JP2007064748A - Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus - Google Patents

Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus Download PDF

Info

Publication number
JP2007064748A
JP2007064748A JP2005249622A JP2005249622A JP2007064748A JP 2007064748 A JP2007064748 A JP 2007064748A JP 2005249622 A JP2005249622 A JP 2005249622A JP 2005249622 A JP2005249622 A JP 2005249622A JP 2007064748 A JP2007064748 A JP 2007064748A
Authority
JP
Japan
Prior art keywords
shape
panel
wafer
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249622A
Other languages
Japanese (ja)
Inventor
Masanori Kunieda
正典 國枝
Hisashi Natsu
恒 夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2005249622A priority Critical patent/JP2007064748A/en
Publication of JP2007064748A publication Critical patent/JP2007064748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the accurate shape of a panel using an upright shape measuring apparatus under the situation that it has been difficult to measure the accurate shape of a panel by the influence of the deformation of the panel caused by its self weight as the shape of panels such as silicon wafers and FPD glass substrates increases in area and decreases in thickness. <P>SOLUTION: An error factor influencing the measurement of the shape of a large-area, thin panel using the shape measuring apparatus is analyzed, and a systematic error unique to the upright shape measuring apparatus is extracted. By measuring the shape with the extracted systematic error value as a correction value, the accurate shape of the panel can be measured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

縦型測定装置を使用して、シリコンウェーハやFPD用ガラス基板等のパネルの形状測定を行っているが、パネルが大面積・薄肉化するに伴い、その正確な形状測定を迅速に行うのが困難になってきている。本発明は測定での誤差要因を分析し、大面積・薄肉化パネルでも、縦型形状測定装置を使用して正確な形状測定が行える方法とその装置に関する。 While measuring the shape of panels such as silicon wafers and glass substrates for FPD using a vertical measuring device, the accurate shape measurement can be performed quickly as the panel becomes larger and thinner. It has become difficult. The present invention relates to a method and an apparatus for analyzing an error factor in measurement and performing an accurate shape measurement using a vertical shape measuring apparatus even on a large area and thin panel.

最近のパネル製造技術において、パネルの薄肉化により、パネルの厚みのバラツキ自体は小さくなるが、その一方で、パネルの自重による変形の影響を受けるような、大面積・薄肉パネルとなると、パネルを支持するクランプの挟持方法や測定装置自体がもと誤差因子のによる影響を受け、パネルの正確な形状測定が困難となってきている。 In recent panel manufacturing technology, the panel thickness variation itself is reduced by thinning the panel, but on the other hand, if it becomes a large area and thin panel that is affected by the deformation of the panel due to its own weight, the panel is The clamping method of the supporting clamp and the measuring device itself are influenced by error factors, making it difficult to accurately measure the panel shape.

従来、シリコンウェーハ等の薄板の表面形状を測定するための装置として、回転可能な真空チャックにシリコンウェーハ等の薄板が水平吸着支持され、ウェーハ等の厚みを測定し、その厚みより平坦度を測定する方法が知られている。 Conventionally, as a device for measuring the surface shape of a thin plate such as a silicon wafer, the thin plate such as a silicon wafer is horizontally supported by a rotatable vacuum chuck, the thickness of the wafer is measured, and the flatness is measured from the thickness. How to do is known.

特公平5−77179号公報Japanese Patent Publication No. 5-77179

しかしこの方法では、平面等の基準面に密着されることを前提としていることから、密着される面に局所的な凹凸があり、あるいは、厚みが一定でも反りを有しており、この面が基準平面に充分に密着されなかった場合、その凹凸あるいは反りが、その反対面に存在する形状として表現されてしまい、例えば、その表面に微細なパターンの描画あるいは転写を行うシリコンウェーハ 等の形状評価において過大もしくは過小評価が生じるおそれがあるという問題があった。 However, in this method, since it is premised on being in close contact with a reference surface such as a flat surface, there is local unevenness on the close contact surface, or there is warping even if the thickness is constant. If not sufficiently adhered to the reference plane, the unevenness or warpage is expressed as a shape existing on the opposite surface. For example, shape evaluation of a silicon wafer or the like for drawing or transferring a fine pattern on the surface There was a problem that over- or underestimation might occur.

そのため、ウェーハ形状測定装置として、ウェーハの外周を等間隔の3点で水平に支持して、ウェーハに平行に配置した非接触の測定装置で表面側の各測定点でウェーハまでの距離を第1の測定値とし、ウェーハを反転して水平に支持して表面側の各測定点に対応する位置のウェーハまでの距離を第2の測定値として前記の測定装置で測定し、各測定点の第1の測定値と第の測定値の差の1/2の値を前記ウエハの反り量として算出する、横型形状測定法が知られている。 Therefore, as a wafer shape measuring device, the outer periphery of the wafer is supported horizontally at three equally spaced points, and the non-contact measuring device arranged in parallel to the wafer has a first distance to the wafer at each measuring point on the surface side. The measurement apparatus measures the distance to the wafer at the position corresponding to each measurement point on the surface side as a second measurement value by inverting the wafer and supporting the wafer horizontally. A horizontal shape measurement method is known in which a value that is ½ of the difference between the first measurement value and the first measurement value is calculated as the amount of warpage of the wafer.

特開2002−243431公報JP 2002-243431 A

しかしながら、横型形状測定法は、ウェーハの反りの真に近い形状を測定出来るが、表側と裏側の2回測定する必要があり、測定に時間がかかり、実際の製造ラインでは採用が難しい欠点があった。 However, the horizontal shape measurement method can measure the shape of wafer warpage, but it must be measured twice on the front side and back side, which takes time and is difficult to adopt in an actual production line. It was.

そのため、現在では、直径300mm,厚さ0.775mmの大型のウェーハの測定には,自重による変形を小さくするため、外周三点でウェーハを鉛直に支持し、ウェーハを回転させ、光学干渉縞を使用する方法、および変位センサでウェーハ両面をスキャンする方法で形状を測定する縦型測定法が知られている。 Therefore, at present, in order to measure large wafers with a diameter of 300 mm and a thickness of 0.775 mm, in order to reduce deformation due to its own weight, the wafer is supported vertically at three points on the outer periphery, the wafer is rotated, and optical interference fringes are generated. A vertical measurement method is known in which a shape is measured by a method used and a method in which both sides of a wafer are scanned by a displacement sensor.

川又ほか:縦型測定法による300mmシリコンウェーハの形状測定に関する研究、2004年度精密工学会春季大会講演論文集、pp697−698Kawamata et al .: Research on shape measurement of 300mm silicon wafer by vertical measurement method, 2004 Annual Meeting of Precision Engineering Society, pp 697-698 特開平11−351857号公報JP-A-11-351857 特開平11−260873号公報Japanese Patent Laid-Open No. 11-260873 特開2005−51213公報JP-A-2005-51213

縦型形状測定法ではウェーハの両側に設置された2つの変位センサにより、センサとウェーハの表面と裏面の距離を同時に測定することから、外乱の影響を受けずにウェーハの厚さを測定できるが、パネルの大型・薄肉化が進むと、色々な誤差要因が重なり、正確な形状測定が難しくなる。さらに、縦型形状測定法では構造上、オプティカルフラットの測定による精度の検証が困難である。 In the vertical shape measurement method, the distance between the sensor and the front and back surfaces of the wafer is measured simultaneously by two displacement sensors installed on both sides of the wafer, so the wafer thickness can be measured without being affected by disturbances. As panels become larger and thinner, various error factors overlap, making accurate shape measurement difficult. Furthermore, in the vertical shape measurement method, it is difficult to verify the accuracy by measuring the optical flat because of the structure.

シリコンウェーハの平面度は半導体の高密度化に影響するため、反りの大きいシリコンウェーハは、デバイス工程において歩留まりを低下させる。板厚が薄いウェーハはチャック面にならうため、ワイヤソーでウェーハをスライシングする際に発生した反りは、その後の研削工程やラッピング工程で取り除くことはできないので、素材の製造段階でウェーハの反りを簡便に、正確に測定する方法の要求は高まってきている。 Since the flatness of the silicon wafer affects the high density of the semiconductor, a silicon wafer having a large warp reduces the yield in the device process. Thin wafers follow the chuck surface, so the warpage that occurs when slicing the wafer with a wire saw cannot be removed in the subsequent grinding or lapping process. In addition, the demand for accurate measurement methods is increasing.

しかしながら、シリコンウェーハやFPD用ガラス基板の測定についての研究のほとんどは、測定センサの開発や測定システムの誤差分離に関するものであり、精度検定用の反りを求める方法も確立されておらず、たとえば、現在市販されている縦型測定装置では、パネルの変形の影響により、反りの再現性は約10μm程度であり、サブミクロンの測定精度は実現していない。 However, most of the research on the measurement of silicon wafers and glass substrates for FPDs is related to the development of measurement sensors and error separation of measurement systems, and no method has been established for obtaining warpage for accuracy testing. In the vertical measuring apparatus currently on the market, warp reproducibility is about 10 μm due to the deformation of the panel, and submicron measurement accuracy is not realized.

本発明は、シリコンウェーハやFPD用ガラス基板等のパネルの大面積・薄肉化に伴い、パネルを支持するクランプ力の影響やパネルの自重による変形の影響が、縦型形状測定装置の場合どの位あるかを調べ、これらがパネルの形状測定時に影響を及ぼす要因について分析し、縦型形状測定装置を使用し、正確なパネルの形状を測定する方法を提供する。 In the present invention, the influence of the clamping force for supporting the panel and the deformation due to the weight of the panel with the large area and thinning of the panel, such as a silicon wafer and a glass substrate for FPD, is affected in the case of the vertical shape measuring apparatus. It is investigated whether there are any factors that influence the measurement of the shape of the panel, and a method of measuring an accurate shape of the panel using a vertical shape measuring device is provided.

本発明者等は、現在取引されている、直径300mm、厚み0.775mmのシリコンウェーハを使用し、まず、横型形状測定装置で、自重による変形の影響を除いた、ウェーハの正確な形状を測した。縦型形状測定装置を使用し、前記ウェーハの形状測定時における誤差要因を分析し、解析したところ、装置が固有の誤差要因を持つことを見出し、その誤差要因を、前記、縦型形状測定装置の測定時に補正すれば、前記ウェーハの正確な形状に近い、大面積・薄肉のパネルの形状測定が可能であることを見出し本発明を完成させた。 The present inventors use a silicon wafer having a diameter of 300 mm and a thickness of 0.775 mm, which is currently being traded. First, the horizontal shape measuring device is used to measure the exact shape of the wafer without the influence of deformation due to its own weight. did. Using a vertical shape measuring device, the error factor at the time of measuring the shape of the wafer was analyzed and analyzed. As a result, it was found that the device had an inherent error factor. As a result, the inventors have found that it is possible to measure the shape of a large-area, thin-walled panel that is close to the exact shape of the wafer.

すなわち、本発明は、縦型形状測定装置に、大面積・薄肉のパネルを、等角度で少なくとも三ヶ所の支持点を保有する回転支持体に、同一平面内で回転自在となるよう支持し、前記パネルを回転させ、前記パネルを挟んで対向する2組の変位センサを走査して、測定したパネルの形状と、前記パネルの正確な形状の差異より、前記縦型形状測定装置が保有する装置固有の系統誤差を抽出し、この抽出した系統誤差を補正して、大面積・薄肉のパネルの形状を測定する方法である。 That is, the present invention supports a large-sized and thin-walled panel on a vertical shape measuring device, on a rotating support having at least three support points at an equal angle so as to be rotatable in the same plane, A device possessed by the vertical shape measuring device based on the difference between the measured shape of the panel and the exact shape of the panel by rotating the panel and scanning two sets of displacement sensors facing each other across the panel. In this method, an inherent systematic error is extracted, the extracted systematic error is corrected, and the shape of a large-area, thin-walled panel is measured.

前記の大面積・薄肉のパネルの正確な形状を、三点支持裏返し法により求める方法である。 This is a method for obtaining the accurate shape of the large-area, thin-walled panel by a three-point support flip method.

前記の三点支持裏返し法が、大面積・薄肉のパネルを、水平に同心円上に配置した三点で支持し、前記パネルの上面に平行に配置したガイド軸に沿って変位センサを走査して求めた、前記パネルの一方の面の形状と、前記パネルを真後ろに裏返し、前記と同様にして求めた、前記パネルの他方の面の形状との差異より、前記パネルの自重による変形成分を補正した前記パネルの形状を測定する方法であるる。 The above three-point support flip method supports a large-area, thin-walled panel at three points that are horizontally arranged on concentric circles, and scans a displacement sensor along a guide axis that is arranged parallel to the upper surface of the panel. The deformation component due to the weight of the panel is corrected based on the difference between the obtained shape of one surface of the panel and the shape of the other surface of the panel, which is obtained in the same manner as described above. This is a method for measuring the shape of the panel.

前記した、本発明の方法より、縦型形状測定装置が保有する装置固有の系統誤差を抽出し、その抽出したデータを、補正値として記憶させる記憶機能、および前記補正値の加減算を行う演算機能を保有する縦型形状測定装置である。 The above-described method of the present invention extracts the system-specific system error held by the vertical shape measuring apparatus, stores the extracted data as a correction value, and the calculation function performs addition / subtraction of the correction value. Is a vertical shape measuring device.

縦型形状測定装置を使用し、大型で薄肉のシリコンウェーハや、ガラス基板等のパネルの形状の測定を、装置固有の系統誤差を補正することで、これらの大面積・薄肉パネルの生産ライン上で行えば、正確なパネルの形状を短時間で測定でき、工程の生産管理、不良率の削減に有用である。 Using a vertical shape measuring device, measuring the shape of large and thin silicon wafers and glass substrates, etc., by correcting the system error inherent to the device, on the production line for these large area and thin panels If this is done, the accurate panel shape can be measured in a short time, which is useful for production control of the process and reduction of the defect rate.

本発明者らは、直径300mm、厚さ0.775mmの大面積・薄肉ウェーハを使用し、まず、正確な形状を測定し、縦型形状測定装置により測定した場合の、前記ウェーハの形状測定に影響を与える要因を考え、正確な形状との比較で、その要因を解析・特定し、その要因を補正する方法があれば、縦型形状測定装置を使用してウェーハの正確な形状測定ができるのではないかと考えた。 The present inventors use a large-area, thin-wall wafer having a diameter of 300 mm and a thickness of 0.775 mm, firstly measuring an accurate shape and measuring the shape of the wafer when measured by a vertical shape measuring apparatus. If there is a method to analyze and identify the factor by influencing the factor that has an influence, and to analyze and identify the factor, and to correct the factor, it is possible to accurately measure the wafer shape using the vertical profile measuring device. I thought that.

本発明者等は、まず、ウェーハの正確な形状測定のため、形状測定精度の評価を行う際のパラメータとして、シリコンウェーハの「反り」を用いた。「反り」には、吸着固定しない状態のパネルの自重による変形成分を補正し、表面ベストフィット基準面とパネル表面の距離の最大値と最小値の差を表わす、SORIと、吸着固定しない状態の中心点での指定された基準面からパネル中心面の差表わす、BOWと、吸着固定しない状態のパネルにおいて自重による変形成分を補正した中心面のベストフィット基準面からパネル中心面までの距離の最大値と最小値の差を表わす、WARPと呼ぶ3種類があるが、本発明では、WARP、図1を用いた。 The present inventors first used “warpage” of a silicon wafer as a parameter for evaluating shape measurement accuracy for accurate shape measurement of the wafer. For “warp”, the deformation component due to the weight of the panel in the state where the suction is not fixed is corrected, and the difference between the maximum value and the minimum value of the distance between the surface best fit reference surface and the panel surface is expressed. The maximum distance from the best-fit reference plane of the center plane to the center plane of the center plane after correcting the deformation component due to its own weight in the panel that is not sucked and fixed, representing the difference between the specified reference plane at the center point and the panel center plane There are three types called WARP, which represent the difference between the value and the minimum value. In the present invention, WARP, FIG. 1 is used.

そこで、横型形状測定装置を用い、ウェーハを三点で水平に支持して、表面の形状を測定した後、ウェーハを裏返して裏面を測定することにより、ウェーハの自重の影響を除去する方法で、ウェーハの正確な形状を測定した。本発明では、この方法を三点支持裏返し法と呼ぶ。三点支持裏返し法では、平面に配置した直径10mmの三つの鋼球ボールで水平に支持されたパネルの表面の形状を、自重による変形も含めて測定した後、パネルを真後ろに裏返すと、反りが上下反転するが、ウエハの厚さは実質的に均一とみることができるので、自重による変形が常に重力方向に生じるため、この二つの測定結果からパネルの正確な形状と自重による変形がそれぞれ求められる。 Therefore, using a horizontal shape measuring device, supporting the wafer horizontally at three points, measuring the shape of the surface, turning the wafer over and measuring the back surface, thereby removing the influence of the weight of the wafer, The exact shape of the wafer was measured. In the present invention, this method is called a three-point support flip method. In the three-point support flip method, after measuring the shape of the surface of a panel that is horizontally supported by three steel ball balls with a diameter of 10 mm arranged in a plane, including deformation due to its own weight, if the panel is turned over, However, since the thickness of the wafer can be considered to be substantially uniform, deformation due to its own weight always occurs in the direction of gravity, so the exact shape of the panel and the deformation due to its own weight are determined from these two measurement results, respectively. Desired.

この方法では、図2のウェーハがY方向に移動し、上部の三角測量式光学センサがX方向に移動し、前記センサより、測定レーザビームがわずかに傾斜してウェーハ表面に入射され、、ウェーハからの反射光は、センサ受光部より、データ処理装置に転送されて、各測定点の測定値がメモリに記憶され、ウェーハの表面と裏面のセンサからの距離に基づき、演算器では、ウェーハの表面形状を演算し、記憶するとともにモニタに表示する。 In this method, the wafer of FIG. 2 moves in the Y direction, the upper triangulation optical sensor moves in the X direction, and the measurement laser beam is incident on the wafer surface with a slight inclination from the sensor. The reflected light from the sensor is transferred from the sensor light receiving unit to the data processing device, and the measurement value at each measurement point is stored in the memory. Based on the distance from the sensors on the front and back surfaces of the wafer, The surface shape is calculated, stored and displayed on the monitor.

三点支持裏返し法における、パネルを支持する鋼球の配置は、平面の任意の三箇所で支持すればよい。図3で示した条件、ウェーハを支持する三点の支持点のすべての位置が、回転軸からの同一の距離、または、回転軸と基盤面の交差点と、ウェーハを支持する支持点の角度が同一である条件を満たしていれば良い。 What is necessary is just to support the arrangement | positioning of the steel ball which supports a panel in the three-point support reversal method in arbitrary three places of a plane. The conditions shown in FIG. 3, all the positions of the three support points that support the wafer are the same distance from the rotation axis, or the angle between the intersection of the rotation axis and the substrate surface and the support point that supports the wafer. It is only necessary to satisfy the same condition.

重力の影響を除去し反りを算出する原理を図4に示す。まず、ウェーハの表面を上にして表面形状yf (x、y) を測定する。yf (x、y) は反り形状S(x、y) と自重によるたわみg(x、y) の両方を含んでいる.次に,ウェーハを裏返して同様に裏面形状yb (x、y) を測定する.そして,表面形状と裏面形状の差をとることにより自重による変形g(x、y) の影響を除去し、2で割ることにより反り形状s(x、y) を求めることができる。 FIG. 4 shows the principle of calculating the warpage by removing the influence of gravity. First, the surface shape yf (x, y) is measured with the wafer surface facing up. yf (x, y) includes both the warped shape S (x, y) and the deflection g (x, y) due to its own weight. Next, the wafer is turned over and the back surface shape yb (x, y) is measured in the same manner. Then, by taking the difference between the front surface shape and the back surface shape, the influence of the deformation g (x, y) due to its own weight is removed, and by dividing by 2, the warped shape s (x, y) can be obtained.

三点支持裏返し法によって、測定したウェーハの形状の精度がどのくらいあるものかを調べると、まず、誤差要因として考えられるのは、測定する装置固有の誤差と、測定対象に依存した誤差の二つが存在する。この二つの誤差それぞれについて、詳細に分析すると、その影響を校正によって除去できる系統誤差と確率的不規則現象のため統計的な処理によって軽減するしかない偶然誤差に分けられる。、三点支持裏返し法における誤差要因をまとめると、表1のようになる。 When investigating the accuracy of the shape of the measured wafer using the three-point support flip method, first, there are two errors that can be considered: error specific to the device being measured and error depending on the measurement target. Exists. Detailed analysis of each of these two errors can be divided into systematic errors that can be eliminated by calibration and random errors that can only be reduced by statistical processing due to stochastic irregularities. Table 1 summarizes the error factors in the three-point support flip method.

まず、測定装置固有の誤差に関して、本発明者等は、研磨製品の面精度を計測するために用いる原器である、オプティカルフラットを用いて調べた。また、測定対象に依存した誤差については、直径300mmのシリコンウェハを測定対象としてデータサンプリング間隔、ウェーハ裏返し精度による誤差の測定を行った。 First, the inventors examined the error inherent to the measuring apparatus using an optical flat, which is a prototype used to measure the surface accuracy of a polished product. As for the error depending on the measurement object, a silicon wafer having a diameter of 300 mm was used as the measurement object, and the error was measured based on the data sampling interval and the wafer turnover accuracy.

オプティカルフラットの測定を行った場合は、理論的にはオプティカルフラットの検定結果程度の値になるはずである。しかし、実際には、測定装置の運動精度や振動、およびセンサ直線性やノイズの影響による誤差を含み、この誤差はシリコンウェーハなどを測定した場合の結果に影響を与える。 When the optical flat is measured, the value should theoretically be about the same as the test result of the optical flat. However, in reality, it includes errors due to the movement accuracy and vibration of the measuring device and the effects of sensor linearity and noise, and this error affects the results when a silicon wafer or the like is measured.

そこで、オプティカルフラットの表面形状測定を2回行い、それぞれを表面、裏面形状データとして、裏返し法の原理によりWARPを算出した。この走査を3回行い平均した結果0.275μmとなった。 Therefore, the surface shape of the optical flat was measured twice, and the WARP was calculated based on the principle of the inside-out method using the surface and back surface shape data respectively. This scan was performed three times and the average was 0.275 μm.

さらに、測定装置固有の誤差のうち、装置の運動性能や熱変形などによる誤差と測定センサによる誤差の分離を試みた。測定センサを測定装置からはずし、測定センサとブロックゲージの距離を一定に保った上で定盤上に固定した。それとは別に、表面形状測定装置の先の実験と同条件で走査し、運動だけさせた、先の実験と同様にWARPを算出した結果0.209μmとなった。 Furthermore, among the errors inherent in the measurement device, we attempted to separate the error due to the motion performance of the device and thermal deformation from the error due to the measurement sensor. The measurement sensor was removed from the measurement apparatus, and the distance between the measurement sensor and the block gauge was kept constant and then fixed on the surface plate. Separately from this, the WARP was calculated in the same manner as in the previous experiment, which was scanned under the same conditions as in the previous experiment of the surface shape measuring apparatus and allowed to move, and the result was 0.209 μm.

以上の結果より、三点裏返し法の測定装置固有の誤差は0.275μmであったが、このうち測定センサの偶然誤差範囲は0.209μmを占めることが分かった。これらの値は、数十μmある、シリコンウェーハや石英ガラスウェーハの反りに対しては十分小さく無視できることが分かった。 From the above results, it was found that the error inherent to the measuring device of the three-point flip method was 0.275 μm, but the accidental error range of the measuring sensor occupied 0.209 μm. These values were found to be sufficiently small and negligible for the warpage of silicon wafers and quartz glass wafers, which are several tens of μm.

次に、データサンプリング間隔が大きいと、WARPを求める際の最大値や最小値を正確に捉えられない可能性があり、正確なWARPが測定できない可能性があると考えた。そこで、直径300mm、厚さ0.775mmのウェーハを用い、データサンプリング間隔2.5mmと5.0mm間隔の2通りの間隔で測定を行った。図5は、データサンプリング間隔を変えて測定したウェーハ形状のX=0mm、Y=117.5〜142.5mmに置ける断面図を示す。その結果、データサンプリング間隔2.5mm、5.0mmでWARP測定を行った結果、間隔が2.5mmの場合はWARPが17.16μm、5.0mmの場合には16.47μmと約0.7μm異なることが分かった。 Next, it was considered that if the data sampling interval is large, the maximum value and the minimum value when obtaining WARP may not be accurately captured, and accurate WARP may not be measured. Therefore, a wafer having a diameter of 300 mm and a thickness of 0.775 mm was used, and measurement was performed at two intervals, a data sampling interval of 2.5 mm and a 5.0 mm interval. FIG. 5 shows a cross-sectional view of a wafer shape measured at different data sampling intervals at X = 0 mm and Y = 117.5 to 142.5 mm. As a result, the WARP measurement was performed at a data sampling interval of 2.5 mm and 5.0 mm. As a result, when the interval was 2.5 mm, the WARP was 17.16 μm, and when it was 5.0 mm, 16.47 μm and approximately 0.7 μm. I found it different.

以上の結果より、データサンプリング間隔は形状測定における系統誤差の大きな要因であると考えられ、データサンプリング間隔を小さくすれば精度はあがるが、その一方で、測定時間がながくなるためにセンサシステムの温度ドリフトの影響により誤差が大きくなるという懸念がある。 From the above results, the data sampling interval is considered to be a major cause of systematic errors in shape measurement, and if the data sampling interval is reduced, the accuracy will increase, but on the other hand, the measurement time will be shortened, so the temperature of the sensor system There is a concern that the error will increase due to the effect of drift.

三点支持裏返し法では、その原理により測定対象を裏返す際の対称性が重要である。そこで、上面測定におけるウェーハの位置に対し、裏返して裏面を測定する際にウェーハを正確な位置からある程度回転させて位置決めして、WARP測定を行い、ウェーハ裏返し精度が測定結果に与える影響を調べた。実験結果では、WARP測定値は最大0.23μm変化した。実際の測定では、裏返しでのズレは目視で容易に確認できるので、あまり大きな測定誤差要因となることは考えづらい。 In the three-point support flip method, symmetry is important when turning the measurement object upside down due to its principle. Therefore, when measuring the back side by turning the wafer upside down relative to the position of the top surface measurement, the wafer was rotated from the correct position to some extent and positioned, and the WARP measurement was performed, and the influence of the wafer turnover accuracy on the measurement result was investigated. . In the experimental results, the WARP measurement value changed by a maximum of 0.23 μm. In actual measurement, the misalignment in the inside out can be easily confirmed by visual observation, so it is difficult to consider that it will cause a very large measurement error.

三点支持裏返し法によるシリコンウェーハのWARP測定における繰り返し精度は、表1における系統誤差の要因となる条件を常に一定にして、複数測定回数を繰り返すことにより偶然誤差の影響、つまり繰り返し精度を抽出できる。そこで、直径300mm、厚さ0.775mmのシリコンウェーハ4枚(A〜D)について、データサンプリング間隔を5mmに設定して10回ずつWARP測定を行い、数1を用いてシリコンウェーハのWARP測定における繰り返し精度を求めた所、繰り返し精度でδは0.3μm以下であることが分かった。 The repeatability in WARP measurement of silicon wafers by the three-point support flip method can extract the influence of accidental errors, that is, repeatability, by repeating the number of measurements a number of times with the conditions that cause systematic errors in Table 1 always constant. . Therefore, for four silicon wafers (A to D) having a diameter of 300 mm and a thickness of 0.775 mm, the WARP measurement is performed 10 times each with the data sampling interval set to 5 mm. When the repeatability was determined, it was found that δ was 0.3 μm or less in repeatability.

このようにして、三点支持裏返し法による、大面積・薄肉パネルである、直径300mm、厚さ0.775mmのシリコンウェーハのWARPの測定における、誤差要因の分析から、データサンプリング間隔を小さくすれば、ウェーハ形状の正確な測定が可能であり、繰り返し精度は0.3μm以下であることが分かり、上記の結果より、三点支持裏返し法により、ほぼ真のウェーハの形状を測定することが出来ることが判明した。 In this way, from the analysis of the error factor in the WARP measurement of a silicon wafer with a diameter of 300 mm and a thickness of 0.775 mm, which is a large-area, thin-walled panel by the three-point support flip method, if the data sampling interval is reduced The wafer shape can be accurately measured, and the repeatability is found to be 0.3 μm or less. From the above results, the true shape of the wafer can be measured by the three-point support flip method. There was found.

次に、本発明者等は、図6で概略を示した、縦型形状測定法で、大面積・薄肉パネルの形状を測定する場合の誤差要因を調べた。本装置では、ウェーハのエッジ部をクランプで鉛直に支持し、ウェーハの両面には二つの光学測定系が対向配置されており、各光学系は、測定光を発する発光部と、三角測定法によりウェーハの表面形状を演算し、記憶するとともにモニタに表示する。 Next, the present inventors examined the error factors when measuring the shape of a large area and thin panel by the vertical shape measuring method schematically shown in FIG. In this device, the edge part of the wafer is vertically supported by a clamp, and two optical measurement systems are arranged opposite to each other on the both sides of the wafer. Each optical system has a light emitting part that emits measurement light and a triangular measurement method. The surface shape of the wafer is calculated, stored, and displayed on the monitor.

まず、自重による大面積・薄肉パネルの変形を最小とするため、シリコンウェーハや石英ガラスウェーハを垂直に支持して形状測定を行った。変位センサには、三角測量方式のレーザ変位計のアンリツ株式会社製非接触レーザ変位計KL1300Bを使用した。この縦型形状測定装置ではウェーハの両側から変位センサにより形状を測定するため、振動などの外乱の影響を受けずにウェーハの厚みを正確に測定できるが、クランプ力によるウェーハの変形や、回転することによってウェーハが変位し、反りや表面形状の測定が正確に行えないことが懸念されるので、装置に起因する誤差要因に付き調べた。 First, in order to minimize the deformation of a large-area, thin-walled panel due to its own weight, the shape was measured by vertically supporting a silicon wafer or a quartz glass wafer. A non-contact laser displacement meter KL1300B manufactured by Anritsu Co., Ltd., a triangulation laser displacement meter, was used as the displacement sensor. Since this vertical shape measuring device measures the shape from both sides of the wafer using a displacement sensor, it can accurately measure the thickness of the wafer without being affected by disturbances such as vibration, but it can be deformed or rotated by the clamping force. As a result, the wafer is displaced, and there is a concern that the measurement of the warpage and the surface shape cannot be performed accurately. Therefore, an error factor caused by the apparatus was investigated.

まず、ウェーハの両側に配置された変位センサをウェーハの最外周からウェーハの中心まで半径方向に移動させることにより、ウェーハは回転しているので、渦巻状にウェーハの表面形状を測定することができる。変位センサの動きだけを停止すれば円形に、回転だけを止めれば直線的にウェーハの表面形状を測定でき、その変位センサのガイド軸上の測定位置において、測定値がウェーハのどの位置に対応する測定値であるかは、回転速度、移動速度、時間、回転数、及びスタート位置からの回転角から演算することができる。したがって、間欠送りによる測定データ、あるいは、連続送りによる測定データを、測定手段の移動距離と移動時間とによるガイド軸位置と、回転テーブルの回転速度とによる縦方向の位置より座標位置によるデータとして記憶した表面形状の測定結果を得ることができる。図7のように,測定中に振動やクランプ位置の変動などの影響でウェーハが変位した場合、表面形状測定の結果には影響が生じるが、厚さ測定においては、センサ間の距離が変わらなければ影響はない。表面を計るセンサの出力をaとし、ウェーハの厚みをtとすると、中心面は、a+t/2、となる。 First, since the wafer is rotating by moving the displacement sensors arranged on both sides of the wafer in the radial direction from the outermost periphery of the wafer to the center of the wafer, the surface shape of the wafer can be measured in a spiral shape. . If the movement of the displacement sensor is stopped, the surface shape of the wafer can be measured circularly, and if only the rotation is stopped, the wafer surface shape can be measured linearly. At the measurement position on the guide axis of the displacement sensor, the measurement value corresponds to which position on the wafer. Whether it is a measured value can be calculated from the rotational speed, the moving speed, the time, the rotational speed, and the rotational angle from the start position. Therefore, the measurement data by intermittent feed or the measurement data by continuous feed is stored as data by coordinate position from the vertical position by the guide shaft position by the moving distance and moving time of the measuring means and the rotation speed of the rotary table. The measurement result of the surface shape can be obtained. As shown in FIG. 7, if the wafer is displaced during measurement due to vibration or fluctuations in the clamp position, the surface shape measurement results are affected. However, in thickness measurement, the distance between sensors must be changed. There will be no impact. When the output of the sensor for measuring the surface is a and the thickness of the wafer is t, the center plane is a + t / 2.

本発明では、ウェーハを鉛直に支持するクランプとして、図8に示したような、直線状のリンク6本と、直線状のものを十字に重ねた十字状のリンク6本計12個のリンクで構成されたクランプを使用し、ウェーハは6つの十字状リンクの内3点で支持されている。この支持機構は、十字状リンクは回転支持体に、回転自在に固定されており、十字状リンクの支持点も、回転自在な円盤状で中央が凹部を形成したクランプでウェーハを挟持し、3つの支持点が連携して動く機構で、ウェーハを支持し、効率よく回転支持体の中心に保持することができる。 In the present invention, as a clamp for vertically supporting a wafer, as shown in FIG. 8, there are 6 linear links and 6 cross-shaped links obtained by overlapping linear objects in a cross shape, for a total of 12 links. Using configured clamps, the wafer is supported at three of the six cross links. In this support mechanism, the cross-shaped link is rotatably fixed to the rotary support, and the support point of the cross-shaped link also holds the wafer with a clamp that has a rotatable disk shape and a recess formed in the center. With a mechanism in which two support points move in cooperation, the wafer can be supported and efficiently held at the center of the rotary support.

縦型測定法では、支持点におけるクランプの挟持によりウェーハに変形が生じ、形状測定に影響を与える事が考えられる。そこで、シリコンウェーハについて、ウェーハを支持機構に装着する際に、支持する方角による影響を調べるため、ウェーハのノッチの方角を変化させることでウェーハに対する支持位置を変え、形状測定を行い、クランプ力の影響を調べた。また、シリコン単結晶の持つ弾性率の異方性の影響により、支持位置の違いによりウェーハの変形量が異なることが考えられるため、異方性を持たないガラスウェーハについても同様な形状測定を行った。 In the vertical measurement method, it is considered that the wafer is deformed by clamping the clamp at the support point, which affects the shape measurement. Therefore, in order to investigate the influence of the direction of the silicon wafer when it is mounted on the support mechanism, the support position relative to the wafer is changed by changing the direction of the notch of the wafer, the shape is measured, and the clamping force The effect was investigated. In addition, because of the influence of the anisotropy of the elastic modulus of the silicon single crystal, the amount of deformation of the wafer may differ depending on the support position. It was.

クランプ力の大きさに対してパネルの変形が線形的に変化する場合、図9に記載したように、形状測定結果からクランプ力による変形を抽出して、反りを求めることが出来る。すなわち、クランプ力相殺法の原理式は、ウェーハの反り形状をS(x、y)、単位クランプ力による変形をδ(x、y)、測定される形状をM(x,y),クランプ力をfとすると、クランプf1とf2のときの測定結果M1(x,y)とM2(x,y)はそれぞれ、数2、数3で表わされる。数2と数3の中のM1(x,y)とM2(x、y)、f1とf2が既知であるため、二つの式を連立して解くと、S(x,y)は数4の式より求められる。 When the deformation of the panel changes linearly with respect to the magnitude of the clamping force, the warpage can be obtained by extracting the deformation due to the clamping force from the shape measurement result as described in FIG. That is, the principle formula of the clamping force canceling method is that the warped shape of the wafer is S (x, y), the deformation due to the unit clamping force is δ (x, y), the measured shape is M (x, y), and the clamping force Where f is the measurement results M1 (x, y) and M2 (x, y) for the clamps f1 and f2, respectively, are expressed by Equations 2 and 3, respectively. Since M1 (x, y) and M2 (x, y) and f1 and f2 in Equations 2 and 3 are known, S (x, y) is obtained by solving the two equations simultaneously. It can be obtained from the following formula.

図8に示すリンクの配置に対して、ノッチが鉛直上向きのときを0度とし、ウェーハを装着する際のノッチの方角を30度ずつ変化させて、各角度において形状測定を行い、反り、WARP、の変化を調べた。測定結果を図10に示す、シリコンウェーハ3枚、ガラスウェーハ3枚とも支持位置の変化により反りは変化し、その変化幅は約5〜10μmであり、本実験でのクランプ力では、異方性の影響は少ないと推定できるが、結果より判断すると、縦型形状測定装置では、正確な形状測定が行われていないといえる。ここでの、反りの変化の周期はどのウェーハも180度であり、回転面のずれや回転中の支持点の変位などの装置の系統誤差が測定結果に影響していると考えられる。 With respect to the arrangement of the links shown in FIG. 8, when the notch is vertically upward, 0 degree is set, and the direction of the notch when the wafer is mounted is changed by 30 degrees, the shape is measured at each angle, warping, WARP , Examined the changes. The measurement results are shown in FIG. 10, and the warpage changes due to the change in the support position for both three silicon wafers and three glass wafers, and the change width is about 5 to 10 μm. The clamping force in this experiment is anisotropic. However, judging from the result, it can be said that the vertical shape measuring apparatus does not perform accurate shape measurement. Here, the period of change in warpage is 180 degrees for all wafers, and it is considered that systematic errors of the apparatus such as displacement of the rotating surface and displacement of the supporting point during rotation affect the measurement results.

また、縦型形状測定法で、ウェーハを支持する際に生じるクランプ力の大きさによるウェーハの変形が懸念される。そこで,シリコンウェーハを用い、クランプ力を変化させ、ウェーハの中心を通るX軸とY軸断面形状の変化を調べた。引張バネ力を20.7〜25.53Nまで調整し、クランプ力を変化させた場合のX軸と、Y軸断面形状の変化を調べ、結果を図11で示した。このグラフより、クランプ力の変化によるウェーハの変形量は小く、クランプ力の大小がウェーハの形状に与える影響は小さいといえる。 In addition, there is a concern about deformation of the wafer due to the magnitude of the clamping force generated when the wafer is supported by the vertical shape measurement method. Therefore, using a silicon wafer, the clamping force was changed, and changes in the X-axis and Y-axis cross-sectional shapes passing through the center of the wafer were examined. When the tension spring force was adjusted from 20.7 to 25.53 N and the clamping force was changed, changes in the X-axis and Y-axis cross-sectional shapes were examined, and the results are shown in FIG. From this graph, it can be said that the amount of deformation of the wafer due to the change of the clamping force is small, and the influence of the magnitude of the clamping force on the shape of the wafer is small.

そこで、直径300mm、厚さ0.775mmのウェーハを使用し、ウェーハの中心を横切るガイド軸GA,GB上を、三角測量方式のレーザ変位計のセンサ、SA,SBを、最外周より、ウェーハ中心部に移動させ、同時にウェーハを回転させる事で、ウェーハ両面から、一定間隔でらせん状に形状を測定する。一般的にこの方法での精度としては、サブミクロンからナノメートルの分解能で計測することができる。 Therefore, a wafer with a diameter of 300 mm and a thickness of 0.775 mm is used. On the guide axes GA and GB crossing the center of the wafer, triangulation laser displacement meter sensors SA and SB are placed from the outermost periphery to the center of the wafer. The shape is measured in a spiral shape at regular intervals from both sides of the wafer by moving the wafer to the part and simultaneously rotating the wafer. In general, the accuracy of this method can be measured with submicron to nanometer resolution.

上記の方法で、縦型形状測定装置を使用し、特定のノッチ角度、0度と90度の場合でウェーハを支持後、その形状を測定し、形状をモニター上に等高線図で表示する。ウェーハの形状は、ノッチ方角0度を90度に回転させた位置でも、ウェーハを回転して測定すれば、自重の影響はなく、またクランプの挟時による影響は少ないので、測定してウェーハの形状は変わらないはずであり、形状を示す等高線図は、ノッチ角度0度と90度で支持した場合でも近似していなければならない。しかし、図12の模様で表示された。ノッチ方角が0度と90度では等高線図の模様は異なっている。同じウェーハを使用して三点支持裏返し法でウェーハの正確な形状を求め、等高線図で表わすと図13の模様となる。図13では、ノッチ角度の差による、ウェーハ形状の差は見られない。 In the above method, the vertical shape measuring apparatus is used to support the wafer at specific notch angles of 0 degree and 90 degrees, and then the shape is measured, and the shape is displayed on the monitor as a contour map. The wafer shape can be measured by rotating the wafer at the position where the notch direction is rotated 0 degrees to 90 degrees. The shape should not change, and the contour map showing the shape must be approximate even when supported at 0 and 90 degree notch angles. However, it was displayed in the pattern of FIG. When the notch directions are 0 degrees and 90 degrees, the contour map pattern is different. When the same wafer is used to obtain an accurate shape of the wafer by the three-point support flip method and represented by a contour map, the pattern shown in FIG. 13 is obtained. In FIG. 13, there is no difference in wafer shape due to the difference in notch angle.

図12で表示された形状データと、同じウェーハの正確な形状を表示した図13の形状データの差の意味するものは、縦型形状装置固有の系統誤差と考えられるが、もし、系統誤差であれば、図12の形状データより、図13の形状データを差引いた形状を等高線図であらわせば、近似した等高線図になるはずである。 The difference between the shape data displayed in FIG. 12 and the shape data in FIG. 13 showing the exact shape of the same wafer is considered to be a systematic error inherent to the vertical shape apparatus. If there is a contour map obtained by subtracting the shape data of FIG. 13 from the shape data of FIG. 12, it should be an approximated contour map.

そこで、図12の形状データと図13の形状データを記憶装置に保存し、演算装置で、減算計算を行い、その結果得られた形状の等高線図をモニター画面上に表わしたのが図14であり、ノッチ方角0度と90度での、模様を比較すると、模様は厳密には一致しなかったが、非常に似た形状になった。この図14が本発明が目的とした装置固有の系統誤差といえる。図12の形状データより、図14の形状データを差引けば、図13の形状データとなり、正確な形状が得られる。 Therefore, the shape data of FIG. 12 and the shape data of FIG. 13 are stored in a storage device, the calculation device performs subtraction calculation, and the contour map of the shape obtained as a result is shown on the monitor screen in FIG. Yes, when the patterns at the notch directions of 0 degrees and 90 degrees were compared, the patterns did not exactly match, but they had very similar shapes. FIG. 14 can be said to be a systematic error inherent to the apparatus aimed by the present invention. If the shape data of FIG. 14 is subtracted from the shape data of FIG. 12, the shape data of FIG. 13 is obtained, and an accurate shape is obtained.

差分した結果が完全に一致しなかった原因として、クランプ力によるウェーハの変形や、本測定装置と横型測定法で測定点が異なることなどが考えられるが、縦型形状測定装置を使用して多数の大面積・薄肉パネルの形状を測定する場合、この抽出法を採用し、まず、三点裏返し法により、前記パネルの中より一枚の正確な形状を求め、縦型形状測定装置を使用して同一パネルの形状を測定し、上記した方法により、縦型形状測定装置の装置固有の系統誤差を抽出し、その抽出データを補正値として、前記の形状測定装置に記憶させた後、大面積・薄肉パネルの測定を行い、測定結果より、前記補正値を差引くロジックを、前記縦型形状測定装置に記憶させれば、以後同一サイズの大面積・薄肉のパネルの形状測定においては、パネルの正確な形状測定が可能になる。 Possible reasons for the difference between the results being completely inconsistent are the deformation of the wafer due to the clamping force and the difference in measurement points between this measurement device and the horizontal measurement method. When measuring the shape of a large-area, thin-walled panel, this extraction method is used. First, an accurate shape is obtained from one of the panels by the three-point turnover method, and a vertical shape measuring device is used. After measuring the shape of the same panel and extracting the systematic error inherent to the vertical shape measuring device by the method described above, and storing the extracted data as a correction value in the shape measuring device, a large area is obtained.・ If you measure the thin panel and store the logic to subtract the correction value from the measurement result in the vertical shape measuring device, then in the shape measurement of the large area and thin panel of the same size, The exact It is possible to shape measurement.

本発明で採用した「反り」WARPの測定原理を示す図である。It is a figure which shows the measurement principle of the "warp" WARP employ | adopted by this invention. 三点裏返し測定法によりパネルを測定する装置の概略図である。It is the schematic of the apparatus which measures a panel by the three-point inversion measurement method. 鋼球でウェーハを水平支持する三点支持法を説明している図である。It is a figure explaining the three-point support method which supports a wafer horizontally with a steel ball. 裏返し法により、ウェーハの自重による変形による影響を除去し、反りを求める原理を示す図である。It is a figure which shows the principle which remove | eliminates the influence by the deformation | transformation by the dead weight of a wafer, and calculates | requires curvature by the reverse method. データサンプリング間隔により、WARPの最大値と最小値の差が異なることを、間隔が2.5mmと5.0mmの場合で示したグラフを表わす図である。It is a figure showing the graph which showed that the difference of the maximum value and minimum value of WARP changes with data sampling intervals in the case where a space | interval is 2.5 mm and 5.0 mm. 縦型形状測定装置のパネルの支持点とセンサーの配置を示した図である。It is the figure which showed the support point of the panel of a vertical shape measuring apparatus, and arrangement | positioning of a sensor. 変位センサを用いて、ウェーハの厚みを測定する方法を現した図である。It is the figure showing the method of measuring the thickness of a wafer using a displacement sensor. 縦型形状測定装置で、ウェーハを三点で支持した状況を示した図である。It is the figure which showed the condition which supported the wafer with three points | pieces with the vertical shape measuring apparatus. クランプ力の大きさに対してパネルの変形が線形的に変化する場合の、クランプ力相殺法の原理式を説明する図である。It is a figure explaining the principle type | formula of the clamping force cancellation method in case the deformation | transformation of a panel changes linearly with respect to the magnitude | size of a clamping force. ガラスウェーハ、シリコンウェーハ、各三枚使用し、ノッチ角度を30度ずつ変化させ、反りの変化(形状測定結果の最大値と最小値の差)をプロットした図である。It is the figure which used the glass wafer, the silicon wafer, and each three sheets, changed notch angle by 30 degree | times, and plotted the change of curvature (difference between the maximum value and the minimum value of a shape measurement result). クランプ力による測定のバラツキを測定した図である。It is the figure which measured the variation of the measurement by clamp force. 縦型形状測定器でノッチ方角を0度と90度で測定したウェーハの形状を等高線図で表示した図である。Nはノッチの位置を表わす。It is the figure which displayed the shape of the wafer which measured the notch direction at 0 degree and 90 degree | times with the vertical shape measuring device by the contour map. N represents the position of the notch. 三点裏返し法によって測定された同一ウェーハの形状を等高線図で表わした図である。It is the figure which represented the shape of the same wafer measured by the three-point reversal method by the contour map. 図12の測定データより、図13の測定データを差し引いた形状を等高線図で表示しており、縦型形状装置の装置固有の系統誤差を示す図である。FIG. 14 is a diagram showing the shape obtained by subtracting the measurement data of FIG. 13 from the measurement data of FIG. 12 in a contour map, and showing the systematic error inherent to the vertical shape device.

符号の説明Explanation of symbols

F 引張りばね
G、GA,GB ガイド軸
N ノッチ
P1、P2、P3 支持点
R 回転支持体
S、SA,SB 変位センサ
W ウェーハ
F Tensile spring G, GA, GB Guide shaft N Notches P1, P2, P3 Support point R Rotating support S, SA, SB Displacement sensor W Wafer

Claims (4)

縦型形状測定装置に、大面積・薄肉のパネルを、等角度で少なくとも三ヶ所の支持点を保有する回転支持体に、同一平面内で回転自在となるよう支持し、前記パネルを回転させ、前記パネルを挟んで対向する2組の変位センサを走査して、測定したパネルの形状と、
前記パネルの正確な形状の差異より、前記縦型形状測定装置が保有する装置固有の系統誤差を抽出し、この抽出した系統誤差を補正して、大面積・薄肉のパネルの形状を測定する方法
A vertical shape measuring device supports a large-area, thin-walled panel on a rotating support having at least three support points at an equal angle so as to be rotatable in the same plane, and rotates the panel. The shape of the panel measured by scanning two sets of displacement sensors facing each other across the panel;
A method of extracting the system error inherent to the vertical shape measuring apparatus from the difference in the exact shape of the panel, correcting the extracted systematic error, and measuring the shape of a large area / thin panel
大面積・薄肉のパネルの正確な形状を、三点支持裏返し法により求める、請求項1に記載の、大面積・薄肉のパネルの形状を測定する方法。 The method for measuring the shape of a large-area, thin-walled panel according to claim 1, wherein an accurate shape of the large-area, thin-walled panel is obtained by a three-point support flip method. 三点支持裏返し法が、大面積・薄肉のパネルを、水平に同心円上に配置した三点で支持し、前記パネルの上面に平行に配置したガイド軸に沿って変位センサを走査して求めた、前記パネルの一方の面の形状と、前記パネルを真後ろに裏返し、前記と同様にして求めた、前記パネルの他方の面の形状との差異より、前記パネルの自重による変形成分を補正した前記パネルの形状を測定する方法である、請求項2に記載の、大面積・薄肉のパネルの形状を測定する方法。 The three-point support flip method was obtained by supporting a large-area, thin-walled panel at three points horizontally arranged on a concentric circle, and scanning a displacement sensor along a guide axis arranged parallel to the upper surface of the panel. The shape of one surface of the panel and the panel turned over, and the difference between the shape of the other surface of the panel determined in the same manner as described above was used to correct the deformation component due to the weight of the panel. The method for measuring the shape of a large-area, thin-walled panel according to claim 2, which is a method for measuring the shape of the panel. 請求項1に記載の方法より、縦型形状測定装置が保有する装置固有の系統誤差を抽出し、その抽出したデータを、補正値として記憶させる記憶機能、および前記補正値の加減算を行う演算機能を保有する縦型形状測定装置。

A system function for extracting a system-specific system error held by the vertical shape measuring apparatus and storing the extracted data as a correction value, and an arithmetic function for performing addition / subtraction of the correction value. A vertical shape measuring device.

JP2005249622A 2005-08-30 2005-08-30 Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus Pending JP2007064748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249622A JP2007064748A (en) 2005-08-30 2005-08-30 Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249622A JP2007064748A (en) 2005-08-30 2005-08-30 Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2007064748A true JP2007064748A (en) 2007-03-15

Family

ID=37927126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249622A Pending JP2007064748A (en) 2005-08-30 2005-08-30 Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2007064748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076269A (en) * 2006-09-22 2008-04-03 Tokyo Univ Of Agriculture & Technology Vertical-type apparatus and method of measuring shape
JP2009117301A (en) * 2007-11-09 2009-05-28 Nippon Electric Glass Co Ltd Glass substrate and method of inspecting warpage in glass substrate
WO2021070531A1 (en) * 2019-10-11 2021-04-15 信越半導体株式会社 Wafer shape measurement method
CN113207310A (en) * 2019-11-29 2021-08-03 Jx金属株式会社 Indium phosphide substrate, semiconductor epitaxial wafer, and method for producing indium phosphide substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076269A (en) * 2006-09-22 2008-04-03 Tokyo Univ Of Agriculture & Technology Vertical-type apparatus and method of measuring shape
JP2009117301A (en) * 2007-11-09 2009-05-28 Nippon Electric Glass Co Ltd Glass substrate and method of inspecting warpage in glass substrate
WO2021070531A1 (en) * 2019-10-11 2021-04-15 信越半導体株式会社 Wafer shape measurement method
JP2021063693A (en) * 2019-10-11 2021-04-22 信越半導体株式会社 Method for measuring shape of wafer
CN114467007A (en) * 2019-10-11 2022-05-10 信越半导体株式会社 Method for measuring wafer shape
DE112020004242T5 (en) 2019-10-11 2022-05-19 Shin-Etsu Handotai Co., Ltd. Process for measuring the wafer profile
KR20220076466A (en) 2019-10-11 2022-06-08 신에쯔 한도타이 가부시키가이샤 Wafer shape measurement method
JP7143831B2 (en) 2019-10-11 2022-09-29 信越半導体株式会社 Wafer shape measurement method
CN113207310A (en) * 2019-11-29 2021-08-03 Jx金属株式会社 Indium phosphide substrate, semiconductor epitaxial wafer, and method for producing indium phosphide substrate

Similar Documents

Publication Publication Date Title
US9106807B2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object
US6504615B1 (en) Optical instrument for measuring shape of wafer
JP7169994B2 (en) Method and related optical device for measuring curvature of reflective surfaces
JPH1183438A (en) Position calibration method for optical measuring device
TWI457534B (en) Vision inspection system and method for converting coordinates using the same
CN110132996A (en) Defect detecting device and its detection method
JP2008076269A (en) Vertical-type apparatus and method of measuring shape
JP6815336B2 (en) Interference roll-off measurement using static fringe pattern
US8339594B2 (en) Method for measuring semiconductor wafer profile and device for measuring the same used therefor
US20150211836A1 (en) Systems and Methods for Generating Backside Substrate Texture Maps for Determining Adjustments for Front Side Patterning
CN103985653B (en) A kind of wafer stress measuring method
JP4531685B2 (en) Shape measuring device and shape measuring method
JP2007064748A (en) Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus
US6594002B2 (en) Wafer shape accuracy using symmetric and asymmetric instrument error signatures
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
Liu et al. Three-point-support method based on position determination of supports and wafers to eliminate gravity-induced deflection of wafers
JP2012117811A (en) Wafer flatness measuring method
CN108828267A (en) Silicon wafer warpage degree measurement method and device
JPH0649958U (en) Semiconductor wafer thickness measuring machine
US9366975B2 (en) Stage transferring device and position measuring method thereof
JP3845286B2 (en) Shape measuring apparatus and shape measuring method
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
JP2008076283A (en) Method for adjusting optical axis of substrate inspection device, and optical axis adjusting sample
JP5051567B2 (en) Surface shape displacement measuring device and measuring method
JP2003057191A (en) Apparatus for measuring shape of cylindrical article to be measured and method of adjusting the apparatus for measuring shape of cylindrical article to be measured, as well as method for processing signal