JP3769889B2 - Eddy current flaw detection sensor and flaw detection method using it - Google Patents

Eddy current flaw detection sensor and flaw detection method using it Download PDF

Info

Publication number
JP3769889B2
JP3769889B2 JP22949997A JP22949997A JP3769889B2 JP 3769889 B2 JP3769889 B2 JP 3769889B2 JP 22949997 A JP22949997 A JP 22949997A JP 22949997 A JP22949997 A JP 22949997A JP 3769889 B2 JP3769889 B2 JP 3769889B2
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
thin film
detection sensor
film coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22949997A
Other languages
Japanese (ja)
Other versions
JPH1164294A (en
Inventor
耕司 高嶋
紀仁 河口
譲司 篠原
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP22949997A priority Critical patent/JP3769889B2/en
Publication of JPH1164294A publication Critical patent/JPH1164294A/en
Application granted granted Critical
Publication of JP3769889B2 publication Critical patent/JP3769889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力機器や航空機器の部品材料の欠陥やクラックを非破壊で検出する渦流探傷センサに関する。
【0002】
【従来の技術】
渦流探傷センサは、コイルに電流を流して、部品材料に近づけ、部品材料の表面に誘導渦電流を形成し、渦電流により発生する磁界の変化から部品材料の欠陥やクラックの有無を探傷するものである。現在市販されている渦流探傷センサは、手巻のワークコイルを使ったプローブタイプのものがあるが、微細な欠陥を検知するためのセンサ形状の微細化や、特性の揃ったコイルの量産が難しいなどの問題がある。本願の出願人は上記問題を解決するため実用新案登録出願(実願平5−7567(出願日 平成5年2月26日))を行った。
【0003】
図4ないし図6は、上記出願に開示された渦電流センサの図面である。
図4は上記考案の概略斜視図を示したもので、センサ基板10の表面には、多数千鳥状に配列された薄膜コイル11からなる探傷検出部12が設けられると共に図示していない検出回路と接続するための接続コード13が接続される。
【0004】
図5に示すように薄膜コイル11は、部品材料表面に渦電流を発生させるための誘導電流発生コイル14と信号検出コイル15からなり、誘導電流発生コイル14は渦巻状に形成され、信号検出コイル15は、その誘導電流発生コイル14の外周に位置するようにリング状に形成され、それぞれのコイル14,15の端部には引出電極16,17が一体に接続される。
【0005】
この薄膜コイル11の形成は、図6に示すように、先ずセンサ基板10上に、例えばSiO2 の絶縁膜18を形成し、その絶縁膜18上に、誘導電流発生コイル14と信号検出コイル15からなる薄膜コイル11と引出電極16,17をリソグラフなどで形成する。この場合、誘導電流発生コイル14の内側の引出電極16aは、誘導電流発生コイル14を横断するため両者が接触しないように絶縁層18aを介在させる。
【0006】
薄膜コイル11と引出電極16,17を形成した後、SiO2 などの絶縁材からなる保護膜19で被覆する。また引出電極16,17には、リード線20をそれぞれ接続し、そのリード線20を図4に示した接続コード13に接続する。この場合リード線20は、図では示していないがセンサ基板10内を通すように設ける。
【0007】
【発明が解決しようとする課題】
以上説明した渦電流センサは探傷検出部の形状が円形であるため、傷の有無の検出には有効であるものの、傷の方向(平面視でどの方向を向いているのか)や深さの認識は難しかった。
【0008】
本発明は従来技術のかかる問題点に鑑み案出されたもので、傷の有無のみならず、傷の方向や深さの形状認識が可能な渦流探傷センサと、それを用いた探傷方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本願第1発明の渦流探傷センサは、センサ基板の絶縁膜上に渦巻状の薄膜コイルを形成し、該薄膜コイルを保護膜で被覆してなる渦流探傷センサであって、長方形または楕円形に形成された2個の薄膜コイルを長手方向が互に略直交するように積層してなるものである。
【0010】
上記渦流探傷センサは、略5mm角程度の大きさであることが好ましい。
【0011】
複数個の上記渦流探傷センサを直線状または千鳥状に並べて探傷プローブを形成するようにしてもよい。
【0012】
また、本願第2発明の上記渦流探傷センサを用いた探傷方法は、上記渦流探傷センサを渦流探傷器に接続し、各薄膜コイルに周波数の異なる交流電圧を重畳して印加し、それぞれの周波数についてインピーダンスの変化または起電力の変化を検出して探傷を行うものである。
【0013】
次に本発明の作用を説明する。
渦巻状の薄膜コイルが長方形または楕円形に形成されているので、被検査体の表面に発生する渦電流も長方形または楕円形になる。その場合その渦電流の長手方向に平行な傷は渦電流に影響を与えず、したがって、ほとんど検出されないのに対し、長手方向に直角な傷は渦電流に大きな影響を与えるのではっきり検出される。本発明では薄膜コイルは長手方向が互に直交するように積層して形成されているので、いずれの方向の傷についてもどちらかの薄膜コイルで検出することができるし、それによって傷の方向もわかる。
【0014】
また、薄膜コイルに印加される交流電圧の表皮効果は周波数に依存することがわかっている。すなわち、低い周波数の交流電流は、被検査体に深い渦電流を惹起するし、高い周波数の交流電流は、被検査体に浅い渦電流を惹起する。したがって、薄膜コイルに異なる周波数の交流電圧を印加し、それぞれの周波数についてインピーダンスの変化または起電力の変化を検出すれば傷の深さを検知することができる。
【0015】
【発明の実施の形態】
以下本発明の1実施形態について図面を参照しつつ説明する。
図1は本発明の渦流探傷センサの図面であり、図1(A)は平面図、図1(B)は図1(A)のB−B矢視断面図である。なお、これらの図において、図3ないし図5で説明したものと同様の部分については、同じ符号を付しており重複した説明を省略する。図1において、1は長方形に形成した薄膜コイルであり、薄膜コイル1aの上に薄膜コイル1bを、長手方向が互に略直交するように積層してなるものである。薄膜コイル1の形成は、センサ基板10上に、例えばSiO2 の絶縁膜18を形成し、その絶縁膜18上に、薄膜コイル1をリソグラフなどにより、高アスペクト比の加工技術を適用して作成する。薄膜コイル1は例えば幅50μm、厚さ1μm程度の素線を有し、直流抵抗が約5Ω、リアクタンスが約50Ω程度になるようにする。薄膜コイル1は略5mm角程度の大きさとするのが好ましい。
【0016】
薄膜コイル1には引出線2が接続されており、渦流探傷器3に接続する。渦流探傷器3内には発振器3aを有しており、薄膜コイル1aには2つの異る周波数FA1およびFA2の交流電流を重畳して流し、薄膜コイル1bには2つの異る周波数FB1およびFB2の交流電流を重畳して流す。渦流探傷器3は各周波数の交流電流について、インピーダンスの変化を検知するものであり、種々の原理のものがあるが、例えば図2に示す回路を有するものがある。
【0017】
一般に傷によって生じる信号は急激に変化するが、傷以外の因子によって生じる信号の多くは穏やかに変化する場合が多い。したがって、自動平衡器の応答速度を調整することにより、急激な変化に対しては追従せず、穏やかな変化に対してだけ応答する速度を選ぶことにより不要な因子を取り除き欠陥検出をしやすくすることができる。
【0018】
図2は最も基本的な回路である。自動平衡器は増幅器の信号を検出回路により検出し、検出回路からの信号により、サーボモータMx、Myを動かして、穏やかな変化に対するブリッジの不平衡分を自動的に除くようにしている。
【0019】
次に本実施形態の作用を説明する。
図3は薄膜コイル1によって部品材料の表面に発生する渦電流を示している。4は渦電流、XおよびYは傷を示している。渦電流4は薄膜コイル1の形状と同様な形状となるものであり、薄膜コイル1が長方形または楕円形をしているので渦電流4も長方形または楕円形の異方性のある形状をしている。したがって、傷が図3のXに示すように、長手方向に対して直角方向を向いているときには渦電流4に大きな影響があるので渦流探傷器3にインピーダンスの変化として現れて傷の長さが検知でき、傷がYに示すように長手方向に平行な場合には、渦電流4にほとんど影響がなく、したがって、渦流探傷器3にインピーダンスの変化が現れないので傷の存在も検知できない。本発明では薄膜コイル1a、1bは長手方向が互に直交するように積層して形成されているので傷Xは薄膜コイル1aに接続した渦流探傷器3により長さが検出されるのに対し、傷Yは薄膜コイル1bに接続した渦流探傷器3により長さが検出されるので、いずれの方向の傷についてもどちらかで検出できる。また、斜め方向の傷は両方の薄膜コイル1a、1bのインピーダンスの変化として現われるので斜めであることがわかる。
【0020】
薄膜コイル1a、1bに印加される交流電流は低い周波数(FA1またはFB1)と高い周波数(FA2またはFB2)が重畳して印加されている。一般に低い周波数の交流電流は、被検査体に深い渦電流4を惹起するし、高い周波数の交流電流は被検査体に浅い渦電流4を惹起するので、それぞれの周波数についてインピーダンスの変化を検出すれば傷X、Yの深さを検知することができる。
【0021】
本発明は以上説明した実施形態に限定するものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、薄膜コイル1は、励磁コイルと検出コイルが一体のものとして説明したが、図5に示すように別体のものとしてもよい。この場合には検出コイルの起電力の変化を検知すればよい。また、渦流探傷センサはプローブに1個設けてもよいが、図4に示すように千鳥状に多数配置するようにしてもよい。このようなプローブを使用すれば長い傷を一度で検知することができる。さらに千鳥状でなく一直線に配置してもよい。
【0022】
【発明の効果】
以上説明したように本発明の渦流探傷センサは異方性のある薄膜コイルを長手方向が互いに直交するように積層配置されているので、傷の方向と長さを検知することができるし、本発明の探傷方法は上記薄膜コイルに異なる周波数の交流電流を印加して、それぞれの周波数についてインピーダンスの変化を検知するようにしたので傷の方向だけでなく傷の深さも検知することができるなどの優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の渦流探傷センサの説明図であり、(A)は平面図、(B)は(A)のB−B矢視断面図である。
【図2】渦流探傷器の回路図である。
【図3】渦電流の説明図である。
【図4】従来の渦電流センサの斜視図である。
【図5】従来の渦電流センサの平面図である。
【図6】従来の渦電流センサの断面図である。
【符号の説明】
1 薄膜コイル
3 渦流探傷器
10 センサ基板
18 絶縁膜
19 保護膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current flaw detection sensor that nondestructively detects defects and cracks in component materials of nuclear equipment and aircraft equipment.
[0002]
[Prior art]
An eddy current flaw detection sensor is a sensor that detects the presence or absence of defects or cracks in a component material from a change in the magnetic field generated by the eddy current by causing an electric current to flow in the coil, approaching the component material, forming an induced eddy current on the surface of the component material. It is. Currently, there are probe type sensors that use hand-wound work coils, but eddy current flaw detection sensors on the market are difficult to miniaturize the sensor shape to detect minute defects and to mass-produce coils with uniform characteristics. There are problems such as. In order to solve the above problems, the applicant of the present application has filed a utility model registration application (actual application No. 5-7567 (application date: February 26, 1993)).
[0003]
4 to 6 are drawings of the eddy current sensor disclosed in the above application.
FIG. 4 shows a schematic perspective view of the above-described device. On the surface of the sensor substrate 10, a flaw detection detector 12 comprising thin film coils 11 arranged in a staggered manner is provided and a detection circuit (not shown) and A connection cord 13 for connection is connected.
[0004]
As shown in FIG. 5, the thin film coil 11 includes an induction current generation coil 14 and a signal detection coil 15 for generating an eddy current on the surface of a component material. The induction current generation coil 14 is formed in a spiral shape, and the signal detection coil. 15 is formed in a ring shape so as to be positioned on the outer periphery of the induction current generating coil 14, and extraction electrodes 16, 17 are integrally connected to end portions of the respective coils 14, 15.
[0005]
As shown in FIG. 6, the thin film coil 11 is formed by first forming an insulating film 18 of, for example, SiO 2 on the sensor substrate 10, and on the insulating film 18, an induced current generating coil 14 and a signal detecting coil 15. The thin film coil 11 and the extraction electrodes 16 and 17 are formed by lithography. In this case, since the extraction electrode 16a inside the induction current generating coil 14 crosses the induction current generation coil 14, an insulating layer 18a is interposed so that they do not contact each other.
[0006]
After the thin film coil 11 and the extraction electrodes 16 and 17 are formed, they are covered with a protective film 19 made of an insulating material such as SiO 2 . Further, lead wires 20 are connected to the extraction electrodes 16 and 17, respectively, and the lead wires 20 are connected to the connection cord 13 shown in FIG. In this case, the lead wire 20 is provided so as to pass through the sensor substrate 10 although not shown in the drawing.
[0007]
[Problems to be solved by the invention]
Although the eddy current sensor described above has a circular shape of the flaw detection detector, it is effective in detecting the presence or absence of a flaw, but it recognizes the direction of the flaw (which direction in plan view) and depth are recognized. Was difficult.
[0008]
The present invention has been devised in view of such problems of the prior art, and provides an eddy current flaw detection sensor capable of recognizing not only the presence or absence of flaws but also the direction and depth of flaws, and a flaw detection method using the eddy current flaw detection sensor. The purpose is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the eddy current flaw detection sensor according to the first invention of the present application is an eddy current flaw detection sensor in which a spiral thin film coil is formed on an insulating film of a sensor substrate and the thin film coil is covered with a protective film. Two thin film coils formed in a rectangular or elliptical shape are laminated so that their longitudinal directions are substantially orthogonal to each other.
[0010]
The eddy current flaw detection sensor preferably has a size of about 5 mm square.
[0011]
A plurality of eddy current flaw detection sensors may be arranged in a straight line or a staggered pattern to form a flaw detection probe.
[0012]
Further, in the flaw detection method using the eddy current flaw detection sensor according to the second invention of the present application, the eddy current flaw detection sensor is connected to an eddy current flaw detector, and AC voltages having different frequencies are superimposed and applied to each thin film coil. A flaw detection is performed by detecting a change in impedance or a change in electromotive force.
[0013]
Next, the operation of the present invention will be described.
Since the spiral thin film coil is formed in a rectangular or elliptical shape, the eddy current generated on the surface of the object to be inspected also becomes a rectangular or elliptical shape. In that case, flaws parallel to the longitudinal direction of the eddy current do not affect the eddy current and are therefore hardly detected, whereas flaws perpendicular to the longitudinal direction are clearly detected because they have a large influence on the eddy current. In the present invention, since the thin film coils are laminated so that their longitudinal directions are orthogonal to each other, any thin film coil can detect a flaw in either direction, and the direction of the flaw can also be detected. Recognize.
[0014]
It has also been found that the skin effect of the AC voltage applied to the thin film coil depends on the frequency. That is, a low-frequency alternating current causes a deep eddy current in the object to be inspected, and a high-frequency alternating current causes a shallow eddy current in the object to be inspected. Therefore, the depth of the flaw can be detected by applying alternating voltages of different frequencies to the thin film coil and detecting a change in impedance or a change in electromotive force for each frequency.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a drawing of an eddy current flaw detection sensor according to the present invention, FIG. 1 (A) is a plan view, and FIG. 1 (B) is a cross-sectional view taken along line BB in FIG. 1 (A). In these drawings, the same parts as those described with reference to FIGS. 3 to 5 are denoted by the same reference numerals, and redundant description is omitted. In FIG. 1, reference numeral 1 denotes a thin film coil formed in a rectangular shape, which is formed by laminating a thin film coil 1b on a thin film coil 1a so that their longitudinal directions are substantially orthogonal to each other. The thin film coil 1 is formed by, for example, forming an insulating film 18 of SiO 2 on the sensor substrate 10 and applying the high aspect ratio processing technique on the insulating film 18 by lithography or the like. To do. The thin film coil 1 has, for example, a strand having a width of about 50 μm and a thickness of about 1 μm so that the DC resistance is about 5Ω and the reactance is about 50Ω. The thin film coil 1 is preferably about 5 mm square.
[0016]
A lead wire 2 is connected to the thin film coil 1 and connected to the eddy current flaw detector 3. The eddy current flaw detector 3 has an oscillator 3a. An alternating current having two different frequencies FA1 and FA2 is superimposed on the thin film coil 1a, and two different frequencies FB1 and FB2 are flowed on the thin film coil 1b. The alternating current of The eddy current flaw detector 3 detects a change in impedance with respect to an alternating current of each frequency, and there are various principles, for example, there is one having a circuit shown in FIG.
[0017]
In general, the signal caused by a flaw changes rapidly, but many signals caused by factors other than the flaw often change gently. Therefore, by adjusting the response speed of the automatic balancer, it is easy to detect defects by removing unnecessary factors by selecting a speed that does not follow sudden changes but responds only to gentle changes. be able to.
[0018]
FIG. 2 is the most basic circuit. The automatic balancer detects the signal of the amplifier by a detection circuit, and moves the servo motors Mx and My according to the signal from the detection circuit to automatically remove the unbalanced portion of the bridge with respect to a gentle change.
[0019]
Next, the operation of this embodiment will be described.
FIG. 3 shows eddy currents generated on the surface of the component material by the thin film coil 1. 4 indicates an eddy current, and X and Y indicate scratches. The eddy current 4 has a shape similar to the shape of the thin film coil 1, and since the thin film coil 1 has a rectangular or elliptical shape, the eddy current 4 also has a rectangular or elliptical anisotropic shape. Yes. Therefore, as indicated by X in FIG. 3, since the eddy current 4 is greatly affected when the scratch is oriented in a direction perpendicular to the longitudinal direction, it appears in the eddy current flaw detector 3 as a change in impedance and the length of the scratch is reduced. If the scratch is parallel to the longitudinal direction as indicated by Y, there is almost no effect on the eddy current 4, and therefore no change in impedance appears in the eddy current flaw detector 3, so the presence of the scratch cannot be detected. In the present invention, since the thin film coils 1a and 1b are formed by being laminated so that their longitudinal directions are orthogonal to each other, the length of the wound X is detected by the eddy current flaw detector 3 connected to the thin film coil 1a. Since the length of the flaw Y is detected by the eddy current flaw detector 3 connected to the thin film coil 1b, a flaw in either direction can be detected in either direction. Further, it can be seen that the scratches in the oblique direction are oblique because they appear as changes in the impedance of both thin film coils 1a and 1b.
[0020]
The alternating current applied to the thin film coils 1a and 1b is applied with a low frequency (FA1 or FB1) and a high frequency (FA2 or FB2) superimposed. In general, a low frequency alternating current causes a deep eddy current 4 in the object to be inspected, and a high frequency alternating current causes a shallow eddy current 4 in the object to be inspected, so that a change in impedance can be detected for each frequency. If so, the depth of the scratches X and Y can be detected.
[0021]
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention. For example, the thin-film coil 1 has been described as one in which the excitation coil and the detection coil are integrated, but may be separate as shown in FIG. In this case, a change in the electromotive force of the detection coil may be detected. Further, although one eddy current flaw detection sensor may be provided in the probe, a large number may be arranged in a staggered manner as shown in FIG. If such a probe is used, a long flaw can be detected at a time. Further, they may be arranged in a straight line instead of a staggered pattern.
[0022]
【The invention's effect】
As described above, since the eddy current flaw detection sensor of the present invention is formed by stacking anisotropic thin film coils so that their longitudinal directions are perpendicular to each other, the direction and length of the flaw can be detected. In the flaw detection method of the invention, an alternating current having a different frequency is applied to the thin film coil so that a change in impedance is detected for each frequency, so that not only the direction of the flaw but also the flaw depth can be detected. Has an excellent effect.
[Brief description of the drawings]
1A and 1B are explanatory diagrams of an eddy current flaw detection sensor according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along the line BB in FIG.
FIG. 2 is a circuit diagram of an eddy current flaw detector.
FIG. 3 is an explanatory diagram of eddy current.
FIG. 4 is a perspective view of a conventional eddy current sensor.
FIG. 5 is a plan view of a conventional eddy current sensor.
FIG. 6 is a cross-sectional view of a conventional eddy current sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thin film coil 3 Eddy current flaw detector 10 Sensor substrate 18 Insulating film 19 Protective film

Claims (4)

センサ基板の絶縁膜上に平面渦巻状の薄膜コイルを形成し、該薄膜コイルを保護膜で被覆してなる渦流探傷センサであって、長方形に形成された2個の薄膜コイルを長手方向が互いに略直交して十字を形成するように積層してなり、その大きさは略5mm角程度であり、複数個の上記渦流探傷センサを千鳥状に整列させて配置してなることを特徴とする渦流探傷センサ。An eddy current flaw detection sensor in which a planar spiral thin film coil is formed on an insulating film of a sensor substrate, and the thin film coil is covered with a protective film. An eddy current characterized by being stacked so as to form a cross substantially orthogonally, having a size of about 5 mm square, and a plurality of eddy current flaw detection sensors arranged in a staggered manner. Flaw detection sensor. 薄膜コイルの素線の幅は50μm程度である請求項1記載の渦流探傷センサ。 2. The eddy current flaw sensor according to claim 1 , wherein the width of the wire of the thin film coil is about 50 [mu] m . 薄膜コイルは直流抵抗が約5Ω、リアクタンスが約50Ωである請求項1または請求項2記載の渦流探傷センサ。3. The eddy current flaw detection sensor according to claim 1 , wherein the thin film coil has a DC resistance of about 5Ω and a reactance of about 50Ω . 請求項1ないし請求項3のいずれか1つに記載の渦流探傷センサを渦流探傷器に接続し、各薄膜コイルに周波数の異なる交流電圧を重畳して印加し、それぞれの周波数についてインピーダンスの変化または起電力の変化を検出して探傷を行うことを特徴とする渦流探傷センサを用いた探傷方法。 The eddy current flaw detection sensor according to any one of claims 1 to 3 is connected to an eddy current flaw detector, an alternating voltage having a different frequency is applied to each thin film coil in a superimposed manner, and impedance change or A flaw detection method using an eddy current flaw detection sensor characterized in that flaw detection is performed by detecting a change in electromotive force.
JP22949997A 1997-08-26 1997-08-26 Eddy current flaw detection sensor and flaw detection method using it Expired - Fee Related JP3769889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22949997A JP3769889B2 (en) 1997-08-26 1997-08-26 Eddy current flaw detection sensor and flaw detection method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22949997A JP3769889B2 (en) 1997-08-26 1997-08-26 Eddy current flaw detection sensor and flaw detection method using it

Publications (2)

Publication Number Publication Date
JPH1164294A JPH1164294A (en) 1999-03-05
JP3769889B2 true JP3769889B2 (en) 2006-04-26

Family

ID=16893138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22949997A Expired - Fee Related JP3769889B2 (en) 1997-08-26 1997-08-26 Eddy current flaw detection sensor and flaw detection method using it

Country Status (1)

Country Link
JP (1) JP3769889B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118902A (en) * 2004-10-20 2006-05-11 Hitachi Ltd Flaw height evaluation method by eddy current flaw detection method
FR2904693B1 (en) * 2006-08-03 2008-10-24 Commissariat Energie Atomique FOUCAULT CURRENT CONTROL DEVICE WITH SEPARATE TRANSMIT / RECEIVE FUNCTIONS OF AN ELECTRICALLY CONDUCTIVE PIECE
US8890517B2 (en) * 2010-04-27 2014-11-18 Toyota Jidosha Kabushiki Kaisha Eddy current measuring sensor
EP2574912B1 (en) * 2011-09-29 2019-12-04 ABB Schweiz AG Arrangement for crack detection in metallic materials
JP5568782B2 (en) 2011-10-24 2014-08-13 コニカミノルタ株式会社 Fixing apparatus, image forming apparatus, and damage detection method
JP2013185951A (en) * 2012-03-08 2013-09-19 Jfe Steel Corp Magnetic flaw detection probe

Also Published As

Publication number Publication date
JPH1164294A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US4593245A (en) Eddy current method for detecting a flaw in semi-conductive material
US4706020A (en) High frequency eddy current probe with planar, spiral-like coil on flexible substrate for detecting flaws in semi-conductive material
JP3360519B2 (en) Stacked magnetic field detector
US6400146B1 (en) Sensor head for ACFM based crack detection
JPH0570082B2 (en)
CN111189908A (en) Profiling flexible array eddy current probe and detection method
CN108226825B (en) Soft magnetic film planar coil composite magnetic sensor and preparation method thereof
JP3769889B2 (en) Eddy current flaw detection sensor and flaw detection method using it
CN108802638B (en) Nanocrystalline high-frequency magnetic characteristic detection device and measuring method under stress
WO2003081271A1 (en) Magnetic sensing element, magnetic sensor, and its manufacturing method
CN103090779B (en) Eddy current sensor chip based on resonant structure and manufacture method of eddy current sensor chip
JP2003066009A (en) Eddy current flaw detector
CN107290694A (en) Suppress inductive type Magnetic Sensor of direction crosstalk and preparation method thereof
JP3758315B2 (en) Eddy current flaw detector
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JP2001027664A (en) Magnetic sensor
JPS58153157A (en) Magnetic detector for magnetic flaw detector
JPH0783883A (en) Eddy current examination probe
KR101488602B1 (en) Probe of Eddy Current Test Apparatus and Manufacturing Method thereof
JPH081464B2 (en) Non-destructive detection device for buried conductors
JPS58223743A (en) Orthogonal probe coil
JP3025684B1 (en) Eddy current probe
KR100530327B1 (en) Magnetic-flux sensor with improved sensitivity for magnetic field as using laminated steel plate, and manufacturing method thereof
JP5401528B2 (en) Split yoke magnetizer
JP2004028747A (en) Electromagnetic induction probe for potential difference method and inspection method using the probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees