に、この傾向は炉内温度を850→900〜950℃と高温化するほど顕著になる。
尚、850℃以下ではダイオキシンが発生し、好ましくない。
又本発明によれば、前記外部循環流動炉では、高温の砂が炉内に分散し、焼却炉全域で均一な高温場となり燃焼効率が高いため、燃焼に必要な空気比が低く、助燃料が低減化でき燃焼過程で発生する温暖化ガスである二酸化炭素(CO)の排出量を低減化できる。
【0013】
かかる発明によれば前記発明の効果に加えて炉内(フリーボード部)温度分布を50℃以内にする事が出来、一酸化二窒素(NO)を低減化効果が一層効果的に達成できる。
【0014】
請求項記載の発明は、請求項1記載の発明に加えて、前記の炉内脱硫における脱硫材である石灰石(CaCO)を、下水汚泥の廃棄物にあらかじめ混合し、外部循環流動炉の砂層部に適宜投入することを特徴とする。
【0015】
かかる発明によれば、高効率炉内脱硫を行い有害ガスである硫黄酸化物(SOx)を高効率で低減可能であるとともに、記の炉内脱硫時に投入した石灰石(CaCO)により、脱塩素(HCl除去)し、ダイオキシンおよびその前駆体の発生を防止する。
【0016】
請求項記載の発明は、前記の炉内脱硫における脱硫材である石灰石(CaCO)を、少なくとも炉内脱硫時に、少なくとも炉内脱硫時に、理論必要量より当量比1.5〜3.5倍程度多めに投入し、後段の排ガス処理設備でこの余剰分の脱硫剤で脱硫反応を生ぜしめることを特徴とする。
【0017】
かかる発明によれば前記発明の効果に加えて、後段の排ガス処理設備でこの余剰分の脱硫剤で脱硫反応を生ぜしめ、一層効果的に石灰石(CaCO)の脱硫効果を達成することが出来る。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の種類、温度、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の実施形態に係る外部循環型流動層炉を用いた下水汚泥の廃棄物焼却炉である。
図1に示した外部循環型流動層炉を用いた下水汚泥の廃棄物焼却炉は、フリーボード1と流動層2とからなる流動層炉本体3と、該流動層炉本体3の上部と出口ダクト4を介して繋がり、フリーボード1に吹き上げられた流動砂を捕集するホットサイクロン5と、流動砂を返送するダウンカマー6と、炉内未燃ガスのホットサイクロン5への吹き抜けを防止するシールポット7と戻し管8とから構成されている。なお、この炉の高さは、一次空気投入口9から測って約15m〜20m程度である。
【0019】
かかる循環流動層炉に下水汚泥を供給する、汚泥ポンプ13には、脱硫材である石灰石(CaCO)が汚泥とともに混合可能に供給されている。ここで、汚泥と石灰石は一定の比率で汚泥ポンプに供給、混合された後、循環流動炉に供給される。また、循環流動炉には、フリーボード1部の圧力差を監視するための圧力計14と温度差を監視するための温度計15が取り付けられ、これらの計装機器により、フリーボード1内の砂濃度(顕濁濃度)と温度を、流動ブロワ16からの燃焼空気を一次空気ダンパ17、二次空気ダンパ18、シールポット空気ダンパ19を調整するとともに、更に助燃料調整弁20により制御している。
【0020】
図3は砂層部とフリーボード部の温度を炉高さ方向の位置で示したもので、フリーボード部では870℃〜880℃の範囲に維持されている。
【0021】
更に、同操作により、フリーボード空間に高温の循環砂や脱硫剤がまんべんなく分散することになり、燃焼場、反応場として良好な状態となり、良好な排ガス性状が得られることになる。
【0022】
また、フリーボード温度及び温度差は、温度計15で監視し、懸濁密度を向上させても規定の(850〜950℃)の温度とならない場合には、助燃料調整弁20を調整し、助燃料を制御する。
【0023】
また、ホットサイクロン5から排出される排ガスは、熱回収設備21で約650℃の流動空気として熱回収され、その後排ガス処理設備22で有害ガスを除去後排出するものとする。
【0024】
更に、排ガス処理設備は、ガス冷却塔23とバグフィルタ24から構成され、炉内脱硫時の余剰石灰石(CaCO)が熱分解した生石灰(CaO)をもとに、ガス冷却塔23で噴霧した水が、亜硫酸生成反応、消石灰生成反応を引き起こし、二次脱硫可能となる。
【0025】
【発明の効果】
以上説明したように、本発明に係る外部循環流動炉によれば、脱硫剤が高温の循環砂とともに炉内全域に分散しているので、高効率の炉内脱硫率を達成可能である。これを、図4に示すが、従来の気泡型流動炉では、炉内脱硫率は、当量比2で約30%程度であったものが、循環流動炉では約80%の高脱硫率を達成可能である。即ち、有害ガスである硫黄酸化物(SOx)を高効率で低減をさせることができる。
【0026】
即ち、図4では従来の気泡型流動炉では、当量比2の石灰石を投入しても炉内脱硫率は約30%程度であったものが、循環流動炉では約80%の高脱硫率を達成可能である。これにより石灰石投入量が当量比1.5〜3.5程度でも十分なる脱硫効果を上げることが出来、石灰石の投入量を少なくすることが出来るとともに、結果としてその分下水汚泥の投入量が増加して燃焼効率の向上が図れる。
【0027】
また、上記炉内脱硫においては、脱硫材である石灰石(CaCO)を、あらかじめ汚泥ホッパで下水汚泥等の廃棄物に混合し、これを循環流動炉砂層部に投入する。これは砂層部での燃焼効率(層内燃焼率)は、約70〜90%と高いため、この燃焼過程で発生する硫黄酸化物(SOx)は、砂層部で激しく攪拌されるため、脱硫効率が高くなる。
【0028】
さらに、本発明では、前記の炉内脱硫時に投入した石灰石(CaCO)が、高温の循環砂とともに炉内全域に分散することにより、脱塩素(HCl除去)可能であり、ダイオキシンおよびその前駆体の発生を防止することができる。
特に石灰石(CaCO)は800℃以上でないと生石灰石(CaO)に分解されないが、本発明はフリーボード内温度を850℃に維持しているために問題がない。
【0029】
さらにまた、前記外部循環流動炉では、高温の砂が炉内に分散し、焼却炉全域で均一な高温場となり燃焼効率が高いため、図5の通り燃焼に必要な空気比が低く(完全燃焼の指標である一酸化炭素(CO)がミニマムとなる空気比)、結果として助燃料が低減化でき、結果として燃焼過程で発生する温暖化ガスである二酸化炭素(CO)の排出量を低減化できる。即ち図5に示すように燃焼に必要な空気比は1.2〜1.4でCO濃度を最小に出来る。
【0030】
逆に二酸化炭素(CO)の排出量を低減化できるために、生石灰石(CaO)とCOに分解される石灰石(CaCO)を用いても問題なく、これにより安価な石灰石(CaCO)を用いることが出来るために、大幅なコスト削減が可能となる。
【0031】
加えて、本発明によれば、前記外部循環流動炉で、高温の砂が炉内全域に分散しているため、焼却炉全域において約850〜950℃の均一な高温場が形成されており、地球温暖化係数が二酸化炭素(CO)の310倍である一酸化二窒素(NO)を図6の通り低減化するができる。更に、この傾向は炉内温度を850→900℃と高温化するほど顕著になる。
【0032】
即ち、図6では気泡流動炉の従来炉が、フリーボード温度が850℃で一酸化二窒素(NO)濃度が200ppmであったものが、本発明の外部循環流動炉ではフリーボード温度が850℃で130ppmに、更にフリーボード温度が900℃で50ppmに低減し、950℃で更に低減することが予想される。
【0033】
ここで、社団法人日本下水道協会編「下水道における地球温暖化防止実行計画策定の手引き」により温室効果ガス総排出量を処理量:150t/d、稼働日数300dの下水汚泥焼却設備において試算する。この試算結果は、従来型気泡流動炉で表1の通りとなり、更に、循環流動炉は表2〜3の通りとなる。更に図7にその結果を示す。
即ち、図7では気泡流動炉の従来炉が、フリーボード温度が850℃で温室効果ガス総排出量が19、055t/年であったものが、本発明の外部循環流動炉ではフリーボード温度が850℃で温室効果ガス総排出量が12、990t/年に、更にフリーボード温度が900℃で温室効果ガス総排出量が8、641t/年に低減し、950℃で更に低減することが予想される。
【0034】
表1〜3および図7から循環流動炉において900℃の運転を行った場合、従来型気泡流動炉と比較し温室効果ガス総排出量は約55%低減可能となる。この傾向は炉内温度を850→900℃と高温化するほど顕著になる。
【0035】
尚、表1は150t/d規模の従来型気泡流動炉(燃焼温度850℃)の温室効果ガス排出量を試算した表。
表2は150t/d規模の本発明の外部循環流動炉(燃焼温度850℃)の温室効果ガス排出量を試算した表である。
表3も150t/d規模の本発明の外部循環流動炉(燃焼温度900℃)の温室効果ガス排出量を試算した表である。
【0036】
【表1】

Figure 0003771791
【表2】
Figure 0003771791
【表3】
Figure 0003771791

【図面の簡単な説明】
【図1】 本発明の実施例に係る外部循環型流動層炉の一実施形態を概略的に示す図である。
【図2】 従来技術にかかる外部循環型流動層炉を概略的に示す図である。
【図3】 本発明の実施例に係る外部循環型流動層炉の実証機での温度分布、圧力分布のデータを表す図である。
【図4】 本発明の実施例に係る外部循環型流動層炉の実証機での炉内脱硫のデータを表す図である。
【図5】 本発明の実施例に係る外部循環型流動層炉の実証機での空気比とCO濃度の実機データを示す図である。
【図6】 本発明の実施例に係る外部循環型流動層炉の実証機の実機データでのNO低減効果を示す図である。
【図7】 150t/d下水汚泥焼却設備における従来型気泡流動炉と本発明の実施例に係る外部循環型流動層炉の温室効果ガス試算結果を表す図である。
【符号の説明】
1 フリーボード
2 流動層
3 流動炉本体
4 出口ダクト
5 ホットサイクロン
6 ダウンカマー
7 シールポット
8 戻し管
9 一次空気投入口
10 廃棄物投入口
11 二次空気投入口
12 助燃バーナ
13 汚泥ポンプ
14 圧力計
15 温度計
16 流動ブロワ
17 一次空気ダンパ
18 二次空気ダンパ
19 シールポット空気ダンパ
20 助燃料調整弁
21 熱回収設備
22 排ガス処理設備
23 ガス冷却塔
24 バグフィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste incinerator having a high water content and high volatility such as sewage sludge, and more particularly to an apparatus for treating sewage sludge using an external circulation fluidized bed furnace in order to incinerate waste of sewage sludge.
[0002]
[Prior art]
Conventionally, fluidized bed incinerators have been widely used for incineration of industrial waste, municipal waste, sewage sludge, and the like. A fluidized bed incinerator is suitable for burning wastes with a high water content such as sludge because the fluidized bed (sand layer) has a strong heat absorption capability.
[0003]
Here, the fluidized bed incinerator is classified into a bubble fluidized bed furnace and a circulating fluidized bed furnace. Among these, the fluidized bed furnace is a fluidized bed such as sand on the hearth, fluidized by blowing primary air to boil the inside of the bed, and about 1 to 1.5 m above the fluidized bed. From this point, wastes such as sludge are introduced and burned.
[0004]
However, this bubbling fluidized bed furnace relies on the freeboard for part of the waste combustion, and tends to cause overheating of the freeboard. This is because when water with a high water content and high volatility, such as sewage sludge, is incinerated, the temperature in the furnace sand layer (concentrated layer) evaporates and the temperature tends to decrease. In the free board part, combustible gasified in the sand layer part burns and tends to overheat. As a result, it is necessary to increase the free board volume.
Therefore, a circulating fluidized furnace has been proposed in which the temperature difference in the furnace is small and the amount of exhaust gas can be reduced and the equipment can be made compact by circulating fluidized sand.
[0005]
An example of such a circulating fluidized furnace will be described with reference to FIG.
This circulating fluidized furnace comprises a fluidized bed furnace main body 3 composed of a free board 1 and a fluidized bed 2, a hot cyclone 5 for collecting the fluid sand blown up on the free board 1 through an outlet duct 4, and fluidized sand. Downcomer 6, a seal pot 7 for preventing unburned gas in the furnace from being blown into the hot cyclone 5, and a return pipe 8.
[0006]
In such a fluidized furnace, when waste is supplied from the inlet 10 to the fluidized bed 2 fluidized by the primary air introduced from the primary air inlet 9, the waste is mixed and stirred in the fluidized bed 2. It is refined by contact with fluidized sand and burned while being dried and pyrolyzed while flowing in a mixed state with the fluidized sand. On the other hand, the fluid sand blown up from the fluidized bed 2 and the light waste such as unburned gas and volatile matter in the sludge are guided to the free board 1 together with the secondary air supplied from the secondary air input port 11. The unburned portion is burned in the board 1. Thereafter, the fluidized sand is collected by the cyclone 5 through the outlet duct 4 and is returned to the fluidized bed furnace main body 3 through the downcomer 6, the seal pot 7 and the return pipe 8.
[0007]
Further, a waste inlet 10 is provided at about 1 to 1.5 m above the fluidized bed 2. Waste such as sludge supplied from the inlet 10 is burned after the moisture is evaporated in the dense layer portion (sand layer portion) at the lower part of the circulating fluidized furnace, and the volatile components are gasified. A part of the gasified volatile matter is completely burned in the free board 1 by the stirring effect of the fluidized sand, and fluidized sand is recovered in the hot cyclone 5 and discharged outside the furnace.
[0008]
[Problems to be solved by the invention]
However, in such a circulating fluidized furnace, dinitrogen monoxide (N), in which the components in the waste are converted during the combustion process, while laws and regulations such as the Dioxin Countermeasures Law and the Global Warming Prevention Promotion Law are being strengthened. 2 O), sulfur oxides (SOx), dioxins (DXNs) and other harmful gases and greenhouse gases are required to be reduced.
[0009]
In view of such a problem, the present invention provides sewage sludge that can reduce harmful gases such as dinitrogen monoxide (N 2 O), sulfur oxides (SOx), and dioxins (DXNs) and greenhouse gases. The object is to provide a waste incinerator with high water content and high volatility.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems. In an external circulation type flow furnace, limestone (CaCO 3 ) is charged and desulfurized in the furnace, and the concentration of circulating sand (turbidity). It is intended to reduce harmful gases and greenhouse gases by homogenizing the temperature in the furnace by controlling the (concentration) and further increasing the temperature of combustion.
That is, according to the first aspect of the present invention, an external circulating fluidized furnace is used for a waste incinerator with high water content and high volatility such as sewage sludge, and the temperature in the freeboard section of the circulating fluidized furnace is maintained at 850 to 950 ° C. As described above, the freeboard suspension density is monitored by a pressure gauge, and this is adjusted to 4 to 16 kg / m 3 by the three air blowing balances of primary air, secondary air, and circulating air introduced in the external circulation region . Preferably, it is controlled to 5 to 10 kg / m 3 .
[0011]
According to this invention, since the high-temperature sand is dispersed throughout the furnace in the external circulation fluidized furnace, a uniform high-temperature field of about 850 to 950 ° C. is formed throughout the incinerator, and the earth The dinitrogen monoxide (N 2 O), which has a warming coefficient 310 times that of carbon dioxide (CO 2 ), can be reduced as shown in FIG. Furthermore, this tendency becomes more prominent as the furnace temperature is increased from 850 to 900 to 950 ° C.
Dioxins are generated at 850 ° C. or lower, which is not preferable.
Further, according to the present invention, in the external circulation fluidized furnace, high-temperature sand is dispersed in the furnace and becomes a uniform high-temperature field throughout the incinerator, so that the combustion efficiency is high. The amount of carbon dioxide (CO 2 ), which is a warming gas generated in the combustion process, can be reduced.
[0013]
Further , according to the invention, in addition to the effect of the invention, the temperature distribution in the furnace (freeboard portion) can be set within 50 ° C., and the effect of reducing dinitrogen monoxide (N 2 O) is more effective. Can be achieved.
[0014]
In addition to the invention of claim 1 , the invention of claim 2 , in addition to the invention of claim 1 , mixes limestone (CaCO 3 ), which is a desulfurization material in the in-furnace desulfurization, with waste of sewage sludge in advance, It is characterized by being appropriately put into the sand layer.
[0015]
According to this invention, high-efficiency in-furnace desulfurization can be performed to reduce sulfur oxide (SOx), which is a harmful gas, with high efficiency, and dechlorination can be achieved by limestone (CaCO 3 ) introduced at the time of in-furnace desulfurization. (Clear HCl) to prevent the generation of dioxins and their precursors.
[0016]
According to a third aspect of the invention, the pre-Symbol limestone desulfurization material in the furnace desulfurization (CaCO 3), at least when the furnace desulfurization, at least during furnace desulfurization, the equivalent ratio of the stoichiometric required amount 1.5-3. It is characterized in that it is added approximately 5 times more and the desulfurization reaction is caused by the excess desulfurization agent in the exhaust gas treatment facility at the latter stage.
[0017]
According to this invention, in addition to the effects of the above invention, a desulfurization reaction can be caused by the excess desulfurization agent in the exhaust gas treatment facility at the subsequent stage, and the desulfurization effect of limestone (CaCO 3 ) can be achieved more effectively. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the types, temperatures, relative arrangements, and the like of the component parts described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified.
FIG. 1 shows a waste incinerator for sewage sludge using an external circulation fluidized bed furnace according to an embodiment of the present invention.
The waste incinerator for sewage sludge using the external circulation fluidized bed furnace shown in FIG. 1 includes a fluidized bed furnace body 3 composed of a free board 1 and a fluidized bed 2, and an upper portion and an outlet of the fluidized bed furnace body 3. The hot cyclone 5 is connected through the duct 4 and collects the fluid sand blown up on the free board 1, the downcomer 6 returns the fluid sand, and the unburned gas in the furnace is prevented from being blown through the hot cyclone 5. It consists of a seal pot 7 and a return pipe 8. Note that the height of the furnace is about 15 to 20 m as measured from the primary air inlet 9.
[0019]
Limestone (CaCO 3 ), which is a desulfurization material, is supplied to the sludge pump 13 that supplies sewage sludge to the circulating fluidized bed furnace so as to be mixed with the sludge. Here, sludge and limestone are supplied to a sludge pump at a constant ratio and mixed, and then supplied to a circulating fluidized furnace. In addition, the circulating flow furnace is provided with a pressure gauge 14 for monitoring the pressure difference of the free board 1 part and a thermometer 15 for monitoring the temperature difference. The sand concentration (turbidity concentration) and temperature are controlled by adjusting the primary air damper 17, the secondary air damper 18, and the seal pot air damper 19 for the combustion air from the fluid blower 16, and further by the auxiliary fuel adjusting valve 20. Yes.
[0020]
FIG. 3 shows the temperature of the sand layer portion and the free board portion at positions in the furnace height direction, and the free board portion is maintained in the range of 870 ° C. to 880 ° C.
[0021]
Furthermore, by the same operation, high-temperature circulating sand and desulfurization agent are evenly dispersed in the freeboard space, and the combustion field and reaction field are in good condition, and good exhaust gas properties are obtained.
[0022]
In addition, the freeboard temperature and temperature difference are monitored with the thermometer 15. If the temperature does not reach the specified (850 to 950 ° C.) even if the suspension density is improved, the auxiliary fuel adjustment valve 20 is adjusted, Control auxiliary fuel.
[0023]
The exhaust gas discharged from the hot cyclone 5 is recovered as heat at about 650 ° C. in the heat recovery facility 21 and then discharged after the exhaust gas treatment facility 22 removes harmful gases.
[0024]
Further, the exhaust gas treatment facility is composed of a gas cooling tower 23 and a bag filter 24, and sprayed with the gas cooling tower 23 based on quick lime (CaO) obtained by thermal decomposition of surplus limestone (CaCO 3 ) during desulfurization in the furnace. Water causes a sulfite production reaction and a slaked lime production reaction, and secondary desulfurization is possible.
[0025]
【The invention's effect】
As described above, according to the external circulating fluidized furnace according to the present invention, since the desulfurizing agent is dispersed throughout the furnace together with the high-temperature circulating sand, a highly efficient in-furnace desulfurization rate can be achieved. This is shown in FIG. 4. In the conventional bubble-type flow furnace, the in-furnace desulfurization rate was about 30% at an equivalent ratio of 2, but the circulating flow furnace achieved a high desulfurization rate of about 80%. Is possible. That is, sulfur oxide (SOx), which is a harmful gas, can be reduced with high efficiency.
[0026]
That is, in FIG. 4, in the conventional bubble type flow furnace, the desulphurization rate in the furnace was about 30% even when limestone having an equivalent ratio of 2 was introduced, but in the circulating flow furnace, the high desulfurization rate was about 80%. Achievable. As a result, a sufficient desulfurization effect can be achieved even when the limestone input amount is about 1.5 to 3.5, and the input amount of limestone can be reduced. As a result, the input amount of sewage sludge is increased accordingly. Thus, the combustion efficiency can be improved.
[0027]
In the in-furnace desulfurization, limestone (CaCO 3 ), which is a desulfurization material, is mixed in advance with waste such as sewage sludge with a sludge hopper, and this is put into the circulating fluidized furnace sand layer. This is because the combustion efficiency in the sand layer part (in-layer combustion rate) is as high as about 70 to 90%, and the sulfur oxide (SOx) generated in this combustion process is vigorously stirred in the sand layer part, so the desulfurization efficiency Becomes higher.
[0028]
Furthermore, in the present invention, the limestone (CaCO 3 ) introduced at the time of desulfurization in the furnace can be dechlorinated (HCl removal) by dispersing the limestone (CaCO 3 ) together with the high-temperature circulating sand throughout the furnace, and dioxin and its precursor Can be prevented.
In particular, limestone (CaCO 3 ) is not decomposed into quick limestone (CaO) unless it is 800 ° C. or higher, but the present invention has no problem because the freeboard temperature is maintained at 850 ° C.
[0029]
Furthermore, in the external circulating fluidized furnace, high-temperature sand is dispersed in the furnace and becomes a uniform high-temperature field throughout the incinerator, resulting in high combustion efficiency. Therefore, the air ratio required for combustion is low as shown in FIG. The carbon ratio (CO) is the minimum air ratio), and as a result, auxiliary fuel can be reduced, resulting in a reduction in the amount of carbon dioxide (CO 2 ), a warming gas generated in the combustion process. Can be That is, as shown in FIG. 5, the air ratio required for combustion is 1.2 to 1.4, and the CO concentration can be minimized.
[0030]
On the contrary, since the discharge amount of carbon dioxide (CO 2 ) can be reduced, there is no problem even if limestone (CaCO 3 ) decomposed into quick limestone (CaO) and CO 2 is used, and thereby inexpensive limestone (CaCO 3). ) Can be used, so that significant cost reduction can be achieved.
[0031]
In addition, according to the present invention, in the external circulation fluidized furnace, since high-temperature sand is dispersed throughout the furnace, a uniform high-temperature field of about 850 to 950 ° C. is formed throughout the incinerator, Dinitrogen monoxide (N 2 O), whose global warming potential is 310 times that of carbon dioxide (CO 2 ), can be reduced as shown in FIG. Furthermore, this tendency becomes more prominent as the furnace temperature is increased from 850 to 900 ° C.
[0032]
That is, in FIG. 6, the conventional bubbling flow furnace has a freeboard temperature of 850 ° C. and a dinitrogen monoxide (N 2 O) concentration of 200 ppm. It is expected that the freeboard temperature will be reduced to 130 ppm at 850 ° C., 50 ppm at 900 ° C., and further reduced to 950 ° C.
[0033]
Here, the total amount of greenhouse gas emissions is estimated in a sewage sludge incineration facility with a processing amount of 150 t / d and operating days of 300 d according to the “Guidelines for Formulating a Global Warming Prevention Action Plan in Sewers” edited by the Japan Sewerage Association. The results of this trial calculation are as shown in Table 1 for the conventional bubble flow furnace, and further as shown in Tables 2 and 3 for the circulating flow furnace. Furthermore, the result is shown in FIG.
That is, in FIG. 7, the conventional bubble-flow furnace has a freeboard temperature of 850 ° C. and a total greenhouse gas discharge of 19,055 t / year. The total greenhouse gas emissions at 850 ° C will be 12,990 t / year, the freeboard temperature will be 900 ° C and the total greenhouse gas emissions will be reduced to 8,641 t / year, and it is expected to further decrease at 950 ° C. Is done.
[0034]
From Tables 1 to 3 and FIG. 7, when the operation at 900 ° C. is performed in the circulating fluidized furnace, the total greenhouse gas emission can be reduced by about 55% as compared with the conventional bubble fluidized furnace. This tendency becomes more prominent as the furnace temperature is increased from 850 to 900 ° C.
[0035]
In addition, Table 1 is a table in which the greenhouse gas emission amount of a conventional bubble flow furnace (combustion temperature 850 ° C.) having a scale of 150 t / d was calculated.
Table 2 is a table in which the greenhouse gas emissions of the external circulation fluidized furnace (combustion temperature 850 ° C.) of the present invention having a scale of 150 t / d were calculated.
Table 3 is also a table in which the greenhouse gas emission amount of the external circulation flow furnace (combustion temperature 900 ° C.) of the present invention having a scale of 150 t / d was calculated.
[0036]
[Table 1]
Figure 0003771791
[Table 2]
Figure 0003771791
[Table 3]
Figure 0003771791

[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an embodiment of an external circulation type fluidized bed furnace according to an embodiment of the present invention.
FIG. 2 is a diagram schematically showing an external circulation type fluidized bed furnace according to the prior art.
FIG. 3 is a diagram showing data of temperature distribution and pressure distribution in a demonstration machine of an external circulation type fluidized bed furnace according to an example of the present invention.
FIG. 4 is a diagram showing in-furnace desulfurization data in a demonstration machine for an external circulation fluidized bed furnace according to an example of the present invention.
FIG. 5 is a diagram showing actual machine data of air ratio and CO concentration in a demonstration machine of an external circulation fluidized bed furnace according to an example of the present invention.
FIG. 6 is a diagram showing the N 2 O reduction effect in the actual machine data of the demonstration machine of the external circulation type fluidized bed furnace according to the embodiment of the present invention.
FIG. 7 is a diagram showing the greenhouse gas estimation results of a conventional bubble fluidized furnace in a 150 t / d sewage sludge incineration facility and an external circulation fluidized bed furnace according to an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Free board 2 Fluidized bed 3 Fluidized furnace main body 4 Outlet duct 5 Hot cyclone 6 Downcomer 7 Seal pot 8 Return pipe 9 Primary air inlet 10 Waste inlet 11 Secondary air inlet 12 Auxiliary burner 13 Sludge pump 14 Pressure gauge 15 Thermometer 16 Flow Blower 17 Primary Air Damper 18 Secondary Air Damper 19 Seal Pot Air Damper 20 Auxiliary Fuel Adjustment Valve 21 Heat Recovery Equipment 22 Exhaust Gas Treatment Equipment 23 Gas Cooling Tower 24 Bag Filter

Claims (3)

下水汚泥等の高含水率・高揮発性の廃棄物焼却炉に外部循環流動炉を用い、該循環流動炉のフリーボード部内温度を850〜950℃に維持するように、圧力計によりフリーボード懸濁密度を監視し、一次空気、二次空気及び外部循環域で投入される循環用空気の3種の空気吹き込みバランスにより、これを4〜16kg/mにコントロールすることを特徴とする下水汚泥等の高含水率・高揮発性の廃棄物焼却炉。An external circulating fluidized furnace is used as a waste incinerator with high water content and high volatility such as sewage sludge, and a freeboard suspension is used by a pressure gauge so that the temperature in the freeboard section of the circulating fluidized furnace is maintained at 850 to 950 ° C. The sewage sludge is characterized by monitoring the turbidity density and controlling it to 4 to 16 kg / m 3 by three air blowing balances of primary air, secondary air and circulating air introduced in the external circulation area. Waste incinerator with high water content and high volatility such as. 記炉内の脱硫における脱硫材である石灰石(CaCO)を、下水汚泥の廃棄物にあらかじめ混合し、前記外部循環流動炉の砂層部に適宜投入することを特徴とする請求項1記載の下水汚泥等の高含水率・高揮発性の廃棄物焼却炉。The limestone is a desulfurizing material in desulfurization before Symbol furnace (CaCO 3), pre-mixed in waste sewage sludge, according to claim 1, wherein the appropriately charged into sand layer portion of the external circulation flow reactor Waste incinerator with high water content and high volatility such as sewage sludge. 前記炉内の脱硫における脱硫材である石灰石(CaCO)を、少なくとも炉内脱硫時に、理論必要量より当量比1.5〜3.5倍程度多めに投入し、後段の排ガス処理設備でこの余剰分の脱硫剤で脱硫反応を生ぜしめることを特徴とする請求項1記載の下水汚泥等の高含水率・高揮発性の廃棄物焼却炉。Limestone (CaCO 3 ), which is a desulfurization material in the desulfurization in the furnace , is charged at an equivalent ratio of 1.5 to 3.5 times higher than the theoretical required amount at least during desulfurization in the furnace, The waste incinerator having a high water content and high volatility such as sewage sludge according to claim 1 , wherein a desulfurization reaction is caused by an excess of a desulfurizing agent.
JP2000318535A 2000-10-18 2000-10-18 Waste incinerator with high water content and high volatility such as sewage sludge Expired - Fee Related JP3771791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318535A JP3771791B2 (en) 2000-10-18 2000-10-18 Waste incinerator with high water content and high volatility such as sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318535A JP3771791B2 (en) 2000-10-18 2000-10-18 Waste incinerator with high water content and high volatility such as sewage sludge

Publications (2)

Publication Number Publication Date
JP2002130641A JP2002130641A (en) 2002-05-09
JP3771791B2 true JP3771791B2 (en) 2006-04-26

Family

ID=18797144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318535A Expired - Fee Related JP3771791B2 (en) 2000-10-18 2000-10-18 Waste incinerator with high water content and high volatility such as sewage sludge

Country Status (1)

Country Link
JP (1) JP3771791B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361449B2 (en) 2008-02-28 2013-12-04 三菱重工環境・化学エンジニアリング株式会社 Circulating fluidized bed furnace and method of operating the circulating fluidized bed furnace
JP5264301B2 (en) * 2008-06-06 2013-08-14 メタウォーター株式会社 Sludge incineration method using fluidized bed incinerator
JP6243805B2 (en) * 2014-06-24 2017-12-06 株式会社神鋼環境ソリューション Sludge combustion method and sludge combustion furnace
JP7075574B2 (en) * 2017-05-29 2022-05-26 国立研究開発法人産業技術総合研究所 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace

Also Published As

Publication number Publication date
JP2002130641A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP6824640B2 (en) Waste incineration equipment, waste incineration method, incineration ash treatment equipment and incineration ash treatment method
JP2009082861A (en) Effluent suppressing method for heavy metal containing hexavalent chromium in ash
KR100529826B1 (en) Device and method for waste processing using Plasma pyrolysis
US4932335A (en) Coal combustion with a fluidized incineration bed
JP2012211727A (en) Sludge incineration disposal system and sludge incineration disposal method
JP3771791B2 (en) Waste incinerator with high water content and high volatility such as sewage sludge
JP5435973B2 (en) Fluidized incinerator
CN1259523C (en) Double temperature double bed gasification, oxidization and fluidized bed incinerator for disposing high concentration organic effluent liquor
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP4215921B2 (en) Circulating fluidized bed boiler system and operating method thereof
JP2870675B2 (en) How to operate the pyrolytic combustion zone
JPS6279890A (en) Treatment of ash of fluidized bed combustion boiler
JP3949386B2 (en) Oxygen-enriched combustion method for stoker waste incinerator
JP7075574B2 (en) Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
JP2002031312A (en) EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JP3489966B2 (en) Incinerator
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JPS6226404A (en) Reducing method for nitrogen oxides concentration in burnt exhaust gas
JP3014953B2 (en) Incinerator
JP3364112B2 (en) Incinerator and its combustion method
JP2020016400A (en) Waste incineration device and waste incineration method
JP7103021B2 (en) Waste incinerator and waste incinerator method
JPH09229324A (en) Waste treatment device and operation method for the device
JP2006189199A (en) Premixed combustion method of fuel of high sulfur content and fuel of high chlorine content
JP2004169954A (en) Operation method for waste incinerator and waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R151 Written notification of patent or utility model registration

Ref document number: 3771791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees