JP3769907B2 - Mounting structure of receiver-integrated refrigerant condenser - Google Patents

Mounting structure of receiver-integrated refrigerant condenser Download PDF

Info

Publication number
JP3769907B2
JP3769907B2 JP30213697A JP30213697A JP3769907B2 JP 3769907 B2 JP3769907 B2 JP 3769907B2 JP 30213697 A JP30213697 A JP 30213697A JP 30213697 A JP30213697 A JP 30213697A JP 3769907 B2 JP3769907 B2 JP 3769907B2
Authority
JP
Japan
Prior art keywords
receiver
radiator
liquid
refrigerant
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30213697A
Other languages
Japanese (ja)
Other versions
JPH11129736A (en
Inventor
隆仁 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30213697A priority Critical patent/JP3769907B2/en
Publication of JPH11129736A publication Critical patent/JPH11129736A/en
Application granted granted Critical
Publication of JP3769907B2 publication Critical patent/JP3769907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルに用いられる受液器一体型冷媒凝縮器の搭載構造に関するものである。
【0002】
【従来の技術】
従来、自動車用空調装置の冷凍サイクルでは、受液器と凝縮器とは別個独立して配置されている。そのため、部品点数の低減によるコスト低減が困難であり、また受液器と凝縮器とで互いに取付スペースを占めるため、省スペースの要望に応えることができないという不具合があった。
【0003】
そこで、上記不具合を解消するために、特開平4−320771号公報では、凝縮器の出口側ヘッダの壁部に、この出口側ヘッダと同方向に延びる筒状の受液器を一体に接合し、出口側ヘッダと受液器とを連通する連通路を設けた、いわゆる受液器一体型冷媒凝縮器が提案されている。
【0004】
【発明が解決しようとする課題】
ここで、本発明者は、上記従来技術に基づいて受液器一体型冷媒凝縮器を試作し、この試作した受液器一体型冷媒凝縮器を図6に示すように車体100に搭載したところ、後述のような問題が発生することがわかった。
まず、本発明者の試作による、受液器一体型冷媒凝縮器3の車体100への搭載構造を説明する。図6において、エンジンルーム104の右側(車両幅方向の一方側)には、エンジンEが配置されており、エンジンルーム104の左側(車両幅方向の他方側)においては、ラジエータ105が配置され、このラジエータ105は、防振ゴム(図示せず)を介して車体100に固定される。
【0005】
このラジエータ105の前方(風上側)には、受液器一体型冷媒凝縮器3が重なるように近接配置されている。そして、受液器一体型冷媒凝縮器3は、ラジエータ105に図示しない取付ブラケットを介して取付固定されている。
このような配置では、エンジンEと受液器タンク37との間の間隙Cが非常に小さくなっている。本試作品では、エキゾーストマニホールド(以下、エキマニと略す)108の輻射熱等、エンジンEからの輻射熱または送風ファン106からラジエータ105通過後の熱風が回り込むことにより、受液器タンク37内部の冷媒が加熱され、圧力が上昇するといった不具合を防止するために、エンジンEと受液器タンク37との間に、金属製の遮熱板90を設けている。それによって、エキマニ108等からの輻射熱又は送風ファン106からの熱風を遮断している。
【0006】
ここで、遮熱板90の固定は、図6のように、車両フレームFにボルトBでねじ止めする。
しかし、この固定方法では、車両振動等によって、受液器タンク37と遮熱板90とは別個に振動し、両者は相対的に大きく位置ずれを起こす。それを防ぐには、広い設置スペースを必要とし、ラジエータ105と遮熱板90との隙間を確保する必要があり、送風ファン106からの熱風が多く回り込む。
【0007】
本発明は上記点に鑑み、エンジンルーム内に、エンジンおよびラジエータが設置された車両において、ラジエータの空気上流側に受液器一体型冷媒凝縮器を近接配置する受液器一体型冷媒凝縮器の搭載構造において、凝縮器の受液器タンク内の冷媒が加熱されるのを抑制するとともに、構成の小型化、簡素化を図ることを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するために、以下の技術的手段を採用する。
すなわち、請求項1に記載の発明では、エンジンルーム(104)内に、エンジン(E)およびラジエータ(105)が設置された車両において、ラジエータ(105)の空気上流側に受液器一体型冷媒凝縮器(3)を近接配置する受液器一体型冷媒凝縮器の搭載構造であって、受液器一体型冷媒凝縮器(3)は、ガス冷媒を凝縮する凝縮部(8)と、凝縮部(8)に取付られ凝縮部(8)からの冷媒を気液分離する受液器タンク(37)とを備え、
受液器タンク(37)はエンジン(E)の近傍に配置されており、受液器一体型冷媒凝縮器(3)からラジエータ(105)に向かって送風ファン(106)にて送風されるようになっており、受液器タンク(37)とラジエータ(105)には、遮熱部材(50)が取り付けられているとともに、遮熱部材(50)と受液器タンク(37)との間に、受液器タンク(37)からラジエータ(105)へ向かう風が通過する通風路(52)が形成されていることを特徴とする。
【0009】
本発明では、遮熱部材(50)は、受液器タンク(37)とラジエータ(105)に取り付けられ両者(37、105)と固定されるので、構成の小型化、簡素化が実現できるとともに、送風ファン(106)からの熱風の回り込みを抑制でき、受液器タンク(37)内の冷媒が加熱されるのを抑制できる。また、車両振動等によって、受液器タンク(37)と遮熱部材(50)とが別個に振動することが無くなる。
【0010】
また、遮熱部材(50)が断熱性を持つことによって、受液器タンク(37)がエンジン(E)の輻射熱の影響を受けにくくできるとともに、通風路(52)をラジエータ(105)へ向かって風が通ることにより受液器タンク(37)が冷却され、受液器タンク(37)内部の冷媒が加熱され、圧力が上昇するといった不具合を防止することができる。
【0011】
また、請求項2記載の発明によれば、遮熱部材(50)は、受液器タンク(37)とラジエータ(105)との隙間を閉塞するように取り付けられるとともに、通風路(52)が形成された断熱材からなるから、通風路(52)を遮熱部材(50)自体に形成したものとでき、構成の小型化が図れる。
ここで、請求項3に記載の発明によれば、上記の通風路は、受液器タンク(37)からラジエータ(105)へ向かうように形成された複数個の溝(52)であることを特徴とする。
【0012】
それによって、簡易な構成で通風路を形成できるとともに、複数個の溝(52)が受液器タンク(37)からラジエータ(105)へ向かうように形成されるので、通風路の流量が十分確保でき、さらに、遮熱部材(50)において各溝(52)の間は、受液器タンク(37)およびラジエータ(105)との接着面となるので、接着面積の確保が容易とできる。因みに、通風路の流量確保のため、1つの大きい溝とすると接着面積の確保が困難となる。
【0013】
また、請求項4に記載の発明によれば、遮熱部材(50)は、柔軟性を有する発泡性樹脂又はゴムであり、受液器タンク(37)とラジエータ(105)とに貼付けるものであることを特徴とする。
本発明では、遮熱部材(50)が容易に変形するので、受液器タンク(37)とラジエータ(105)との相対的な配置状態に係わらず遮熱部材(50)の取付が容易とでき、また、発泡樹脂が有する高い断熱性により、良好な遮熱性能が実現できる。
【0014】
また、請求項5に記載の発明によれば、受液器タンク(37)は、ラジエータ(105)よりもエンジン(E)に向かって突出して配置されており、遮熱部材(50)は、受液器タンク(37)の突出形状に沿って屈曲しているから、受液器タンク(37)の外周に沿って通る通風路(50)の距離が長くなり、冷却効果が向上できる。
【0015】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0016】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。
本実施形態は、自動車用空調装置の冷凍サイクルにおける受液器一体型冷媒凝縮器に本発明を適用したものである。図1に示す自動車用空調装置の冷凍サイクル1は、冷媒圧縮機2、受液器一体型冷媒凝縮器3、サイトグラス4、膨張弁5および冷媒蒸発器6を、冷媒配管7によって順次接続している。
【0017】
冷媒圧縮機2は、自動車のエンジンルーム104内に横置きに設置されたエンジンEにベルトVと電磁クラッチ(動力断続手段)Dを介して連結されている。この冷媒圧縮機2は、エンジンEの回転動力が伝達されると、冷媒蒸発器6より内部に吸入した気相(ガス)冷媒を圧縮して、高温高圧の気相冷媒を受液器一体型冷媒凝縮器3へ吐出する。
【0018】
受液器一体型冷媒凝縮器3は、凝縮部8、受液部9および過冷却部10を一体的に設けている。凝縮部8は、冷媒圧縮機2の吐出側に接続され、冷媒圧縮機2より内部に流入した気相冷媒を送風ファン106(図2参照)等により送られる室外空気と熱交換させて冷媒を凝縮液化させる凝縮手段として働く。
受液部9は、凝縮部8より内部に流入した冷媒を気相冷媒と液相冷媒とに気液分離して、液相冷媒のみ過冷却部10に供給する気液分離手段として働く。過冷却部10は、上側に配置された凝縮部8より下方に隣接して設けられ、受液部9より内部に流入した液相冷媒を送風ファン106(図2参照)等により送られる室外空気と熱交換させて液相冷媒を過冷却する過冷却手段として働く。
【0019】
サイトグラス4は、受液器一体型冷媒凝縮器3の過冷却部10より下流側に接続され、冷凍サイクル1内を循環する冷媒の気液状態を観察して、サイクル内封入冷媒量の過不足を点検する冷媒量点検手段として働くものである。このサイトグラス4は、自動車のエンジンルーム104内において点検者が視認し易い場所、例えば受液器一体型冷媒凝縮器3に隣設した冷媒配管7の途中に単独で架装されている。
【0020】
そして、サイトグラス4は、両端部が冷媒配管7に接続される管状の金属ボディ11、および、この金属ボディ11の上面に形成された覗き窓12に嵌め込まれた溶着ガラス13等より構成されている。一般に覗き窓12から気泡が見られるときは冷媒不足であり、気泡が見られないときは冷媒量が適正量である。
膨張弁5は、冷媒蒸発器6の冷媒入口部側に接続され、サイトグラス4より流入した高温高圧の液相冷媒を断熱膨張して低温低圧の気液二相の霧状冷媒にする減圧手段として働くもので、本例では冷媒蒸発器6の冷媒出口部の冷媒過熱度を所定値に維持するよう弁開度を自動調整する温度作動式膨張弁が用いられている。
【0021】
冷媒蒸発器6は、冷媒圧縮機2の吸入側と膨張弁5の下流側との間に接続され、膨張弁5より内部に流入した気液二相状態の冷媒をブロワ(図示せず)により吹き付けられる室外空気または室内空気と熱交換させて冷媒を蒸発させ、その蒸発潜熱により送風空気を冷却する冷却手段として働く。
次に、受液器一体型冷媒凝縮器3の構造、および受液器一体型冷媒凝縮器3の車体100への搭載構造を詳しく説明する。図2は、その搭載構造を示す配置構成図であり、図3は、受液器一体型冷媒凝縮器3のラジエータ105への取付状態を示す構成図である。
【0022】
この受液器一体型冷媒凝縮器3は、例えば高さが300mm〜400mm、幅が300mm〜600mmの大きさで、図2に示すように、自動車のエンジンEが配置されるエンジンルーム104内において、走行風を受け易い場所、通常は、車体100の最前方部近傍において、エンジン冷却水冷却用ラジエータ105の前方(風上側)に重なるように近接配置されている。
【0023】
そして、受液器一体型冷媒凝縮器3は、図3に示すように、その上下端部(図3中、上側2個、下側2個)に取り付けられた取付ブラケット109を介してラジエータ105に固定されている。そして、ラジエータ105は図示しない防振ゴムを介して車体100に固定されている。
なお、受液器一体型冷媒凝縮器3の凝縮部8の幅は、ラジエータ105の幅と略同一に構成されている。そして、ラジエータ105と凝縮器3とは微少な間隙(例えば15mm程度)を隔てて配置されている。
【0024】
また、ラジエータ105の後方側(風下側)には、前方側の空気を吸い込む送風ファン106が配置されており、ラジエータ105の外縁部と送風ファン106の外周部との間には、送風ファン106の吸い込み空気を確実にラジエータ105に通過させるシュラウド107が設けられている。図1中の矢印は、送風ファン106作動時および車両走行時の空気の流れを示す。
【0025】
受液器一体型冷媒凝縮器3は、熱交換を行うコア14、このコア14の水平方向の一端側に配された第1ヘッダ15、コア14の水平方向の他端側に配された第2ヘッダ16、および第2ヘッダ16に隣接配置された受液器タンク37等から構成されている。なお、図1は受液器一体型冷媒凝縮器3を、その空気下流側、つまりラジエータ105側からみたものである。
【0026】
コア14は、上記した凝縮部8および過冷却部10よりなり、これらの上端部および下端部に上記の取付用ブラケット109を取り付けるためのサイドプレート17、18が設けられている。
凝縮部8は、水平方向に延びる複数の凝縮用チューブ19およびコルゲートフィン20を上下方向に列設してなり、過冷却部10も、水平方向に延びる複数の過冷却用チューブ21およびコルゲートフィン22を上下方向に列設してなる。
【0027】
そして、冷媒入口側の第1ヘッダ15から冷媒は複数の凝縮用チューブ19内を水平方向に流れて第2ヘッダ16へ流入し、一方、複数の過冷却用チューブ21内を流れる冷媒は、第2ヘッダ16から水平方向に流れて第1ヘッダ15へ流入する。つまり、Uターンする形で流れる。
第1ヘッダ15は、上下方向に延びる略円筒形状で、両端が閉塞されている。この第1ヘッダ15の上側部は、凝縮部8を構成する複数の凝縮用チューブ19の上流端が接続され、下側部は、過冷却部10を構成する複数の過冷却用チューブ21の下流端が接続されている。
【0028】
第1ヘッダ15には、サイドプレート17、18の一端部、複数の凝縮用チューブ19の上流端、および、複数の過冷却用チューブ21の下流端が差し込まれている。第1ヘッダ15には、入口配管30および出口配管32が差し込まれており、この第1ヘッダ15内に設けたセパレータ28により、第1ヘッダ15内を上下に仕切る、換言すれば、凝縮部8の上流端のみに連通する入口側連通室34と、過冷却部10の下流端のみに連通する出口側連通室35とに仕切っている。
【0029】
入口配管30は、冷媒圧縮機2より吐出された高温高圧の気相冷媒を入口側連通室34内に流入させるための配管で、出口配管32は、出口側連通室35内の液相冷媒をサイトグラス4側へ送り出す配管である。
第2ヘッダ16は、上下方向に延びる略円筒形状で、両端が閉塞されている。この第2ヘッダ16の上側部は凝縮部8を構成する複数の凝縮用チューブ19の下流端が接続され、下側部は過冷却部10を構成する複数の過冷却用チューブ21の上流端が接続されている。第2ヘッダ16には、長円形状の抜き穴(図示せず)が多数形成され、この多数の抜き穴には、サイドプレート17、18の他端部、複数の凝縮用チューブ19の下流端、および、複数の過冷却用チューブ21の上流端が差し込まれている。
【0030】
第2ヘッダ16内に設けられたセパレータ42により、第2ヘッダ16内を上下に仕切る、換言すれば、凝縮部8の下流端のみに連通する連通室46と、過冷却部10の上流端のみに連通する連通室47とに仕切っている。
これら両連通室46、47の側方(外側)には、上下方向に延びる略円筒形状(両端が閉塞されている)を呈する受液器タンク37が位置しており、この受液器タンク37の内部に受液部9を構成する気液分離室48が形成されている。
【0031】
なお、連通室46は、その底部近く(凝縮部8の最下部)に設けられた冷媒流入口44にて気液分離室48の冷媒液面9a(この液面9aはサイクル内への冷媒封入量が通常の適正量であるときの液面である)より下方、換言すれば、気液分離室48内の液冷媒貯留部位に連通している。さらに、気液分離室48は、その底部近く(換言すれば冷媒流入口44より下方位置)に設けられた冷媒流出口45にて下流側連通室47に連通している。
【0032】
なお、冷媒流入口44は、上流側連通室46の下部(凝縮部8の最下部)で開口し、上流側連通室46内の冷媒を気液分離室48内の液面9aより下方の液冷媒貯留部に流入させる冷媒流入手段をなすものである。冷媒流出口45は、冷媒流入口44より下方で開口し、気液分離室48内の液冷媒を下流側連通室47内に流出させる冷媒流出手段をなす。気液分離室48は、上流側連通室46より内部に流入した冷媒を気相冷媒と液相冷媒とに分離して液相冷媒のみを下流側連通室47へ送り出す役割を果している。
【0033】
次に、本発明の要部である遮熱部材50について述べる。図2に示すように、上記の受液器タンク37は、エンジンEのエキゾーストマニホルド(以下、エキマニと略す)108の近傍に配置されており、エキマニ108と受液器タンク37との間の間隙Cが非常に小さくなっている。
本実施形態では、エンジンEと受液器タンク37との間に、断熱性かつ柔軟性を有する発泡性樹脂(発泡成形されたゴム等)又はゴム等からなる板状の遮熱部材50を設けている。この遮熱部材50は、受液器タンク37の外周面とラジエータ105の外縁部とを覆うように(図3参照)貼付けられ、これら両者37、105の隙間を閉塞するようになっている。
【0034】
図4は、遮熱部材50単体の構成を示すものである。遮熱部材50のうち受液器タンク37およびラジエータ105との貼付け面51には、この貼付け面51の全体に渡って平行な複数個の溝(通風路)52が形成されており、貼付け面51のうち溝52以外の部位には、受液器タンク37およびラジエータ105に遮熱部材50を接着するための粘着材53を備えている。
【0035】
そして、遮熱部材50は、溝52が受液器タンク37からラジエータ105へ向かうように、受液器タンク37およびラジエータ105に粘着材53によって貼付けられる。ここで、受液器タンク37は、ラジエータ105よりもエキマニ108に向かって突出して配置されているが、遮熱部材50は、受液器タンク37の突出形状に沿って屈曲するように貼付けられる。
【0036】
これらの溝52により、受液器タンク37外周面と遮熱部材50との間において、受液器タンク37の突出形状に沿って受液器タンク37からラジエータ105へと向かう風の通路が形成される。
そして、エンジンEが起動すると、送風ファン106が回転し、受液器一体型冷媒凝縮器3からラジエータ105に向かって空気が流れると、同時に、これらの溝52内を受液器タンク37からラジエータ105へ空気が流れるようになっている。
【0037】
このように、本実施形態では、遮熱部材50は、受液器タンク37とラジエータ105に貼付けるだけで両者37、105と固定されるので、広い設置スペースを必要とせずに構成の小型化、簡素化が実現できるとともに、送風ファン106からの熱風の回り込みを抑制でき、受液器タンク37内の冷媒が加熱されるのを抑制できる。また、車両振動等によって、受液器タンク37と遮熱部材50とが別個に振動することが無くなり、遮熱部材50は剥がれにくい。
【0038】
また、本実施形態においては、受液器タンク37とエキマニ108との間は、断熱性の遮熱部材50によって遮蔽されているので、受液器タンク37がエキマニ108およびエンジンEからの輻射熱の影響を受けにくくできる。さらに、溝52を通る風により受液器タンク37を冷却することができるので、受液器タンク37内部の冷媒が加熱され、圧力が上昇するといった不具合を防止することができる。
【0039】
また、本実施形態によれば、溝52という簡易な構成で通風路を形成できるとともに、複数個の溝52としているので、通風路の流量が十分確保できる。さらに、遮熱部材50の貼付け面51において各溝52の間が接着面となるので、接着面積の確保が容易とできる。因みに、通風路の流量確保のため、1つの大きい溝とすると接着面積の確保が困難となる。
【0040】
また、本実施形態によれば、遮熱部材50は、断熱性かつ柔軟性を有する発泡性樹脂であるため一体成形できるので、安価で大量に製造することができる。さらに、その柔軟性によって遮熱部材50が容易に変形するので、図2に示すように、受液器タンク37がラジエータ105から突出した配置であっても、遮熱部材50の取付が容易とできる。
【0041】
また、本実施形態によれば、遮熱部材50は、受液器タンク37の突出形状に沿って屈曲しているから、受液器タンク37の外周に沿って通る溝52の距離が長くなり、流れる空気と受液器タンク37との接触時間、接触量が多くでき、冷却効果が向上できる。
また、本実施形態によれば、遮熱部材50は、エンジンEに対して、受液器タンク37とラジエータ105との隙間を閉塞しているので、エキマニ108およびエンジンEからの熱風が、受液器一体型冷媒凝縮器3とラジエータ105との間に入り込むのを防止できる。
【0042】
なお、上記した冷凍サイクル1の作動については公知であるため、この説明は省略する。
(他の実施形態)
なお、上記実施形態では、通風路を複数の溝52にて構成していたが、例えば、遮熱部材内部に設けられる一もしくは複数個の貫通孔としてもよい。
【0043】
また、遮熱部材は、発泡樹脂等に限定されるものではなく、断熱性かつ柔軟性を有する材料にて構成されていればよい。例えば、金属膜にて外周形状を構成し、その内部に断熱材を充填したものとしても、柔軟性に優れ貼付けが容易なものとできる。
また、上記実施形態では、遮熱部材50は受液器タンク37とラジエータ105に取り付けられていたが、図5に示すように、受液器タンク37とラジエータ105とにステーSを介してボルトBでネジ止め固定し通風路を形成するものとしてもよい。図5中、遮熱部材50をステーSを介して、受液器タンク37とラジエータ105とに対して隙間を開けることで通風路を形成している。
【0044】
このように、遮熱板50は、受液器タンク37とラジエータ105とに固定されているので、受液器タンク37と遮熱板50の振動数は同一の振動数となる。従って、課題の欄に示したような受液器タンク37と遮熱板50との位置ずれを防止することができる。
なお、遮熱部材50は金属製でもよいが、熱伝導性の小さいものが好ましい。
【0045】
また、本発明は、受液器一体型冷媒凝縮器3とラジエータ105の配置が図2のような位置のものに限定されるものではなく、受液器タンク37がエンジンEの輻射熱による影響を受けるような位置にあるものであれば、適用可能である。図2では、受液器一体型冷媒凝縮器3における送風を受ける面が車両前後方向を向いているが、例えば、この面が車両左右方向を向いたものでもよい。
【0046】
また、上記実施形態では、1つの送風ファン106にて受液器一体型冷媒凝縮器3およびラジエータ105に送風していたが、受液器一体型冷媒凝縮器3およびラジエータ105のそれぞれに送風ファンを設けて送風してもよい。また、送風ファンの位置は、受液器一体型冷媒凝縮器3の車両前方側でもよく、受液器一体型冷媒凝縮器3とラジエータ105との間であってもよい。
【0047】
また、上記実施形態では、受液器一体型冷媒凝縮器3における冷媒の流れは、第1ヘッダ15から流入し第2ヘッダ16でUターンして第1ヘッダ15から流出する形で流れているが、例えば、入口配管を第2ヘッダ16に設け、冷媒が第2ヘッダ16から流入し凝縮部8を流れ第1ヘッダ15で転流し凝縮部8を流れ、第2ヘッダ15でさらに転流して過冷却部10を流れて第1ヘッダ15から流出する、つまりSターンする形で流れるものとしてもよい。
【0048】
以上述べてきたように、本発明は、受液器一体型冷媒凝縮器に基づくものであるが、受液器タンクがエンジンの近傍にあるような車両搭載構造に使用して、効果的である。このことから、本発明は、エンジンルームのスペースの小さい軽自動車等に用いて好適である。
【図面の簡単な説明】
【図1】本発明の実施形態に係わる自動車用空調装置の冷凍サイクルを示す構成図である。
【図2】上記実施形態における受液器一体型冷媒凝縮器の車体への搭載構造を示す上面図である。
【図3】上記受液器一体型冷媒凝縮器のラジエータへの取付状態を示す図である。
【図4】上記実施形態における遮熱部材の構成図である。
【図5】本発明の他の実施形態における受液器一体型冷媒凝縮器の車体への搭載構造を示す上面図である。
【図6】本発明者が試作した受液器一体型冷媒凝縮器の車両への搭載構造を示す上面図である。
【符号の説明】
3…受液器一体型冷媒凝縮器、8…凝縮部、37…受液器タンク、
50…遮熱部材、52…溝、104…エンジンルーム、105…ラジエータ、
106…送風ファン、E…エンジン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mounting structure for a receiver-integrated refrigerant condenser used in a refrigeration cycle.
[0002]
[Prior art]
Conventionally, in a refrigeration cycle of an automotive air conditioner, a liquid receiver and a condenser are arranged separately and independently. For this reason, it is difficult to reduce the cost by reducing the number of parts, and the receiver and the condenser occupy the mounting space with each other.
[0003]
In order to solve the above problems, Japanese Patent Laid-Open No. 4-320771 discloses that a tubular liquid receiver that extends in the same direction as the outlet header is integrally joined to the wall of the outlet header of the condenser. A so-called liquid receiver-integrated refrigerant condenser has been proposed in which a communication path that communicates the outlet header and the liquid receiver is provided.
[0004]
[Problems to be solved by the invention]
Here, the inventor made a prototype of the receiver-integrated refrigerant condenser based on the above-described conventional technology, and mounted the prototyped receiver-integrated refrigerant condenser on the vehicle body 100 as shown in FIG. It was found that the following problems occur.
First, the mounting structure of the receiver-integrated refrigerant condenser 3 on the vehicle body 100 according to the prototype of the present inventor will be described. In FIG. 6, the engine E is disposed on the right side (one side in the vehicle width direction) of the engine room 104, and the radiator 105 is disposed on the left side (the other side in the vehicle width direction) of the engine room 104. The radiator 105 is fixed to the vehicle body 100 via a vibration isolating rubber (not shown).
[0005]
In front of the radiator 105 (windward side), the receiver-integrated refrigerant condenser 3 is disposed in close proximity so as to overlap. The receiver-integrated refrigerant condenser 3 is fixedly attached to the radiator 105 via a mounting bracket (not shown).
In such an arrangement, the gap C between the engine E and the receiver tank 37 is very small. In this prototype, the refrigerant in the receiver tank 37 is heated by radiant heat from the engine E, such as radiant heat from the exhaust manifold (hereinafter abbreviated to “exhaust manifold”) 108, or by hot air that has passed through the radiator 105 from the blower fan 106. In order to prevent a problem such as an increase in pressure, a metal heat shield plate 90 is provided between the engine E and the receiver tank 37. Thereby, radiant heat from the exhaust manifold 108 or the like or hot air from the blower fan 106 is blocked.
[0006]
Here, the heat shield plate 90 is fixed to the vehicle frame F with bolts B as shown in FIG.
However, in this fixing method, the liquid receiver tank 37 and the heat shield plate 90 vibrate separately due to vehicle vibration or the like, and both are relatively displaced. In order to prevent this, a large installation space is required, and it is necessary to secure a gap between the radiator 105 and the heat shield plate 90, and a large amount of hot air flows from the blower fan 106.
[0007]
In view of the above points, the present invention provides a receiver-integrated refrigerant condenser in which a receiver-integrated refrigerant condenser is disposed close to the air upstream side of the radiator in a vehicle in which an engine and a radiator are installed in the engine room. An object of the mounting structure is to suppress the refrigerant in the receiver tank of the condenser from being heated and to reduce the size and simplify the configuration.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following technical means.
That is, according to the first aspect of the present invention, in the vehicle in which the engine (E) and the radiator (105) are installed in the engine room (104), the receiver-integrated refrigerant is provided upstream of the radiator (105). It is a mounting structure of a receiver-integrated refrigerant condenser in which a condenser (3) is arranged in close proximity, and the receiver-integrated refrigerant condenser (3) includes a condensing unit (8) that condenses gas refrigerant, and a condenser A receiver tank (37) attached to the section (8) for gas-liquid separation of the refrigerant from the condensing section (8),
The liquid receiver tank (37) is disposed in the vicinity of the engine (E) and is blown by the blower fan (106) from the liquid receiver-integrated refrigerant condenser (3) toward the radiator (105). A heat shield member (50) is attached to the receiver tank (37) and the radiator (105), and between the heat shield member (50) and the receiver tank (37). Furthermore, a ventilation path (52) through which the wind from the liquid receiver tank (37) toward the radiator (105) passes is formed.
[0009]
In the present invention, since the heat shield member (50) is attached to the receiver tank (37) and the radiator (105) and is fixed to both (37, 105), the configuration can be reduced in size and simplified. The sneaking of hot air from the blower fan (106) can be suppressed, and the refrigerant in the receiver tank (37) can be suppressed from being heated. Further, the liquid receiver tank (37) and the heat shield member (50) do not vibrate separately due to vehicle vibration or the like.
[0010]
Further, since the heat shield member (50) has a heat insulating property, the receiver tank (37) can be hardly affected by the radiant heat of the engine (E), and the ventilation path (52) can be directed to the radiator (105). When the wind passes, the receiver tank (37) is cooled, the refrigerant in the receiver tank (37) is heated, and a problem such as an increase in pressure can be prevented.
[0011]
According to the invention described in claim 2, the heat shield member (50) is attached so as to close the gap between the receiver tank (37) and the radiator (105), and the ventilation path (52) is provided. Since it consists of the formed heat insulating material, the ventilation path (52) can be formed in the heat shield member (50) itself, and the size of the structure can be reduced.
Here, according to the invention described in claim 3, the ventilation path is a plurality of grooves (52) formed so as to be directed from the receiver tank (37) to the radiator (105). Features.
[0012]
As a result, a ventilation path can be formed with a simple configuration, and a plurality of grooves (52) are formed from the receiver tank (37) to the radiator (105), so that a sufficient flow rate of the ventilation path is ensured. In addition, since the space between the grooves (52) in the heat shield member (50) serves as an adhesive surface with the receiver tank (37) and the radiator (105), it is easy to secure an adhesive area. Incidentally, if one large groove is used for securing the flow rate of the ventilation path, it is difficult to secure the bonding area.
[0013]
Moreover, according to invention of Claim 4, a heat insulation member (50) is a foamable resin or rubber | gum which has a softness | flexibility, and is affixed on a receiver tank (37) and a radiator (105). It is characterized by being.
In the present invention, since the heat shield member (50) is easily deformed, the heat shield member (50) can be easily mounted regardless of the relative arrangement state of the receiver tank (37) and the radiator (105). Moreover, good heat insulation performance can be realized by the high heat insulation property of the foamed resin.
[0014]
Further, according to the invention described in claim 5, the receiver tank (37) is disposed so as to protrude from the radiator (105) toward the engine (E), and the heat shield member (50) is Since it is bent along the protruding shape of the receiver tank (37), the distance of the ventilation path (50) passing along the outer periphery of the receiver tank (37) is increased, and the cooling effect can be improved.
[0015]
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below.
In this embodiment, the present invention is applied to a receiver-integrated refrigerant condenser in a refrigeration cycle of an automotive air conditioner. A refrigeration cycle 1 of an automotive air conditioner shown in FIG. 1 includes a refrigerant compressor 2, a receiver-integrated refrigerant condenser 3, a sight glass 4, an expansion valve 5, and a refrigerant evaporator 6 that are sequentially connected by a refrigerant pipe 7. ing.
[0017]
The refrigerant compressor 2 is connected to an engine E installed horizontally in an engine room 104 of an automobile via a belt V and an electromagnetic clutch (power intermittent means) D. When the rotational power of the engine E is transmitted to the refrigerant compressor 2, the refrigerant compressor 2 compresses the gas phase (gas) refrigerant sucked into the inside from the refrigerant evaporator 6, and converts the high-temperature and high-pressure gas phase refrigerant into a receiver integrated type. Discharge to the refrigerant condenser 3.
[0018]
The liquid receiver-integrated refrigerant condenser 3 is integrally provided with a condensing unit 8, a liquid receiving unit 9, and a supercooling unit 10. The condensing unit 8 is connected to the discharge side of the refrigerant compressor 2 and exchanges heat between the gas-phase refrigerant flowing into the inside from the refrigerant compressor 2 and the outdoor air sent by the blower fan 106 (see FIG. 2) or the like. Works as a condensing means to condense and liquefy.
The liquid receiving unit 9 functions as a gas-liquid separation unit that gas-liquid separates the refrigerant flowing into the inside from the condensing unit 8 into a gas-phase refrigerant and a liquid-phase refrigerant and supplies only the liquid-phase refrigerant to the supercooling unit 10. The supercooling unit 10 is provided adjacent to the lower side of the condensing unit 8 disposed on the upper side, and the outdoor air that is sent by the blower fan 106 (see FIG. 2) or the like to the liquid phase refrigerant that has flowed into the interior from the liquid receiving unit 9. It acts as a supercooling means for supercooling the liquid phase refrigerant by exchanging heat with it.
[0019]
The sight glass 4 is connected to the downstream side of the supercooling unit 10 of the receiver-integrated refrigerant condenser 3 and observes the gas-liquid state of the refrigerant circulating in the refrigeration cycle 1 so that the amount of refrigerant enclosed in the cycle is excessive. It works as a refrigerant quantity check means for checking the shortage. The sight glass 4 is mounted alone in a location easily visible to an inspector in the engine room 104 of the automobile, for example, in the middle of a refrigerant pipe 7 provided adjacent to the receiver-integrated refrigerant condenser 3.
[0020]
The sight glass 4 is composed of a tubular metal body 11 having both ends connected to the refrigerant pipe 7, a welded glass 13 fitted in a viewing window 12 formed on the upper surface of the metal body 11, and the like. Yes. Generally, when bubbles are seen from the viewing window 12, the refrigerant is insufficient, and when no bubbles are seen, the amount of refrigerant is an appropriate amount.
The expansion valve 5 is connected to the refrigerant inlet side of the refrigerant evaporator 6, and is a decompression unit that adiabatically expands the high-temperature and high-pressure liquid-phase refrigerant flowing in from the sight glass 4 to form a low-temperature and low-pressure gas-liquid two-phase mist refrigerant. In this example, a temperature-operated expansion valve is used that automatically adjusts the valve opening so as to maintain the refrigerant superheat degree at the refrigerant outlet of the refrigerant evaporator 6 at a predetermined value.
[0021]
The refrigerant evaporator 6 is connected between the suction side of the refrigerant compressor 2 and the downstream side of the expansion valve 5, and the gas-liquid two-phase refrigerant that has flowed into the inside from the expansion valve 5 is blown by a blower (not shown). It functions as a cooling means for evaporating the refrigerant by exchanging heat with the outdoor air or the indoor air to be blown, and cooling the blown air by the latent heat of evaporation.
Next, the structure of the liquid receiver-integrated refrigerant condenser 3 and the structure of mounting the liquid receiver-integrated refrigerant condenser 3 on the vehicle body 100 will be described in detail. FIG. 2 is an arrangement configuration diagram illustrating the mounting structure, and FIG. 3 is a configuration diagram illustrating a state in which the liquid receiver-integrated refrigerant condenser 3 is attached to the radiator 105.
[0022]
The receiver-integrated refrigerant condenser 3 has a height of, for example, 300 mm to 400 mm and a width of 300 mm to 600 mm. As shown in FIG. 2, in the engine room 104 where the engine E of the automobile is disposed. In a place where the traveling wind is likely to be received, usually, in the vicinity of the foremost part of the vehicle body 100, the vehicle is disposed close to the front (upwind side) of the radiator 105 for cooling the engine coolant.
[0023]
As shown in FIG. 3, the receiver-integrated refrigerant condenser 3 has a radiator 105 via mounting brackets 109 attached to upper and lower ends (two on the upper side and two on the lower side in FIG. 3). It is fixed to. The radiator 105 is fixed to the vehicle body 100 via a vibration-proof rubber (not shown).
The width of the condensing part 8 of the liquid receiver-integrated refrigerant condenser 3 is substantially the same as the width of the radiator 105. The radiator 105 and the condenser 3 are arranged with a very small gap (for example, about 15 mm).
[0024]
In addition, a blower fan 106 that sucks air on the front side is disposed on the rear side (leeward side) of the radiator 105, and the blower fan 106 is disposed between the outer edge portion of the radiator 105 and the outer peripheral portion of the blower fan 106. A shroud 107 is provided to ensure that the suction air passes through the radiator 105. The arrows in FIG. 1 indicate the air flow when the blower fan 106 is operating and when the vehicle is running.
[0025]
The receiver-integrated refrigerant condenser 3 includes a core 14 that performs heat exchange, a first header 15 that is disposed on one end of the core 14 in the horizontal direction, and a first header 15 that is disposed on the other end of the core 14 in the horizontal direction. 2 header 16 and liquid receiver tank 37 arranged adjacent to second header 16. FIG. 1 shows the liquid receiver-integrated refrigerant condenser 3 as viewed from the downstream side of the air, that is, the radiator 105 side.
[0026]
The core 14 includes the condensing unit 8 and the supercooling unit 10 described above, and side plates 17 and 18 for attaching the mounting bracket 109 to the upper end and the lower end are provided.
The condensing unit 8 includes a plurality of condensing tubes 19 and corrugated fins 20 that extend in the horizontal direction, and the supercooling unit 10 also includes a plurality of supercooling tubes 21 and corrugated fins 22 that extend in the horizontal direction. Are arranged in the vertical direction.
[0027]
The refrigerant flows from the first header 15 on the refrigerant inlet side in the plurality of condensing tubes 19 in the horizontal direction and flows into the second header 16, while the refrigerant flowing in the plurality of supercooling tubes 21 2 flows in the horizontal direction from the header 16 and flows into the first header 15. In other words, it flows in a U-turn form.
The first header 15 has a substantially cylindrical shape extending in the vertical direction and is closed at both ends. The upper side of the first header 15 is connected to the upstream ends of a plurality of condensing tubes 19 constituting the condensing unit 8, and the lower side is downstream of the plurality of supercooling tubes 21 constituting the supercooling unit 10. The ends are connected.
[0028]
One end of the side plates 17 and 18, upstream ends of the plurality of condensing tubes 19, and downstream ends of the plurality of supercooling tubes 21 are inserted into the first header 15. An inlet pipe 30 and an outlet pipe 32 are inserted into the first header 15, and the inside of the first header 15 is divided up and down by a separator 28 provided in the first header 15, in other words, the condensing unit 8. The inlet side communication chamber 34 that communicates only with the upstream end of the supercooling unit 10 and the outlet side communication chamber 35 that communicates only with the downstream end of the supercooling unit 10.
[0029]
The inlet pipe 30 is a pipe for allowing the high-temperature and high-pressure gas phase refrigerant discharged from the refrigerant compressor 2 to flow into the inlet-side communication chamber 34, and the outlet pipe 32 receives the liquid-phase refrigerant in the outlet-side communication chamber 35. It is piping sent out to the sight glass 4 side.
The second header 16 has a substantially cylindrical shape extending in the vertical direction and is closed at both ends. The upper side of the second header 16 is connected to the downstream ends of a plurality of condensing tubes 19 constituting the condensing unit 8, and the lower side is connected to the upstream ends of the plurality of subcooling tubes 21 constituting the supercooling unit 10. It is connected. The second header 16 is formed with a large number of oval holes (not shown). The numerous holes include the other ends of the side plates 17 and 18 and the downstream ends of the plurality of condensing tubes 19. The upstream ends of the plurality of supercooling tubes 21 are inserted.
[0030]
The separator 42 provided in the second header 16 partitions the inside of the second header 16 up and down, in other words, the communication chamber 46 communicating only with the downstream end of the condensing unit 8 and the upstream end of the supercooling unit 10 only. It is partitioned into a communication chamber 47 that communicates with the communication chamber 47.
A liquid receiver tank 37 having a substantially cylindrical shape (both ends are closed) extending in the vertical direction is located on the side (outer side) of both the communication chambers 46 and 47. The gas-liquid separation chamber 48 which comprises the liquid receiving part 9 is formed in the inside.
[0031]
The communication chamber 46 has a refrigerant liquid level 9a of the gas-liquid separation chamber 48 at the refrigerant inlet 44 provided near the bottom thereof (the lowest part of the condensing unit 8) (this liquid level 9a is filled with refrigerant in the cycle). It is communicated with the liquid refrigerant storage part in the gas-liquid separation chamber 48 below, in other words, the liquid level when the amount is a normal appropriate amount. Further, the gas-liquid separation chamber 48 communicates with the downstream communication chamber 47 at a refrigerant outlet 45 provided near the bottom thereof (in other words, at a position below the refrigerant inlet 44).
[0032]
The refrigerant inflow port 44 opens at the lower part of the upstream communication chamber 46 (the lowermost part of the condensing unit 8), and the refrigerant in the upstream communication chamber 46 is liquid below the liquid level 9a in the gas-liquid separation chamber 48. It constitutes a refrigerant inflow means for flowing into the refrigerant reservoir. The refrigerant outlet 45 opens below the refrigerant inlet 44 and serves as refrigerant outlet means for allowing the liquid refrigerant in the gas-liquid separation chamber 48 to flow into the downstream communication chamber 47. The gas-liquid separation chamber 48 plays a role of separating the refrigerant flowing into the inside from the upstream communication chamber 46 into a gas phase refrigerant and a liquid phase refrigerant and sending only the liquid phase refrigerant to the downstream communication chamber 47.
[0033]
Next, the heat shield member 50 which is a main part of the present invention will be described. As shown in FIG. 2, the liquid receiver tank 37 is disposed in the vicinity of an exhaust manifold (hereinafter abbreviated as “exhaust manifold”) 108 of the engine E, and a gap between the exhaust manifold 108 and the liquid receiver tank 37. C is very small.
In the present embodiment, a plate-like heat insulating member 50 made of a foamable resin (such as foamed rubber) or rubber having heat insulation and flexibility is provided between the engine E and the receiver tank 37. ing. The heat shield member 50 is affixed so as to cover the outer peripheral surface of the receiver tank 37 and the outer edge portion of the radiator 105 (see FIG. 3), and closes the gap between the two.
[0034]
FIG. 4 shows the configuration of the heat shield member 50 alone. A plurality of grooves (ventilation passages) 52 that are parallel to the whole of the pasting surface 51 are formed on the pasting surface 51 of the heat shield member 50 with the receiver tank 37 and the radiator 105. 51 is provided with an adhesive 53 for adhering the heat shield member 50 to the liquid receiver tank 37 and the radiator 105 at a portion other than the groove 52.
[0035]
The heat shield member 50 is adhered to the liquid receiver tank 37 and the radiator 105 with the adhesive 53 so that the groove 52 is directed from the liquid receiver tank 37 to the radiator 105. Here, the liquid receiver tank 37 is disposed so as to protrude from the radiator 105 toward the exhaust manifold 108, but the heat shield member 50 is attached so as to be bent along the protruding shape of the liquid receiver tank 37. .
[0036]
By these grooves 52, a wind passage from the receiver tank 37 toward the radiator 105 is formed between the outer peripheral surface of the receiver tank 37 and the heat shield member 50 along the protruding shape of the receiver tank 37. Is done.
When the engine E is started, the blower fan 106 rotates and air flows from the receiver-integrated refrigerant condenser 3 toward the radiator 105. At the same time, the inside of the grooves 52 is passed from the receiver tank 37 to the radiator. Air flows to 105.
[0037]
Thus, in this embodiment, since the heat shield member 50 is fixed to both the receiver tank 37 and the radiator 105 only by being attached to the receiver tank 37 and the radiator 105, the configuration can be reduced in size without requiring a large installation space. In addition, simplification can be realized, hot air from the blower fan 106 can be suppressed, and the refrigerant in the receiver tank 37 can be suppressed from being heated. Further, the receiver tank 37 and the heat shield member 50 do not vibrate separately due to vehicle vibration or the like, and the heat shield member 50 is not easily peeled off.
[0038]
Further, in the present embodiment, the space between the liquid receiver tank 37 and the exhaust manifold 108 is shielded by the heat insulating heat shielding member 50, so that the liquid receiver tank 37 receives the radiant heat from the exhaust manifold 108 and the engine E. Can be less affected. Furthermore, since the receiver tank 37 can be cooled by the wind passing through the groove 52, the refrigerant in the receiver tank 37 is heated and a problem such as an increase in pressure can be prevented.
[0039]
In addition, according to the present embodiment, the ventilation path can be formed with a simple configuration of the groove 52, and since the plurality of grooves 52 are provided, a sufficient flow rate of the ventilation path can be secured. Furthermore, since the space between the grooves 52 is an adhesive surface on the affixing surface 51 of the heat shield member 50, it is easy to ensure an adhesive area. Incidentally, if one large groove is used for securing the flow rate of the ventilation path, it is difficult to secure the bonding area.
[0040]
Moreover, according to this embodiment, since the heat-insulating member 50 is a foamable resin having heat insulation and flexibility, it can be integrally formed, and can be manufactured in large quantities at a low cost. Furthermore, since the heat shield member 50 is easily deformed due to its flexibility, the heat shield member 50 can be easily attached even if the liquid receiver tank 37 is arranged to protrude from the radiator 105 as shown in FIG. it can.
[0041]
Further, according to the present embodiment, since the heat shield member 50 is bent along the protruding shape of the receiver tank 37, the distance of the groove 52 passing along the outer periphery of the receiver tank 37 is increased. The contact time and amount of contact between the flowing air and the receiver tank 37 can be increased, and the cooling effect can be improved.
Further, according to the present embodiment, the heat shield member 50 closes the gap between the receiver tank 37 and the radiator 105 with respect to the engine E, so that hot air from the exhaust manifold 108 and the engine E is received. It is possible to prevent the liquid-integrated refrigerant condenser 3 from entering between the radiator 105 and the radiator 105.
[0042]
Since the operation of the above-described refrigeration cycle 1 is known, this description is omitted.
(Other embodiments)
In the above embodiment, the ventilation path is configured by the plurality of grooves 52. However, for example, one or a plurality of through holes provided in the heat shield member may be used.
[0043]
Further, the heat shielding member is not limited to the foamed resin or the like, and may be made of a heat insulating and flexible material. For example, even if the outer peripheral shape is constituted by a metal film and the inside thereof is filled with a heat insulating material, it can be excellent in flexibility and easy to be applied.
In the above embodiment, the heat shield member 50 is attached to the receiver tank 37 and the radiator 105. However, as shown in FIG. 5, the receiver tank 37 and the radiator 105 are bolted via the stay S. It is good also as what fixes by screwing with B and forms a ventilation path. In FIG. 5, a ventilation path is formed by opening a gap between the heat shield member 50 and the receiver tank 37 and the radiator 105 via the stay S.
[0044]
Thus, since the heat shield plate 50 is fixed to the liquid receiver tank 37 and the radiator 105, the frequencies of the liquid receiver tank 37 and the heat shield plate 50 are the same. Accordingly, it is possible to prevent the positional deviation between the liquid receiver tank 37 and the heat shield plate 50 as shown in the column of problems.
The heat shield member 50 may be made of metal, but preferably has a low thermal conductivity.
[0045]
In the present invention, the arrangement of the receiver-integrated refrigerant condenser 3 and the radiator 105 is not limited to the position shown in FIG. 2, and the receiver tank 37 is affected by the radiant heat of the engine E. Anything that is in a position to receive can be applied. In FIG. 2, the surface that receives the blast in the liquid receiver-integrated refrigerant condenser 3 faces in the vehicle front-rear direction. For example, the surface may face in the vehicle left-right direction.
[0046]
In the above-described embodiment, the single receiver fan 106 supplies air to the receiver-integrated refrigerant condenser 3 and the radiator 105. However, the receiver fan-integrated refrigerant condenser 3 and the radiator 105 each supply a fan. You may provide and air. Further, the position of the blower fan may be on the vehicle front side of the liquid receiver-integrated refrigerant condenser 3 or between the liquid receiver-integrated refrigerant condenser 3 and the radiator 105.
[0047]
Moreover, in the said embodiment, the flow of the refrigerant | coolant in the liquid receiver integrated refrigerant condenser 3 has flowed in the form which flows in from the 1st header 15 and U-turns in the 2nd header 16, and flows out from the 1st header 15. However, for example, the inlet pipe is provided in the second header 16, the refrigerant flows in from the second header 16, flows through the condensing unit 8, commutates through the first header 15, flows through the condensing unit 8, and further commutates through the second header 15. It is good also as what flows through the supercooling part 10 and flows out out of the 1st header 15, ie, the form which carries out S turn.
[0048]
As described above, the present invention is based on the receiver-integrated refrigerant condenser, but is effective when used in a vehicle mounting structure in which the receiver tank is in the vicinity of the engine. . For this reason, the present invention is suitable for use in a light vehicle having a small engine room space.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a refrigeration cycle of an automotive air conditioner according to an embodiment of the present invention.
FIG. 2 is a top view showing a structure for mounting a receiver-integrated refrigerant condenser on a vehicle body in the embodiment.
FIG. 3 is a view showing a state in which the liquid receiver-integrated refrigerant condenser is attached to a radiator.
FIG. 4 is a configuration diagram of a heat shield member in the embodiment.
FIG. 5 is a top view showing a structure for mounting a receiver-integrated refrigerant condenser on a vehicle body according to another embodiment of the present invention.
FIG. 6 is a top view showing a mounting structure of a receiver-integrated refrigerant condenser prototyped by the present inventor on a vehicle.
[Explanation of symbols]
3 ... liquid receiver integrated refrigerant condenser, 8 ... condensing part, 37 ... liquid receiver tank,
50 ... Heat shield member, 52 ... Groove, 104 ... Engine room, 105 ... Radiator,
106 ... Blower fan, E ... Engine.

Claims (5)

エンジンルーム(104)内に、エンジン(E)およびエンジン冷却水冷却用のラジエータ(105)が設置された車両において、前記ラジエータ(105)の空気上流側に受液器一体型冷媒凝縮器(3)を近接配置する受液器一体型冷媒凝縮器の搭載構造であって、
前記受液器一体型冷媒凝縮器(3)は、ガス冷媒を凝縮する凝縮部(8)と、前記凝縮部(8)に取付られ前記凝縮部(8)からの冷媒を気液分離する受液器タンク(37)とを備え、
前記受液器タンク(37)は前記エンジン(E)の近傍に配置されており、
前記受液器一体型冷媒凝縮器(3)から前記ラジエータ(105)に向かって送風ファン(106)にて送風されるようになっており、
前記受液器タンク(37)と前記ラジエータ(105)には、遮熱部材(50)が取り付けられているとともに、前記遮熱部材(50)と前記受液器タンク(37)との間に、前記受液器タンク(37)から前記ラジエータ(105)へ向かう風が通過する通風路(52)が形成されていることを特徴とする受液器一体型冷媒凝縮器の搭載構造。
In a vehicle in which an engine (E) and a radiator (105) for cooling engine coolant are installed in an engine room (104), a receiver-integrated refrigerant condenser (3 ) In the proximity of the receiver-integrated refrigerant condenser mounting structure,
The liquid receiver-integrated refrigerant condenser (3) includes a condensing unit (8) for condensing gas refrigerant and a receiver attached to the condensing unit (8) for gas-liquid separation of the refrigerant from the condensing unit (8). A liquid tank (37),
The receiver tank (37) is disposed in the vicinity of the engine (E),
The liquid receiver integrated refrigerant condenser (3) is blown by the blower fan (106) toward the radiator (105),
A heat shield member (50) is attached to the liquid receiver tank (37) and the radiator (105), and between the heat shield member (50) and the liquid receiver tank (37). The receiver-integrated refrigerant condenser mounting structure is characterized in that an air passage (52) through which wind from the receiver tank (37) toward the radiator (105) passes is formed.
前記遮熱部材(50)は、前記受液器タンク(37)と前記ラジエータ(105)との隙間を閉塞するように取り付けられるとともに、前記通風路(52)が形成された断熱材からなることを特徴とする請求項1に記載の受液器一体型冷媒凝縮器の搭載構造。The heat shield member (50) is made of a heat insulating material attached so as to close a gap between the liquid receiver tank (37) and the radiator (105) and formed with the ventilation path (52). The mounting structure of the receiver-integrated refrigerant condenser according to claim 1. 前記通風路は、前記受液器タンク(37)から前記ラジエータ(105)へ向かうように形成された複数個の溝(52)であることを特徴とする請求項2に記載の受液器一体型冷媒凝縮器の搭載構造。3. The liquid receiver according to claim 2, wherein the ventilation path is a plurality of grooves (52) formed so as to go from the liquid receiver tank (37) to the radiator (105). Mounting structure of a body type refrigerant condenser. 前記遮熱部材(50)は、柔軟性を有する発泡性樹脂又はゴムであり、前記受液器タンク(37)と前記ラジエータ(105)とに貼付けるものであることを特徴とする請求項2または3に記載の受液器一体型冷媒凝縮器の搭載構造。The said heat shield member (50) is a foamable resin or rubber having flexibility, and is affixed to the receiver tank (37) and the radiator (105). Or a mounting structure of the receiver-integrated refrigerant condenser according to 3; 前記受液器タンク(37)は、前記ラジエータ(105)よりも前記エンジン(E)に向かって突出して配置されており、
前記遮熱部材(50)は、前記受液器タンク(37)の突出形状に沿って屈曲していることを特徴とする請求項1ないし4のいずれか1つに記載の受液器一体型冷媒凝縮器の搭載構造。
The liquid receiver tank (37) is disposed so as to protrude toward the engine (E) from the radiator (105),
The liquid receiver integrated type according to any one of claims 1 to 4, wherein the heat shield member (50) is bent along a protruding shape of the liquid receiver tank (37). Mounting structure of refrigerant condenser.
JP30213697A 1997-11-04 1997-11-04 Mounting structure of receiver-integrated refrigerant condenser Expired - Lifetime JP3769907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30213697A JP3769907B2 (en) 1997-11-04 1997-11-04 Mounting structure of receiver-integrated refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30213697A JP3769907B2 (en) 1997-11-04 1997-11-04 Mounting structure of receiver-integrated refrigerant condenser

Publications (2)

Publication Number Publication Date
JPH11129736A JPH11129736A (en) 1999-05-18
JP3769907B2 true JP3769907B2 (en) 2006-04-26

Family

ID=17905348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30213697A Expired - Lifetime JP3769907B2 (en) 1997-11-04 1997-11-04 Mounting structure of receiver-integrated refrigerant condenser

Country Status (1)

Country Link
JP (1) JP3769907B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959884B2 (en) * 1999-03-05 2007-08-15 株式会社デンソー Receiver integrated refrigerant condenser
KR20030033162A (en) * 2001-10-18 2003-05-01 기아자동차주식회사 Automotive cooling device
JP2004299609A (en) * 2003-03-31 2004-10-28 Calsonic Kansei Corp Heat exchanging apparatus for vehicle
JP2018096568A (en) * 2016-12-09 2018-06-21 株式会社デンソー Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136347U (en) * 1976-04-10 1977-10-17
JPS6268127A (en) * 1985-09-18 1987-03-28 Nissan Motor Co Ltd Heat shielding cooling device for fan motor
JPH067951Y2 (en) * 1988-04-12 1994-03-02 マツダ株式会社 Heat damage prevention structure at the front of the vehicle
JP3371627B2 (en) * 1995-07-20 2003-01-27 株式会社デンソー Heat exchange equipment for vehicles
JPH0960986A (en) * 1995-08-22 1997-03-04 Denso Corp Refrigerating cycle device

Also Published As

Publication number Publication date
JPH11129736A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
JP3324464B2 (en) Heat exchange equipment for vehicles
CN1991288B (en) Integrated heat exchanger and heat exchanger
US5875650A (en) Refrigerant condenser including super-cooling portion
JP3116996B2 (en) Recipient integrated refrigerant condenser
JP6051935B2 (en) Heat exchanger
JP3301169B2 (en) Refrigeration equipment
CN101876465A (en) Saddle-shaped window type air-conditioner
US20080127666A1 (en) Vehicle Heat Exchanger and Cooling System
CN101419003B (en) Receiver/dryer-accumulator-internal heat exchanger for vehicle air conditioning system
JP3557628B2 (en) Recipient integrated refrigerant condenser
JP3355844B2 (en) Recipient integrated refrigerant condenser
JPH07159000A (en) Refrigerant condenser
JP3769907B2 (en) Mounting structure of receiver-integrated refrigerant condenser
JPH0930246A (en) Heat exchanger for vehicle
JP2001174103A (en) Refrigerant condenser
JP3214278B2 (en) Air conditioner
JP3804166B2 (en) Mounting structure of receiver-integrated refrigerant condenser
JPH10236150A (en) Air conditioning device
JPH11157328A (en) Mounting structure of refrigerant condenser consolidated with liquid receptacle device
CN221222853U (en) Vertical jet air conditioning unit
JP2002228303A (en) Condenser integrated with receiver
JP4352627B2 (en) Built-in cooling structure of receiver-integrated refrigerant condenser
CN216953248U (en) Indoor unit of air conditioner
KR100284528B1 (en) Condenser structure of locomotive air conditioner
CN218269313U (en) Indoor machine of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term