JP3770321B2 - Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus - Google Patents

Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus Download PDF

Info

Publication number
JP3770321B2
JP3770321B2 JP2003078092A JP2003078092A JP3770321B2 JP 3770321 B2 JP3770321 B2 JP 3770321B2 JP 2003078092 A JP2003078092 A JP 2003078092A JP 2003078092 A JP2003078092 A JP 2003078092A JP 3770321 B2 JP3770321 B2 JP 3770321B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor device
protruding electrode
manufacturing
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003078092A
Other languages
Japanese (ja)
Other versions
JP2004288814A (en
Inventor
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003078092A priority Critical patent/JP3770321B2/en
Priority to US10/795,411 priority patent/US20040201109A1/en
Publication of JP2004288814A publication Critical patent/JP2004288814A/en
Application granted granted Critical
Publication of JP3770321B2 publication Critical patent/JP3770321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05023Disposition the whole internal layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法、回路基板並びに電子機器に関する。
【0002】
【従来の技術】
【0003】
【特許文献1】
特開2000−114206号公報
【0004】
【発明の背景】
以前から、積層された複数の半導体チップを有する半導体装置が知られている。このとき、半導体チップの電極が、配線等と電気的に接続しやすい形状であれば、基板などへの実装性を高めることができ、半導体装置の電気的な接続信頼性を高めることができる。
【0005】
本発明の目的は、電気的な信頼性の高く、また、実装性に優れた半導体装置及びその製造方法、回路基板並びに電子機器を提供することにある。
【0006】
【課題を解決するための手段】
(1)本発明に係る半導体装置は、第1の半導体チップと、
前記第1の半導体チップに搭載された第2の半導体チップと、
前記第1の半導体チップと前記第2の半導体チップとの間に形成された、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する電気的接合部と、
を有し、
前記第1の半導体チップにおける前記第2の半導体チップが搭載される面の、前記第2の半導体チップから露出する部分には、複数の突起電極が形成されてなる。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、突起電極が形成されてなる。そのため、回路基板などに実装することが容易で、電気的な接続信頼性の高い半導体装置を提供することができる。
(2)本発明に係る半導体装置は、第1の半導体チップと、
前記第1の半導体チップに搭載された第2の半導体チップと、
前記第1の半導体チップと前記第2の半導体チップとの間に形成された、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する電気的接合部と、
配線パターンを有する基板と、
ワイヤと、
を有し、
前記第1の半導体チップにおける前記第2の半導体チップが搭載される面の、前記第2の半導体チップから露出する部分には、複数の突起電極が形成されてなり、
前記第1及び第2の半導体チップは、前記基板に搭載されてなり、
前記ワイヤによって、前記配線パターンと前記突起電極とが電気的に接続されてなる。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、突起電極が形成されてなる。そのため、半導体チップと配線とをワイヤによって電気的に接続することが容易となり、電気的な接続信頼性の高い半導体装置を提供することができる。
(3)この半導体装置において、
前記基板は凹部を有し、
前記第1の半導体チップの少なくとも一部は、前記凹部内に配置されていてもよい。これによれば、半導体装置の厚みを薄くすることができるため、実装性に優れた半導体装置を提供することができる。
(4)この半導体装置において、
前記第1の半導体チップの前記第2の半導体チップと対向する面とは反対側の面は、前記凹部の底面と接触していてもよい。
(5)この半導体装置において、
前記基板は放熱部を有し、
前記第1の半導体チップは、前記放熱部に接触していてもよい。
(6)本発明に係る半導体装置は、第1の半導体チップと、
前記第1の半導体チップに搭載された第2の半導体チップと、
前記第1の半導体チップと前記第2の半導体チップとの間に形成された、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する電気的接合部と、
配線パターンを有する基板と、
を有し、
前記第1の半導体チップにおける前記第2の半導体チップが搭載される面の、前記第2の半導体チップから露出する部分には、複数の突起電極が形成されてなり、
前記突起電極は、前記配線パターンに対向して電気的に接続されてなる。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、突起電極が形成されてなる。そのため、半導体チップと配線とを電気的に接続することが容易となり、電気的な接続信頼性の高い半導体装置を提供することができる。
(7)この半導体装置において、
前記基板は、凹部と、前記凹部の底面に形成された開口と、を有し、
前記第1の半導体チップの少なくとも一部は、前記凹部内に配置されてなり、前記第2の半導体チップの少なくとも一部は、前記開口内に配置されていてもよい。これによれば、半導体装置の厚みを薄くすることができるため、実装性に優れた半導体装置を提供することができる。
(8)この半導体装置において、
前記第1の半導体チップの外形は、前記第2の半導体チップの外形よりも大きくてもよい。
(9)本発明に係る回路基板には、上記半導体装置が実装されてもよい。
(10)本発明に係る電子機器は、上記半導体装置を有してもよい。
(11)本発明に係る半導体装置の製造方法は、(a)第1の半導体チップに、第1の突起電極と第2の突起電極とを形成すること、
(b)第2の半導体チップに第3の突起電極を形成すること、及び、
(c)前記第1の半導体チップにおける前記第1の突起電極が形成された領域に前記第2の半導体チップを搭載し、前記第1の突起電極と前記第3の突起電極とを対向させて電気的に接続すること、
を含む。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、第2の突起電極が形成される。そのため、回路基板などに実装することが容易で、電気的な接続信頼性の高い半導体装置を製造することができる。
(12)本発明に係る半導体装置の製造方法は、(a)第1の半導体チップに、第1の突起電極と第2の突起電極とを形成すること、
(b)第2の半導体チップに第3の突起電極を形成すること、
(c)前記第1の半導体チップにおける前記第1の突起電極が形成された領域に前記第2の半導体チップを搭載し、前記第1の突起電極と前記第3の突起電極とを対向させて電気的に接続すること、
(d)前記第1の半導体チップと前記第2の半導体チップとを、配線パターンを有する基板に搭載すること、及び、
(e)前記第2の突起電極と前記配線パターンとを、ワイヤによって電気的に接続すること、
を含む。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、第2の突起電極が形成される。これによって、半導体チップと配線とをワイヤによって電気的に接続することが容易となるため、電気的な接続信頼性の高い半導体装置を製造することができる。
(13)この半導体装置の製造方法において、
前記(e)工程で、前記ワイヤの一部を前記配線パターンにボンディングした後に、前記ワイヤの他の一部を前記第2の突起電極にボンディングしてもよい。これによれば、ワイヤのループを低くすることができるため、厚みが薄く、実装性に優れた半導体装置を製造することができる。
(14)この半導体装置の製造方法において、
前記基板は凹部を有し、
前記(d)工程で、前記第1の半導体チップの少なくとも一部を前記凹部内に配置してもよい。これによれば、厚みが薄く、実装性に優れた半導体装置を製造することができる。
(15)この半導体装置の製造方法において、
前記(d)工程で、前記第1の半導体チップの前記第2の半導体チップと対向する面とは反対側の面を、前記凹部の底面と接触させてもよい。
(16)この半導体装置の製造方法において、
前記基板は放熱部を有し、
前記(d)工程で、前記第1の半導体チップを前記放熱部と接触させてもよい。
(17)本発明に係る半導体装置の製造方法は、(a)第1の半導体チップに、第1の突起電極と第2の突起電極とを形成すること、
(b)第2の半導体チップに第3の突起電極を形成すること、
(c)前記第1の半導体チップにおける前記第1の突起電極が形成された領域に前記第2の半導体チップを搭載し、前記第1の突起電極と前記第3の突起電極とを対向させて電気的に接続すること、及び、
(d)前記第2の突起電極を、基板に形成された配線パターンに対向させて電気的に接続すること、
を含む。本発明によれば、第1の半導体チップにおける第2の半導体チップから露出する部分には、第2の突起電極が形成される。そのため、半導体チップと配線とを対向させて電気的に接続することが容易となるため、電気的な接続信頼性の高い半導体装置を製造することができる。
(18)この半導体装置の製造方法において、
前記基板は、凹部と、前記凹部の底面に形成された開口と、を有し、
前記(d)工程で、前記第1の半導体チップの少なくとも一部を前記凹部内に配置し、前記第2の半導体チップの少なくとも一部を前記開口内に配置してもよい。これによれば、厚みの薄い、実装性に優れた半導体装置を製造することができる。
(19)この半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極とをほぼ同じ高さに形成してもよい。
(20)この半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極とを一括して形成してもよい。
(21)この半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極との高さの差を5μm以内にしてもよい。
(22)この半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極を前記第2の突起電極よりも高くしてもよい。
(23)この半導体装置の製造方法において、
前記第1の突起電極は、第1の金属層と、前記第1の金属層上に形成された第2の金属層と、を含み、
前記第2の突起電極は、第3の金属層と、前記第3の金属層上に形成された第4の金属層と、を含み、
前記第1の金属層と前記第3の金属層とを同一の組成で形成し、
前記第2の金属層と前記第4の金属層とを同一の組成で形成してもよい。
(24)この半導体装置の製造方法において、
前記第2の金属層上に他の金属層を形成することをさらに含んでもよい。
(25)この半導体装置の製造方法において、
前記(c)工程の前に、前記第1の半導体チップの電気的特性を検査してもよい。これによれば、第1の半導体チップに第2の半導体チップを搭載する前に、第1の半導体チップの電気的特性の検査を行う。すなわち、検査時には第1の半導体チップは、第1及び第2の突起電極を有する。このとき、第1及び第2の突起電極を、その高さがほぼ同じか、あるいは、高さの差が5μm以下になるように形成すれば、第1の半導体チップの検査を容易に行うことができるため、信頼性の高い半導体装置を製造することができる。
(26)この半導体装置の製造方法において、
前記第1の半導体チップの外形は、前記第2の半導体チップの外形よりも大きくてもよい。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。ただし、本発明は、以下の実施の形態に限定されるものではない。
【0008】
(第1の実施の形態)
図1〜図9は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法について説明するための図である。
【0009】
はじめに、第1の半導体チップ10を用意する。なお、第1の半導体チップ10をウエハの状態で用意して、以下の工程を行ってもよい。半導体チップ10は集積回路を有してもよい。半導体チップ10の平面形状は矩形をなすことが一般的であるが、特に限定されるものではない。第1の半導体チップ10は、パッド22を有してもよい(図1参照)。パッド22は、例えばAlで形成されてもよい。パッド22は、第1の半導体チップ10の一方の面に、複数行複数列に並んで形成されてもよい。
【0010】
次に、第1の半導体チップ10に、複数の突起電極20を形成する。はじめに、パッド22を有する第1の半導体チップ10に、シード層24を形成する。図2に示すように、シード層24は、第1の半導体チップ10のパッド22が形成された面の全面に設けられてもよい。シード層24は、例えば、Ti,TiN,TiWで形成してもよい。次に、シード層24上に、レジスト26を形成する(図3参照)。レジスト26は、パッド22とオーバーラップしないように形成してもよい。レジスト26は、シード層24上に形成された平坦なレジスト層から、その一部を取り除くようにパターニングすることで形成してもよい。パターニングすることによって、パッド22とオーバーラップする領域のレジスト層を取り除いてもよい。レジスト層は、露光及び現像することで、パターニングしてもよい。あるいは、予めパッド22とオーバーラップする領域を避けて、レジスト26を形成してもよい。次に、シード層24上の、レジスト26から露出する部分(パッド22とオーバーラップする部分)に金属層28を形成する(図4参照)。金属層28は、電解メッキによって形成してもよい。シード層24を第1の半導体チップ10の全面に形成することで、複数の金属層28を一括して形成することが可能となる。金属層28は、単一の金属層で形成してもよく、あるいは、複数の金属層を積層して金属層28を形成してもよい。次に、レジスト26を除去する(図5参照)。最後に、金属層28から露出した部分のシード層24を除去して、複数の突起電極20を形成してもよい(図6参照)。金属層28をマスクとして利用して、シード層24の一部を除去してもよい。なお、同様の工程によって、第2の半導体チップ40に、第3の突起電極42を形成してもよい。
【0011】
第1の半導体チップ10に形成された突起電極20は、第1の突起電極30と第2の突起電極32とを含む。後の工程(第1の半導体チップ10に第2の半導体チップ40を搭載する工程)で、第2の半導体チップ40とオーバーラップする領域に形成された突起電極20を、第1の突起電極30としてもよく、第2の半導体チップ40から露出する領域(露出部14)に形成された突起電極20を第2の突起電極32としてもよい。例えば、第1の突起電極30は、第1の半導体チップ10の中央付近に配置されてもよく、第2の突起電極32は、第1の突起電極30を囲むように、第1の半導体チップ10の周縁部付近に配置されてもよい。第1の突起電極30と第2の突起電極32とを、ほぼ同じ高さになるように形成してもよい。あるいは、第1の突起電極30と第2の突起電極32との高さの差が、5μm以内になるように形成してもよい。また、上述したように、第1及び第2の突起電極30,32を、一括して形成してもよい。
【0012】
上述したように、金属層28は単一の層で形成されてもよく、複数の金属層が積層されて形成されてもよい。複数の金属層を積層して、金属層28を形成する場合、第1の突起電極30を、シード層24上に形成された第1の金属層と、第1の金属層上に形成された第2の金属層とを有するように形成してもよい。また、第2の突起電極32を、シード層24上に形成された第3の金属層と、第3の金属層上に形成された第4の金属層とを有するように形成してもよい。このとき、第1の金属層と第3の金属層とを同一の組成で形成してもよい。そして、第2の金属層と第4の金属層とを同一の組成で形成してもよい。各層を同一の組成で形成することで、突起電極20を一括で形成することが可能となり、効率よく半導体装置を製造することができる。例えば、第1及び第3の金属層をニッケル(Ni)によって形成し、第2及び第4の金属層を金(Au)によって形成してもよい。なお、第2の金属層上に、図示しない他の金属層(例えばハンダ)を形成してもよい。このとき、第1の突起電極30が第2の突起電極32よりも高くなるように、突起電極20を形成してもよい。なお、他の金属層の高さが5μm以内になるように、該他の金属層を形成してもよい。これにより、第1の突起電極30と第3の突起電極42との接合が容易となる。
【0013】
次に、第1及び第2の半導体チップ10,40の電気的特性を検査してもよい。本検査工程は、第1の半導体チップ10に第2の半導体チップ40を搭載する前に行ってもよい。また、本工程は、第1及び第2の半導体チップ10,40に、突起電極を形成した後に行ってもよい。これにより、電気的な接続信頼性の高い半導体装置を製造することができる。図7は、検査工程を示す図である。検査工程では、検査治具36に形成された複数の微細なニードル38を突起電極20に接触させて、その電気的特性を検査する。第1の突起電極30と第2の突起電極32とをほぼ同じ高さに形成することで、あるいは、それらの高さの差が5μm以内になるように形成することで、全ての突起電極20にニードル38を接触させることができるため、信頼性の高い検査を行うことができ、信頼性の高い半導体装置を製造することができる。
【0014】
次に、第1の半導体チップ10における第1の突起電極30が形成された領域に、第2の半導体チップ40を搭載し、第1の突起電極30と第3の突起電極42とを対向させて電気的に接続する(図8参照)。例えば、第1の突起電極30と第3の突起電極42とが対向するように、第1及び第2の半導体チップ10,40の位置あわせを行う。このとき、第2の突起電極32を、第2の半導体チップ40から露出させてもよい。そして、第1の突起電極30と第3の突起電極42とを接触させて、加熱、加圧する金属接合によって、第1の突起電極30と第3の突起電極42とを電気的に接続してもよい。あるいは、ACF(異方性導電フィルム)や、ACP(異方性導電ペースト)を利用して、第1の突起電極30と第3の突起電極42との間に導電粒子を介在させることで、第1の突起電極30と第3の突起電極42とを電気的に接続してもよい。なお、第1の半導体チップ10の外形は、第2の半導体チップ40の外形よりも大きくてもよい。
【0015】
本実施の形態に係る半導体装置の製造方法によると、第1の半導体チップ10の第2の半導体チップ40から露出した部分(露出部14)に、突起電極20(詳しくは、第2の突起電極32)が形成される。これにより、突起電極20を容易に電気的接続に使用することが可能となるため、実装性に優れた、電気的な接続信頼性の高い半導体装置を製造することができる。
【0016】
以上の工程によって、半導体装置1を製造することができる。なお、図9は、半導体装置1の断面図である。半導体装置1は、第1の半導体チップ10と、第1の半導体チップ10に搭載された第2の半導体チップ40と、第1の半導体チップ10と第2の半導体チップ40との間に形成された電気的接合部34と、を有する。電気的接合部34は、第1及び第2の半導体チップ10,40を電気的に接続する役割を果たすものである。電気的接合部34は、積層された複数の金属層によって形成されていてもよい。具体的には、電気的接合部34は、上述の第1の突起電極30と第3の突起電極42とが結合して、あるいは、導電粒子を介して電気的に接続されたものであってもよい。
【0017】
半導体装置1は、複数の突起電極20を有する。突起電極20は、第1の半導体チップ10における第2の半導体チップ40が搭載される面の、第2の半導体チップ40から露出する部分(露出部14)に形成されてなる。すなわち、第1の半導体チップ10の第2の突起電極32を、突起電極20と称してもよい。これによると、第1の半導体チップ10の露出部14に突起電極20が配置されるため、突起電極20を、容易に配線基板等と電気的に接続させることができる。すなわち、容易に電気的な接続を図ることが可能な、実装性の高い半導体装置を提供することができる。なお、図9に示すように、半導体装置1は樹脂層50を有してもよい。これにより、各電気的接合部34にかかる応力を軽減することができるため、応力等に対する信頼性の高い半導体装置を提供することができる。
【0018】
なお、本実施の形態に係る半導体装置は、上述の製造方法から選択したいずれかの特定事項から導かれる構成を含み、本実施の形態に係る半導体装置の効果は、上述の効果を備える。
【0019】
(第2の実施の形態)
以下、本発明を適用した第2の実施の形態に係る半導体装置の製造方法を説明する。なお、本実施の形態でも、既に説明した内容を可能な限り適用することができる。
【0020】
本実施の形態に係る半導体装置の製造方法は、基板60に、第1及び第2の半導体チップ10,40を搭載することを含む。基板60は、配線パターン62を有する。第1及び第2の半導体チップ10,40は、既に説明した内容を適用することができる。そして、第1及び第2の半導体チップ10,40は、半導体装置1として構成されていてもよい。
【0021】
基板60の材料は特に限定されるものではない。基板60は、例えば、有機系又は無機系のいずれの材料で形成されていてもよく、これらの複合構造からなるものであってもよい。有機系の基板として、例えば、ポリエチレンテレフタレート(PET)からなる基板を使用してもよい。また、無機系の材料から形成された基板60として、例えばセラミック基板やガラス基板が挙げられる。有機系及び無機系の材料の複合構造として、例えばガラスエポキシ基板が挙げられる。また、基板60は、異なる材料からなる2つ以上の部品から形成されてもよい。例えば、基板60の一部に、第1及び第2の半導体チップ10,40よりも放熱性の高い部材を使用すれば、放熱部を有する基板60を形成することができる。このとき、第1の半導体チップ10を、該放熱部と接触させてもよい。また、基板60の形状も、特に限定されるものではなく、例えば、基板60は凹部64を有してもよい。第1の基板66に、開口を有する第2の基板68を搭載することで、凹部64を有する基板60を形成してもよい。すなわち、基板60は、第1の基板66と第2の基板68とから形成されてもよい。このとき、第1の基板66は、第1及び第2の半導体チップ10,40よりも放熱性の高い部材であってもよい。
【0022】
基板60は配線パターン62を有する。配線パターン62は、例えば、銅箔などの金属箔を接着剤を介して基板60に貼り付けて、フォトリソグラフィを適用した後にエッチングして形成してもよい。あるいは、スパッタリング等を利用して、配線パターン62を形成してもよい。また、無電解メッキで配線パターン62を形成するアディティブ法を適用して、配線パターン62を形成してもよい。基板60が、第1の基板66と第2の基板68とからなる場合、配線パターン62は、第2の基板68に形成してもよい。
【0023】
次に、第1の半導体チップ10の第2の半導体チップ40から露出した部分(露出部14)に形成された第2の突起電極32と、配線パターン62とを、ワイヤ70によって電気的に接続する。ワイヤ70は、既に公知となっているいずれのボンディングツールを使用して形成してもよい。また、ワイヤ70として、既に公知となっているいずれのワイヤを適用してもよい。本発明に係る半導体装置の製造方法によると、第2の突起電極34は露出部14に形成される。そのため、容易にワイヤ70を第2の突起電極34にボンディングすることができ、電気的な接続信頼性の高い半導体装置を製造することができる。なお、第1の半導体チップ10は突起電極20を有することから、第1の半導体チップ10側にいわゆるセカンドボンディングを行っても、第1の半導体チップ10にダメージを与えることを防止することができる。そのため、ワイヤ70の一部72を配線パターン62にボンディングし、その後、ワイヤ70の他の一部74を第2の突起電極34にボンディングすることによって、ワイヤ70を形成することができる。これによると、ワイヤ70のループの高さを低くすることができるため、厚みが薄く、実装性に優れた半導体装置を製造することができる。
【0024】
なお、基板60が凹部64を有する場合、第1の半導体チップ10の少なくとも一部が凹部64内に配置されるように、第1及び第2の半導体チップ10,40(半導体装置1)を基板60に搭載してもよい。これによると、半導体装置の厚みを薄くすることができるため、さらに実装性に優れた半導体装置を製造することができる。また、第1の半導体チップ10の第2の半導体チップ40と対向する面とは反対側の面11が凹部64の底面65(第1の基板66)と接触するように、第1及び第2の半導体チップ10,40を搭載してもよい。また、基板60が放熱部を有するとき、第1の半導体チップ10の面11が放熱部に接触するように、第1及び第2の半導体チップ10,40を搭載してもよい。これによると、放熱性に優れた、信頼性の高い半導体装置を製造することができる。第1の基板66を放熱性の高い部材で形成して、第1の半導体チップ10の面11を凹部64の底面65に接触させてもよい。
【0025】
最後に、外部端子63を形成してもよい。外部端子63は、配線パターン62と電気的に接続されるように形成する。外部端子63は、例えばハンダによって形成してもよい。
【0026】
以上の工程によって、半導体装置2を製造することができる。図10は、半導体装置2の断面図である。半導体装置2は、第1の半導体チップ10と、第1の半導体チップ10に搭載された第2の半導体チップ40と、第1の半導体チップ10と第2の半導体チップ40との間に形成された電気的接合部34と、を有する。電気的接合部34は、第1及び第2の半導体チップ10,40を電気的に接続する役割を果たすものである。そして、第1の半導体チップ10の露出部14には、複数の突起電極20(第2の突起電極32)が形成されてなる。すなわち、本実施の形態に係る半導体装置2は、上述した半導体装置1を有する。
【0027】
半導体装置2は、基板60を有する。基板60には、配線パターン62が形成されてなる。基板60には、第1の半導体チップ10及び第2の半導体チップ40が搭載されてなる。すなわち、基板60には、上述した半導体装置1が搭載されてなる。基板60は凹部64を有してもよく、このとき、第1の半導体チップ10の少なくとも一部は、凹部64内に配置されていてもよい。これにより、厚みが薄く、実装性に優れた半導体装置を提供することができる。
【0028】
半導体装置2は、ワイヤ70を有する。配線パターン62と第1の半導体チップ10の突起電極20とは、ワイヤ70によって電気的に接続されてなる。上述したように、突起電極20は、半導体装置1を構成する半導体チップ10の露出部14に形成されてなる。そのため、ワイヤ70と突起電極20(第2の突起電極32)との接合が安定した、電気的な接続信頼性の高い半導体装置を提供することができる。
【0029】
半導体装置2は、さらに、樹脂層52を有してもよい。これにより、ワイヤ70等を保護することが可能な、信頼性の高い半導体装置を提供することができる。なお、図11には、上述した半導体装置2を実装した回路基板1000が示されている。また、半導体装置2を有する電子機器として、図12にはノート型パーソナルコンピュータ2000が示され、図13には携帯電話3000が示されている。
【0030】
(第3の実施の形態)
以下、本発明を適用した第3の実施の形態に係る半導体装置の製造方法を説明する。なお、本実施の形態でも、既に説明した内容を可能な限り適用することができる。
【0031】
本実施の形態に係る半導体装置の製造方法では、第1及び第2の半導体チップ10,40を、基板80に搭載することを含む。基板80には配線パターン82が形成されている。そして、第1及び第2の半導体チップ10,40は、半導体装置1として構成されていてもよい。
【0032】
基板80の材料は特に限定されず、先に説明した基板60の内容を適用してもよい。また、基板80の形状も特に限定されないが、基板80は凹部84を有してもよく、凹部84の底面には開口85が形成されていてもよい。開口85を有する第1の基板87に、開口を有する第2の基板88を搭載することで、凹部84と、開口85とを有する基板80を形成してもよい。第2の基板88は、図14に示すように、複数層に形成された配線パターン82を有してもよい。
【0033】
本実施の形態に係る半導体装置の製造方法では、第2の突起電極32を、基板80に形成された配線パターン82に対向させて電気的に接続する。例えば、第2の突起電極32と配線パターン82とを接触させて、加熱、加圧する金属接合によって、第2の突起電極32と配線パターン82とを電気的に接続してもよい。あるいは、ACF(異方性導電フィルム)や、ACP(異方性導電ペースト)を利用して、第2の突起電極32と配線パターン82との間に導電粒子(図示せず)を介在させることで、第2の突起電極32と配線パターン82とを電気的に接続してもよい。本発明に係る半導体装置の製造方法によると、突起電極20(第2の突起電極32)を配線パターン82と対向させて電気的に接続させる。第2の突起電極32は、第1の半導体チップ10の露出部14に形成されてなるため、これを配線パターン82と対向させることが容易となり、電気的な接続信頼性の高い半導体装置を製造することができる。
【0034】
なお、基板80が、凹部84と、凹部84の底面に形成された開口85を有する場合、第1の半導体チップ10の少なくとも一部が凹部84内に配置され、第2の半導体チップ40の少なくとも一部が開口85内に配置されるように、半導体装置1を搭載してもよい。これによれば、厚みの薄い、実装性に優れた半導体装置を製造することができる。
【0035】
最後に、外部端子83を形成してもよい。外部端子83は、配線パターン82と電気的に接続されるように形成する。外部端子83は、例えばハンダによって形成してもよい。
【0036】
以上の工程によって、半導体装置3を製造することができる。図14は、半導体装置3の断面図である。半導体装置3は、第1の半導体チップ10と、第1の半導体チップ10に搭載された第2の半導体チップ40と、第1の半導体チップ10と第2の半導体チップ40との間に形成された電気的接合部34と、を有する。電気的接合部34は、第1及び第2の半導体チップ10,40を電気的に接続する役割を果たすものである。そして、第1の半導体チップ10の露出部14には、複数の突起電極20(第2の突起電極32)が形成されてなる。すなわち、本実施の形態に係る半導体装置3は、上述した半導体装置1を有する。
【0037】
半導体装置3は、基板80を有する。基板80には、配線パターン82が形成されてなる。そして、第1の半導体チップ10の突起電極20(第2の突起電極34)は、配線パターン82に対向して電気的に接続されてなる。上述したように、突起電極20(第2の突起電極34)は、半導体装置1を構成する第1の半導体チップ10の露出部14に形成されてなる。そのため、突起電極20(第2の突起電極34)と配線パターン82とが安定して接続した、信頼性の高い半導体装置を提供することができる。なお、基板80は、凹部84と、凹部84の底面に形成された開口85と、を有してもよい。このとき、第1の半導体チップ10の少なくとも一部は凹部84内に配置されていてもよく、第2の半導体チップ40の少なくとも一部は開口85内に配置されていてもよい。これにより、厚みの薄い、実装性に優れた半導体装置を提供することができる。
【0038】
なお、本発明は、上述した実施の形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
【図面の簡単な説明】
【図1】 図1は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図2】 図2は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図3】 図3は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図4】 図4は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図5】 図5は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図6】 図6は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図7】 図7は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図8】 図8は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図9】 図9は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。
【図10】 図10は、本発明を適用した第2の実施の形態に係る半導体装置の製造方法を示す図である。
【図11】 図11は、本発明を適用した実施の形態に係る半導体装置が実装された回路基板を示す図である。
【図12】 図12は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【図13】 図13は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【図14】 図14は、本発明を適用した第3の実施の形態に係る半導体装置の製造方法を示す図である。
【符号の説明】
10 第1の半導体チップ、 20 突起電極、 30 第1の突起電極、32 第2の突起電極、 34 電気的接続部、 40 第2の半導体チップ、 42 第3の突起電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, a manufacturing method thereof, a circuit board, and an electronic device.
[0002]
[Prior art]
[0003]
[Patent Document 1]
JP 2000-114206 A
[0004]
BACKGROUND OF THE INVENTION
A semiconductor device having a plurality of stacked semiconductor chips has been known for some time. At this time, if the electrode of the semiconductor chip has a shape that can be easily electrically connected to a wiring or the like, the mounting property on a substrate or the like can be improved, and the electrical connection reliability of the semiconductor device can be improved.
[0005]
An object of the present invention is to provide a semiconductor device having high electrical reliability and excellent mountability, a manufacturing method thereof, a circuit board, and an electronic apparatus.
[0006]
[Means for Solving the Problems]
(1) A semiconductor device according to the present invention includes a first semiconductor chip,
A second semiconductor chip mounted on the first semiconductor chip;
An electrical junction formed between the first semiconductor chip and the second semiconductor chip for electrically connecting the first semiconductor chip and the second semiconductor chip;
Have
A plurality of protruding electrodes are formed on a portion of the surface of the first semiconductor chip on which the second semiconductor chip is mounted that is exposed from the second semiconductor chip. According to the present invention, the protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. Therefore, a semiconductor device that can be easily mounted on a circuit board or the like and has high electrical connection reliability can be provided.
(2) A semiconductor device according to the present invention includes a first semiconductor chip,
A second semiconductor chip mounted on the first semiconductor chip;
An electrical junction formed between the first semiconductor chip and the second semiconductor chip for electrically connecting the first semiconductor chip and the second semiconductor chip;
A substrate having a wiring pattern;
Wire,
Have
A plurality of projecting electrodes are formed on a portion of the surface of the first semiconductor chip where the second semiconductor chip is mounted and exposed from the second semiconductor chip.
The first and second semiconductor chips are mounted on the substrate,
The wiring pattern and the protruding electrode are electrically connected by the wire. According to the present invention, the protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. Therefore, it becomes easy to electrically connect the semiconductor chip and the wiring by the wire, and a semiconductor device with high electrical connection reliability can be provided.
(3) In this semiconductor device,
The substrate has a recess;
At least a part of the first semiconductor chip may be disposed in the recess. According to this, since the thickness of the semiconductor device can be reduced, a semiconductor device excellent in mountability can be provided.
(4) In this semiconductor device,
The surface of the first semiconductor chip opposite to the surface facing the second semiconductor chip may be in contact with the bottom surface of the recess.
(5) In this semiconductor device,
The substrate has a heat dissipation part,
The first semiconductor chip may be in contact with the heat dissipation part.
(6) A semiconductor device according to the present invention includes a first semiconductor chip,
A second semiconductor chip mounted on the first semiconductor chip;
An electrical junction formed between the first semiconductor chip and the second semiconductor chip for electrically connecting the first semiconductor chip and the second semiconductor chip;
A substrate having a wiring pattern;
Have
A plurality of projecting electrodes are formed on a portion of the surface of the first semiconductor chip where the second semiconductor chip is mounted and exposed from the second semiconductor chip.
The protruding electrode is electrically connected to face the wiring pattern. According to the present invention, the protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. Therefore, it is easy to electrically connect the semiconductor chip and the wiring, and a semiconductor device with high electrical connection reliability can be provided.
(7) In this semiconductor device,
The substrate has a recess and an opening formed in a bottom surface of the recess,
At least a part of the first semiconductor chip may be disposed in the recess, and at least a part of the second semiconductor chip may be disposed in the opening. According to this, since the thickness of the semiconductor device can be reduced, a semiconductor device excellent in mountability can be provided.
(8) In this semiconductor device,
The outer shape of the first semiconductor chip may be larger than the outer shape of the second semiconductor chip.
(9) The semiconductor device may be mounted on the circuit board according to the present invention.
(10) An electronic apparatus according to the present invention may include the semiconductor device.
(11) A method for manufacturing a semiconductor device according to the present invention includes: (a) forming a first protruding electrode and a second protruding electrode on a first semiconductor chip;
(B) forming a third protruding electrode on the second semiconductor chip; and
(C) mounting the second semiconductor chip in a region of the first semiconductor chip where the first protruding electrode is formed, and facing the first protruding electrode and the third protruding electrode; Electrical connection,
including. According to the present invention, the second protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. Therefore, a semiconductor device that can be easily mounted on a circuit board or the like and has high electrical connection reliability can be manufactured.
(12) A method for manufacturing a semiconductor device according to the present invention includes: (a) forming a first protruding electrode and a second protruding electrode on a first semiconductor chip;
(B) forming a third protruding electrode on the second semiconductor chip;
(C) mounting the second semiconductor chip in a region of the first semiconductor chip where the first protruding electrode is formed, and facing the first protruding electrode and the third protruding electrode; Electrical connection,
(D) mounting the first semiconductor chip and the second semiconductor chip on a substrate having a wiring pattern; and
(E) electrically connecting the second protruding electrode and the wiring pattern by a wire;
including. According to the present invention, the second protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. As a result, it is easy to electrically connect the semiconductor chip and the wiring by the wire, and thus a semiconductor device with high electrical connection reliability can be manufactured.
(13) In this method of manufacturing a semiconductor device,
In the step (e), after a part of the wire is bonded to the wiring pattern, another part of the wire may be bonded to the second protruding electrode. According to this, since the wire loop can be lowered, a semiconductor device having a small thickness and excellent mountability can be manufactured.
(14) In this method of manufacturing a semiconductor device,
The substrate has a recess;
In the step (d), at least a part of the first semiconductor chip may be disposed in the recess. According to this, a semiconductor device having a small thickness and excellent mountability can be manufactured.
(15) In this method of manufacturing a semiconductor device,
In the step (d), the surface of the first semiconductor chip opposite to the surface facing the second semiconductor chip may be brought into contact with the bottom surface of the recess.
(16) In this method of manufacturing a semiconductor device,
The substrate has a heat dissipation part,
In the step (d), the first semiconductor chip may be brought into contact with the heat radiating portion.
(17) A method of manufacturing a semiconductor device according to the present invention includes: (a) forming a first protruding electrode and a second protruding electrode on a first semiconductor chip;
(B) forming a third protruding electrode on the second semiconductor chip;
(C) mounting the second semiconductor chip in a region of the first semiconductor chip where the first protruding electrode is formed, and making the first protruding electrode and the third protruding electrode face each other; Electrically connecting, and
(D) electrically connecting the second protruding electrode to face the wiring pattern formed on the substrate;
including. According to the present invention, the second protruding electrode is formed on the portion of the first semiconductor chip exposed from the second semiconductor chip. Therefore, it is easy to electrically connect the semiconductor chip and the wiring to face each other, so that a semiconductor device with high electrical connection reliability can be manufactured.
(18) In this method of manufacturing a semiconductor device,
The substrate has a recess and an opening formed in a bottom surface of the recess,
In the step (d), at least a part of the first semiconductor chip may be disposed in the recess, and at least a part of the second semiconductor chip may be disposed in the opening. According to this, a thin semiconductor device with excellent mountability can be manufactured.
(19) In this method of manufacturing a semiconductor device,
In the step (a), the first protruding electrode and the second protruding electrode may be formed at substantially the same height.
(20) In this method of manufacturing a semiconductor device,
In the step (a), the first protruding electrode and the second protruding electrode may be formed together.
(21) In this method of manufacturing a semiconductor device,
In the step (a), the height difference between the first protruding electrode and the second protruding electrode may be within 5 μm.
(22) In this method of manufacturing a semiconductor device,
In the step (a), the first protruding electrode may be made higher than the second protruding electrode.
(23) In this method of manufacturing a semiconductor device,
The first protruding electrode includes a first metal layer and a second metal layer formed on the first metal layer,
The second protruding electrode includes a third metal layer and a fourth metal layer formed on the third metal layer,
Forming the first metal layer and the third metal layer with the same composition;
The second metal layer and the fourth metal layer may be formed with the same composition.
(24) In this method of manufacturing a semiconductor device,
It may further include forming another metal layer on the second metal layer.
(25) In this method of manufacturing a semiconductor device,
Before the step (c), the electrical characteristics of the first semiconductor chip may be inspected. According to this, the electrical characteristics of the first semiconductor chip are inspected before mounting the second semiconductor chip on the first semiconductor chip. That is, at the time of inspection, the first semiconductor chip has the first and second protruding electrodes. At this time, if the first and second protruding electrodes are formed to have substantially the same height or a difference in height of 5 μm or less, the first semiconductor chip can be easily inspected. Therefore, a highly reliable semiconductor device can be manufactured.
(26) In this method of manufacturing a semiconductor device,
The outer shape of the first semiconductor chip may be larger than the outer shape of the second semiconductor chip.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments.
[0008]
(First embodiment)
1 to 9 are diagrams for explaining a method of manufacturing a semiconductor device according to the first embodiment to which the present invention is applied.
[0009]
First, the first semiconductor chip 10 is prepared. The first semiconductor chip 10 may be prepared in a wafer state and the following steps may be performed. The semiconductor chip 10 may have an integrated circuit. The planar shape of the semiconductor chip 10 is generally rectangular, but is not particularly limited. The first semiconductor chip 10 may have a pad 22 (see FIG. 1). The pad 22 may be made of Al, for example. The pads 22 may be formed on one surface of the first semiconductor chip 10 so as to be arranged in a plurality of rows and a plurality of columns.
[0010]
Next, a plurality of protruding electrodes 20 are formed on the first semiconductor chip 10. First, the seed layer 24 is formed on the first semiconductor chip 10 having the pads 22. As shown in FIG. 2, the seed layer 24 may be provided on the entire surface of the first semiconductor chip 10 on which the pads 22 are formed. For example, the seed layer 24 may be formed of Ti, TiN, or TiW. Next, a resist 26 is formed on the seed layer 24 (see FIG. 3). The resist 26 may be formed so as not to overlap the pad 22. The resist 26 may be formed by patterning so as to remove a part of the flat resist layer formed on the seed layer 24. By patterning, the resist layer in a region overlapping with the pad 22 may be removed. The resist layer may be patterned by exposure and development. Alternatively, the resist 26 may be formed by avoiding a region overlapping with the pad 22 in advance. Next, a metal layer 28 is formed on a portion of the seed layer 24 exposed from the resist 26 (a portion overlapping the pad 22) (see FIG. 4). The metal layer 28 may be formed by electrolytic plating. By forming the seed layer 24 on the entire surface of the first semiconductor chip 10, a plurality of metal layers 28 can be formed in a lump. The metal layer 28 may be formed of a single metal layer, or a plurality of metal layers may be stacked to form the metal layer 28. Next, the resist 26 is removed (see FIG. 5). Finally, a portion of the seed layer 24 exposed from the metal layer 28 may be removed to form a plurality of protruding electrodes 20 (see FIG. 6). A part of the seed layer 24 may be removed using the metal layer 28 as a mask. Note that the third protruding electrode 42 may be formed on the second semiconductor chip 40 by a similar process.
[0011]
The protruding electrode 20 formed on the first semiconductor chip 10 includes a first protruding electrode 30 and a second protruding electrode 32. In the subsequent step (the step of mounting the second semiconductor chip 40 on the first semiconductor chip 10), the protruding electrode 20 formed in the region overlapping the second semiconductor chip 40 is replaced with the first protruding electrode 30. The protruding electrode 20 formed in the region exposed from the second semiconductor chip 40 (exposed portion 14) may be used as the second protruding electrode 32. For example, the first protruding electrode 30 may be disposed near the center of the first semiconductor chip 10, and the second protruding electrode 32 surrounds the first protruding electrode 30 so as to surround the first semiconductor chip 10. It may be arranged in the vicinity of 10 peripheral portions. The first protruding electrode 30 and the second protruding electrode 32 may be formed to have substantially the same height. Alternatively, the height difference between the first protruding electrode 30 and the second protruding electrode 32 may be formed within 5 μm. Further, as described above, the first and second protruding electrodes 30 and 32 may be formed collectively.
[0012]
As described above, the metal layer 28 may be formed of a single layer or may be formed by stacking a plurality of metal layers. When the metal layer 28 is formed by stacking a plurality of metal layers, the first protruding electrode 30 is formed on the first metal layer formed on the seed layer 24 and the first metal layer. You may form so that it may have a 2nd metal layer. In addition, the second protruding electrode 32 may be formed to have a third metal layer formed on the seed layer 24 and a fourth metal layer formed on the third metal layer. . At this time, the first metal layer and the third metal layer may be formed with the same composition. Then, the second metal layer and the fourth metal layer may be formed with the same composition. By forming each layer with the same composition, the protruding electrodes 20 can be formed in a lump, and a semiconductor device can be manufactured efficiently. For example, the first and third metal layers may be formed of nickel (Ni), and the second and fourth metal layers may be formed of gold (Au). In addition, you may form the other metal layer (for example, solder) which is not shown in figure on the 2nd metal layer. At this time, the protruding electrode 20 may be formed so that the first protruding electrode 30 is higher than the second protruding electrode 32. The other metal layer may be formed so that the height of the other metal layer is within 5 μm. Thereby, joining of the 1st protruding electrode 30 and the 3rd protruding electrode 42 becomes easy.
[0013]
Next, the electrical characteristics of the first and second semiconductor chips 10 and 40 may be inspected. This inspection process may be performed before the second semiconductor chip 40 is mounted on the first semiconductor chip 10. Further, this step may be performed after the protruding electrodes are formed on the first and second semiconductor chips 10 and 40. Thereby, a semiconductor device with high electrical connection reliability can be manufactured. FIG. 7 is a diagram showing an inspection process. In the inspection process, a plurality of fine needles 38 formed on the inspection jig 36 are brought into contact with the protruding electrodes 20 to inspect the electrical characteristics thereof. By forming the first protruding electrode 30 and the second protruding electrode 32 at substantially the same height, or by forming the height difference so as to be within 5 μm, all the protruding electrodes 20 are formed. Since the needle 38 can be brought into contact with each other, a highly reliable inspection can be performed, and a highly reliable semiconductor device can be manufactured.
[0014]
Next, the second semiconductor chip 40 is mounted on the region of the first semiconductor chip 10 where the first protruding electrode 30 is formed, and the first protruding electrode 30 and the third protruding electrode 42 are opposed to each other. Are electrically connected (see FIG. 8). For example, the first and second semiconductor chips 10 and 40 are aligned so that the first protruding electrode 30 and the third protruding electrode 42 face each other. At this time, the second protruding electrode 32 may be exposed from the second semiconductor chip 40. Then, the first protruding electrode 30 and the third protruding electrode 42 are brought into contact with each other, and the first protruding electrode 30 and the third protruding electrode 42 are electrically connected by metal bonding that is heated and pressurized. Also good. Alternatively, by using ACF (anisotropic conductive film) or ACP (anisotropic conductive paste), by interposing conductive particles between the first protruding electrode 30 and the third protruding electrode 42, The first protruding electrode 30 and the third protruding electrode 42 may be electrically connected. Note that the outer shape of the first semiconductor chip 10 may be larger than the outer shape of the second semiconductor chip 40.
[0015]
According to the manufacturing method of the semiconductor device according to the present embodiment, the protruding electrode 20 (specifically, the second protruding electrode) is formed on the exposed portion (exposed portion 14) of the first semiconductor chip 10 from the second semiconductor chip 40. 32) is formed. As a result, the protruding electrode 20 can be easily used for electrical connection, and therefore, a semiconductor device having excellent mountability and high electrical connection reliability can be manufactured.
[0016]
The semiconductor device 1 can be manufactured through the above steps. FIG. 9 is a cross-sectional view of the semiconductor device 1. The semiconductor device 1 is formed between the first semiconductor chip 10, the second semiconductor chip 40 mounted on the first semiconductor chip 10, and the first semiconductor chip 10 and the second semiconductor chip 40. Electrical junction 34. The electrical joint 34 plays a role of electrically connecting the first and second semiconductor chips 10 and 40. The electrical joint 34 may be formed by a plurality of stacked metal layers. Specifically, the electrical joint 34 is obtained by combining the first projecting electrode 30 and the third projecting electrode 42 described above, or being electrically connected via conductive particles. Also good.
[0017]
The semiconductor device 1 has a plurality of protruding electrodes 20. The protruding electrode 20 is formed on a portion (exposed portion 14) exposed from the second semiconductor chip 40 on the surface of the first semiconductor chip 10 on which the second semiconductor chip 40 is mounted. That is, the second protruding electrode 32 of the first semiconductor chip 10 may be referred to as the protruding electrode 20. According to this, since the protruding electrode 20 is disposed on the exposed portion 14 of the first semiconductor chip 10, the protruding electrode 20 can be easily electrically connected to a wiring board or the like. That is, it is possible to provide a highly mountable semiconductor device that can be easily electrically connected. As shown in FIG. 9, the semiconductor device 1 may have a resin layer 50. Thereby, since the stress concerning each electrical junction 34 can be reduced, a highly reliable semiconductor device with respect to stress etc. can be provided.
[0018]
The semiconductor device according to the present embodiment includes a configuration derived from any specific item selected from the above manufacturing method, and the effect of the semiconductor device according to the present embodiment has the above-described effect.
[0019]
(Second Embodiment)
A method for manufacturing a semiconductor device according to the second embodiment to which the present invention is applied will be described below. Note that the contents described above can be applied to this embodiment as much as possible.
[0020]
The manufacturing method of the semiconductor device according to the present embodiment includes mounting the first and second semiconductor chips 10 and 40 on the substrate 60. The substrate 60 has a wiring pattern 62. The contents described above can be applied to the first and second semiconductor chips 10 and 40. The first and second semiconductor chips 10 and 40 may be configured as the semiconductor device 1.
[0021]
The material of the substrate 60 is not particularly limited. The substrate 60 may be formed of, for example, any organic or inorganic material, or may be composed of a composite structure thereof. For example, a substrate made of polyethylene terephthalate (PET) may be used as the organic substrate. Examples of the substrate 60 formed of an inorganic material include a ceramic substrate and a glass substrate. An example of a composite structure of organic and inorganic materials is a glass epoxy substrate. The substrate 60 may be formed of two or more parts made of different materials. For example, if a member having a higher heat dissipation property than the first and second semiconductor chips 10 and 40 is used for a part of the substrate 60, the substrate 60 having a heat dissipation portion can be formed. At this time, the first semiconductor chip 10 may be brought into contact with the heat radiating portion. Further, the shape of the substrate 60 is not particularly limited. For example, the substrate 60 may have a recess 64. The substrate 60 having the recess 64 may be formed by mounting the second substrate 68 having an opening on the first substrate 66. That is, the substrate 60 may be formed from the first substrate 66 and the second substrate 68. At this time, the first substrate 66 may be a member having higher heat dissipation than the first and second semiconductor chips 10 and 40.
[0022]
The substrate 60 has a wiring pattern 62. For example, the wiring pattern 62 may be formed by attaching a metal foil such as a copper foil to the substrate 60 via an adhesive, applying photolithography, and then etching. Alternatively, the wiring pattern 62 may be formed using sputtering or the like. Alternatively, the wiring pattern 62 may be formed by applying an additive method for forming the wiring pattern 62 by electroless plating. When the substrate 60 includes the first substrate 66 and the second substrate 68, the wiring pattern 62 may be formed on the second substrate 68.
[0023]
Next, the second protruding electrode 32 formed on the portion (exposed portion 14) exposed from the second semiconductor chip 40 of the first semiconductor chip 10 and the wiring pattern 62 are electrically connected by the wire 70. To do. The wire 70 may be formed using any known bonding tool. Further, any wire that is already known may be applied as the wire 70. According to the method for manufacturing a semiconductor device of the present invention, the second protruding electrode 34 is formed on the exposed portion 14. Therefore, the wire 70 can be easily bonded to the second protruding electrode 34, and a semiconductor device with high electrical connection reliability can be manufactured. Since the first semiconductor chip 10 has the protruding electrodes 20, even if so-called second bonding is performed on the first semiconductor chip 10 side, damage to the first semiconductor chip 10 can be prevented. . Therefore, the wire 70 can be formed by bonding a part 72 of the wire 70 to the wiring pattern 62 and then bonding the other part 74 of the wire 70 to the second protruding electrode 34. According to this, since the height of the loop of the wire 70 can be reduced, a semiconductor device having a small thickness and excellent mountability can be manufactured.
[0024]
When the substrate 60 has the recess 64, the first and second semiconductor chips 10 and 40 (semiconductor device 1) are mounted on the substrate so that at least a part of the first semiconductor chip 10 is disposed in the recess 64. 60 may be mounted. According to this, since the thickness of the semiconductor device can be reduced, a semiconductor device having further excellent mountability can be manufactured. In addition, the first and second surfaces of the first semiconductor chip 10 so that the surface 11 opposite to the surface facing the second semiconductor chip 40 is in contact with the bottom surface 65 (first substrate 66) of the recess 64. The semiconductor chips 10 and 40 may be mounted. Moreover, when the board | substrate 60 has a thermal radiation part, you may mount the 1st and 2nd semiconductor chips 10 and 40 so that the surface 11 of the 1st semiconductor chip 10 may contact a thermal radiation part. According to this, a highly reliable semiconductor device having excellent heat dissipation can be manufactured. The first substrate 66 may be formed of a member with high heat dissipation, and the surface 11 of the first semiconductor chip 10 may be brought into contact with the bottom surface 65 of the recess 64.
[0025]
Finally, an external terminal 63 may be formed. The external terminal 63 is formed so as to be electrically connected to the wiring pattern 62. The external terminal 63 may be formed by solder, for example.
[0026]
The semiconductor device 2 can be manufactured through the above steps. FIG. 10 is a cross-sectional view of the semiconductor device 2. The semiconductor device 2 is formed between the first semiconductor chip 10, the second semiconductor chip 40 mounted on the first semiconductor chip 10, and the first semiconductor chip 10 and the second semiconductor chip 40. Electrical junction 34. The electrical joint 34 plays a role of electrically connecting the first and second semiconductor chips 10 and 40. A plurality of protruding electrodes 20 (second protruding electrodes 32) are formed on the exposed portion 14 of the first semiconductor chip 10. That is, the semiconductor device 2 according to the present embodiment includes the semiconductor device 1 described above.
[0027]
The semiconductor device 2 has a substrate 60. A wiring pattern 62 is formed on the substrate 60. On the substrate 60, the first semiconductor chip 10 and the second semiconductor chip 40 are mounted. That is, the semiconductor device 1 described above is mounted on the substrate 60. The substrate 60 may have a recess 64, and at this time, at least a part of the first semiconductor chip 10 may be disposed in the recess 64. As a result, a semiconductor device having a small thickness and excellent mountability can be provided.
[0028]
The semiconductor device 2 has a wire 70. The wiring pattern 62 and the protruding electrode 20 of the first semiconductor chip 10 are electrically connected by a wire 70. As described above, the protruding electrode 20 is formed on the exposed portion 14 of the semiconductor chip 10 constituting the semiconductor device 1. Therefore, it is possible to provide a semiconductor device with high electrical connection reliability in which the bonding between the wire 70 and the protruding electrode 20 (second protruding electrode 32) is stable.
[0029]
The semiconductor device 2 may further include a resin layer 52. Thus, a highly reliable semiconductor device that can protect the wire 70 and the like can be provided. FIG. 11 shows a circuit board 1000 on which the above-described semiconductor device 2 is mounted. As an electronic apparatus having the semiconductor device 2, a notebook personal computer 2000 is shown in FIG. 12, and a mobile phone 3000 is shown in FIG.
[0030]
(Third embodiment)
A method for manufacturing a semiconductor device according to the third embodiment to which the present invention is applied will be described below. Note that the contents described above can be applied to this embodiment as much as possible.
[0031]
The semiconductor device manufacturing method according to the present embodiment includes mounting the first and second semiconductor chips 10 and 40 on the substrate 80. A wiring pattern 82 is formed on the substrate 80. The first and second semiconductor chips 10 and 40 may be configured as the semiconductor device 1.
[0032]
The material of the board | substrate 80 is not specifically limited, You may apply the content of the board | substrate 60 demonstrated previously. The shape of the substrate 80 is not particularly limited, but the substrate 80 may have a recess 84, and an opening 85 may be formed on the bottom surface of the recess 84. The substrate 80 having the recess 84 and the opening 85 may be formed by mounting the second substrate 88 having the opening on the first substrate 87 having the opening 85. As shown in FIG. 14, the second substrate 88 may include a wiring pattern 82 formed in a plurality of layers.
[0033]
In the manufacturing method of the semiconductor device according to the present embodiment, the second protruding electrode 32 is electrically connected to face the wiring pattern 82 formed on the substrate 80. For example, the second protruding electrode 32 and the wiring pattern 82 may be electrically connected by metal bonding in which the second protruding electrode 32 and the wiring pattern 82 are brought into contact with each other and heated and pressurized. Alternatively, conductive particles (not shown) are interposed between the second protruding electrode 32 and the wiring pattern 82 using ACF (anisotropic conductive film) or ACP (anisotropic conductive paste). Thus, the second protruding electrode 32 and the wiring pattern 82 may be electrically connected. According to the method of manufacturing a semiconductor device according to the present invention, the protruding electrode 20 (second protruding electrode 32) is opposed to the wiring pattern 82 and electrically connected. Since the second protruding electrode 32 is formed on the exposed portion 14 of the first semiconductor chip 10, it becomes easy to face the wiring pattern 82, and a semiconductor device with high electrical connection reliability is manufactured. can do.
[0034]
When the substrate 80 includes the recess 84 and the opening 85 formed in the bottom surface of the recess 84, at least a part of the first semiconductor chip 10 is disposed in the recess 84, and at least the second semiconductor chip 40 is provided. The semiconductor device 1 may be mounted so that a part thereof is disposed in the opening 85. According to this, a thin semiconductor device with excellent mountability can be manufactured.
[0035]
Finally, an external terminal 83 may be formed. The external terminal 83 is formed so as to be electrically connected to the wiring pattern 82. The external terminal 83 may be formed by solder, for example.
[0036]
The semiconductor device 3 can be manufactured through the above steps. FIG. 14 is a cross-sectional view of the semiconductor device 3. The semiconductor device 3 is formed between the first semiconductor chip 10, the second semiconductor chip 40 mounted on the first semiconductor chip 10, and the first semiconductor chip 10 and the second semiconductor chip 40. Electrical junction 34. The electrical joint 34 plays a role of electrically connecting the first and second semiconductor chips 10 and 40. A plurality of protruding electrodes 20 (second protruding electrodes 32) are formed on the exposed portion 14 of the first semiconductor chip 10. That is, the semiconductor device 3 according to the present embodiment includes the semiconductor device 1 described above.
[0037]
The semiconductor device 3 has a substrate 80. A wiring pattern 82 is formed on the substrate 80. The protruding electrode 20 (second protruding electrode 34) of the first semiconductor chip 10 is electrically connected so as to face the wiring pattern 82. As described above, the protruding electrode 20 (second protruding electrode 34) is formed on the exposed portion 14 of the first semiconductor chip 10 constituting the semiconductor device 1. Therefore, a highly reliable semiconductor device in which the protruding electrode 20 (second protruding electrode 34) and the wiring pattern 82 are stably connected can be provided. The substrate 80 may have a recess 84 and an opening 85 formed on the bottom surface of the recess 84. At this time, at least a part of the first semiconductor chip 10 may be disposed in the recess 84, and at least a part of the second semiconductor chip 40 may be disposed in the opening 85. Thereby, a thin semiconductor device having excellent mountability can be provided.
[0038]
In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible. For example, the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method of manufacturing a semiconductor device according to a first embodiment to which the present invention is applied.
FIG. 2 is a diagram showing a method for manufacturing a semiconductor device according to a first embodiment to which the present invention is applied.
FIG. 3 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 4 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 5 is a diagram showing a method of manufacturing a semiconductor device according to the first embodiment to which the present invention is applied.
FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 7 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 8 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 9 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment to which the present invention has been applied.
FIG. 10 is a diagram showing a method of manufacturing a semiconductor device according to a second embodiment to which the present invention is applied.
FIG. 11 is a diagram showing a circuit board on which a semiconductor device according to an embodiment to which the present invention is applied is mounted.
FIG. 12 is a diagram illustrating an electronic apparatus including the semiconductor device according to the embodiment to which the invention is applied.
FIG. 13 is a diagram showing an electronic apparatus having the semiconductor device according to the embodiment to which the invention is applied.
FIG. 14 is a diagram showing a method of manufacturing a semiconductor device according to a third embodiment to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 1st semiconductor chip, 20 Projection electrode, 30 1st projection electrode, 32 2nd projection electrode, 34 Electrical connection part, 40 2nd semiconductor chip, 42 3rd projection electrode

Claims (13)

第1の半導体チップと、
前記第1の半導体チップに搭載された、前記第1の半導体チップよりも外形が小さい第2の半導体チップと、
前記第1の半導体チップと前記第2の半導体チップとの間に形成された、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する電気的接合部と、
凹部が形成されてなり、前記凹部の底面に形成された配線パターンを有する基板と、
を有し、
前記第1の半導体チップにおける前記第2の半導体チップが搭載される面の、前記第2の半導体チップから露出する部分には、複数の突起電極が形成されてなり、
前記第1の半導体チップの少なくとも一部は、前記凹部内に配置されてなり、
前記突起電極は、前記凹部の底面に形成された前記配線パターンに対向して電気的に接続されてなり、
前記基板における前記凹部が形成された面には、外部端子が形成されてなり、
前記基板の前記凹部の底面には開口が形成されてなり、
前記第2の半導体チップの少なくとも一部は、前記開口内に配置されてなる半導体装置。
A first semiconductor chip;
A second semiconductor chip mounted on the first semiconductor chip and having an outer shape smaller than that of the first semiconductor chip;
An electrical junction formed between the first semiconductor chip and the second semiconductor chip for electrically connecting the first semiconductor chip and the second semiconductor chip;
A substrate having a wiring pattern formed on a bottom surface of the recess, wherein the recess is formed;
Have
A plurality of projecting electrodes are formed on a portion of the surface of the first semiconductor chip where the second semiconductor chip is mounted and exposed from the second semiconductor chip.
At least a part of the first semiconductor chip is disposed in the recess,
The protruding electrode is electrically connected to face the wiring pattern formed on the bottom surface of the recess,
An external terminal is formed on the surface of the substrate where the recess is formed,
An opening is formed in the bottom surface of the concave portion of the substrate,
A semiconductor device in which at least a part of the second semiconductor chip is disposed in the opening.
請求項1記載の半導体装置において、
前記第2の半導体チップにおける前記第1の半導体チップと対向する面とは反対側の面は、前記基板から突出してなる半導体装置。
The semiconductor device according to claim 1,
A semiconductor device in which a surface of the second semiconductor chip opposite to the surface facing the first semiconductor chip protrudes from the substrate.
請求項1又は請求項2記載の半導体装置が実装された回路基板。  A circuit board on which the semiconductor device according to claim 1 is mounted. 請求項1又は請求項2記載の半導体装置を有する電子機器。  An electronic apparatus having the semiconductor device according to claim 1. (a)第1の半導体チップに、第1の突起電極と第2の突起電極とを形成すること、
(b)前記第1の半導体チップよりも外形が小さい第2の半導体チップに、第3の突起電極を形成すること、
(c)前記第1の半導体チップにおける前記第1の突起電極が形成された領域に前記第2の半導体チップを搭載し、前記第1の突起電極と前記第3の突起電極とを対向させて電気的に接続すること、
(d)凹部が形成された基板に、前記第1の半導体チップを、少なくとも一部が前記凹部内に配置されるように、かつ、前記第2の突起電極が前記凹部の底面に形成された配線パターンに対向するように搭載して、前記第2の突起電極と前記配線パターンとを電気的に接続すること、及び、
(e)前記基板の前記凹部が形成された面に外部端子を形成すること、
を含み、
前記基板の前記凹部の底面には開口が形成されてなり、
前記第2の半導体チップの少なくとも一部を、前記開口内に配置する半導体装置の製造方法。
(A) forming a first protruding electrode and a second protruding electrode on the first semiconductor chip;
(B) forming a third protruding electrode on a second semiconductor chip having an outer shape smaller than that of the first semiconductor chip;
(C) mounting the second semiconductor chip in a region of the first semiconductor chip where the first protruding electrode is formed, and facing the first protruding electrode and the third protruding electrode; Electrical connection,
(D) On the substrate on which the concave portion is formed, the first semiconductor chip is disposed at least partially in the concave portion, and the second protruding electrode is formed on the bottom surface of the concave portion. Mounting the wiring pattern so as to face the wiring pattern, and electrically connecting the second protruding electrode and the wiring pattern; and
(E) forming an external terminal on the surface of the substrate on which the recess is formed;
Including
An opening is formed in the bottom surface of the concave portion of the substrate,
A method for manufacturing a semiconductor device, wherein at least a part of the second semiconductor chip is disposed in the opening.
請求項5記載の半導体装置の製造方法において、
前記第2の半導体チップにおける前記第1の半導体チップと対向する面とは反対側の面を、前記基板から突出させる半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 5,
A method of manufacturing a semiconductor device, wherein a surface of the second semiconductor chip opposite to a surface facing the first semiconductor chip is protruded from the substrate.
請求項5又は請求項6記載の半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極とをほぼ同じ高さに形成する半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 5 or 6,
A method of manufacturing a semiconductor device, wherein in the step (a), the first protruding electrode and the second protruding electrode are formed at substantially the same height.
請求項7記載の半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極とを一括して形成する半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 7.
A method for manufacturing a semiconductor device, wherein the first protruding electrode and the second protruding electrode are collectively formed in the step (a).
請求項5又は請求項6記載の半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極と前記第2の突起電極との高さの差を5μm以内にする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 5 or 6,
A method of manufacturing a semiconductor device, wherein, in the step (a), a height difference between the first protruding electrode and the second protruding electrode is set to 5 μm or less.
請求項9記載の半導体装置の製造方法において、
前記(a)工程で、前記第1の突起電極を前記第2の突起電極よりも高くする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 9,
A method of manufacturing a semiconductor device, wherein in the step (a), the first protruding electrode is made higher than the second protruding electrode.
請求項7から請求項10のいずれかに記載の半導体装置の製造方法において、
前記第1の突起電極は、第1の金属層と、前記第1の金属層上に形成された第2の金属層と、を含み、
前記第2の突起電極は、第3の金属層と、前記第3の金属層上に形成された第4の金属層と、を含み、
前記第1の金属層と前記第3の金属層とを同一の組成で形成し、
前記第2の金属層と前記第4の金属層とを同一の組成で形成する半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claims 7-10,
The first protruding electrode includes a first metal layer and a second metal layer formed on the first metal layer,
The second protruding electrode includes a third metal layer and a fourth metal layer formed on the third metal layer,
Forming the first metal layer and the third metal layer with the same composition;
A method of manufacturing a semiconductor device, wherein the second metal layer and the fourth metal layer are formed with the same composition.
請求項10を引用する請求項11記載の半導体装置の製造方法において、
前記第2の金属層上に他の金属層を形成することをさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 11, which refers to claim 10,
A method of manufacturing a semiconductor device, further comprising forming another metal layer on the second metal layer.
請求項7から請求項12のいずれかに記載の半導体装置の製造方法において、
前記(c)工程の前に、前記第1の半導体チップの電気的特性を検査する半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claims 7-12,
A method of manufacturing a semiconductor device, wherein electrical characteristics of the first semiconductor chip are inspected before the step (c).
JP2003078092A 2003-03-20 2003-03-20 Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus Expired - Fee Related JP3770321B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003078092A JP3770321B2 (en) 2003-03-20 2003-03-20 Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US10/795,411 US20040201109A1 (en) 2003-03-20 2004-03-09 Semiconductor devices, manufacturing methods therefore, circuit substrates and electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078092A JP3770321B2 (en) 2003-03-20 2003-03-20 Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2004288814A JP2004288814A (en) 2004-10-14
JP3770321B2 true JP3770321B2 (en) 2006-04-26

Family

ID=33127216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078092A Expired - Fee Related JP3770321B2 (en) 2003-03-20 2003-03-20 Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus

Country Status (2)

Country Link
US (1) US20040201109A1 (en)
JP (1) JP3770321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426875A (en) * 2006-04-27 2009-05-06 住友电木株式会社 Adhesive tape, semiconductor package, and electronic device
JPWO2008023452A1 (en) * 2006-08-25 2010-01-07 住友ベークライト株式会社 Adhesive tape, joined body and semiconductor package
US9293350B2 (en) * 2008-10-28 2016-03-22 Stats Chippac Ltd. Semiconductor package system with cavity substrate and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815829B2 (en) * 2000-03-29 2004-11-09 Rohm Co., Ltd. Semiconductor device with compact package
US6403401B1 (en) * 2000-08-14 2002-06-11 St Assembly Test Services Pte Ltd Heat spreader hole pin 1 identifier

Also Published As

Publication number Publication date
JP2004288814A (en) 2004-10-14
US20040201109A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP3633559B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US6414382B1 (en) Film carrier tape, semiconductor assembly, semiconductor device and method of manufacturing the same, mounted board, and electronic instrument
JP4828164B2 (en) Interposer and semiconductor device
JP2000133672A (en) Semiconductor device, its manufacture, circuit board, and electronic apparatus
JP2006060128A (en) Semiconductor device
US6420787B1 (en) Semiconductor device and process of producing same
JP2001298115A (en) Semiconductor device, manufacturing method for the same, circuit board as well as electronic equipment
JP2002198395A (en) Semiconductor device, its manufacturing method, circuit board, and electronic appliance
JP3565090B2 (en) Method for manufacturing semiconductor device
JP3654116B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP2006134912A (en) Semiconductor module and its manufacturing method, and film interposer
JP2003243605A (en) Semiconductor device and manufacturing method thereof, circuit board and electronic instrument
JP2000277649A (en) Semiconductor and manufacture of the same
JP3770321B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP3866777B2 (en) Semiconductor device and manufacturing method thereof
JP2002026071A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP2005340393A (en) Small-sized mount module and manufacturing method thereof
US7413935B2 (en) Semiconductor device and method of fabricating the same
JP2004288815A (en) Semiconductor device and its manufacturing method
JP5267540B2 (en) Semiconductor device
JP2007150346A (en) Semiconductor device and method of manufacturing same, circuit board, and electronic apparatus
JP2004363319A (en) Mount substrate and semiconductor device
JP2020136629A (en) Electronic device and manufacturing method of the electronic device
JP2000150577A (en) Wiring substrate and manufacture thereof, semiconductor device, and electronic part using the same and manufacture thereof
JP2004281899A (en) Semiconductor device, manufacturing method thereof, circuit board, and electronic appliance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees