JP3770351B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP3770351B2
JP3770351B2 JP06418897A JP6418897A JP3770351B2 JP 3770351 B2 JP3770351 B2 JP 3770351B2 JP 06418897 A JP06418897 A JP 06418897A JP 6418897 A JP6418897 A JP 6418897A JP 3770351 B2 JP3770351 B2 JP 3770351B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
binder resin
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06418897A
Other languages
Japanese (ja)
Other versions
JPH10261402A (en
Inventor
忠司 犬飼
敬一 宇野
智晴 栗田
裕樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP06418897A priority Critical patent/JP3770351B2/en
Publication of JPH10261402A publication Critical patent/JPH10261402A/en
Application granted granted Critical
Publication of JP3770351B2 publication Critical patent/JP3770351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充放電サイクル特性に優れた非水電解質二次電池に関する。更に詳しくは、炭素材料とバインダー樹脂からなる負極合剤層を備える負極、正極および非水電解質とからなる非水電解質二次電池に関し、特に電極集電体の製造方法に関するものである。
【0002】
【従来の技術】
近年の電子技術の目ざましい進歩により、電子機器は小型、軽量化の方向に進み、それに伴って電池も小型、軽量化、更に高エネルギー密度のものが求められている。
【0003】
従来、一般用途の二次電池としては、鉛電池、ニッケル・カドミウム電池等の水溶液系の電池が主流であった。これらの電池はサイクル特性は優れているが、電池重量やエネルギー密度の点では十分満足できるものではなかった。
【0004】
近年、鉛電池やニッケル・カドミウム電池に替わる二次電池として、リチウムやリチウム合金を負極に用いた非水電解液二次電池の研究開発が盛んに行われている。この電池は高エネルギー密度を有し、自己放電も少なく、軽量であるという特徴を有している。しかし、この電池では充放電サイクルの進行に伴い、負極において充電時にリチウムがデンドライト状に結晶成長して、この結晶が正極に到達して内部短絡にいたる可能性が高いという欠点があり、実用化への大きな障害となっていた。
【0005】
これに対し、負極に負極活物質担持体としての炭素材料を使用した非水電解液二次電池によれば、化学的、物理的方法によって予め負極の炭素材料に担持させたリチウム及び正極活物質の結晶構造中に含有させたリチウム及び電解液中に溶解したリチウムのそれぞれが、充放電時に負極において炭素層間にドープされ且つ炭素層間から脱ドープされる。このため、充放電サイクルが進行しても充電時に負極におけるデンドライト状の結晶の析出はみられずに内部短絡を起こしにくく、良好な充放電サイクル特性を示す。また、エネルギー密度も高くかつ軽量であることから、実用化に向けて開発が進んでいる。
【0006】
このような非水電解液二次電池の用途としては、ビデオカメラやラップトップパソコン等が挙げられる。このような電子機器は比較的消費電流が大きいため、電池は重負荷に耐えられることが必要である。
【0007】
したがって電池構造として、帯状の正極と帯状の負極とを帯状のセパレータを介してその長さ方向に巻回することによって構成される渦巻状の巻回電極体構造が有効である。この巻回電極体構造の電池によれば、電極面積が大きく取れるために重負荷による使用にも耐えることができる。
【0008】
このような巻回電極体では、電極面積を大きくし且つ活物質または活物質担持体を限られた空間内にできるだけ多く充電するために、電極を薄くすることが望ましい。そのため帯状の電極の製造方法としては、従来バインダーと活物質または活物質担持体を含むペーストを集電体に塗布、乾燥する方法が行われてきた。この方法によれば、帯状の電極における電極合剤層の厚みは数ミクロンから数百ミクロン程度にすることが可能となるからである。
【0009】
電極集電体としては従来、網状のエイシパンドメタルや穴が多数形成されているパンチングメタルがよく使用されていたが、これらの電極集電体は重負荷特性を得るために電極を薄くするには不向きである。したがって、電極集電体としては金属箔を用い、かつこの金属箔はできるだけ薄い方が好ましい。
【0010】
【発明が解決しようとする課題】
従来、非水電解質二次電池の電極の製造は、有機ポリマーからなるバインダーと正極又は負極活物質とからなるペーストを集電体としての金属箔に塗布、乾燥して正極又は負極合剤層を形成していた。このために緻密な構造のバインダーに活物質が覆われ、Liイオンの電極間の移動が妨げられ,電池容量が低下する問題点を有していた。特に、バインダー量が多くなるとこの傾向は著しい。また、硬いバインダー樹脂が緻密な構造の層を形成するために、巻回作業時に割れたり、剥離するという問題があった。
【0011】
本発明の目的は、正極及び負極合剤のペースト化や塗布の作業性に優れ、正極及び負極合剤層にクラックや剥離が生じないで、かつLiイオンの電極間の移動が容易で放電容量が大きく、サイクル特性に優れた非水電解質二次電池を提供することである。
【0012】
【課題を解決するための手段】
本発明者らは鋭意研究した結果、負極活物質端持体としての炭素材料とバインダー樹脂とを少なくとも含む負極合剤層を備える負極、正極活物質とバインダー樹脂を含む正極、および非水電解質とを具備する非水電解質二次電池において、負極、正極の少なくとも一方におけるバインダー樹脂層に微細孔を形成させることにより本発明の目的を達成できることを見出し、本発明に到達した。
【0013】
本発明に用いられるバインダー樹脂は特に制限されないが、有機溶剤に溶解して、エチレンカーボネートやプロピレンカーボネートなどの電解液に耐え、好ましくは、フィルムにしたときの破断伸度が50%以上のものがよい。
【0014】
本発明に用いられるバインダー樹脂の溶剤や凝固浴にも制限はないが,工業的には水を凝固浴に用いるのが有利であるから、バインダー樹脂の溶剤はバインダー樹脂によっても異なるが、水に溶解する有機溶剤、例えばメチルアルコール、エチルアルコール、プロピルアルコールなどの低級アルキルアルコール類、アセトン、メチルエチルケトンなどの低級アルキルケトン類、テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類、ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類、ジメチルスルホキサイド、スルホラン等のイオウ系溶剤などが挙げられるが、バインダー樹脂及び水に対する溶解性、取扱い作業性などの点からジメチルホルムアミド、ジメチルアセトアミドやN−メチル−2−ピロリドンといったアミド系溶剤が好ましい。
【0015】
これらの溶剤は単独でも混合物でも用いることができ、更に溶解性,凝固性をよくするために上記以外の炭化水素類等を併用することもできる。
【0016】
以下に好ましいバインダー樹脂について説明する。
【0017】
ポリイミドは好ましいバインダー樹脂の一つである。全芳香族ポリイミドは、通常溶剤に溶解しないためにその前駆体であるポリアミド酸の状態で使用されるが、本発明の凝固浴に水を用いる場合はポリアミド酸が分解されるので好ましくなく、予め閉環されたものが好ましく,そのためには、アルキレングリコールビスアンヒドロトリメリテートのような芳香族の一部に脂肪族基を導入したものや、ジフェニルスルホンテトラカルボン酸無水物、2、2’−ビス(4−アミノフェニル)ヘキサフルオロプロパンのような極性基を導入し,閉環後も溶剤に溶解するような構造のポリイミドが好ましい。また、LARC−TPI(三井東圧社製)やウルテム(GE社製)等も本発明のバインダーとして用いることができる。
【0018】
ポリアミドイミドは本来、N−メチル−2−ピロリドンやジメチルホルムアミドのような水に混和する有機溶剤に溶解し、耐薬品性に優れ、強靱な塗膜を形成するため本発明のバインダー樹脂として好ましい。ただし、従来の芳香族ポリアミドイミドは硬いために巻回時にクラックが入りやすいのでアジピン酸、セバチン酸、アゼライン酸、シクロヘキサンジカルボン酸やエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジシクロヘキシルメタンジアミン、イソホロンジアミン等の脂肪族及び脂環族の酸成分及びアミン成分が一部共重合されているものが好ましい。
【0019】
ポリアミド樹脂も本発明のバインダー樹脂として好適である。特に非晶性で溶解性と耐薬品性をバランスさせたものがよく、例えばアジピン酸、セバチン酸、アゼライン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸とエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン、ジアミノジフェニルエーテル、ジアミノジフェニルメタン等の芳香族ジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン等の脂環族ジアミンまたはそれらのジイソシアネートを適宜共重合したものが好ましい。
【0020】
ポリエステル樹脂も好適な材料であり、結晶性で、溶剤溶解性に優れた共重合ポリエステルが特に好ましい。
【0021】
フッソ系樹脂は、従来からLiイオン二次電池の電極バインダーとして用いられており、具体的にはポリフッ化ビニリデンが挙げられる。
【0022】
アクリル系樹脂としては柔軟性の点からエチルアクリレート、ブチルアクリレート等が共重合され、必要であれば、耐電解液性を向上させるためにグリシジルメタクリレートやアクリル酸、ヒドロキシエチルメタクリレート、N−メチロールアクリルアミドのような架橋性成分が共重合されていてもかまわない。
【0023】
ブタジエン、イソプレン、クロロプレン等を含むゴム系樹脂は、柔軟で好ましい材料である。耐電解液性を改良するためにアクリロニトリルやスチレンを共重合したり、グリシジルメタクリレートのような架橋性モノマーを共重合したり、イオウ、過酸化物等を加えて架橋させるのがより好ましい。
【0024】
エチレン、プロピレンを含むポリオレフィン系のゴム状樹脂も柔軟で、耐電解液性にも優れ、好ましい樹脂に挙げられる。
【0025】
ポリウレタン樹脂はジメチルホルムアミド等の水混和性溶剤に溶解し、柔軟な皮膜を形成するため、本発明のバインダーとして好適である。特にポリエチレングリコール、ポリプロピレングリコールやポリテトラメチレングリコール等のポリアルキレングリコールとジフェニルメタンジイソシアネートから合成される弾性繊維用或いは熱成型用のポリウレタンは好ましい。
【0026】
ポリアリレートとしては、Uポリマー(ユニチカ社製)やエルメック(鐘淵化学社製)等が挙げられる。
【0027】
本発明にしたがって負極合剤層を形成する場合、活物質担持体としての炭素材料と上記バインダー樹脂との混合割合は97:3〜80:20の範囲が好ましい。炭素材料が97重量%より多いと電極集電体を巻回するときに負極合剤層が割れたり、剥離し易くなり、また80重量%より少ないと充放電特性が低下して好ましくない。
【0028】
本発明の負極活物質担持体に用いられる炭素材料としてはピッチコークス、ニードルコークス等のコークス類、ポリマー類、カーボンファイバー、黒鉛材料などを挙げることができる。
【0029】
このような炭素材料は、例えば有機材料を700〜1500℃程度で焼成することで炭素化して製造することができる。
【0030】
炭素材料の原料として、石油ピッチやフラン樹脂などのポリマーが用いられるが、炭素化する際に、リン化合物やホウ素化合物を添加することによって、リチウムに対するドープ量の大きい炭素材料を得ることができて好ましい。
【0031】
一方、正極における正極活物質としては、二酸化マンガンや五酸化バナジウムのような遷移金属酸化物、硫化鉄や硫化チタンのような遷移金属カルコゲン化物、またはこれらとリチウムとの複合化合物、例えば一般式LiMO2 (但し、MはCo,Niの少なくとも一種を示す。)で表される複合金属酸化物などを用いることができる。特に、高電圧、高エネルギー密度が得られ、サイクル特性にも優れることから、LiCoO2 、LiCo0.8 Ni0.2 O2 などのリチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物が好ましい。
【0032】
また非水電解質としては、リチウム塩などの電解質を非水有機溶剤に溶解した非水電解液を用いることができる。
【0033】
ここで有機溶剤としては、特に限定されるものではないが、例えばエチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3ージオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等を単独または二種以上を混合して使用できる。
【0034】
有機溶剤に溶解させる電解質も、LiClO4 、LiAsF6 、LiPF6 、LiBF4 、LiB(C6 5 4 、LiCl、LiBr、CH3 SO3 Li、CF3 SO3 Li等の公知のものがいずれも使用できる。
【0035】
また前記非水電解質は固体であってもよく、例えば高分子個体電解質などが挙げられる。
【0036】
本発明の特徴は、正極及び負極のバインダー樹脂層が微細孔を有することにあり、この特徴は金属箔に活物質担持体を形成させる製造方法にある。微細孔の孔径は、リチウムイオンの透過性の点から数オングストームないし数ミクロンの範囲が好ましい。本発明の非水電解質二次電池の製造方法は、バインダー樹脂とこれを溶解する溶剤、好ましくは、ジメチルホルムアミドやN−メチル−2−ピロリドンのような水と混和する溶剤と活物質担持体をボールミルやサンドミル,デイゾルバー等で攪拌混練り下ペーストをアルミニウムや銅などの金属箔に塗布したあと上記バインダーの非溶剤で上記溶剤に混和する凝固浴、好ましくは水中に入れて脱溶剤し、乾燥するものである。
【0037】
本発明の方法によると、塗布されたペーストが凝固浴中で脱溶剤されて固化する際、凝固剤とバインダー樹脂の溶剤の置換が起こり、バインダー樹脂層に微細な貫通孔が生じ、活物質の移動を容易にするため充放電ロスの少ない電池ができる。
【0038】
【実施例】
以下に、実施例を示し本発明を更に詳しく説明する。なお、本発明はこれらの実施例によって特に制限されるものではない。
【0039】
▲1▼炭素材料の調整
石油ピッチに酸素を含む官能基を10〜20重量%導入する酸素架橋をした
後、この酸素架橋された前駆体を不活性ガスの気流中にて1000℃で焼成することによって、ガラス状炭素に近い性質を有する炭素質材料を得た。
【0040】
▲2▼負極集電体の作成
▲1▼で調整した炭素質材料90重量部とビフェニルテトラカルボン酸無水物とジアミノジフェニルエーテルとから合成されたポリイミドの30%ジメチルホルムアミド溶液33.3重量部を混合して、ジメチルホルムアミドで固形分濃度が50重量部となるように希釈して、ボールミルで分散、混練りしたペーストを10μmの銅箔の両面に乾燥膜厚が80μmとなるように塗布した後、攪拌している40℃の温水中に10分間浸漬した後100℃で20分乾燥し、200℃の熱ロールでプレスし、幅41mm,長さ280mmの帯状体にスリットした。
【0041】
▲3▼正極の作成
コバルト酸リチウム(LiCoO2 )90重量部とグラファイト5重量部、▲2▼で用いたポリイミド樹脂溶液16.7重量部、ジメチルホルムアミド88.3重量部を混合、ボールミルで分散、混練りしたペーストを20μmのアルミニウム箔の両面に乾燥膜厚が80μmとなるように塗布した後、アセトン溶液に20分間浸漬し、乾燥後200℃の熱ロールでプレスして幅39mm、長さ230mmにスリットした。
【0042】
▲4▼電池の作成
▲2▼で作成した負極集電体にニッケル製のリードを取り付けたものと、▲3▼で作成した正極集電体にアルミニウム製のリードを取り付けたものを厚さ25μm、幅44mmの多孔質ポリプロピレンフィルムを介して交互に重ねた4層積層体を作成した。この積層体を長さ方向に、負極集電体を内側にした巻回電極体を作成した。この渦巻状巻回電極体をニッケルめっきした鉄製の電池缶に収容し、電極体の上下に絶縁体を配設し、この電池缶にプロピレンカーボネートと1,2−ジメトキシエタンの等容量混合溶剤にLiPF4 を1モル/lの濃度に溶解した非水電解液を注入した。
【0043】
▲5▼充放電テスト
▲4▼で作成した電池について、充電上限電圧を4.1Vに設定し、500mAで2時間の定電流充電をした後、18Ωの定負荷で終止電圧2.75Vまで放電させる充放電サイクルテストを繰り返した。この充放電サイクルテストの10サイクル時の容量で、100サイクル時の放電容量を除した値を容量維持率とした。
【0044】
<比較例>
▲2▼、▲3▼で負極及び正極集電体を作成するに際し、上記ペーストを金属箔に塗布した後、凝固浴に浸漬せずに180℃で10分乾燥し、200℃の熱ロールでプレスしたものを用いて非水電解質二次電池を作成した。特性は表1に示す通りである。
【0045】
【表1】

Figure 0003770351
【0046】
【発明の効果】
本発明の非水電解質二次電池は、電極集電体のバインダー樹脂層に微細な貫通孔が多数存在するため、かつ物質の移動が容易で充放電容量が大きくなる。また多孔質であるために電極集電体が柔軟になり、巻回作業性が改善される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode including a negative electrode mixture layer made of a carbon material and a binder resin, a positive electrode, and a non-aqueous electrolyte, and more particularly to a method for manufacturing an electrode current collector.
[0002]
[Prior art]
Due to remarkable advances in electronic technology in recent years, electronic devices have become smaller and lighter, and accordingly, batteries are also required to be smaller and lighter and have higher energy density.
[0003]
Conventionally, as secondary batteries for general use, aqueous batteries such as lead batteries and nickel / cadmium batteries have been mainly used. Although these batteries have excellent cycle characteristics, they are not fully satisfactory in terms of battery weight and energy density.
[0004]
In recent years, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy as a negative electrode have been actively conducted as secondary batteries replacing lead batteries and nickel-cadmium batteries. This battery is characterized by high energy density, low self-discharge and light weight. However, with this battery, as the charging / discharging cycle progresses, lithium has a dendrite-like crystal growth during charging in the negative electrode, and there is a high possibility that this crystal will reach the positive electrode and lead to an internal short circuit. It was a big obstacle to the.
[0005]
On the other hand, according to the non-aqueous electrolyte secondary battery using the carbon material as the negative electrode active material carrier for the negative electrode, the lithium and positive electrode active material previously supported on the carbon material of the negative electrode by chemical and physical methods Each of lithium contained in the crystal structure and lithium dissolved in the electrolyte is doped between the carbon layers and dedoped from the carbon layers in the negative electrode during charge and discharge. For this reason, even if the charge / discharge cycle proceeds, no dendrite-like crystals are deposited on the negative electrode during charging, and an internal short circuit hardly occurs, and good charge / discharge cycle characteristics are exhibited. In addition, because of its high energy density and light weight, development is progressing toward practical application.
[0006]
Applications of such non-aqueous electrolyte secondary batteries include video cameras and laptop computers. Since such an electronic device has a relatively large current consumption, the battery must be able to withstand a heavy load.
[0007]
Therefore, as a battery structure, a spiral wound electrode body structure constituted by winding a belt-like positive electrode and a belt-like negative electrode in the length direction via a belt-like separator is effective. According to the battery having the wound electrode structure, since the electrode area can be increased, the battery can be used even under heavy loads.
[0008]
In such a wound electrode body, it is desirable to make the electrode thin in order to increase the electrode area and charge the active material or the active material carrier as much as possible in a limited space. Therefore, as a method for producing a strip-shaped electrode, conventionally, a method in which a paste containing a binder and an active material or an active material carrier is applied to a current collector and dried has been performed. This is because according to this method, the thickness of the electrode mixture layer in the band-shaped electrode can be set to several microns to several hundred microns.
[0009]
Conventionally, as the electrode current collector, a net-like crushed metal or a punching metal in which many holes are formed are often used. However, these electrode current collectors are used for thinning the electrode in order to obtain heavy load characteristics. Is unsuitable. Therefore, it is preferable to use a metal foil as the electrode current collector and to make this metal foil as thin as possible.
[0010]
[Problems to be solved by the invention]
Conventionally, an electrode of a non-aqueous electrolyte secondary battery is manufactured by applying a paste made of an organic polymer binder and a positive electrode or negative electrode active material to a metal foil as a current collector and drying to form a positive electrode or negative electrode mixture layer. Was forming. For this reason, the active material is covered with a binder having a dense structure, the movement of Li ions between electrodes is hindered, and the battery capacity is reduced. In particular, this tendency is remarkable as the amount of the binder increases. In addition, since the hard binder resin forms a dense layer, there is a problem that it is cracked or peeled off during the winding operation.
[0011]
The purpose of the present invention is excellent in workability of pasting and coating of the positive electrode and negative electrode mixture, without causing cracks or peeling in the positive electrode and negative electrode mixture layer, and easily moving between Li ions between the electrodes. The present invention is to provide a non-aqueous electrolyte secondary battery that is large and has excellent cycle characteristics.
[0012]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that a negative electrode including a negative electrode mixture layer containing at least a carbon material and a binder resin as a negative electrode active material support, a positive electrode including a positive electrode active material and a binder resin, and a nonaqueous electrolyte, In the non-aqueous electrolyte secondary battery comprising the above, the inventors have found that the object of the present invention can be achieved by forming micropores in the binder resin layer in at least one of the negative electrode and the positive electrode.
[0013]
The binder resin used in the present invention is not particularly limited, but can be dissolved in an organic solvent to withstand an electrolytic solution such as ethylene carbonate or propylene carbonate, and preferably has a breaking elongation of 50% or more when formed into a film. Good.
[0014]
There is no restriction on the solvent or coagulation bath of the binder resin used in the present invention, but industrially it is advantageous to use water for the coagulation bath. Soluble organic solvents such as lower alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol, lower alkyl ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, dioxane and diglyme, diethylformamide, dimethylacetamide and N-methyl Examples include amides such as -2-pyrrolidone and dimethylimidazolidinone, and sulfur-based solvents such as dimethyl sulfoxide and sulfolane, but dimethylformamide and dimethyl from the viewpoint of solubility in binder resin and water and handling workability. Amide solvents such as acetamide or N- methyl-2-pyrrolidone is preferred.
[0015]
These solvents can be used alone or as a mixture, and hydrocarbons other than the above can also be used in combination in order to improve solubility and coagulation.
[0016]
A preferable binder resin will be described below.
[0017]
Polyimide is one of the preferred binder resins. A wholly aromatic polyimide is usually used in the form of its precursor polyamic acid because it does not dissolve in a solvent. However, when water is used in the coagulation bath of the present invention, the polyamic acid is decomposed, which is not preferable. Ring-closed ones are preferred, and for this purpose, an aromatic group such as alkylene glycol bisanhydro trimellitate introduced with an aliphatic group, diphenylsulfone tetracarboxylic anhydride, 2, 2′- A polyimide having a structure in which a polar group such as bis (4-aminophenyl) hexafluoropropane is introduced and dissolved in a solvent even after ring closure is preferable. Moreover, LARC-TPI (made by Mitsui Toatsu), Ultem (made by GE), etc. can be used as a binder of this invention.
[0018]
Polyamideimide is inherently preferred as the binder resin of the present invention because it dissolves in an organic solvent miscible with water, such as N-methyl-2-pyrrolidone and dimethylformamide, and is excellent in chemical resistance and forms a tough coating film. However, since conventional aromatic polyamide imide is hard and easily cracked during winding, adipic acid, sebacic acid, azelaic acid, cyclohexanedicarboxylic acid, ethylenediamine, propylenediamine, hexamethylenediamine, dicyclohexylmethanediamine, isophoronediamine, etc. Those in which an aliphatic and alicyclic acid component and an amine component are partially copolymerized are preferred.
[0019]
Polyamide resins are also suitable as the binder resin of the present invention. In particular, it is preferably amorphous and has a good balance between solubility and chemical resistance, such as aliphatic dicarboxylic acids such as adipic acid, sebacic acid and azelaic acid, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, and cyclohexanedicarboxylic acid. Aliphatic dicarboxylic acids such as ethylenediamine, propylenediamine, hexamethylenediamine and other aliphatic diamines, diaminodiphenyl ether, diaminodiphenylmethane and other alicyclic diamines, isophorone diamine, diaminodicyclohexylmethane and other alicyclic diamines or their diisocyanates Those appropriately copolymerized are preferred.
[0020]
A polyester resin is also a suitable material, and a copolyester having crystallinity and excellent solvent solubility is particularly preferred.
[0021]
Fluoro-based resins have been conventionally used as electrode binders for Li ion secondary batteries, and specific examples include polyvinylidene fluoride.
[0022]
As an acrylic resin, ethyl acrylate, butyl acrylate, etc. are copolymerized from the viewpoint of flexibility, and if necessary, glycidyl methacrylate, acrylic acid, hydroxyethyl methacrylate, N-methylol acrylamide can be used to improve the resistance to electrolyte. Such crosslinkable components may be copolymerized.
[0023]
Rubber-based resins containing butadiene, isoprene, chloroprene and the like are flexible and preferable materials. In order to improve the electrolytic solution resistance, it is more preferable to copolymerize acrylonitrile or styrene, copolymerize a crosslinkable monomer such as glycidyl methacrylate, or add sulfur, peroxide or the like to crosslink.
[0024]
Polyolefin rubber-like resins containing ethylene and propylene are also flexible and excellent in electrolytic solution resistance, and are preferable resins.
[0025]
A polyurethane resin is suitable as a binder of the present invention because it dissolves in a water-miscible solvent such as dimethylformamide and forms a flexible film. In particular, polyurethane for elastic fiber or thermoforming synthesized from polyalkylene glycol such as polyethylene glycol, polypropylene glycol or polytetramethylene glycol and diphenylmethane diisocyanate is preferable.
[0026]
Examples of polyarylate include U polymer (manufactured by Unitika) and Elmec (manufactured by Kaneka Chemical).
[0027]
When the negative electrode mixture layer is formed according to the present invention, the mixing ratio of the carbon material as the active material carrier and the binder resin is preferably in the range of 97: 3 to 80:20. When the carbon material is more than 97% by weight, the negative electrode mixture layer is easily cracked or peeled when the electrode current collector is wound, and when it is less than 80% by weight, the charge / discharge characteristics are deteriorated.
[0028]
Examples of the carbon material used in the negative electrode active material carrier of the present invention include cokes such as pitch coke and needle coke, polymers, carbon fiber, and graphite material.
[0029]
Such a carbon material can be manufactured by carbonizing, for example, by baking an organic material at about 700 to 1500 ° C.
[0030]
Polymers such as petroleum pitch and furan resin are used as raw materials for carbon materials, but when carbonized, by adding a phosphorus compound or boron compound, a carbon material with a large amount of doping with respect to lithium can be obtained. preferable.
[0031]
On the other hand, as the positive electrode active material in the positive electrode, transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, or composite compounds of these with lithium, for example, a general formula LiMO 2 (wherein M represents at least one of Co and Ni) or the like can be used. In particular, lithium-cobalt composite oxides such as LiCoO 2 and LiCo0.8 Ni0.2 O 2 and lithium-cobalt-nickel composite oxides are preferable because high voltage, high energy density can be obtained, and cycle characteristics are excellent. .
[0032]
As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which an electrolyte such as a lithium salt is dissolved in a non-aqueous organic solvent can be used.
[0033]
Here, the organic solvent is not particularly limited. For example, ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4 -Methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like can be used alone or in admixture of two or more.
[0034]
The electrolyte dissolved in the organic solvent may be a known one such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. Either can be used.
[0035]
The non-aqueous electrolyte may be a solid, such as a polymer solid electrolyte.
[0036]
A feature of the present invention is that the binder resin layers of the positive electrode and the negative electrode have fine pores, and this feature is in a manufacturing method in which an active material carrier is formed on a metal foil. The pore diameter is preferably in the range of several angstroms to several microns from the viewpoint of lithium ion permeability. The method for producing a non-aqueous electrolyte secondary battery of the present invention comprises a binder resin and a solvent for dissolving the binder resin, preferably a solvent miscible with water such as dimethylformamide and N-methyl-2-pyrrolidone and an active material carrier. After stirring and kneading with a ball mill, sand mill, dissolver, etc., the lower paste is applied to a metal foil such as aluminum or copper, then the coagulation bath is mixed with the above solvent with a non-solvent of the above binder, preferably placed in water to remove the solvent and dried Is.
[0037]
According to the method of the present invention, when the applied paste is desolvated and solidified in the coagulation bath, the substitution of the coagulant and the solvent of the binder resin occurs, resulting in fine through holes in the binder resin layer, A battery with little charge / discharge loss can be made to facilitate movement.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not restrict | limited in particular by these Examples.
[0039]
(1) Preparation of carbon material After oxygen crosslinking in which 10 to 20% by weight of a functional group containing oxygen is introduced into petroleum pitch, this oxygen-crosslinked precursor is calcined at 1000 ° C. in an inert gas stream. Thus, a carbonaceous material having properties close to glassy carbon was obtained.
[0040]
(2) Preparation of negative electrode current collector 90 parts by weight of the carbonaceous material prepared in (1) and 33.3 parts by weight of a 30% dimethylformamide solution of polyimide synthesized from biphenyltetracarboxylic anhydride and diaminodiphenyl ether were mixed. Then, after diluting with dimethylformamide to a solid content concentration of 50 parts by weight and dispersing and kneading with a ball mill, the paste was applied to both sides of a 10 μm copper foil so that the dry film thickness was 80 μm. It was immersed in warm water of 40 ° C. for 10 minutes, dried at 100 ° C. for 20 minutes, pressed with a hot roll at 200 ° C., and slit into a strip having a width of 41 mm and a length of 280 mm.
[0041]
( 3 ) Preparation of positive electrode 90 parts by weight of lithium cobaltate (LiCoO 2 ), 5 parts by weight of graphite, 16.7 parts by weight of the polyimide resin solution used in ( 2 ) and 88.3 parts by weight of dimethylformamide were mixed and dispersed by a ball mill. The kneaded paste was applied on both sides of a 20 μm aluminum foil so that the dry film thickness was 80 μm, then immersed in an acetone solution for 20 minutes, dried and pressed with a 200 ° C. hot roll to obtain a width of 39 mm and a length of Slit to 230 mm.
[0042]
(4) Battery preparation Thickness of 25 μm with the negative electrode current collector prepared in (2) attached with a nickel lead and the positive electrode current collector prepared in (3) with an aluminum lead Then, a four-layer laminate was produced in which the layers were alternately stacked via a porous polypropylene film having a width of 44 mm. A wound electrode body was produced with the laminate in the length direction and the negative electrode current collector inside. This spirally wound electrode body is housed in a nickel-plated iron battery can, and insulators are disposed above and below the electrode body. The battery can is mixed with a mixed solvent of equal volume of propylene carbonate and 1,2-dimethoxyethane. A nonaqueous electrolytic solution in which LiPF 4 was dissolved at a concentration of 1 mol / l was injected.
[0043]
(5) Charging / discharging test For the battery prepared in (4), set the upper limit of charging voltage to 4.1V, charge at a constant current of 500mA for 2 hours, and then discharge to a final voltage of 2.75V at a constant load of 18Ω. The charge / discharge cycle test was repeated. The capacity retention rate was a value obtained by dividing the discharge capacity at 100 cycles by the capacity at 10 cycles in this charge / discharge cycle test.
[0044]
<Comparative example>
When the negative electrode and the positive electrode current collector were prepared in (2) and (3), after applying the above paste to the metal foil, it was dried at 180 ° C. for 10 minutes without being immersed in a coagulation bath, and heated with a 200 ° C. hot roll. A non-aqueous electrolyte secondary battery was prepared using the pressed one. The characteristics are as shown in Table 1.
[0045]
[Table 1]
Figure 0003770351
[0046]
【The invention's effect】
In the nonaqueous electrolyte secondary battery of the present invention, a large number of fine through holes are present in the binder resin layer of the electrode current collector, and the movement of the substance is easy and the charge / discharge capacity is increased. Moreover, since it is porous, the electrode current collector becomes flexible, and the winding workability is improved.

Claims (1)

負極及び正極におけるバインダー樹脂が、ビフェニルテトラカルボン酸無水物とジアミノジフェニルエーテルとから合成されたカルボニル基を有するポリイミド樹脂であり、負極活物質担持体としての炭素材料と該バインダー樹脂とを少なくとも含む負極合剤層を備える負極、正極活物質と該バインダー樹脂を含む正極、および非水電解質とを具備する非水電解質二次電池において、負極及び正極におけるバインダー樹脂層が微細孔を有することを特徴とする非水電解質二次電池。The binder resin in the negative electrode and the positive electrode is a polyimide resin having a carbonyl group synthesized from biphenyltetracarboxylic anhydride and diaminodiphenyl ether, and the negative electrode composite containing at least a carbon material as the negative electrode active material carrier and the binder resin. In a non-aqueous electrolyte secondary battery comprising a negative electrode comprising an agent layer, a positive electrode comprising a positive electrode active material and the binder resin, and a non-aqueous electrolyte, the binder resin layer in the negative electrode and the positive electrode has fine pores. Non-aqueous electrolyte secondary battery.
JP06418897A 1997-03-18 1997-03-18 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP3770351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06418897A JP3770351B2 (en) 1997-03-18 1997-03-18 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06418897A JP3770351B2 (en) 1997-03-18 1997-03-18 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10261402A JPH10261402A (en) 1998-09-29
JP3770351B2 true JP3770351B2 (en) 2006-04-26

Family

ID=13250845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06418897A Expired - Fee Related JP3770351B2 (en) 1997-03-18 1997-03-18 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3770351B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP4904639B2 (en) * 2001-06-14 2012-03-28 新神戸電機株式会社 Method for producing non-aqueous electrolyte secondary battery
JP4589419B2 (en) * 2008-04-07 2010-12-01 トヨタ自動車株式会社 Method for producing negative electrode body for lithium ion secondary battery
JP5739087B2 (en) * 2008-11-28 2015-06-24 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode for lithium ion secondary battery
JP5798144B2 (en) * 2013-03-27 2015-10-21 株式会社日立ハイテクノロジーズ Lithium ion battery manufacturing apparatus and lithium ion battery manufacturing method
JP7075656B2 (en) * 2017-03-24 2022-05-26 ユニチカ株式会社 Binder solution and coating
WO2019230908A1 (en) * 2018-05-31 2019-12-05 株式会社村田製作所 Nonaqueous electrolyte secondary battery
US20200235375A1 (en) * 2019-01-22 2020-07-23 Ricoh Company, Ltd. Liquid composition, electrode and method of manufacturing electrode, and electrochemical element and method of manufacturing electrochemical element
CN112467201B (en) * 2020-11-25 2022-06-21 华南理工大学 All-solid-state high-strength aliphatic polyurethane flexible electrolyte and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122262A (en) * 1993-10-27 1995-05-12 Toray Ind Inc Electrode and its manufacture and secondary battery using the electrode

Also Published As

Publication number Publication date
JPH10261402A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
KR101105342B1 (en) Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
US10476082B2 (en) Surface coated positive electrode active material, preparation method thereof and lithium secondary battery including the same
CN1233059C (en) Secondary battery
US20230261250A1 (en) Separator and energy storage device
US9225037B2 (en) Lithium secondary battery using ionic liquid
US20090117461A1 (en) Electrode for lithium primary and secondary (rechargeable) batteries and the method of its production
US10833355B2 (en) Porous film and lithium-ion battery
JP3980505B2 (en) Thin lithium ion secondary battery
JP2011515812A (en) Cathode material for lithium batteries
WO2007083405A1 (en) Lithium secondary battery
CN1363124A (en) Nonaqueous electrolyte secondary cell
JP3983601B2 (en) Non-aqueous secondary battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
CN114930577A (en) Negative electrode active material, and negative electrode and secondary battery comprising same
JP3770351B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002237331A (en) Lithium secondary battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2016027561A (en) Negative electrode binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3422389B2 (en) Non-aqueous electrolyte secondary battery
JP3642355B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3589321B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH10302798A (en) Production of negative and positive electrodes for secondary battery
KR20170127238A (en) Surface coated positive active material for lithium secondary battery, method for preparing thereof, and lithium secondary battery comprising the same
JP2016028383A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees