JP3770078B2 - Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method - Google Patents

Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method Download PDF

Info

Publication number
JP3770078B2
JP3770078B2 JP2000363611A JP2000363611A JP3770078B2 JP 3770078 B2 JP3770078 B2 JP 3770078B2 JP 2000363611 A JP2000363611 A JP 2000363611A JP 2000363611 A JP2000363611 A JP 2000363611A JP 3770078 B2 JP3770078 B2 JP 3770078B2
Authority
JP
Japan
Prior art keywords
measured
recess
thin plate
liquid
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000363611A
Other languages
Japanese (ja)
Other versions
JP2002168739A (en
Inventor
茂 白石
哲男 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000363611A priority Critical patent/JP3770078B2/en
Publication of JP2002168739A publication Critical patent/JP2002168739A/en
Application granted granted Critical
Publication of JP3770078B2 publication Critical patent/JP3770078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水晶ウエハ又はチップのような水晶板、半導体ウエハ等の薄板状物品に対して非接触式で各種測定又は検査を行う際に、このような薄板状被測定物を保持するための装置及び方法に関する。更に本発明は、水晶板のカット面検査装置及び検査方法、並びに薄板状被測定物の平坦度測定装置及び測定方法に関する。
【0002】
【従来の技術】
一般に水晶振動子等の水晶デバイスに使用される水晶チップは、人工水晶の棒材からウエハを切り出して形成される。水晶板内部の結晶格子面に対するカット面の傾斜角度は、水晶振動子の周波数特性を決定することから、これを高精度に測定することは重要である。水晶ウエハのカット面を検査する場合、例えば特開平9−33457号公報等に記載されるように、水晶ウエハにX線を照射してその内部の結晶格子面で回折されるX線を測定し、カット面のずれ量を測定するカット面検査装置が広く使用されている。
【0003】
これらの従来装置では、図5Aに示すように、水晶ウエハ1は複数の突起2を設けた回転可能な試料台3上に載置し、空気孔4からの負圧作用により吸引して保持される。X線源5から試料台3の中央溝6を通してX線を水晶板の下面に照射し、試料台3の角度位置を変えながら、回折されたX線を反対側のX線検出器7で検出する。検出したX線強度が最大となる試料台の角度位置から、所定の基準傾斜角に対するカット面のずれ即ち偏差角度が求められる。
【0004】
特開平6−174662号公報には、図5Aの突起に代えて放射方向に延びる3本の突条を試料台に形成しかつその中心に空気孔を配置し、水晶板をその形状又は大きさによらず安定して吸引保持するようにしたカット面検査装置が開示されている。更に別の従来例では、図6に示すように、吸着パッド8を有するウエハ固定部9に水晶ウエハ1を垂直に吸着保持して、重力による水晶ウエハの変形を防止している。
【0005】
また、半導体ウエハやハードディスク、光ディスク等の薄板状物品の平坦度やうねり等の表面状態、寸法等を非接触式で測定するために、様々な平坦度測定装置又は方法が開発されている。例えば特開2000−171241号公報には、被測定物の半導体ウエハをウエハホルダ上に水平に載せて吸着保持し、レーザ干渉計によりレーザ光の干渉縞を形成させて平坦度を測定したり、光学式又は超音波式測距センサを用いた平坦度測定装置が記載されている。別の公知の平坦度測定装置では、図7に示すように等間隔で平行に架設した水平ワイヤ10を有するワイヤセット式のウエハ支持台を使用し、その上に被測定物のウエハ11を水平に載せて、レーザ干渉計により表面状態を測定する。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来のカット面検査装置や平坦度測定装置において被測定物を吸引保持する方法では、図5B及び図6に示すように、水晶ウエハが吸着力による反り1´などの変形を起こし、適正にかつ高精度に測定できなくなる虞がある。しかも、この変形は水晶ウエハの厚さが薄くなるほど起こり易いという問題がある。
【0007】
また、図7に示す従来のワイヤセット式のウエハ支持台においても、水平なウエハ11の下面をいくつかの線で支持しているだけであるから、その厚さが薄くなるほど、図7Bに示すような自重による反り11´などの変形を起こす虞がある。また、被測定物がコンベックス形状の水晶チップである場合には、その表面が湾曲しているので、水平ワイヤ10上に水平に載置されない虞がある。このため、図7Cに示すように、水晶チップ12の中心線13が水平線14と平行にならず、適正に測定できないという問題がある。
【0008】
そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、非接触式で測定又は検査を行うために薄板状被測定物を保持する際に、これを適正な姿勢で支持しかつその反り等の変形を防止し、常に適正にかつ高精度に測定又は検査できるようにするための装置及び方法を提供することにある。
【0009】
本発明の別の目的は、水晶板を適正な姿勢で支持しかつその反り等の変形を防止し、常に結晶格子面に対するカット面の傾斜角度を適正にかつ高精度に測定できる検査装置及び検査方法を提供することにある。
【0010】
本発明の更に別の目的は、薄板状被測定物をを適正な姿勢で支持しかつその反り等の変形を防止し、常にその表面状態を適正にかつ高精度に測定できる平坦度測定装置及び測定方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、上記目的を達成するために、上面に凹所を有する被測定物支持台と、前記凹所内に液体を供給するための手段とを有し、前記凹所に供給した前記液体の表面に薄板状被測定物を浮かせるようにしたことを特徴とする薄板状被測定物の保持装置が提供される。
【0012】
薄板状被測定物は、液体の表面張力により比較的容易に液面に浮かせることができ、その下面全体が均等な力で支持されることから、様々な非接触式の測定や検査を行う際に、反り等の変形を生じることなく本来の形状を維持したまま水平に保持することができる。
【0013】
ここで、前記液体は、その表面張力が大きく、取扱い性及び安全性が優れていることから、水であることが好ましい。
【0014】
或る実施例では、凹所内から液体を排出するための手段を更に有する。
【0015】
更に、被測定物支持台が凹所の底面に開口を有し、該開口から凹所内に液体を供給し又は排出するようになっていると、凹所へ被測定物を配置し、被測定物を浮かせ、かつ/又は取り出す過程が容易になるので、好ましい。
【0016】
別の実施例では、凹所の底面が凹凸に形成されていると、液体を供給する際に被測定物の下面全体に広がり易くなるので、より容易に浮かせることができ、また液体を排出する際に、被測定物の下面が液体の表面張力で凹所底面に貼り付く虞が無いので、好都合である。
【0017】
また、別の実施例では、凹所を真円形以外の形状とすることにより、凹所内壁面と液面に浮かせた被測定物の周縁との距離が異なるため、凹所内壁面に沿って表面張力により生じる液体の盛り上がりから被測定物に作用する力に強弱が生じるので、被測定物が凹所の略中央にかつ静止状態に保持されるので好ましい。
【0018】
また、本発明の別の側面によれば、上述した本発明の被測定物支持台の凹所内に薄板状被測定物を配置する過程と、該凹所内に液体を供給してその液面に被測定物を浮かせる過程とを含むことを特徴とする薄板状被測定物の保持方法が提供される。
【0019】
或る実施例では、凹所内から液体を排出する過程と、凹所内から被測定物を搬出する過程を更に含むことにより、被測定物の取出しが容易に行われる。また、使用する液体は、表面張力の大きさ、取扱い性及び安全性の観点から、水であることが好ましい。
【0020】
本発明の別の側面によれば、上述した本発明の薄板状被測定物の保持装置と、X線源及びX線検出器を有するX線光学系とを備えることを特徴とする水晶板のカット面検査装置が提供され、従来のX線光学系との組合せにより、適正かつ高精度な水晶板のカット面検査が可能になる。
【0021】
また、本発明によれば、上述した本発明の被測定物支持台の凹所内に水晶板を配置する過程と、該凹所内に液体を供給してその液面に水晶板を浮かせる過程と、該水晶板の表面にX線を照射し、その回折X線を検出する過程とを含むことを特徴とする水晶板のカット面検査方法が提供され、従来から公知の方法を利用して水晶板のカット面検査を適正にかつより高精度に行うことができる。
【0022】
更に本発明の別の側面によれば、上述した本発明の薄板状被測定物の保持装置と、レーザ干渉計を有する平坦度測定器とを備えることを特徴とする平坦度測定装置が提供され、同様に従来のレーザ干渉計との組合せにより、適正かつ高精度な平坦度測定が可能になる。
【0023】
また、本発明によれば、上述した本発明の被測定物支持台の凹所内に薄板状被測定物を配置する過程と、該凹所内に液体を供給してその液面に被測定物を浮かせる過程と、レーザ干渉計を用前記被測定物にレーザ光を照射し、その反射光により形成される干渉縞から被測定物の平坦度を測定することを特徴とする平坦度測定方法が提供され、従来から公知の方法を利用して薄板状被測定物の平坦度測定を適正にかつより高精度に行うことができる。
【0024】
【発明の実施の形態】
以下に、添付図面を参照しつつ本発明の好適実施例について詳細に説明する。図1は、非接触式検査又は測定のために薄板状被測定物として水晶ウエハを保持するための本発明による保持装置の構成を概略的に示している。この保持装置は、直方体ブロック状のウエハ支持台20を有し、その上面には、図1Aに良く示すように楕円形の凹所21が設けられている。図1Bに示すように、凹所21の底面には、その中央に給排水口22が開設され、管路を介してポンプ23及び給水タンク24に接続されている。
【0025】
使用時には、図2に示す要領で凹所21内に給水タンク24から所定量の水25を好適には純水を注入し、その水面に表面張力で被測定物の水晶ウエハ26を浮かせる。先ず、水晶ウエハ26を搬送アーム27の下端に吸着させてウエハ支持台20の上方に搬送し(図2A)、空の凹所21の底面中央に載置する(図2B)。次に、ポンプ23を作動させて給水タンク24から水を送給し、給排水口22から凹所21内に注入する。水晶ウエハ26は、その下側に給排水口22が開口しているので、水25の注入で容易に浮かせることができる(図2C)。水の注入量は、水晶ウエハ26を確実に浮かせることができる程度の量であればよい。
【0026】
このとき、凹所21の内壁面には、その全周に亘って水25の表面張力による盛り上がり部28が形成される。図1A及びBに示すように、盛り上がり部28の表面張力により凹所内壁面の全周から一様な力fが作用するので、そのバランスによって水晶ウエハ26は凹所21の中心位置に保持される。
【0027】
本実施例では、凹所21の平面形状を楕円形に形成したことから、実際に水晶ウエハ26に作用する力は、凹所内壁面の角度位置によって、凹所内壁面と水晶ウエハ周縁との距離が異なるために強弱が生じるので、水晶ウエハ26は静止状態に保持される。ところが、凹所21を真円形にした場合には、凹所内壁面の角度位置によらず水晶ウエハ26に作用する力が一定となるので、水晶ウエハは僅かな力のアンバランスや外力の作用で回転し、静止状態を維持できなくなる虞がある。また、凹所21の内壁面と水晶ウエハ26の周縁との距離が大きくなるに連れて、真円形以外の形状でも、同様の問題が考えられる。従って、凹所21の平面形状は、少なくとも注入される水25の高さにおいて、実質的に真円形以外の形状(例えば、本実施例の楕円形)とし、かつその大きさを、凹所への水晶ウエハの配置及び取出しが可能な範囲で小さくするのが、スペース効率の点からも好ましい。
【0028】
このようにして水晶ウエハ26は、その下面全面が水25によって均等な力で支持されるので、自重による反り等の変形を生じる虞が無く、かつ水平に保持される。この状態で、水晶ウエハ26には、カット面の傾斜角度や平坦度の測定、表面状態の検査を含む様々な非接触式の測定又は検査を適正にかつ高精度に行うことができる。
【0029】
水晶ウエハ26について所望の測定又は検査を行った後、ポンプ23を逆向きに作動させ、凹所21内の水25を給排水口22から排出して給水タンク24に戻す(図2D)。水25が完全に抜けると、再び搬送アーム27を用いて水晶ウエハ26を吸着し、凹所21から取り出す。凹所21の底面が平坦かつ円滑であると、排水時に水の表面張力で水晶ウエハ26が凹所底面に貼り付く虞がある。そこで、凹所底面を図1Cに示すような波形面29又は他の様々な凹凸面で形成すると、水晶ウエハ26の取り出しがより簡単になるので好ましい。
【0030】
水晶ウエハを浮かせるための液体として、本実施例で使用した水(純水)は表面張力が大きく、取扱いが簡単で安全なことから、最も好ましい。しかし、大きな表面張力、高い取扱い性及び安全性を有するものであれば、水以外の様々な液体を用いることができる。更に、排水の容易さから或る程度良好な乾燥性と、測定・検査中の液位の変化を少なくするために低蒸発性とを有することが、より好ましい。
【0031】
図3は、本発明を適用した水晶板のカット面検査装置の構成を概略的に示しており、図1と同様の構成を有する水晶板保持装置と、X線源30及びX線検出器31を有するX線光学系と、水晶板搬送装置(図示せず)とを備える。X線源30は、ウエハ支持台20の凹所21内の水25に浮かせた水晶ウエハ26の表面に、X線32を所定の角度で照射するように配置される。X線検出器31は、水晶ウエハ26内部の結晶格子面で回折されたX線33を検出するように配置される。前記水晶板搬送装置は、例えば図2に関連して上述した搬送アーム27を用いることができる。
【0032】
先ず、図2に関連して上述したように、水晶ウエハ26をウエハ支持台20の凹所21内に配置し、水25を注入してその水面に水晶ウエハ26を浮かせる。次に、X線源30からX線32を水晶ウエハ26の表面に照射すると、X線は水晶ウエハ内部の結晶格子面で回折される。回折X線33は、水晶ウエハ26のカット面が結晶格子面に対して所定の傾斜角度を有する場合には、X線検出器31により検出され、カット面の傾斜角度のずれの有無が検出される。
【0033】
水晶ウエハ26のカット面の傾斜角度が所定値からずれている場合、X線検出器31は回折X線33を検出できない。そこで、X線検出器31を傾動させてその設置角度を補正し、回折X線32を検出できるようにする。そして、そのX線強度が最大となるX線検出器31の補正角度から、カット面の傾斜角度のずれ量を求めることができる。
【0034】
このように本発明による水晶板保持装置とX線光学系とを組み合せて構成することにより、本発明の水晶板のカット面検査装置は、測定対象の水晶板を常に変形させることなく水平に保持した状態で検査できるので、カット面の傾斜角度を高精度に検査することができる。
【0035】
図4は、本発明を適用した薄板状被測定物の平坦度測定装置の構成を概略的に示しており、図1と同様の構成を有する薄板状被測定物の保持装置と、レーザ光源34、ハーフミラー35、フィゾーフラット36、及びTVカメラからなる従来の観察光学系37を有するフィゾー式レーザ干渉計と、被測定物搬送装置(図示せず)とを有する。本実施例では、薄板状被測定物として水晶ウエハの平坦度を測定する場合について説明する。
【0036】
先ず、水晶ウエハ26をウエハ支持台20の凹所21内に配置し、水25を注入してその水面に水晶ウエハ26を浮かせる。次に、レーザ光源34から平行ビームとしてレーザ光38を水晶ウエハ表面に向けて垂直に照射する。ハーフミラー35を通過したレーザ光38は、その一部がフィゾーフラット36で反射されて参照光となり、ハーフミラー35で反射されて観察光学系37に入射する。フィゾーフラット36を通過した残りのレーザ光39は、水晶ウエハ26の表面で反射され、フィゾーフラット36を抜けてハーフミラー35で反射され、観察光学系に入射する。この反射光と参照光とが観察光学系において干渉を起こし、前記TVカメラの撮像面に干渉縞が形成される。この干渉縞をコンピュータを用いて公知の解析法により解析すると、水晶ウエハ26の表面高さ分布が得られ、その平坦度を測定できる。
【0037】
このように本発明による薄板状被測定物の保持装置とレーザ干渉計とを組み合せて構成することにより、本発明の平坦度測定装置は、薄板状被測定物を常に変形させることなく水平に保持した状態に維持できるので、高精度な測定が可能である。
【0038】
以上、本発明の好適な実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において上記実施例に様々な変形・変更を加えて実施することができる。本実施例では、図示するように長方形の水晶ウエハを使用したが、本発明は様々な外形の薄板状被測定物についても、同様に適用することができる。また、別の実施例では、先にウエハ支持台の凹所21内に水25を注入し、その後から水晶ウエハ26を搬送して水面に浮かせることもできる。
【0039】
【発明の効果】
本発明の薄板状被測定物の保持装置及び保持方法は、上述したように構成することにより、被測定物を液体の表面張力により比較的容易に液面に浮かせることができ、その下面全体が均等な力で支持されることから、反り等の変形を生じることなく本来の形状を維持したまま保持されるので、様々な非接触式の測定や検査を適正にかつ高精度に行うことができる。
【0040】
従って、本発明の水晶板のカット面検査装置及び検査方法によれば、従来のカット面検査装置及び検査方法の構成を利用して、水晶板を常に変形させることなく水平に保持した状態で、カット面の傾斜角度を高精度に検査することができる。また、本発明の平坦度測定装置及び測定方法によれば、レーザ干渉計を用いた従来の平坦度測定装置及び測定方法の構成を利用して、薄板状被測定物を常に変形させることなく水平に保持した状態で、その平坦度を高精度に測定することができる。
【図面の簡単な説明】
【図1】A図は本発明による水晶ウエハ保持装置を示す平面図、B図はそのB−B線における断面図、C図はウエハ支持具の底面を示す部分拡大断面図である。
【図2】図1の水晶ウエハ保持装置を用いて水晶ウエハを保持する過程を順に示す図である。
【図3】図1の保持装置を用いた水晶板のカット面検査装置の構成を示す概略斜視図である。
【図4】図1の保持装置を用いた平坦度測定装置の構成を示す概略斜視図である。
【図5】A図は従来のカット面検査装置の構成を概略的に示す斜視図、B図は試料台に保持される水晶ウエハの側面図である。
【図6】水晶ウエハを保持するための従来の別の構成を示す図である。
【図7】A図は従来の更に別のウエハ支持台を示す平面図、B図はその側面図、C図はA図のウエハ支持台にコンベックス形状の水晶チップを載せた側面図である。
【符号の説明】
1 水晶ウエハ
2 突起
3 試料台
4 空気孔
5 X線源
6 中央溝
7 X線検出器
8 吸着パッド
9 ウエハ固定部
10 水平ワイヤ
11 ウエハ
11´ 反り
12 水晶チップ
13 中心線
14 水平線
20 ウエハ支持台
21 凹所
22 給排水口
23 ポンプ
24 給水タンク
25 水
26 水晶ウエハ
27 搬送アーム
28 盛り上がり部
29 波形面
30 X線源
31 X線検出器
32、33 X線
34 レーザ光源
35 ハーフミラー
36 フィゾーフラット
37 観察光学系
38、39 レーザ光
[0001]
BACKGROUND OF THE INVENTION
The present invention is for holding such a thin plate-like object to be measured when performing various measurements or inspections on a thin plate-like article such as a crystal wafer such as a crystal wafer or a chip, or a semiconductor wafer. The present invention relates to an apparatus and a method. Furthermore, the present invention relates to a cut surface inspection apparatus and inspection method for a quartz plate, and a flatness measurement apparatus and measurement method for a thin plate-like object to be measured.
[0002]
[Prior art]
In general, a crystal chip used for a crystal device such as a crystal resonator is formed by cutting a wafer from a bar of artificial crystal. Since the inclination angle of the cut surface with respect to the crystal lattice plane inside the quartz plate determines the frequency characteristics of the quartz resonator, it is important to measure this with high accuracy. When inspecting a cut surface of a quartz wafer, for example, as described in Japanese Patent Application Laid-Open No. 9-33457, X-rays are radiated to a quartz wafer and diffracted on a crystal lattice plane inside the quartz wafer is measured. A cut surface inspection apparatus that measures the amount of deviation of the cut surface is widely used.
[0003]
In these conventional apparatuses, as shown in FIG. 5A, the crystal wafer 1 is placed on a rotatable sample stage 3 provided with a plurality of protrusions 2 and is sucked and held by the negative pressure action from the air holes 4. The X-rays are irradiated from the X-ray source 5 to the lower surface of the crystal plate through the central groove 6 of the sample table 3 and the diffracted X-rays are detected by the X-ray detector 7 on the opposite side while changing the angular position of the sample table 3. To do. From the angle position of the sample stage where the detected X-ray intensity is maximum, the deviation of the cut surface with respect to a predetermined reference inclination angle, that is, the deviation angle is obtained.
[0004]
In Japanese Patent Laid-Open No. 6-174661, three protrusions extending in the radial direction are formed on the sample stage in place of the protrusions in FIG. 5A and an air hole is arranged at the center thereof, and the crystal plate is shaped or sized. However, there is disclosed a cut surface inspection apparatus that is stably sucked and held regardless of the above. In still another conventional example, as shown in FIG. 6, the quartz wafer 1 is sucked and held vertically on a wafer fixing portion 9 having a suction pad 8 to prevent deformation of the quartz wafer due to gravity.
[0005]
Various flatness measuring devices or methods have been developed to measure the surface state, dimensions, etc., of flat sheets, waviness, etc. of thin-plate articles such as semiconductor wafers, hard disks, and optical disks in a non-contact manner. For example, in Japanese Patent Application Laid-Open No. 2000-171241, a semiconductor wafer as an object to be measured is horizontally placed on a wafer holder and held by suction, and laser light interference fringes are formed by a laser interferometer to measure flatness, A flatness measuring device using a type or ultrasonic range sensor is described. In another known flatness measuring apparatus, as shown in FIG. 7, a wire set type wafer support having horizontal wires 10 installed in parallel at equal intervals is used, and a wafer 11 to be measured is horizontally placed thereon. The surface state is measured with a laser interferometer.
[0006]
[Problems to be solved by the invention]
However, in the method of sucking and holding an object to be measured in the conventional cut surface inspection apparatus and flatness measurement apparatus described above, the crystal wafer is deformed such as a warp 1 ′ due to an adsorption force as shown in FIGS. 5B and 6. There is a risk that measurement cannot be performed appropriately and with high accuracy. Moreover, there is a problem that this deformation is more likely to occur as the quartz wafer becomes thinner.
[0007]
In the conventional wire set type wafer support shown in FIG. 7 as well, only the lower surface of the horizontal wafer 11 is supported by several lines. There is a risk of deformation such as warpage 11 'due to its own weight. Further, when the object to be measured is a convex-shaped crystal chip, the surface thereof is curved, so that there is a possibility that the object to be measured is not placed horizontally on the horizontal wire 10. For this reason, as shown in FIG. 7C, there is a problem that the center line 13 of the crystal chip 12 is not parallel to the horizontal line 14 and cannot be measured properly.
[0008]
Therefore, the present invention has been made in view of the above-described conventional problems, and the purpose thereof is to properly handle a thin plate-like object to be measured for non-contact measurement or inspection. An object of the present invention is to provide an apparatus and a method for supporting in a posture and preventing deformation such as warping, so that measurement or inspection can always be performed appropriately and with high accuracy.
[0009]
Another object of the present invention is to provide an inspection apparatus and inspection that can support a crystal plate in an appropriate posture and prevent deformation such as warpage, and can always measure the inclination angle of the cut surface with respect to the crystal lattice plane appropriately and with high accuracy. It is to provide a method.
[0010]
Still another object of the present invention is to provide a flatness measuring device that supports a thin plate-like object to be measured in an appropriate posture and prevents deformation such as warpage, and can always measure the surface state appropriately and with high accuracy. It is to provide a measurement method.
[0011]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above-described object, the device has a measurement object support base having a recess on the upper surface, and means for supplying a liquid into the recess, and the liquid is supplied to the recess. There is provided a holding device for a thin plate-like object to be measured, wherein the thin-plate-like object to be measured is floated on the surface of the liquid.
[0012]
A thin plate-like object can be floated on the surface of the liquid relatively easily due to the surface tension of the liquid, and the entire lower surface is supported with an equal force, so when performing various non-contact measurement and inspection. In addition, it can be held horizontally while maintaining its original shape without causing deformation such as warping.
[0013]
Here, the liquid is preferably water because of its large surface tension and excellent handling and safety.
[0014]
Some embodiments further comprise means for draining liquid from within the recess.
[0015]
Furthermore, when the object support base has an opening in the bottom surface of the recess, and liquid is supplied to or discharged from the opening, the object to be measured is placed in the recess, and the object to be measured is measured. This is preferable because the process of floating and / or removing the object is facilitated.
[0016]
In another embodiment, when the bottom surface of the recess is formed to be uneven, it becomes easier to spread over the entire lower surface of the object to be measured when supplying the liquid, so that it can be floated more easily and the liquid is discharged. At this time, there is no possibility that the lower surface of the object to be measured sticks to the bottom surface of the recess due to the surface tension of the liquid, which is convenient.
[0017]
In another embodiment, since the recess has a shape other than a true circle, the distance between the inner wall surface of the recess and the peripheral edge of the object floated on the liquid surface is different, so the surface tension along the inner wall surface of the recess is different. Since the force acting on the object to be measured is generated from the swell of the liquid generated by the above, the object to be measured is preferably held at the approximate center of the recess and in a stationary state.
[0018]
Further, according to another aspect of the present invention, the process of disposing the thin plate-shaped object to be measured in the recess of the object support base of the present invention described above, and supplying the liquid into the recess to the liquid surface A method for holding a thin plate-like object to be measured is provided, including a process of floating the object to be measured.
[0019]
In one embodiment, the object to be measured can be easily taken out by further including a process of discharging the liquid from the inside of the recess and a process of discharging the object to be measured from the inside of the recess. Moreover, it is preferable that the liquid to be used is water from a viewpoint of the magnitude | size of surface tension, a handleability, and safety | security.
[0020]
According to another aspect of the present invention, there is provided a quartz plate comprising the above-described thin plate-like object holding device of the present invention and an X-ray optical system having an X-ray source and an X-ray detector. A cut surface inspection apparatus is provided, and by combining with a conventional X-ray optical system, an appropriate and highly accurate cut surface inspection of a quartz plate can be performed.
[0021]
Further, according to the present invention, the process of disposing the crystal plate in the recess of the object support base of the present invention described above, the process of supplying the liquid into the recess and floating the crystal plate on the liquid surface, A method for inspecting a cut surface of a quartz crystal plate comprising the steps of irradiating the surface of the quartz crystal plate with X-rays and detecting the diffracted X-rays is provided. The cut surface inspection can be appropriately performed with higher accuracy.
[0022]
Furthermore, according to another aspect of the present invention, there is provided a flatness measuring apparatus comprising the above-described thin plate-like object holding device of the present invention and a flatness measuring instrument having a laser interferometer. Similarly, the combination with the conventional laser interferometer makes it possible to measure the flatness with an appropriate and high accuracy.
[0023]
Further, according to the present invention, the process of disposing the thin plate-shaped object to be measured in the recess of the object support base of the present invention described above, and supplying the liquid into the recess and placing the object to be measured on the liquid surface Provided is a flatness measuring method characterized in that the measuring object is irradiated with a laser beam using a laser interferometer, and the flatness of the object to be measured is measured from interference fringes formed by the reflected light. In addition, the flatness measurement of the thin plate-like object to be measured can be appropriately performed with higher accuracy by using a conventionally known method.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 schematically shows the configuration of a holding device according to the present invention for holding a quartz wafer as a thin plate-like object to be measured for non-contact inspection or measurement. This holding device has a rectangular parallelepiped block-shaped wafer support base 20, and an upper surface thereof is provided with an elliptical recess 21 as shown in FIG. 1A. As shown in FIG. 1B, a water supply / drain port 22 is opened at the center of the bottom surface of the recess 21 and is connected to a pump 23 and a water supply tank 24 via a pipeline.
[0025]
In use, a predetermined amount of water 25 is preferably injected into the recess 21 from the water supply tank 24 in the manner shown in FIG. 2, and the quartz crystal wafer 26 to be measured is floated on the water surface by surface tension. First, the crystal wafer 26 is attracted to the lower end of the transfer arm 27 and transferred above the wafer support 20 (FIG. 2A), and placed on the center of the bottom of the empty recess 21 (FIG. 2B). Next, the pump 23 is operated to supply water from the water supply tank 24 and injected into the recess 21 from the water supply / drain port 22. Since the water supply / drain port 22 is opened on the lower side of the crystal wafer 26, it can be easily floated by the injection of water 25 (FIG. 2C). The amount of water injected may be an amount that can reliably float the crystal wafer 26.
[0026]
At this time, a raised portion 28 is formed on the inner wall surface of the recess 21 over the entire circumference by the surface tension of the water 25. As shown in FIGS. 1A and 1B, since the uniform force f acts from the entire circumference of the inner wall surface of the recess due to the surface tension of the raised portion 28, the crystal wafer 26 is held at the center position of the recess 21 by the balance. .
[0027]
In this embodiment, since the planar shape of the recess 21 is formed in an elliptical shape, the force actually acting on the crystal wafer 26 depends on the angular position of the inner wall surface of the recess. Since the strength is different due to the difference, the crystal wafer 26 is held stationary. However, when the recess 21 is made into a perfect circle, the force acting on the crystal wafer 26 is constant regardless of the angular position of the inner wall surface of the recess, so that the crystal wafer is subjected to slight force imbalance or external force. There is a risk that it will not rotate and remain stationary. Further, as the distance between the inner wall surface of the recess 21 and the peripheral edge of the quartz wafer 26 increases, the same problem can be considered for shapes other than a true circle. Accordingly, the planar shape of the recess 21 is a shape other than a substantially circular shape (for example, the oval shape of the present embodiment) at least at the height of the water 25 to be injected, and the size thereof is set to the recess. It is preferable from the viewpoint of space efficiency to reduce the size of the quartz wafer within a range in which the quartz wafer can be arranged and taken out.
[0028]
In this way, since the entire lower surface of the quartz wafer 26 is supported by the water 25 with an equal force, there is no risk of deformation such as warpage due to its own weight, and the quartz wafer 26 is held horizontally. In this state, various non-contact type measurements or inspections including the measurement of the inclination angle and flatness of the cut surface and the inspection of the surface state can be appropriately and accurately performed on the quartz wafer 26.
[0029]
After a desired measurement or inspection is performed on the quartz wafer 26, the pump 23 is operated in the reverse direction, and the water 25 in the recess 21 is discharged from the water supply / drain port 22 and returned to the water supply tank 24 (FIG. 2D). When the water 25 is completely discharged, the crystal wafer 26 is again adsorbed by using the transfer arm 27 and taken out from the recess 21. If the bottom surface of the recess 21 is flat and smooth, the crystal wafer 26 may stick to the bottom surface of the recess due to the surface tension of water during drainage. Therefore, it is preferable to form the bottom surface of the recess with a corrugated surface 29 as shown in FIG. 1C or other various uneven surfaces because the quartz wafer 26 can be taken out more easily.
[0030]
The water (pure water) used in this example is the most preferable liquid for floating the quartz wafer because it has a large surface tension, is easy to handle and is safe. However, various liquids other than water can be used as long as they have large surface tension, high handleability and safety. Further, it is more preferable to have a somewhat good drying property because of easy drainage and a low evaporation property in order to reduce a change in the liquid level during measurement / inspection.
[0031]
FIG. 3 schematically shows a configuration of a crystal plate cut surface inspection apparatus to which the present invention is applied. The crystal plate holding device, the X-ray source 30 and the X-ray detector 31 having the same configuration as that of FIG. And an X-ray optical system having a crystal plate conveying device (not shown). The X-ray source 30 is arranged so as to irradiate the surface of the crystal wafer 26 floated on the water 25 in the recess 21 of the wafer support 20 with X-rays 32 at a predetermined angle. The X-ray detector 31 is arranged so as to detect X-rays 33 diffracted by the crystal lattice plane inside the crystal wafer 26. The crystal plate transport device can use, for example, the transport arm 27 described above with reference to FIG.
[0032]
First, as described above with reference to FIG. 2, the crystal wafer 26 is placed in the recess 21 of the wafer support 20, water 25 is injected, and the crystal wafer 26 is floated on the water surface. Next, when the surface of the crystal wafer 26 is irradiated with X-rays 32 from the X-ray source 30, the X-rays are diffracted on the crystal lattice plane inside the crystal wafer. The diffracted X-ray 33 is detected by the X-ray detector 31 when the cut surface of the crystal wafer 26 has a predetermined tilt angle with respect to the crystal lattice plane, and the presence or absence of a shift in the tilt angle of the cut surface is detected. The
[0033]
When the tilt angle of the cut surface of the crystal wafer 26 is deviated from a predetermined value, the X-ray detector 31 cannot detect the diffracted X-rays 33. Therefore, the X-ray detector 31 is tilted to correct its installation angle so that the diffracted X-ray 32 can be detected. And the deviation | shift amount of the inclination angle of a cut surface can be calculated | required from the correction angle of the X-ray detector 31 in which the X-ray intensity becomes the maximum.
[0034]
As described above, by combining the quartz plate holding device according to the present invention and the X-ray optical system, the quartz plate cut surface inspection device of the present invention can hold the crystal plate to be measured horizontally without always deforming it. Since it can test | inspect in the state which carried out, the inclination angle of a cut surface can be test | inspected with high precision.
[0035]
4 schematically shows the configuration of a flatness measuring device for a thin plate object to which the present invention is applied. The thin plate object holding device having the same structure as that of FIG. , A Fizeau laser interferometer having a conventional observation optical system 37 composed of a half mirror 35, a Fizeau flat 36, and a TV camera, and a device to be measured (not shown). In this embodiment, a case where the flatness of a quartz wafer is measured as a thin plate-like object to be measured will be described.
[0036]
First, the crystal wafer 26 is placed in the recess 21 of the wafer support 20, and water 25 is injected to float the crystal wafer 26 on the water surface. Next, a laser beam 38 is irradiated vertically from the laser light source 34 toward the surface of the quartz wafer as a parallel beam. A part of the laser light 38 that has passed through the half mirror 35 is reflected by the Fizeau flat 36 to become reference light, is reflected by the half mirror 35, and enters the observation optical system 37. The remaining laser light 39 that has passed through the Fizeau flat 36 is reflected by the surface of the crystal wafer 26, passes through the Fizeau flat 36, is reflected by the half mirror 35, and enters the observation optical system. The reflected light and the reference light cause interference in the observation optical system, and interference fringes are formed on the imaging surface of the TV camera. When this interference fringe is analyzed by a known analysis method using a computer, the surface height distribution of the quartz wafer 26 is obtained, and the flatness can be measured.
[0037]
In this way, the flatness measuring device of the present invention is configured to hold the thin plate-shaped object to be measured horizontally without being deformed by combining the thin-plate object to be measured holding device and the laser interferometer. Therefore, highly accurate measurement is possible.
[0038]
The preferred embodiments of the present invention have been described in detail above. However, as will be apparent to those skilled in the art, the present invention can be practiced with various modifications and changes within the technical scope thereof. . In this embodiment, a rectangular quartz wafer is used as shown in the figure, but the present invention can be similarly applied to thin plate-like objects to be measured having various outer shapes. In another embodiment, the water 25 can be injected into the recess 21 of the wafer support first, and then the crystal wafer 26 can be transported and floated on the water surface.
[0039]
【The invention's effect】
The apparatus and method for holding a thin plate-like object to be measured according to the present invention is configured as described above, so that the object to be measured can be floated on the liquid surface relatively easily due to the surface tension of the liquid, and the entire lower surface is Since it is supported with an equal force, it is maintained while maintaining its original shape without causing deformation such as warping, so various non-contact measurement and inspection can be performed appropriately and with high accuracy. .
[0040]
Therefore, according to the cut surface inspection device and inspection method of the crystal plate of the present invention, using the configuration of the conventional cut surface inspection device and inspection method, the crystal plate is always held horizontally without being deformed, The inclination angle of the cut surface can be inspected with high accuracy. In addition, according to the flatness measuring apparatus and measuring method of the present invention, the structure of a conventional flatness measuring apparatus and measuring method using a laser interferometer is used to make horizontal measurement without always deforming a thin plate-like object to be measured. In this state, the flatness can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1A is a plan view showing a crystal wafer holding device according to the present invention, FIG. 1B is a cross-sectional view taken along line BB, and FIG. 1C is a partially enlarged cross-sectional view showing a bottom surface of a wafer support.
FIGS. 2A and 2B are diagrams sequentially illustrating a process of holding a crystal wafer using the crystal wafer holding apparatus of FIG.
3 is a schematic perspective view showing a configuration of a crystal plate cut surface inspection apparatus using the holding device of FIG. 1; FIG.
4 is a schematic perspective view showing a configuration of a flatness measuring device using the holding device of FIG. 1. FIG.
FIG. 5A is a perspective view schematically showing a configuration of a conventional cut surface inspection apparatus, and FIG. 5B is a side view of a crystal wafer held on a sample stage.
FIG. 6 is a diagram showing another conventional configuration for holding a quartz wafer.
7A is a plan view showing still another conventional wafer support, FIG. B is a side view thereof, and FIG. C is a side view of a convex crystal chip placed on the wafer support of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal wafer 2 Protrusion 3 Sample stand 4 Air hole 5 X-ray source 6 Central groove 7 X-ray detector 8 Suction pad 9 Wafer fixing part 10 Horizontal wire 11 Wafer 11 'Warpage 12 Crystal chip 13 Center line 14 Horizontal line 20 Wafer support stand 21 Recess 22 Water supply / drain port 23 Pump 24 Water supply tank 25 Water 26 Crystal wafer 27 Transfer arm 28 Swelling portion 29 Wave surface 30 X-ray source 31 X-ray detector 32, 33 X-ray 34 Laser light source 35 Half mirror 36 Fizeau flat 37 Observation Optical system 38, 39 Laser light

Claims (11)

上面に楕円形の凹所を有する被測定物支持台と、前記凹所内に液体を供給するための手段とを有し、前記凹所に供給した前記液体の表面に薄板状被測定物を浮かせるようにしたことを特徴とする薄板状被測定物の保持装置。An object support base having an oval recess on the upper surface and means for supplying a liquid into the recess, and the thin plate object to be measured floats on the surface of the liquid supplied to the recess A holding device for a thin plate-like object to be measured. 前記凹所内から前記液体を排出するための手段を更に有することを特徴とする請求項1に記載の薄板状被測定物の保持装置。  The thin plate-shaped object to be measured holding apparatus according to claim 1, further comprising means for discharging the liquid from the inside of the recess. 被測定物支持台が前記凹所の底面に開口を有し、前記開口から前記凹所内に前記液体を供給し又は排出することを特徴とする請求項1又は2に記載の薄板状被測定物の保持装置。  The thin plate-shaped object to be measured according to claim 1 or 2, wherein an object support base has an opening in a bottom surface of the recess, and the liquid is supplied to or discharged from the opening into the recess. Holding device. 前記凹所の底面が凹凸に形成されていることを特徴とする請求項1乃至3のいずれかに記載の薄板状被測定物の保持装置。  The apparatus for holding a thin plate-shaped object to be measured according to any one of claims 1 to 3, wherein a bottom surface of the recess is formed to be uneven. 前記液体が水であることを特徴とする請求項1乃至のいずれかに記載の薄板状被測定物の保持装置。The apparatus for holding a thin plate object to be measured according to any one of claims 1 to 4 , wherein the liquid is water. 請求項1乃至5のいずれかに記載される被測定物支持台の前記凹所内に薄板状被測定物を配置する過程と、前記凹所内に前記液体を供給してその液面に前記被測定物を浮かせる過程とを含むことを特徴とする薄板状被測定物の保持方法。A step of placing a thin plate measured object in the measurement object supporting base of the recess as described in any one of claims 1 to 5, wherein the measurement on the liquid surface by supplying the liquid to the recess A method for holding a thin plate-like object to be measured, comprising the step of floating an object. 前記凹所内から前記液体を排出する過程と、前記凹所内から前記被測定物を搬出する過程を更に含むことを特徴とする請求項に記載の薄板状被測定物の保持方法。The method for holding a thin plate-like object to be measured according to claim 6 , further comprising a step of discharging the liquid from the inside of the recess and a step of carrying out the object to be measured from the inside of the recess. 請求項1乃至のいずれかに記載される薄板状被測定物の保持装置と、X線源及びX線検出器を有するX線光学系とを備えることを特徴とする水晶板のカット面検査装置。A cut surface inspection of a quartz plate, comprising: the thin plate-like object holding device according to any one of claims 1 to 5 ; and an X-ray optical system having an X-ray source and an X-ray detector. apparatus. 請求項1乃至5のいずれかに記載される被測定物支持台の前記凹所内に水晶板を配置する過程と、前記凹所内に前記液体を供給してその液面に前記水晶板を浮かせる過程と、前記水晶板の表面にX線を照射し、その回折X線を検出する過程とを含むことを特徴とする水晶板のカット面検査方法。Process to float the steps of: placing a quartz plate to the object to be measured supporting base of said recess, said quartz plate to the liquid surface by supplying the liquid to the recess as claimed in any of claims 1 to 5 And a process for irradiating the surface of the quartz plate with X-rays and detecting the diffracted X-rays. 請求項1乃至のいずれかに記載される薄板状被測定物の保持装置と、レーザ干渉計を有する平坦度測定器とを備えることを特徴とする平坦度測定装置。A holding device for lamellar measured object as described in any one of claims 1 to 5, the flatness measuring apparatus, characterized in that it comprises a flatness measurement device having a laser interferometer. 請求項1乃至5のいずれかに記載される被測定物支持台の前記凹所内に薄板状被測定物を配置する過程と、前記凹所内に前記液体を供給してその液面に前記薄板状被測定物を浮かせる過程と、レーザ干渉計を用いて前記被測定物にレーザ光を照射し、その反射光により形成される干渉縞から前記被測定物の平坦度を測定することを特徴とする平坦度測定方法。A step of placing a thin plate measured object in the measurement object supporting base of the recess as described in any one of claims 1 to 5, wherein the thin plate on the liquid surface by supplying the liquid to the recess A process of floating the object to be measured, and irradiating the object to be measured with laser light using a laser interferometer, and measuring the flatness of the object to be measured from interference fringes formed by the reflected light. Flatness measurement method.
JP2000363611A 2000-11-29 2000-11-29 Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method Expired - Fee Related JP3770078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363611A JP3770078B2 (en) 2000-11-29 2000-11-29 Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363611A JP3770078B2 (en) 2000-11-29 2000-11-29 Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2002168739A JP2002168739A (en) 2002-06-14
JP3770078B2 true JP3770078B2 (en) 2006-04-26

Family

ID=18834705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363611A Expired - Fee Related JP3770078B2 (en) 2000-11-29 2000-11-29 Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP3770078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758685A (en) * 2016-04-07 2016-07-13 长沙理工大学 Experimental water tank sediment bed surface leveling method and experimental water tank sediment bed surface leveling device
CN108807204A (en) * 2017-05-05 2018-11-13 上海新昇半导体科技有限公司 Wafer planarization degree measuring device and wafer planarization degree measuring system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063291B1 (en) 2009-06-18 2011-09-07 한양대학교 산학협력단 Specimen mount for optical measuring instrument and optical measuring instrument having same
JP6482251B2 (en) * 2014-11-21 2019-03-13 株式会社ミツトヨ Shape measuring device
JP7289027B2 (en) * 2018-03-19 2023-06-09 東京エレクトロン株式会社 Substrate holding apparatus and method for shape metrology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758685A (en) * 2016-04-07 2016-07-13 长沙理工大学 Experimental water tank sediment bed surface leveling method and experimental water tank sediment bed surface leveling device
CN105758685B (en) * 2016-04-07 2018-06-12 长沙理工大学 A kind of experimental trough silt bed surface flatening method and its device
CN108807204A (en) * 2017-05-05 2018-11-13 上海新昇半导体科技有限公司 Wafer planarization degree measuring device and wafer planarization degree measuring system
CN108807204B (en) * 2017-05-05 2020-07-07 上海新昇半导体科技有限公司 Wafer flatness measuring device and wafer flatness measuring system

Also Published As

Publication number Publication date
JP2002168739A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
US7301623B1 (en) Transferring, buffering and measuring a substrate in a metrology system
TWI672492B (en) Inspection method and inspection device for hexagonal crystal single crystal substrate
TWI586958B (en) Warpage inspection device for plate body and warpage inspection method for the same
KR101787765B1 (en) Evaluation device and evaluation method
US6608689B1 (en) Combination thin-film stress and thickness measurement device
KR950033490A (en) Probe Device
JP2006170996A (en) Inspection device, sample, and inspection method
JP2007510312A (en) Azimuth scanning of structures formed on semiconductor wafers
US8200353B2 (en) Measuring apparatus
US5768335A (en) Apparatus and method for measuring the orientation of a single crystal surface
JP3770078B2 (en) Thin plate-like object to be measured and holding method, crystal plate cut surface inspection device and inspection method, thin plate-like object to be measured flatness measuring device and measuring method
JP4875824B2 (en) Ring chuck for fixing 200 and 300 mm wafers
JP2668290B2 (en) Apparatus for holding and positioning substrate cassette
US7012680B2 (en) Method and apparatus for quantitative quality inspection of substrate such as wafer
US5436721A (en) Wafer tilt gauge
JP5502740B2 (en) Inspection device
KR102194948B1 (en) ultrasonic transducer inspection device with probe position alignment
EP0766298A2 (en) Method of and apparatus for determining residual damage to wafer edges
JP2023037588A (en) Bubble measurement unit, substrate processing apparatus including the same, and bubble measurement method
JP2007064748A (en) Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus
JP2000121344A (en) Thickness measuring equipment for semiconductor wafer
CN107210255B (en) Wafer transfer apparatus
JPS61241659A (en) Inspecting device
KR101309120B1 (en) Chuck table apparatus for inspecting holder of solenoid valve automatically
JPH02275344A (en) Apparatus for measuring edge tip of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees