JP3771433B2 - Method for condensing non-azeotropic refrigerant mixture - Google Patents

Method for condensing non-azeotropic refrigerant mixture Download PDF

Info

Publication number
JP3771433B2
JP3771433B2 JP2000265021A JP2000265021A JP3771433B2 JP 3771433 B2 JP3771433 B2 JP 3771433B2 JP 2000265021 A JP2000265021 A JP 2000265021A JP 2000265021 A JP2000265021 A JP 2000265021A JP 3771433 B2 JP3771433 B2 JP 3771433B2
Authority
JP
Japan
Prior art keywords
groove
heat transfer
grooves
tube
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000265021A
Other languages
Japanese (ja)
Other versions
JP2002081881A (en
Inventor
直栄 佐々木
隆司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2000265021A priority Critical patent/JP3771433B2/en
Publication of JP2002081881A publication Critical patent/JP2002081881A/en
Application granted granted Critical
Publication of JP3771433B2 publication Critical patent/JP3771433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【技術分野】
本発明は、凝縮促進型伝熱管及び非共沸混合冷媒の凝縮方法に係り、特に、管内を150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を凝縮せしめる凝縮器に好適に用いられる凝縮促進型伝熱管と、かかる低冷媒質量速度で、伝熱管内を流通せしめられる非共沸混合冷媒を有利に凝縮せしめ得る凝縮方法に関するものである。
【0002】
【背景技術】
従来から、ルームエアコンやパッケージエアコン等の如き空調用熱交換器に組み込まれる凝縮促進型伝熱管の一種として、管内面に多数の溝が設けられてなる、所謂、内面溝付伝熱管が、用いられてきている。そして、一般に、この内面溝付伝熱管は、管内面に形成される溝の形態によって、幾つかの種類に分かれており、例えば、特開平7−12483号公報等に示される如き、多数の螺旋溝が管軸方向に連続して延びるように形成されてなる螺旋溝付伝熱管や、特開平9−26279号公報等に開示されるような、V字状を呈する多数の溝が管軸方向に配列されてなる松葉溝付伝熱管、或いは、特開平3−234302号公報等に明らかにされる如き、螺旋溝からなる多数の主溝と、該多数の主溝に対して交差して延びる多数の副溝とが形成されてなるクロス溝付伝熱管等が、代表的なものとして、知られている。
【0003】
ところで、上述の如き空調用熱交換器においては、その冷媒として、従来、HCFC−22やHCFC−12等の単一冷媒が一般に用いられていたが、近年では、環境保全等の観点から、それらの単一冷媒に代えて、HFC−32とHFC−125とHFC−134aをそれぞれ所定の割合にて混合してなる冷媒や、HFC−32とHFC−125を混合した冷媒等、所謂、非共沸混合冷媒が多く用いられるようになってきている。このため、最近の空調用熱交換器における凝縮促進型伝熱管には、冷媒として、非共沸混合冷媒を用いた場合にあっても、優れた凝縮性能が発揮され得るようになっていることが求められているのである。
【0004】
かかる状況下、特開平8−75384号公報には、非共沸混合冷媒を用いた空調用熱交換器の凝縮促進型伝熱管として、前述せる如き内面溝付伝熱管のうち、クロス溝付伝熱管が、有利に用いられ、非共沸混合冷媒に対して、高い凝縮熱伝達率が得られることが、明らかにされている。
【0005】
ところが、本発明者等が、そのような開示事項を検証すべく、前記公報に開示された構造を有するクロス溝付伝熱管を用いて、公知の凝縮性能試験を行ったところ、冷媒質量速度が150kg/(m2 ・s)以下の低冷媒質量速度域となると、管内を流通せしめられる非共沸混合冷媒に対する撹拌作用が十分に得られなくなって、管内面に、非共沸混合冷媒特有の濃度境界層が形成され、それによって、管内凝縮熱伝達率が著しく低下してしまうことが明らかとなったのである。そして、このことから、従来のクロス溝付伝熱管が組み込まれた空調器用熱交換器では、最も運転時間の長い中間能力運転域において、凝縮能力の極端な低下が惹起されることも、判明したのである。
【0006】
【解決課題】
ここにおいて、本発明は、上述せる如き事情を背景にして為されたものであって、その解決課題とするところは、非共沸混合冷媒が、管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下が可及的に抑制され得、以て、空調機用熱交換器の中間能力運転域における凝縮能力を有利に高め得る凝縮促進型伝熱管を提供することにある。また、本発明にあっては、伝熱管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を効率的に凝縮せしめることが出来る、非共沸混合冷媒の凝縮方法を提供することを、その第二の解決課題とするものである。
【0007】
【解決手段】
そして、本発明にあっては、かかる課題の解決のために、管内を150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を凝縮せしめるための凝縮促進型伝熱管において、管内面に、管軸に対して20〜40°の捻れ角と0.20〜0.35mmの深さとを有する第一の溝が、管軸方向に連続して延びるように複数形成されると共に、該第一の溝の捻れ角に対して±5°の範囲内の大きさの捻れ角と、該第一の溝の深さに対して±0.05mmの範囲内の深さとを有する第二の溝が、該第一の溝と交差しつつ、管軸方向に連続して延びるように複数形成されて、それら複数の第一の溝と第二の溝のうち、周方向に隣り合う二つの第一の溝と二つの第二の溝とにて囲まれてなる突起が、0.15〜0.40mmの高さと、該第一及び第二の溝のそれぞれの幅よりも小さい長さの四つの底辺を有する四角錐台形状をもって、該第一の溝と該第二の溝を介して千鳥状に、相互に独立して、多数形成されていることを特徴とする凝縮促進型伝熱管を、その要旨とするものである。
【0008】
すなわち、この本発明に従う凝縮促進型伝熱管にあっては、管内面に、第一の溝と第二の溝とが、略同一の深さと、管軸に対する略同一の大きさの捻れ角とをもって、互いに交差しつつ、管軸方向に連続して延びるように、それぞれ複数形成されていることによって、四角錐台形状を呈する所定高さの突起が、管内面に、千鳥状に配置された状態で、相互に独立して、多数形成されているところから、多数の突起の間を流通せしめられる非共沸混合冷媒が、第一の溝と第二の溝に沿って、それぞれバランス良く流動せしめられつつ、それら多数の突起に衝突して、乱流が効果的に促進され得るのであり、また、そのような多数の突起間を流通せしめられる非共沸混合冷媒において、第一の溝と第二の溝に沿って流通せしめられる冷媒と、突起の斜面や斜辺に沿って流通せしめられる冷媒との間に、速度分布が生じ、それによっても、非共沸混合冷媒の乱流促進が、より有効に図られ得るのである。
【0009】
しかも、本発明に係る凝縮促進型伝熱管においては、特に、四角錐台形状を呈する突起の高さが0.15〜0.40mmの範囲とされると共に、かかる突起の四つの底辺が、何れも、第一溝と第二の溝の幅よりも小さくされているため、突起の一つ一つが、非共沸混合冷媒の突起との衝突による乱流促進を生じさせるのに十分な大きさを確保した上で、可及的に小さく為されており、それによって、各突起の間を流通せしめられる非共沸混合冷媒の、各突起との衝突による流速の低下が可及的に抑えられ得て、かかる非共沸混合冷媒の突起との衝突による乱流促進が、更に助長せしめられ得ることとなる。
【0010】
それ故、このような凝縮促進型伝熱管においては、四角錐台形状を呈する多数の突起が形成されていることにより得られる非共沸混合冷媒の乱流促進作用と、そのような突起の一つ一つが比較的に小さくされていることにより得られる乱流促進の助長作用とが相俟って、たとえ、管内を流通せしめられる非共沸混合冷媒の質量速度が小さい場合にあっても、かかる非共沸混合冷媒の乱流促進が、従来のクロス溝付伝熱管に比して、より有効に図られ得ることとなり、それによって、各突起間を流通せしめられる非共沸混合冷媒が十分に撹拌され得て、非共沸混合冷媒特有の濃度境界層の形成が効果的に抑制され得るのである。
【0011】
従って、かくの如き本発明に従う凝縮促進型伝熱管にあっては、非共沸混合冷媒が、管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下が可及的に抑制され得、それによって、空調機用熱交換器の中間能力運転域における凝縮能力を有利に高め得るのであり、その結果として、空調機用熱交換器のエネルギー消費量の低減に大きく寄与せしめ得ることとなるのである。
【0012】
また、本発明にあっては、前述せる第二の技術的課題を解決するために、伝熱管内を150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を凝縮せしめる方法であって、管内面に、管軸に対して20〜40°の捻れ角と0.20〜0.35mmの深さとを有する第一の溝が、管軸方向に連続して延びるように複数形成されると共に、該第一の溝の捻れ角に対して±5°の範囲内の大きさの捻れ角と、該第一の溝の深さに対して±0.05mmの範囲内の深さとを有する第二の溝が、該第一の溝と交差しつつ、管軸方向に連続して延びるように複数形成されて、それら複数の第一の溝と第二の溝のうち、周方向に隣り合う二つの第一の溝と二つの第二の溝とにて囲まれてなる突起が、0.15〜0.40mmの高さと、該第一及び第二の溝のそれぞれの幅よりも小さい長さの四つの底辺を有する四角錐台形状をもって、該第一の溝と該第二の溝を介して千鳥状に、相互に独立して、多数形成されてなる凝縮促進型伝熱管を用い、前記非共沸混合冷媒を、かかる凝縮促進型伝熱管内に前記低冷媒質量速度の下に流通せしめつつ、該凝縮促進型伝熱管の管外面から冷却することにより、凝縮せしめるようにしたことを特徴とする非共沸混合冷媒の凝縮方法をも、その要旨とするものである。
【0013】
要するに、この本発明に従う非共沸混合冷媒の凝縮方法は、非共沸混合冷媒が、管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下を可及的に抑制せしめ得るといった、前述せる如き優れた特徴を発揮する凝縮促進型伝熱管を用いて、非共沸混合冷媒の凝縮を行うようにしたものである。
【0014】
従って、このような本発明に従う非共沸混合冷媒の凝縮方法によれば、伝熱管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を効率的に凝縮せしめることが出来、それによって、空調機用熱交換器の中間能力運転域における凝縮能力の向上と、それに伴う空調機用熱交換器のエネルギー消費量の大幅な低減とを、有利に実現せしめ得ることが可能となるのである。
【0015】
【発明の実施の形態】
以下、本発明を具体的に明らかにするために、本発明に係る凝縮促進型伝熱管と非共沸混合冷媒の凝縮方法の具体的な構成について、図面を参照しつつ、詳細に説明することとする。
【0016】
先ず、図1には、本発明に従う構造を有する凝縮促進型伝熱管の一例が、それを管軸方向に切断して展開した状態において、概略的に示されている。かかる図1からも明らかなように、本実施形態の凝縮促進型伝熱管においては、その内面に、管軸方向に向かって螺旋状に連続して延びる第一の溝10と第二の溝12とが、互い交差する状態で、それぞれ複数設けられると共に、多数の突起14が、相互に独立して形成されて、成っている。
【0017】
なお、この凝縮促進型伝熱管は、図示されてはいないものの、非共沸混合冷媒の流通路を管内部に形成し得るように、円形や楕円形、扁平な長円形等の適当な断面形状を呈する中空管体構造において、構成されるものであり、また、その構成材料として、要求される凝縮性能や採用される冷媒の種類等に応じて、例えば、銅や銅合金、アルミニウム合金等の適当な金属材が、適宜に用いられて、形成されるものである。更に、かかる凝縮促進型伝熱管は、例えば、連続する一本の素管内に、所定のプラグを回転可能に挿入した状態で、該素管を管軸方向に引抜き移動せしめることにより、該プラグを回転せしめつつ、該素管内面に、該プラグの外周面に設けられた突条に対応した溝を形成し得るように構成されてなる、従来と同様な構造の転造加工装置を用いた、公知の転造加工を行なうことによって、容易に製造される。なお、このような転造加工方法にて、目的とする凝縮促進型伝熱管を得る際には、好ましくは、外周面に、前記第一の溝10の管軸に対する捻れ角に対応した捻れ角を有する第一の突条が設けられた第一のプラグと、外周面に、前記第二の溝12の管軸に対応する捻れ角に対応した捻れ角を有する第二の突条が形成された第二のプラグとが、軸方向に直列に並んで、それぞれ回転可能に連結されてなる構造のプラグが、前記素管内において、第一のプラグが該素管の引抜き方向の前方側に位置するように挿入されて、用いられることとなる。
【0018】
そして、図1からも明らかなように、複数の第一の溝10と第二の溝12は、何れも、管軸に対して直角な断面において、底部に向かうに従って次第に狭幅となる略台形形状とされていると共に、管軸に関して互いに対称となる状態で、該管軸に対してそれぞれ傾斜し、且つ該管軸の延出方向に向かって螺旋状に連続して延びる形態とされているのである。
【0019】
かくして、凝縮促進型伝熱管の内面に、複数の第一の溝10と第二の溝12とが、互いに交差して延びるように形成されており、また、前記相互に独立した多数の突起14が、複数の第一の溝10と第二の溝12のうち、周方向に隣り合う二つの第一の溝10,10と二つの第二の溝12,12とにて囲まれてなる四角錐台形状をもって、第一の溝10と第二の溝12を介して千鳥状に配置された状態で、形成されている。
【0020】
そして、ここでは、特に、互いに交差して延びる第一及び第二の溝10,12において、伝熱管の周方向隣り合う第一の溝10同士の間隔と第二の溝12同士の間隔が、それぞれ、第一の溝10の底部の幅:W1 と第二の溝12の底部の幅:W2 よりも小さくされており、以て、それら第一の溝10と第二の溝12とにて形成される四角錐台形状の突起14の四つの底辺の長さが、何れも、第一の溝10の底部の幅:W1 及び第二の溝12の底部の幅:W2 よりも小さく為されている。
【0021】
これによって、本実施形態の凝縮促進型伝熱管にあっては、非共沸混合冷媒が、管内部を、複数の第一の溝10と第二の溝12に沿ってスムーズに流通せしめられる一方で、四角錐台形状を呈する多数の突起14に衝突せしめられて、かかる非共沸混合冷媒の乱流が促進されるようになっているのである。
【0022】
なお、かかる凝縮促進型伝熱管においては、前述せる如く、管軸方向に向かって螺旋状に延びる第一の溝10と第二の溝12とが、管軸に関して互いに対称となるように延出せしめられており、換言すれば、螺旋溝からなる第一の溝10の管軸に対する捻れ角(リード角):αと、同じく螺旋溝からなる第二の溝12の管軸に対する捻れ角(リード角):βとが同一の大きさとされているが、第二の溝12の捻れ角:βが、第一の溝10の捻れ角:αに対して±5°の範囲内の大きさとされている必要がある。つまり、第一の溝10の捻れ角:αと第二の溝12の捻れ角:βとの差が5°以内とされていなければならないのである。何故なら、第一の溝10の捻れ角:αと第二の溝12の捻れ角:βとの差が5°よりも大きくされる場合には、それらの捻れ角の差が大きくなり過ぎて、管内を流通せしめられる非共沸混合冷媒が、第一の溝10と第二の溝12のうち、捻れ角の小さな方の溝に沿って、より多く流通せしめられることとなって、第一の溝10と第二の溝12に沿った非共沸混合冷媒の流通量のバランスが崩れてしまい、それによって、かかる非共沸混合冷媒の前記多数の突起14への衝突による乱流促進作用が低下せしめられることとなるからである。
【0023】
また、第二の溝12の捻れ角:βの大きさの基準となる第一の溝10の捻れ角:αの大きさは、20〜40°とされることとなる。第一の溝10の管軸に対する捻れ角:αが20°未満の場合には、それら第一及び第二の溝10,12にて形成される突起14の底部の対向する二つの角部の角度が小さくなり過ぎて、それらの角部に衝突せしめられる非共沸混合冷媒の乱流が十分に促進され得なくなってしまうからであり、また、管軸に対する捻れ角が40°を越えるような螺旋溝は、容易には形成され得ないため、かかる第一の溝10の捻れ角:αが40°を越える場合には、該第一の溝10、ひいては凝縮促進型伝熱管の製造が困難となるからである。
【0024】
さらに、第二の溝12の深さ:D2 も、第一の溝10の深さ:D1 に対して±0.05mmの範囲内となるような略同一の寸法とされている必要がある。かかる第二の溝12の深さ:D2 が、第一の溝10の深さ:D1 に対して±0.05mmを越えた寸法とされる場合には、それら第一の溝10と第二の溝12のそれぞれの管軸に対する捻れ角の差が大きくされた場合と同様に、伝熱管内部において、非共沸混合冷媒が、第一の溝10と第二の溝12のうち、深さの深い方の溝に沿って、より多く流通せしめられることとなって、第一の溝10と第二の溝12に沿った非共沸混合冷媒の流通量のバランスが崩れてしまい、それによって、非共沸混合冷媒の前記多数の突起14への衝突による乱流促進作用が低下せしめられるようになる。
【0025】
また、第二の溝12の深さ:D2 の基準となる第一の溝10の深さ:D1 は、0.20〜0.35mmとされる。けだし、第一の溝10の深さ:D1 が0.20mm未満である場合には、第一の溝10と第二の溝12とにて形成される突起14の高さが低くなり過ぎて、突起14が、伝熱管内部を流通せしめられる非共沸混合冷媒と衝突する障害物としての機能を果たし得なくなってしまい、それによって、非共沸混合冷媒の突起14への衝突による乱流促進を十分に図ることが出来なくなるからであり、また、限られた肉厚を有する伝熱管の内面には、0.35mmを越える深さの溝が、容易には形成され得ないため、かかる第一の溝10の深さ:D1 を越える場合には、該第一の溝10、ひいては凝縮促進型伝熱管の製造が困難となるからである。
【0026】
一方、第一の溝10と第二の溝12とにて形成される突起14は、その高さ:hが、第一及び第二の溝10,12のそれぞれの深さに依存せしめられることとなるが、ここでは、かかる突起14の高さ:hが、0,15〜0.40mmの範囲内とされることとなる。この突起14の高さ:hが、0.15mmを下回る場合には、第一及び第二の溝10,12の深さが浅すぎる場合と同様に、突起14が、低過ぎて、非共沸混合冷媒と衝突する障害物としての機能を失ってしまい、それによって、非共沸混合冷媒の突起14への衝突による乱流促進作用が低下してしまうからであり、また、0.40mmを越える大きな高さの突起14を形成するためには、第一及び第二の溝10,12の深さを、上述の如き範囲を超えて、過剰に深くしなければならなくなり、その場合には、突起14、ひいては凝縮促進型伝熱管の製造が困難となるようになる。
【0027】
そして、このような構造とされた本実施形態の凝縮促進型伝熱管は、従来と同様に、例えば、水平方向に延びるように配置された状態で、管外にアルミニウム製の放熱フィンが拡管装着せしめられることにより、ルームエアコンやパッケージエアコン等の如き空調用熱交換器の凝縮器として構成され、また、この凝縮器において、非共沸混合冷媒、例えば、HFC−32とHFC−125とHFC−134aをそれぞれ所定の割合にて混合してなる冷媒や、HFC−32とHFC−125フを混合した冷媒等を凝縮せしめられるのに使用されることとなる。
【0028】
つまり、凝縮器として構成された凝縮促進型伝熱管内に、非共沸混合冷媒を、前述の如く、複数の第一の溝10と第二の溝12に沿って流通せしめて、それら第一及び第二の溝10,12にて形成される多数の突起14に衝突させることにより、かかる非共沸混合冷媒の乱流を促進する。そして、その一方で、伝熱管の外部に流動せしめられて、管外面に接触する冷却用空気や冷却水等にて、乱流が促進された非共沸混合冷媒を冷却して、凝縮するのである。
【0029】
このように、本実施形態の凝縮促進型伝熱管においては、内面に、非共沸混合冷媒がバランス良く流通せしめられるように構成された複数の第一の溝10と第二の溝12とが、互いに交差しつつ、管軸方向に連続して延びるように形成されていることにより、四角錐台形状の多数の突起14が、千鳥状に配置された状態で、相互に独立して、形成されているところから、管内を流通せしめられる非共沸混合冷媒が、それら多数の突起14に衝突して、乱流が効果的に促進され得るのであり、また、かかる非共沸混合冷媒において、第一の溝10と第二の溝12に沿って流通せしめられる冷媒と、突起14の斜面や斜辺に沿って流通せしめられる冷媒との間に速度分布が生じ、それによっても、非共沸混合冷媒の乱流促進が、より有効に図られ得ることとなる。
【0030】
加えて、かかる凝縮促進型伝熱管においては、各突起14が、管内を流通せしめられる非共沸混合冷媒の障害物として十分に機能し得る最低限の高さを確保しつつ、四つの底辺の長さが第一及び第二の溝10,12の底部側の幅よりも小さくされていることにより、全体の大きさが可及的に小さくされ、それによって、管内を流通せしめられる非共沸混合冷媒の、各突起14との衝突による流速の低下が可及的に抑えられ得て、かかる非共沸混合冷媒の突起14との衝突による乱流促進が、更に助長せしめられ得るのである。
【0031】
それ故、本実施形態においては、非共沸混合冷媒が、管内を低冷媒質量速度域で流通せしめられる場合にあっても、そのような非共沸混合冷媒の乱流促進が、従来管に比して、より有効に図られ得て、管内を流通せしめられる非共沸混合冷媒が、更に一層十分に撹拌され得ることとなり、以て非共沸混合冷媒特有の濃度境界層の形成が効果的に抑制され得ることとなる。
【0032】
従って、このような本実施形態の凝縮促進型伝熱管にあっては、非共沸混合冷媒が、管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下が可及的に抑制され得るのである。そして、その結果、かかる凝縮促進型伝熱管にて構成された凝縮器が組み付けられてなる空調機用熱交換器の中間能力運転域における凝縮能力を有利に高め得て、そのエネルギー消費量を大幅に低減せしめることが出来るのである。
【0033】
因みに、本発明に従う構造を有する凝縮促進型伝熱管が、上述の如き優れた特徴を発揮するものであることを確認するために、本発明者等が行った、かかる凝縮促進型伝熱管の評価試験について、以下に示す。
【0034】
すなわち、先ず、複数の第一の溝と第二の溝とが、管軸方向に向かって螺旋状に連続し、且つ互いに交差して延びる形態をもって管内面に形成されることにより、四角錐台形状の多数の突起が、千鳥状に配置された状態で、相互に独立して形成されると共に、下記表1に示されるような寸法諸元を有して構成されてなる、本発明に従う構造とされた4種類の凝縮促進型伝熱管(実施例1〜実施例4)を形成して、準備した。また、比較のために、管内面に、第一の溝のみが多数設けられてなる従来の螺旋溝付伝熱管(比較例1)と、第一の溝と第二の溝とが設けられるものの、第一の溝の管軸に対する捻れ角が本発明の範囲外とされ、且つ突起の底辺の長さが第一及び第二の溝の底部の幅よりも大きくされたクロス溝付伝熱管(比較例2)と、管内面に、V字形状を呈する溝(表1には、第一の溝として示した)が多数形成されてなる従来の松葉溝付伝熱管(比較例3)とを、それぞれ、下記表1に示されるような寸法諸元をもって形成して、準備した。
【0035】
なお、これら準備された7種類の凝縮促進型伝熱管(実施例1〜4及び比較例1〜3)は、全て、銅材質のものとした。また、下記表1において、リード角は、第一の溝又は第二の溝の管軸に対する捩じれ角の大きさを示し、条数は、第一の溝又は第二の溝の1周当たりの条数、即ち、管軸に垂直な断面において、その端面に形成される第一の溝又は第二の溝の数を示す。
【0036】
【表1】

Figure 0003771433
【0037】
次いで、それら準備された7種類の凝縮促進型伝熱管(実施例1〜4及び比較例1〜3)と、従来より公知の伝熱性能試験装置と、冷媒としてR−407C(23mass%HFC−32/25mass%HFC−125/52mass%HFC−134a)とを用い、かかる伝熱性能試験装置の試験セクションに対して、各種伝熱管を単管で組み付けて、図2に示される如き冷媒の流通下で、下記表2に示される試験条件により、凝縮性能試験を、公知の方法に従って実施し、各種伝熱管における非共沸混合冷媒の質量速度に応じた管内凝縮熱伝達率を測定した。そして、かくして得られた、それぞれの伝熱管の冷媒質量速度に応じた管内凝縮熱伝達率の測定値のうち、第一の溝と第二の溝とが互いに交差するように設けられた従来のクロス溝付伝熱管(比較例2)の、冷媒質量速度を50kg/(m2 ・s)とした際の管内凝縮熱伝達率を基準(=1.0)として、各凝縮促進型伝熱管(実施例1〜4及び比較例1〜3)における冷媒質量速度に応じた管内凝縮熱伝達率の、該基準となる管内凝縮熱伝達率に対する比率を、それぞれ求めた。その結果から得られた、各凝縮促進型伝熱管(実施例1〜4及び比較例1〜3)の管内凝縮熱伝達率比と冷媒質量速度との関係を、図3に示した。なお、凝縮性能試験における試験区間長さは、4mとした。
【0038】
【表2】
Figure 0003771433
【0039】
図3に示される結果から明らかなように、本発明に従う構造を有する4種類の凝縮促進型伝熱管(実施例1〜4)にあっては、150kg/(m2 ・s)以下の低冷媒質量速度域における管内凝縮熱伝達率比が、200kg/(m2 ・s)程度の中間冷媒質量速度域における管内凝縮熱伝達率比に比して、それほど大きな変化が見られない。これに対して、従来の一般的なクロス溝付伝熱管(比較例2)と螺旋溝付伝熱管(比較例1)と松葉溝付伝熱管(比較例3)においては、150kg/(m2 ・s)以下の低冷媒質量速度域における管内凝縮熱伝達率比が、冷媒質量速度が小さくなる従って、200kg/(m2 ・s)程度の中間冷媒質量速度域における管内凝縮熱伝達率比に比べて、大幅に低減せしめられることとなる。
【0040】
このことから、本発明に従う構造を有する凝縮促進型伝熱管(実施例1〜4)においては、従来の凝縮促進型伝熱管とは異なり、非共沸混合冷媒が、管内を150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下が、可及的に抑制され得ることが明確に認識され得るのである。
【0041】
以上、本発明の具体的な構成について詳述してきたが、これはあくまでも例示に過ぎないのであって、本発明は、上記の記載によって、何等の制約をも受けるものではなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様において実施され得るものである。そして、そのような実施形態が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもないところである。
【0042】
【発明の効果】
以上の説明からも明らかなように、本発明に従う凝縮促進型伝熱管にあっては、非共沸混合冷媒が、管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる際における管内凝縮熱伝達率の低下が可及的に抑制され得るのであり、それによって、空調機用熱交換器の中間能力運転域における凝縮能力を有利に高め得て、該空調機用熱交換器のエネルギー消費量を大幅に低減せしめることが出来るのである。
【0043】
また、本発明に従う非共沸混合冷媒の凝縮方法によれば、伝熱管内を、150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を効率的に凝縮せしめることが出来、それによって、空調機用熱交換器の中間能力運転域における凝縮能力の向上と、それに伴う空調機用熱交換器のエネルギー消費量の大幅な低減とを、有利に実現せしめ得ることが可能となるのである。
【図面の簡単な説明】
【図1】本発明に従う凝縮促進型伝熱管の一例の展開説明図である。
【図2】実施例又は比較例としての各種凝縮促進型伝熱管の凝縮時の伝熱性能を測定する試験装置における冷媒の流通状態を示す説明図である。
【図3】実施例及び比較例としての各種凝縮促進型伝熱管について、それぞれのものにおける管内凝縮熱伝達率と冷媒質量速度との関係を示すグラフである。
【符号の説明】
10 第一の溝
12 第二の溝
14 突起[0001]
【Technical field】
The present invention relates to a condensation-accelerating heat transfer tube and a method for condensing a non-azeotropic refrigerant mixture, and in particular, the inside of the tube is 150 kg / (m 2 S) A condensation-accelerating heat transfer tube suitably used for a condenser that condenses a non-azeotropic refrigerant mixture that is circulated at the following low refrigerant mass speed, and a non-circulated heat transfer pipe that is circulated through the heat transfer pipe at such a low refrigerant mass speed. The present invention relates to a condensation method capable of advantageously condensing an azeotropic refrigerant mixture.
[0002]
[Background]
Conventionally, as a kind of condensation-accelerating heat transfer tubes incorporated in air-conditioning heat exchangers such as room air conditioners and packaged air conditioners, so-called inner surface grooved heat transfer tubes in which a number of grooves are provided on the inner surface of the tube have been used. It has been. In general, the inner surface grooved heat transfer tube is divided into several types depending on the shape of the groove formed on the inner surface of the tube. For example, as shown in Japanese Patent Application Laid-Open No. 7-12484, etc. A spiral grooved heat transfer tube formed such that the grooves continuously extend in the tube axis direction, and a number of V-shaped grooves as disclosed in Japanese Patent Application Laid-Open No. 9-26279 are provided in the tube axis direction. A heat transfer tube with pine needle grooves arranged in a row, or a plurality of main grooves made of spiral grooves, as disclosed in Japanese Patent Laid-Open No. 3-234302, etc., and extending across the many main grooves A heat transfer tube with a cross groove formed with a large number of sub-grooves is known as a representative one.
[0003]
Incidentally, in the heat exchanger for air conditioning as described above, conventionally, single refrigerants such as HCFC-22 and HCFC-12 have been generally used as the refrigerant. Instead of a single refrigerant, a so-called non-common, such as a refrigerant obtained by mixing HFC-32, HFC-125 and HFC-134a at a predetermined ratio, a refrigerant obtained by mixing HFC-32 and HFC-125, etc. Boiling mixed refrigerants are increasingly used. For this reason, the condensation-accelerating heat transfer tubes in recent heat exchangers for air conditioning must be able to exhibit excellent condensation performance even when a non-azeotropic refrigerant mixture is used as the refrigerant. Is demanded.
[0004]
Under such circumstances, Japanese Patent Application Laid-Open No. 8-75384 discloses a cross-grooved heat transfer tube among the internally grooved heat transfer tubes as described above as a condensation-accelerating heat transfer tube of an air-conditioning heat exchanger using a non-azeotropic refrigerant mixture. It has been shown that heat tubes are advantageously used, and that high condensation heat transfer rates can be obtained for non-azeotropic refrigerant mixtures.
[0005]
However, when the present inventors conducted a known condensation performance test using a cross-grooved heat transfer tube having the structure disclosed in the above publication in order to verify such disclosure, the refrigerant mass velocity was 150 kg / (m 2 ・ S) When the following refrigerant mass velocity range is reached, the agitating action on the non-azeotropic refrigerant mixture circulated in the pipe cannot be obtained sufficiently, and a concentration boundary layer peculiar to the non-azeotropic refrigerant mixture is formed on the inner surface of the pipe. As a result, it has been clarified that the condensation heat transfer coefficient in the tube is remarkably lowered. And from this, it was also found that in the heat exchanger for an air conditioner incorporating a conventional heat exchanger tube with a cross groove, an extreme decrease in the condensation capacity is caused in the intermediate capacity operation region with the longest operation time. It is.
[0006]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is that the non-azeotropic refrigerant mixture is 150 kg / (m 2 ・ S) The reduction of condensation heat transfer coefficient in the pipe when it is circulated at the following low refrigerant mass velocity can be suppressed as much as possible, so it is advantageous for the condensation capacity in the intermediate capacity operation region of the heat exchanger for air conditioners An object of the present invention is to provide a condensation-accelerating heat transfer tube that can be improved. In the present invention, the inside of the heat transfer tube is 150 kg / (m 2 S) The second solution is to provide a method for condensing a non-azeotropic refrigerant mixture that can efficiently condense a non-azeotropic refrigerant mixture that can be circulated at the following low refrigerant mass velocity. Is.
[0007]
[Solution]
And in this invention, in order to solve this subject, 150 kg / (m 2 S) In a condensation-accelerating heat transfer tube for condensing a non-azeotropic refrigerant mixture that is circulated at the following low refrigerant mass velocity, a twist angle of 20 to 40 ° with respect to the tube axis and 0.20 A plurality of first grooves having a depth of ˜0.35 mm are formed so as to continuously extend in the tube axis direction, and a size within a range of ± 5 ° with respect to the twist angle of the first grooves A second groove having a twist angle and a depth within a range of ± 0.05 mm with respect to the depth of the first groove But the A plurality of first grooves adjacent to each other in the circumferential direction among the plurality of first grooves and the second grooves are formed so as to continuously extend in the tube axis direction while intersecting with the first grooves. And the projections surrounded by the two second grooves have four bases having a height of 0.15 to 0.40 mm and a length smaller than the width of each of the first and second grooves. A condensation-accelerating type heat transfer tube characterized by having a quadrangular pyramid shape having a plurality of shapes formed independently of each other in a staggered manner through the first groove and the second groove, It is what.
[0008]
That is, in the condensation promotion type heat transfer tube according to the present invention, the first groove and the second groove are formed on the inner surface of the tube with substantially the same depth and a twist angle of approximately the same size with respect to the tube axis. With And mutual A plurality of protrusions that form a quadrangular pyramid shape and are arranged in a staggered pattern on the inner surface of the tube by forming a plurality of each so as to continuously extend in the tube axis direction while intersecting each other Thus, the non-azeotropic mixed refrigerant that is circulated between the many protrusions flows independently from each other in a well-balanced manner along the first groove and the second groove. However, the turbulent flow can be effectively promoted by colliding with the large number of protrusions, and the first groove and the second groove in the non-azeotropic mixed refrigerant circulated between the large number of protrusions. A velocity distribution is generated between the refrigerant circulated along the second groove and the refrigerant circulated along the slopes and hypotenuses of the protrusions, which further promotes the turbulent flow of the non-azeotropic refrigerant mixture. It can be effectively planned.
[0009]
Moreover, in the condensation-accelerating heat transfer tube according to the present invention, in particular, the height of the projections having a quadrangular pyramid shape is in the range of 0.15 to 0.40 mm, and the four bases of the projections are However, since each of the protrusions is smaller than the width of the first groove and the second groove, each protrusion is large enough to cause turbulent flow promotion due to collision with the protrusion of the non-azeotropic refrigerant mixture. As a result, non-azeotropic refrigerant that is allowed to flow between the projections is prevented from decreasing as much as possible due to collision with the projections. As a result, the promotion of turbulent flow due to the collision with the protrusions of the non-azeotropic refrigerant mixture can be further promoted.
[0010]
Therefore, in such a condensation promotion type heat transfer tube, the turbulent flow promoting action of the non-azeotropic refrigerant mixture obtained by forming a large number of projections having a quadrangular pyramid shape, and one of such projections. Combined with the promotion of turbulent flow obtained by making each one relatively small, even if the mass velocity of the non-azeotropic refrigerant circulated in the pipe is small, Such non-azeotropic refrigerant mixture can be promoted more effectively than conventional cross-grooved heat transfer tubes, so that there is sufficient non-azeotropic refrigerant mixture to flow between the protrusions. Therefore, the formation of a concentration boundary layer peculiar to the non-azeotropic refrigerant mixture can be effectively suppressed.
[0011]
Therefore, in the condensation promotion type heat transfer tube according to the present invention as described above, the non-azeotropic refrigerant mixture is reduced to 150 kg / (m 2 ・ S) The reduction of the condensation heat transfer coefficient in the pipe when it is circulated at the following low refrigerant mass velocity can be suppressed as much as possible, thereby advantageously condensing capacity in the intermediate capacity operating region of the heat exchanger for air conditioners As a result, the energy consumption of the air conditioner heat exchanger can be greatly reduced.
[0012]
In the present invention, in order to solve the second technical problem described above, the inside of the heat transfer tube is 150 kg / (m 2 S) A method of condensing a non-azeotropic refrigerant mixture that can be circulated at a low refrigerant mass velocity of the following, wherein the tube inner surface has a twist angle of 20 to 40 ° with respect to the tube axis and 0.20 to 0.35 mm. Are formed so as to continuously extend in the tube axis direction, and a twist angle having a size within a range of ± 5 ° with respect to the twist angle of the first groove And a second groove having a depth within a range of ± 0.05 mm with respect to the depth of the first groove But the A plurality of first grooves adjacent to each other in the circumferential direction among the plurality of first grooves and the second grooves are formed so as to continuously extend in the tube axis direction while intersecting with the first grooves. And the projections surrounded by the two second grooves have four bases having a height of 0.15 to 0.40 mm and a length smaller than the width of each of the first and second grooves. The non-azeotropic refrigerant mixture is formed by using a condensation-accelerating heat transfer tube having a quadrangular pyramid shape and a plurality of condensation-promoting heat transfer tubes formed in a zigzag manner through the first groove and the second groove, independently of each other. In the condensation-accelerating heat transfer tube Under the low refrigerant mass velocity While distributing it, From the outer surface of the condensation-accelerating heat transfer tube A condensing method of a non-azeotropic refrigerant mixture characterized in that it is condensed by cooling is also the gist thereof.
[0013]
In short, the condensation method of the non-azeotropic refrigerant mixture according to the present invention is such that the non-azeotropic refrigerant mixture is 150 kg / (m 2 -S) Using a condensation-accelerating heat transfer tube that exhibits the excellent characteristics as described above, such as being able to suppress the decrease in the condensation heat transfer coefficient in the tube as much as possible when it is circulated at the following low refrigerant mass velocity, A non-azeotropic refrigerant mixture is condensed.
[0014]
Therefore, according to the method for condensing a non-azeotropic refrigerant mixture according to the present invention, 150 kg / (m 2 -S) It is possible to efficiently condense the non-azeotropic refrigerant mixture that can be circulated at the following low refrigerant mass velocity, thereby improving the condensing capacity in the intermediate capacity operating region of the heat exchanger for air conditioners, Accordingly, it is possible to advantageously realize a significant reduction in energy consumption of the heat exchanger for air conditioners.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention, a specific configuration of a condensation method for a condensation-accelerating heat transfer tube and a non-azeotropic refrigerant mixture according to the present invention will be described in detail with reference to the drawings. And
[0016]
First, FIG. 1 schematically shows an example of a condensation-accelerating heat transfer tube having a structure according to the present invention in a state where it is cut and expanded in the tube axis direction. As apparent from FIG. 1, in the condensation-accelerating heat transfer tube of the present embodiment, the first groove 10 and the second groove 12 that continuously extend spirally toward the tube axis direction on the inner surface. And a plurality of protrusions 14 are formed independently of each other.
[0017]
Although this condensation promotion type heat transfer tube is not shown in the drawing, an appropriate cross-sectional shape such as a circle, an ellipse, a flat oval, etc. is formed so that the flow path of the non-azeotropic refrigerant mixture can be formed inside the tube. According to the required condensing performance and the type of refrigerant employed, for example, copper, copper alloy, aluminum alloy, etc. The appropriate metal material is appropriately used and formed. Further, such a condensation-accelerating heat transfer tube can be obtained by, for example, pulling and moving the plug in the axial direction of the tube while a predetermined plug is rotatably inserted into a single continuous tube. Using a rolling processing device having a structure similar to that of the prior art, which is configured to be able to form grooves corresponding to the protrusions provided on the outer peripheral surface of the plug on the inner surface of the raw tube while rotating. It is easily manufactured by performing a known rolling process. In addition, when obtaining the target condensation promotion type heat transfer tube by such a rolling method, it is preferable that the twist angle corresponding to the twist angle of the first groove 10 with respect to the tube axis is preferably provided on the outer peripheral surface. And a second protrusion having a twist angle corresponding to a twist angle corresponding to the tube axis of the second groove 12 is formed on the outer peripheral surface. A plug having a structure in which the second plug is arranged in series in the axial direction and is rotatably connected to each other is located in the element pipe in the front side in the drawing direction of the element pipe. It will be inserted and used.
[0018]
As is clear from FIG. 1, each of the plurality of first grooves 10 and second grooves 12 has a substantially trapezoidal shape that becomes gradually narrower toward the bottom in a cross section perpendicular to the tube axis. In addition to being formed into a shape and being symmetrical to each other with respect to the tube axis, each is inclined with respect to the tube axis and continuously extends in a spiral shape toward the extending direction of the tube axis. It is.
[0019]
Thus, a plurality of first grooves 10 and second grooves 12 are formed on the inner surface of the condensation promotion type heat transfer tube. But In addition, the plurality of mutually independent protrusions 14 are formed of two first grooves 10 and second grooves 12 adjacent to each other in the circumferential direction. A quadrangular frustum shape surrounded by one groove 10, 10 and two second grooves 12, 12 and arranged in a staggered manner via the first groove 10 and the second groove 12 And formed.
[0020]
And in this case, in particular, in the first and second grooves 10 and 12 extending crossing each other, the interval between the first grooves 10 adjacent to each other in the circumferential direction of the heat transfer tube and the interval between the second grooves 12 are Respective bottom width of the first groove 10: W 1 And the width of the bottom of the second groove 12: W 2 Therefore, the lengths of the four bases of the quadrangular frustum-shaped projections 14 formed by the first groove 10 and the second groove 12 are all the first length. Width of bottom of groove 10: W 1 And the width of the bottom of the second groove 12: W 2 Has been made smaller.
[0021]
Thereby, in the condensation promotion type heat transfer tube of the present embodiment, the non-azeotropic refrigerant mixture can be smoothly circulated through the tube along the plurality of first grooves 10 and the second grooves 12. Thus, the turbulent flow of the non-azeotropic refrigerant mixture is promoted by colliding with a large number of protrusions 14 having a quadrangular pyramid shape.
[0022]
In this condensation promotion type heat transfer tube, as described above, the first groove 10 and the second groove 12 extending spirally in the tube axis direction extend so as to be symmetrical with respect to the tube axis. In other words, the twist angle (lead angle) of the first groove 10 made of a spiral groove with respect to the tube axis: α and the twist angle (lead) of the second groove 12 also made of a spiral groove with respect to the tube axis. Angle): β has the same size, but the twist angle of the second groove 12: β is set within a range of ± 5 ° with respect to the twist angle of the first groove 10: α. Need to be. That is, the difference between the twist angle α of the first groove 10 and the twist angle β of the second groove 12 must be within 5 °. This is because if the difference between the twist angle α of the first groove 10 and the twist angle β of the second groove 12 is larger than 5 °, the difference between the twist angles becomes too large. The non-azeotropic refrigerant mixed in the pipe is circulated more along the groove having the smaller twist angle of the first groove 10 and the second groove 12, so that the first The balance of the flow rate of the non-azeotropic refrigerant mixture along the groove 10 and the second groove 12 is lost, and as a result, the turbulent flow promoting action due to the collision of the non-azeotropic refrigerant mixture with the plurality of protrusions 14 is lost. This is because it will be lowered.
[0023]
Further, the twist angle: α of the first groove 10 which is a reference for the twist angle: β of the second groove 12 is 20 to 40 °. Twist angle of the first groove 10 with respect to the tube axis: when α is less than 20 °, the two corners facing each other at the bottom of the projection 14 formed by the first and second grooves 10 and 12 This is because the angle becomes too small, and the turbulent flow of the non-azeotropic refrigerant mixed with the corners cannot be sufficiently promoted, and the twist angle with respect to the tube axis exceeds 40 °. Since the spiral groove cannot be easily formed, when the twist angle α of the first groove 10 exceeds 40 °, it is difficult to manufacture the first groove 10 and thus the condensation promotion type heat transfer tube. Because it becomes.
[0024]
Furthermore, the depth of the second groove 12: D 2 The depth of the first groove 10: D 1 However, it is necessary that the dimensions be substantially the same so as to be within a range of ± 0.05 mm. Depth of such second groove 12: D 2 Is the depth of the first groove 10: D 1 In contrast, when the dimension exceeds ± 0.05 mm, the difference between the first groove 10 and the second groove 12 with respect to the respective tube axes is increased. In the heat tube, the non-azeotropic refrigerant mixture is circulated more along the deeper one of the first groove 10 and the second groove 12, so that the first groove Thus, the balance of the flow rate of the non-azeotropic refrigerant mixture along the second groove 12 is lost, thereby reducing the turbulent flow promoting action due to the collision of the non-azeotropic refrigerant mixture with the numerous protrusions 14. Be able to.
[0025]
The depth of the second groove 12: D 2 Depth of the first groove 10 serving as a reference of D: D 1 Is 0.20 to 0.35 mm. The depth of the first groove 10: D 1 Is less than 0.20 mm, the height of the protrusion 14 formed by the first groove 10 and the second groove 12 becomes too low, and the protrusion 14 is allowed to circulate inside the heat transfer tube. This is because the function as an obstacle that collides with the non-azeotropic refrigerant mixture cannot be achieved, thereby making it impossible to sufficiently promote the turbulent flow due to the collision of the non-azeotropic refrigerant mixture with the protrusions 14, Further, since a groove having a depth exceeding 0.35 mm cannot be easily formed on the inner surface of the heat transfer tube having a limited thickness, the depth of the first groove 10: D 1 This is because it is difficult to manufacture the first groove 10 and thus the condensation promotion type heat transfer tube.
[0026]
On the other hand, the height 14 of the protrusion 14 formed by the first groove 10 and the second groove 12 depends on the depth of each of the first and second grooves 10 and 12. In this case, however, the height 14 of the projection 14 is in the range of 0.15 to 0.40 mm. When the height h of the projection 14 is less than 0.15 mm, the projection 14 is too low and non-coincided, as in the case where the depths of the first and second grooves 10 and 12 are too shallow. This is because the function as an obstacle that collides with the boiling refrigerant mixture is lost, and thereby the turbulent flow promoting action due to the collision of the non-azeotropic refrigerant mixture with the protrusions 14 is reduced. In order to form a protrusion 14 having a large height exceeding the depth, the depths of the first and second grooves 10 and 12 must be excessively deep beyond the above-described range. In addition, it becomes difficult to manufacture the protrusion 14 and thus the condensation-accelerating heat transfer tube.
[0027]
The condensation-accelerating heat transfer tube of this embodiment having such a structure is, for example, a state in which it is arranged so as to extend in the horizontal direction, and an aluminum radiating fin is installed outside the tube in the same manner as in the past. It is configured as a condenser for an air conditioner heat exchanger such as a room air conditioner or a packaged air conditioner. In this condenser, a non-azeotropic refrigerant mixture such as HFC-32, HFC-125, and HFC- It will be used to condense a refrigerant obtained by mixing 134a at a predetermined ratio, a refrigerant obtained by mixing HFC-32 and HFC-125, and the like.
[0028]
That is, the non-azeotropic refrigerant mixture is circulated along the plurality of first grooves 10 and the second grooves 12 in the condensation promotion type heat transfer tube configured as a condenser, as described above, and the first In addition, the turbulent flow of the non-azeotropic refrigerant mixture is promoted by colliding with a large number of protrusions 14 formed in the second grooves 10 and 12. And on the other hand, the non-azeotropic refrigerant mixture that has been flowed to the outside of the heat transfer tube and brought into contact with the outer surface of the tube is cooled and condensed with cooling air, cooling water, etc. is there.
[0029]
Thus, in the condensation promotion type heat transfer tube of the present embodiment, a plurality of first grooves 10 and second grooves 12 configured to allow a non-azeotropic refrigerant mixture to flow in a balanced manner on the inner surface. By being formed so as to continuously extend in the tube axis direction while intersecting each other, a large number of quadrangular pyramid-shaped projections 14 are formed independently of each other in a staggered manner. Therefore, the non-azeotropic mixed refrigerant circulated in the pipe collides with the many protrusions 14 and the turbulent flow can be effectively promoted. In such a non-azeotropic mixed refrigerant, A velocity distribution is generated between the refrigerant circulated along the first groove 10 and the second groove 12 and the refrigerant circulated along the slopes and oblique sides of the protrusions 14, and this also causes non-azeotropic mixing. The turbulence of the refrigerant is promoted more effectively. The Rukoto.
[0030]
In addition, in such a condensation-accelerating heat transfer tube, each protrusion 14 has a minimum height that can sufficiently function as an obstacle for a non-azeotropic refrigerant mixture that can be circulated in the tube, and has four bottoms. The length is made smaller than the width on the bottom side of the first and second grooves 10 and 12, so that the overall size is made as small as possible and thereby non-azeotropic circulated in the pipe. The reduction of the flow velocity due to the collision of the mixed refrigerant with each protrusion 14 can be suppressed as much as possible, and the promotion of turbulent flow due to the collision of the non-azeotropic mixed refrigerant with the protrusion 14 can be further promoted.
[0031]
Therefore, in this embodiment, even when the non-azeotropic refrigerant mixture is circulated in the pipe at a low refrigerant mass velocity region, such turbulent flow promotion of the non-azeotropic refrigerant mixture is applied to the conventional pipe. In comparison, the non-azeotropic mixed refrigerant that can be more effectively achieved and circulated in the pipe can be further sufficiently stirred, so that the formation of a concentration boundary layer unique to the non-azeotropic mixed refrigerant is effective. Can be suppressed.
[0032]
Therefore, in such a condensation promotion type heat transfer tube of this embodiment, the non-azeotropic refrigerant mixture is 150 kg / (m 2 S) A decrease in the condensation heat transfer coefficient in the pipe when it is circulated at the following low refrigerant mass velocity can be suppressed as much as possible. As a result, it is possible to advantageously increase the condensing capacity in the intermediate capacity operating region of the heat exchanger for an air conditioner in which the condenser composed of such a condensing promotion type heat transfer tube is assembled, greatly increasing the energy consumption. It can be reduced to a very low level.
[0033]
Incidentally, in order to confirm that the condensation promotion type heat transfer tube having the structure according to the present invention exhibits the excellent characteristics as described above, the inventors conducted evaluation of the condensation promotion type heat transfer tube. The test is shown below.
[0034]
That is, first, a plurality of first grooves and second grooves are formed on the inner surface of the tube in a form that is spirally continuous in the tube axis direction and extends so as to intersect with each other. A structure according to the present invention, in which a large number of protrusions having a shape are formed independently of each other in a staggered manner and have dimensions as shown in Table 1 below. The four types of condensation promotion type heat transfer tubes (Examples 1 to 4) were prepared and prepared. For comparison, a conventional spiral grooved heat transfer tube (Comparative Example 1) in which only the first groove is provided on the inner surface of the tube, and the first groove and the second groove are provided. The cross grooved heat transfer tube in which the twist angle with respect to the tube axis of the first groove is outside the scope of the present invention and the length of the bottom side of the protrusion is larger than the width of the bottom of the first and second grooves ( Comparative Example 2) and a conventional pine needle grooved heat transfer tube (Comparative Example 3) in which a large number of V-shaped grooves (shown as first grooves in Table 1) are formed on the inner surface of the tube. Each was prepared with dimensions as shown in Table 1 below.
[0035]
In addition, all of these seven kinds of prepared condensation promotion type heat transfer tubes (Examples 1 to 4 and Comparative Examples 1 to 3) were made of copper. In Table 1 below, the lead angle indicates the size of the twist angle of the first groove or the second groove with respect to the tube axis, and the number of stripes per one turn of the first groove or the second groove. The number of strips, that is, the number of first grooves or second grooves formed on the end face in a cross section perpendicular to the tube axis is shown.
[0036]
[Table 1]
Figure 0003771433
[0037]
Subsequently, these seven types of condensation-accelerated heat transfer tubes (Examples 1 to 4 and Comparative Examples 1 to 3), a conventionally known heat transfer performance test device, and R-407C (23 mass% HFC-) as a refrigerant 2/25 mass% HFC-125 / 52 mass% HFC-134a), and various heat transfer tubes are assembled in a single pipe to the test section of the heat transfer performance test apparatus, and the refrigerant flow as shown in FIG. Under the test conditions shown in Table 2 below, the condensation performance test was performed according to a known method, and the condensation heat transfer coefficient in the tube according to the mass velocity of the non-azeotropic refrigerant mixture in various heat transfer tubes was measured. And among the measured values of the condensation heat transfer coefficient in the tube according to the refrigerant mass velocity of the respective heat transfer tubes thus obtained, the conventional groove provided so that the first groove and the second groove intersect each other. The refrigerant mass velocity of the cross-grooved heat transfer tube (Comparative Example 2) is 50 kg / (m 2 · In-tube condensation according to the refrigerant mass velocity in each condensation-accelerating heat transfer tube (Examples 1 to 4 and Comparative Examples 1 to 3), with the in-tube condensing heat transfer coefficient at s) as the reference (= 1.0) The ratio of the heat transfer coefficient to the standard tube condensation heat transfer coefficient was determined. The relationship between the condensation heat transfer coefficient ratio in the tubes and the refrigerant mass velocity of each condensation promotion type heat transfer tube (Examples 1 to 4 and Comparative Examples 1 to 3) obtained from the results is shown in FIG. In addition, the test section length in the condensation performance test was 4 m.
[0038]
[Table 2]
Figure 0003771433
[0039]
As is apparent from the results shown in FIG. 3, in the four types of condensation promotion type heat transfer tubes (Examples 1 to 4) having the structure according to the present invention, 150 kg / (m 2 S) The ratio of condensation heat transfer coefficient in the tube in the following low refrigerant mass velocity range is 200 kg / (m 2 -Not so much change as compared with the in-tube condensation heat transfer coefficient ratio in the intermediate refrigerant mass velocity range of about s). On the other hand, in a conventional general cross grooved heat transfer tube (Comparative Example 2), a spiral grooved heat transfer tube (Comparative Example 1), and a pine needle grooved heat transfer tube (Comparative Example 3), 150 kg / (m 2 S) The ratio of the condensation heat transfer coefficient in the tube in the low refrigerant mass velocity region below is 200 kg / (m 2 -Compared with the condensation heat transfer coefficient ratio in the pipe in the intermediate refrigerant mass velocity range of about s), it is greatly reduced.
[0040]
From this, in the condensation promotion type heat transfer tube (Examples 1 to 4) having the structure according to the present invention, unlike the conventional condensation promotion type heat transfer tube, the non-azeotropic mixed refrigerant has a capacity of 150 kg / (m 2 S) It can be clearly recognized that the reduction of the condensation heat transfer coefficient in the pipe when it is circulated at the following low refrigerant mass velocity can be suppressed as much as possible.
[0041]
The specific configuration of the present invention has been described in detail above. However, this is merely an example, and the present invention is not limited by the above description. The present invention can be implemented in a mode in which various changes, modifications, improvements, and the like are added based on the above. Further, it goes without saying that any of such embodiments is included in the scope of the present invention without departing from the gist of the present invention.
[0042]
【The invention's effect】
As is clear from the above description, in the condensation-accelerated heat transfer tube according to the present invention, the non-azeotropic mixed refrigerant is 150 kg / (m 2 S) The reduction of the condensation heat transfer coefficient in the pipe when it is circulated at the following low refrigerant mass velocity can be suppressed as much as possible, thereby condensing capacity in the intermediate capacity operating region of the heat exchanger for air conditioners The energy consumption of the heat exchanger for an air conditioner can be greatly reduced.
[0043]
Moreover, according to the condensation method of the non-azeotropic refrigerant mixture according to the present invention, the inside of the heat transfer tube is 150 kg / (m 2 -S) It is possible to efficiently condense the non-azeotropic refrigerant mixture that can be circulated at the following low refrigerant mass velocity, thereby improving the condensing capacity in the intermediate capacity operating region of the heat exchanger for air conditioners, Accordingly, it is possible to advantageously realize a significant reduction in energy consumption of the heat exchanger for air conditioners.
[Brief description of the drawings]
FIG. 1 is a development explanatory view of an example of a condensation promotion type heat transfer tube according to the present invention.
FIG. 2 is an explanatory diagram showing a refrigerant flow state in a test apparatus for measuring heat transfer performance during condensation of various condensation promotion type heat transfer tubes as examples or comparative examples.
FIG. 3 is a graph showing the relationship between the in-tube condensation heat transfer coefficient and the refrigerant mass velocity for various condensation promotion type heat transfer tubes as examples and comparative examples.
[Explanation of symbols]
10 First groove
12 Second groove
14 protrusions

Claims (1)

伝熱管内を150kg/(m2 ・s)以下の低冷媒質量速度で流通せしめられる非共沸混合冷媒を凝縮せしめる方法であって、
管内面に、管軸に対して25〜40°の捻れ角と0.20〜0.35mmの深さとを有する第一の溝が、管軸方向に連続して延びるように複数形成されると共に、該第一の溝の捻れ角に対して±5°の範囲内の大きさの捻れ角と、該第一の溝の深さに対して±0.05mmの範囲内の深さとを有する第二の溝が、該第一の溝と交差しつつ、管軸方向に連続して延びるように複数形成されて、それら複数の第一の溝と第二の溝のうち、周方向に隣り合う二つの第一の溝と二つの第二の溝とにて囲まれてなる突起が、0.15〜0.40mmの高さと、該第一及び第二の溝のそれぞれの幅よりも小さい長さの四つの底辺を有する四角錐台形状をもって、該第一の溝と該第二の溝を介して千鳥状に、相互に独立して、多数形成されてなる凝縮促進型伝熱管を用い、前記非共沸混合冷媒を、かかる凝縮促進型伝熱管内に前記低冷媒質量速度の下に流通せしめつつ、該凝縮促進型伝熱管の管外面から冷却することにより、凝縮せしめるようにしたことを特徴とする非共沸混合冷媒の凝縮方法。
A method of condensing a non-azeotropic refrigerant mixture that can be circulated in a heat transfer tube at a low refrigerant mass speed of 150 kg / (m 2 · s) or less,
A plurality of first grooves having a twist angle of 25 to 40 ° and a depth of 0.20 to 0.35 mm with respect to the tube axis are formed on the tube inner surface so as to continuously extend in the tube axis direction. A twist angle having a magnitude within a range of ± 5 ° with respect to the twist angle of the first groove, and a depth within a range of ± 0.05 mm with respect to the depth of the first groove. Two grooves are formed so as to continuously extend in the tube axis direction while intersecting with the first groove, and adjacent to each other in the circumferential direction among the plurality of first grooves and second grooves. The protrusion surrounded by the two first grooves and the two second grooves has a height of 0.15 to 0.40 mm and a length smaller than the width of each of the first and second grooves. Condensation promoting type transmission having a quadrangular frustum shape having four bases and formed in a staggered manner through the first groove and the second groove independently of each other. Using a tube, the non-azeotropic refrigerant mixture is allowed to condense by cooling from the outer surface of the condensation-accelerating heat transfer tube while circulating the non-azeotropic refrigerant mixture in the condensation-accelerating heat transfer tube at the low refrigerant mass velocity. A method for condensing a non-azeotropic refrigerant mixture, wherein
JP2000265021A 2000-09-01 2000-09-01 Method for condensing non-azeotropic refrigerant mixture Expired - Fee Related JP3771433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265021A JP3771433B2 (en) 2000-09-01 2000-09-01 Method for condensing non-azeotropic refrigerant mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265021A JP3771433B2 (en) 2000-09-01 2000-09-01 Method for condensing non-azeotropic refrigerant mixture

Publications (2)

Publication Number Publication Date
JP2002081881A JP2002081881A (en) 2002-03-22
JP3771433B2 true JP3771433B2 (en) 2006-04-26

Family

ID=18752353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265021A Expired - Fee Related JP3771433B2 (en) 2000-09-01 2000-09-01 Method for condensing non-azeotropic refrigerant mixture

Country Status (1)

Country Link
JP (1) JP3771433B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041101A1 (en) * 2004-08-24 2006-03-02 Behr Gmbh & Co. Kg Flat tube for a heat exchanger, in particular for motor vehicles and method for producing a flat tube
CN104807361A (en) * 2014-01-29 2015-07-29 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanging plate and plate heat exchanger comprising heat exchanging plate
CN107003081A (en) * 2015-01-09 2017-08-01 三菱电机株式会社 Heat exchanger and the refrigerating circulatory device with the heat exchanger

Also Published As

Publication number Publication date
JP2002081881A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JPH05106990A (en) Heat transfer tube with inner surface groove and manufacture thereof
CN1122444A (en) Heat exchanging tube used for refriging agent of non-co-boiling mixture and heat exchanger using same
AU2003231750A1 (en) Heat transfer tubes, including methods of fabrication and use thereof
JP4597475B2 (en) Manufacturing method of cross fin tube for heat exchanger and cross fin type heat exchanger
JP4294183B2 (en) Internal grooved heat transfer tube
JP3771433B2 (en) Method for condensing non-azeotropic refrigerant mixture
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP3480514B2 (en) Heat transfer tube for falling film evaporator
JP4339665B2 (en) Manufacturing method of heat exchanger
JP3811909B2 (en) Heat transfer tube and heat exchanger using the same
JP2002090086A (en) Inner helically grooved heat exchanger tube and method for manufacturing heat exchanger
JP3199636B2 (en) Heat transfer tube with internal groove
JPH0579783A (en) Heat transfer tube with inner surface groove
JP3494625B2 (en) Internal grooved heat transfer tube
JPH0849992A (en) Heat transfer tube with internal groove
JP3199621B2 (en) Heat transfer tube with internal groove using mixed refrigerant
JP4587545B2 (en) Heat exchanger tube for absorber
JP3620284B2 (en) Heat transfer tube with inner groove for non-azeotropic refrigerant mixture
JP2802184B2 (en) Heat transfer tube for condenser
JP2000283678A (en) Heat transfer pipe
JPH08233480A (en) Heat transfer tube with inner surface groove
JP5255249B2 (en) Heat transfer tube with internal fin
JP2003236639A (en) Method for manufacturing boiling heat transfer pipe
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041004

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Ref document number: 3771433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees