JP3769377B2 - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery Download PDF

Info

Publication number
JP3769377B2
JP3769377B2 JP04485398A JP4485398A JP3769377B2 JP 3769377 B2 JP3769377 B2 JP 3769377B2 JP 04485398 A JP04485398 A JP 04485398A JP 4485398 A JP4485398 A JP 4485398A JP 3769377 B2 JP3769377 B2 JP 3769377B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collecting
lithium secondary
collecting tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04485398A
Other languages
Japanese (ja)
Other versions
JPH11250934A (en
Inventor
一成 大北
丈志 前田
義人 近野
育郎 米津
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04485398A priority Critical patent/JP3769377B2/en
Publication of JPH11250934A publication Critical patent/JPH11250934A/en
Application granted granted Critical
Publication of JP3769377B2 publication Critical patent/JP3769377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
この発明は円筒型リチウム二次電池に係り、特に、正極と負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回した電極体を電池缶内に収容させ、正極より延出された正極集電タブを正極端子に取り付けると共に、負極より延出された負極集電タブを負極端子に取り付けるようにした円筒型リチウム二次電池において、正極集電タブと正極端子との間における接触抵抗や、負極集電タブと負極端子との間における接触抵抗を低減させて、高電圧で高容量の円筒型リチウム二次電池が得られるようにした点に特徴を有するものである。
【0002】
【従来の技術】
近年、クリーンなエネルギを有効に利用する等の要求から二次電池が様々な分野で利用されるようになり、特に、高出力,高エネルギー密度の新型電池としてリチウム二次電池が注目されている。
【0003】
さらに、近年においては、このようなリチウム二次電池を電気自動車の電源や家庭用のロードレベリング等に利用するために、このリチウム二次電池を大型化させて、その容量を増加させたものが開発された。
【0004】
ここで、このようなリチウム二次電池としては、一般に、正極と負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回された電極体を円筒型の電池缶内に収容させた円筒型リチウム二次電池が利用されていた。
【0005】
また、このような円筒型リチウム二次電池においては、正極や負極における電気エネルギーを正極端子と負極端子とから取り出すために、正極に正極集電タブを設けて、この正極集電タブを正極端子に取り付けると共に、負極に負極集電タブを設け、この負極集電タブを負極端子に取り付けるようにしていた。
【0006】
ここで、上記のようにリチウム二次電池を大型化させて、その容量を向上させるようにした場合、正極に設ける正極集電タブや、負極に設ける負極集電タブの数が少ないと、このリチウム二次電池における電池抵抗が増大して、電池性能が低下するという問題があった。
【0007】
このため、従来においては、上記のような円筒型リチウム二次電池において、正極や負極に設ける正極集電タブや負極集電タブの数を多くしており、またこのような正極集電タブや負極集電タブをそれぞれ正極端子や負極端子に取り付けるにあたっては、一般に正極端子や負極端子に設けられた取付部分にネジによる締め付け等で固定させるようにしていた。
【0008】
しかし、このように正極集電タブや負極集電タブを正極端子や負極端子に設けられた取付部分に固定させる場合、これらの取付部分と正極集電タブや負極集電タブの密着性が十分ではなく、これらの取付部分における接触抵抗が高くなり、このリチウム二次電池における電池電圧や電池容量が低下するという問題があった。
【0009】
【発明が解決しようとする課題】
この発明は、正極と負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回させた電極体を電池缶内に収容させ、正極より延出された正極集電タブを正極端子に取り付けると共に、負極より延出された負極集電タブを負極端子に取り付けるようにした円筒型リチウム二次電池における上記のような問題を解決することを課題とするものである。
【0010】
すなわち、この発明は、上記のような円筒型リチウム二次電池において、正極より延出された正極集電タブや、負極より延出された負極集電タブを、正極端子や負極端子に取り付けるにあたり、正極集電タブと正極端子との間の密着性や、負極集電タブと負極端子との間の密着性を向上させて、正極集電タブと正極端子との間における接触抵抗や、負極集電タブと負極端子との間における接触抵抗を低減させて、電池電圧や電池容量が低下するのを抑制し、高電圧で高容量の円筒型リチウム二次電池が得られるようにすることを課題とするものである。
【0011】
【課題を解決するための手段】
この発明における円筒型リチウム二次電池においては、上記のような課題を解決するため、リチウム複合酸化物を含む正極と、炭素材料を含む負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回した電極体を電池缶内に収容させ、上記の正極より延出された正極集電タブを正極端子に取り付けると共に、負極より延出された負極集電タブを負極端子に取り付けた円筒型リチウム二次電池において、上記の正極集電タブと負極集電タブの少なくとも一方の表面に金の薄膜を形成すると共に、上記の正極集電タブをアルミニウム材料で構成し、或いは上記の負極集電タブをニッケル材料で構成するようにしたのである。
【0012】
ここで、この発明における円筒型リチウム二次電池のように、正極端子に取り付ける正極集電タブの表面や、負極端子に取り付ける負極集電タブの表面に金の薄膜を形成すると、この金の薄膜によって正極集電タブと正極端子との間における密着性や、負極集電タブと負極端子との間における密着性が高くなり、正極集電タブと正極端子との間における接触抵抗や、負極集電タブと負極端子との間における接触抵抗が減少して、この円筒型リチウム二次電池の内部抵抗が低くなって電池電圧や電池容量が低下するのが抑制され、高電圧で高容量の円筒型リチウム二次電池が得られるようになる。
【0013】
ここで、正極に使用するリチウム複合酸化物としては、リチウム二次電池において一般に使用されている公知のものを用いることができ、例えば、マンガン,コバルト,ニッケル,鉄,バナジウム,ニオブの少なくとも一種を含むリチウム遷移金属複合酸化物等を使用することができる。
【0014】
また、負極に使用する炭素材料としても、リチウム二次電池に一般に使用されている公知の炭素材料を用いることができ、例えば、リチウムイオンを吸蔵,放出することができる天然黒鉛,人造黒鉛,コークス,有機物焼成体等を用いることができる。
【0015】
さらに、非水電解液としても、リチウム二次電池に一般に使用されている公知のものを用いることができ、その溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の有機溶媒を1種又は2種以上組み合わせて使用することができる。
【0016】
また、非水電解液に添加させる溶質としても、公知のものを使用することができ、例えば、トリフルオロメタンスルホン酸リチウムLiCF3 SO3 ,ヘキサフルオロリン酸リチウムLiPF6 ,過塩素酸リチウムLiClO4 ,テトラフルオロホウ酸リチウムLiBF4 ,トリフルオロメタンスルホン酸イミドリチウムLiN(CF3 SO2 2 等のリチウム化合物を用いることができる。
【0018】
そして、上記のような正極集電タブや負極集電タブの表面に金の薄膜を形成するにあたっては、一般にメッキ法が用いられるが、蒸着法等のその他の公知の方法を使用することもできる。
【0019】
また、上記のように正極集電タブや負極集電タブに金の薄膜を形成するにあたり、その膜厚が薄いと、正極集電タブと正極端子との間や、負極集電タブと負極端子との間における密着性が悪くなって、正極集電タブと正極端子との間における接触抵抗や、負極集電タブと負極端子との間における接触抵抗が高くなる一方、その膜厚が厚くなりすぎると、コストが高く付く等の問題があるため、この金の薄膜における膜厚を1〜10μmの範囲にすることが好ましい。
【0020】
【実施例】
以下、この発明に係る円筒型リチウム二次電池について実施例を挙げて具体的に説明すると共に、この実施例における円筒型リチウム二次電池においては、正極集電タブと正極端子との間や、負極集電タブと負極端子との間における接触抵抗が低減されて、電池電圧の高い電池が得られるようになることを比較例を挙げて明らかにする。なお、この発明における円筒型リチウム二次電池は、下記の実施例に示したものに限定されものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0021】
(実施例1〜3及び比較例1)
これらの実施例1〜3及び比較例1においては、下記のようにして作製した正極と負極とを用いると共に、下記のようにして調製した非水電解液を用い、直径が64mm、長さが294mmの円筒状で、電池容量が70Ahになった図1に示すような円筒型リチウム二次電池10を得るようにした。
【0022】
[正極の作製]
正極を作製するにあたっては、正極材料としてLiCoO2 を用い、この正極材料LiCoO2 と導電剤である炭素とが90:5の重量比になるように混合して正極合剤を調製した。そして、この正極合剤に、結着剤であるポリフッ化ビニリデンをN−メチル−2−ピロリドン(以下、NMPと略す。)に溶解させた溶液を加え、上記の正極合剤とポリフッ化ビニリデンとが95:5の重量比になるようにし、これらを混練してスラリーを調製し、このスラリーをアルミニウム箔からなる正極集電体の両面にドクターブレード法により塗布し、これを150℃で2時間真空乾燥させて、シート状になった正極を作製した。
【0023】
[負極の作製]
負極を作製するにあたっては、負極材料に平均粒径が10μmの黒鉛粉末を用い、この黒鉛粉末に、結着剤であるポリフッ化ビニリデンを上記のNMPに溶解させた溶液を加え、黒鉛粉末とポリフッ化ビニリデンとが85:15の重量比になるようにし、これらを混練してスラリーを調製し、このスラリーを負極集電体である銅箔の両面にドクターブレード法により塗布し、これを150℃で2時間真空乾燥させてシート状になった負極を作製した。
【0024】
[非水電解液の調製]
非水電解液を調製するにあたっては、エチレンカーボネートとジエチルカーボネートとを1:1の体積比で混合させた混合溶媒に、溶質としてヘキサフルオロリン酸リチウムLiPF6 を1mol/lの割合で溶解させた。
【0025】
[電池の作製]
電池を作製するにあたっては、図2及び図3に示すように、に示すように、上記のようにして作製した正極11に複数の正極集電タブ11aを正極11から延出するようにして取り付けると共に、負極12に複数の負極集電タブ12aを負極12から延出するようにして取り付け、この正極11と負極12との間に、ポリエチレン製のイオン透過性微多孔膜からなるセパレータ13を介在させてスパイラル状に巻き取り、このように巻き取った電極体14を円筒状の電池缶15内に収容させるようにした。
【0026】
そして、図3及び図4に示すように、上記の電池缶15の一端を閉塞させる正極蓋16に設けられた正極端子16aに一対の挟持板16b,16cを設け、この一対の挟持板16b,16c間に、正極11に設けた上記の各正極集電タブ11aを挟み込むようにして取り付けると共に、電池缶15の他端を閉塞させる負極蓋17に設けられた負極端子17aにも一対の挟持板17b,17cを設け、この一対の挟持板17b,17c間に、負極12に設けられた上記の各負極集電タブ12aを挟み込むようにして取り付けた後、図1に示すように、この電池缶15の両端に上記の正極蓋16と負極蓋17とを取り付けて、この正極蓋16と負極蓋17とにより電池缶15の両端を閉塞させ、その後、安全弁18を取り付ける孔からこの電池缶15内に上記の非水電解液を注液させて、上記の円筒型のリチウム二次電池10を得た。また、上記の正極蓋16と負極蓋17にはそれぞれ安全弁18を設けるようにした。
【0027】
ここで、上記の正極集電タブ11aや負極集電タブ12aとして、実施例1の円筒型リチウム二次電池10においては、幅が15mm,厚みが100μmになったアルミニウム製の正極集電タブ11aを用いる一方、幅が15mm,厚みが100μmになったニッケル製の負極集電タブ12aの表面に膜厚が5μmになった金の薄膜が形成されたものを用いるようにした。
【0028】
また、実施例2の円筒型リチウム二次電池10においては、幅が15mm,厚みが100μmになったアルミニウム製の正極集電タブ11aの表面に膜厚が5μmになった金の薄膜が形成されたものを用いる一方、幅が15mm,厚みが100μmになったニッケル製の負極集電タブ12aを用いるようにした。
【0029】
また、実施例3の円筒型リチウム二次電池10においては、幅が15mm,厚みが100μmになったアルミニウム製の正極集電タブ11aの表面に膜厚が5μmになった金の薄膜が形成されたものを用いると共に、幅が15mm,厚みが100μmになったニッケル製の負極集電タブ12aの表面に膜厚が5μmになった金の薄膜が形成されたものを用いるようにした。
【0030】
一方、比較例1の円筒型リチウム二次電池10においては、幅が15mm,厚みが100μmになったアルミニウム製の正極集電タブ11aを用いると共に、幅が15mm,厚みが100μmになったニッケル製の負極集電タブ12aを用いるようにし、正極集電タブ11aと負極集電タブ12aのいずれの表面にも金の薄膜を設けないようにした。
【0031】
そして、上記の実施例1,2及び比較例1の各円筒型リチウム二次電池10において、それぞれ1本の正極集電タブ11aと正極端子11との間の抵抗値及び1本の負極集電タブ12aと負極端子12との間の抵抗値を測定し、その結果を下記の表1に示した。
【0032】
【表1】

Figure 0003769377
【0033】
この結果、金の薄膜を形成した負極集電タブ12aを使用した実施例1のものにおいては、金の薄膜を形成しない負極集電タブ12aを使用した実施例2及び比較例1のものに比べて、1本の負極集電タブ12aと負極端子12との間の抵抗値が0.05mΩ低くなっており、また金の薄膜を形成した正極集電タブ11aを使用した実施例2のものは、金の薄膜を形成しない正極集電タブ12aを使用した実施例1及び比較例1のものに比べて、1本の正極集電タブ11aと正極端子11との間の抵抗値が0.03mΩ低くなっていた。
【0034】
次に、正極集電タブ11a及び負極集電タブ12aの表面にそれぞれ金の薄膜を形成したものを用いた実施例3の円筒型リチウム二次電池10と、正極集電タブ11a及び負極集電タブ12aのいずれの表面にも金の薄膜を形成しなかったものを用いた比較例1の円筒型リチウム二次電池10とを用い、これらの各円筒型リチウム二次電池10における内部抵抗を測定し、その結果を下記の表2に示した。
【0035】
また、この実施例3及び比較例1の各円筒型リチウム二次電池10について、それぞれ8.75A(1/8C)の定電流で充放電を行なって、その平均放電電圧を測定し、その結果を下記の表2に合わせて示した。
【0036】
【表2】
Figure 0003769377
【0037】
この結果、上記のように正極集電タブ11a及び負極集電タブ12aの表面にそれぞれ金の薄膜を形成したものを用いた実施例3の円筒型リチウム二次電池10は、正極集電タブ11a及び負極集電タブ12aのいずれの表面にも金の薄膜を形成しなかったものを用いた比較例1の円筒型リチウム二次電池10に比べ、電池の内部抵抗が低くなると共に、平均放電電圧が高くなっていた。
【0038】
【発明の効果】
以上詳述したように、この発明における円筒型リチウム二次電池においては、正極端子に取り付ける正極集電タブの表面や、負極端子に取り付ける負極集電タブの表面に金の薄膜を形成すると共に、上記の正極集電タブをアルミニウム材料で構成し、或いは上記の負極集電タブをニッケル材料で構成したため、この金の薄膜により正極集電タブと正極端子との間や、負極集電タブと負極端子との間の密着性が高くなり、正極集電タブと正極端子との間における接触抵抗や、負極集電タブと負極端子との間における接触抵抗が減少した。
【0039】
この結果、この発明における円筒型リチウム二次電池においては、その内部抵抗が低くなって電池電圧や電池容量が低下するのが抑制され、高電圧で高容量の円筒型リチウム二次電池が得られるようになった。
【図面の簡単な説明】
【図1】この発明の実施例1〜3及び比較例1における円筒型リチウム二次電池の概略図である。
【図2】図1に示した円筒型リチウム二次電池を製造するにあたり、正極と負極との間にセパレータを介在させてスパイラル状に巻き取る状態を示した概略説明図である。
【図3】図1に示した円筒型リチウム二次電池を組み立てる状態を示した概略説明図である。
【図4】図1に示した円筒型リチウム二次電池を組み立てるにあたり、正極に設けた各正極集電タブを、正極蓋に設けられた正極端子における一対の挟持板間に挟み込むようにして取り付ける状態を示した概略説明図である。
【符号の説明】
10 円筒型リチウム二次電池
11 正極
11a 正極集電タブ
12 負極
12a 負極集電タブ
13 セパレータ
14 電極体
15 電池缶
16a 正極端子
17a 負極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical lithium secondary battery, and in particular, an electrode body wound in a spiral shape with a separator impregnated with a non-aqueous electrolyte interposed between a positive electrode and a negative electrode is accommodated in a battery can, In a cylindrical lithium secondary battery in which a positive electrode current collecting tab extended from the positive electrode is attached to the positive electrode terminal and a negative electrode current collecting tab extended from the negative electrode is attached to the negative electrode terminal, the positive electrode current collecting tab and the positive electrode terminal It has a feature in that a high-voltage and high-capacity cylindrical lithium secondary battery can be obtained by reducing the contact resistance between the negative electrode current collector tab and the negative electrode current collector tab and the negative electrode terminal. It is.
[0002]
[Prior art]
In recent years, secondary batteries have been used in various fields due to demands such as effective use of clean energy. In particular, lithium secondary batteries have attracted attention as new batteries with high output and high energy density. .
[0003]
Furthermore, in recent years, in order to use such lithium secondary batteries for power sources of electric vehicles, household load leveling, etc., the capacity of the lithium secondary batteries has been increased to increase their capacity. It has been developed.
[0004]
Here, as such a lithium secondary battery, in general, an electrode body wound in a spiral shape with a separator impregnated with a non-aqueous electrolyte interposed between a positive electrode and a negative electrode is a cylindrical battery can. Cylindrical lithium secondary batteries housed inside were used.
[0005]
Further, in such a cylindrical lithium secondary battery, in order to extract electric energy in the positive electrode and the negative electrode from the positive electrode terminal and the negative electrode terminal, a positive electrode current collecting tab is provided on the positive electrode, and the positive electrode current collecting tab is used as the positive electrode terminal. The negative electrode current collection tab was provided in the negative electrode, and this negative electrode current collection tab was attached to the negative electrode terminal.
[0006]
Here, when the capacity of the lithium secondary battery is increased by increasing the size of the lithium secondary battery as described above, if the number of positive current collecting tabs provided on the positive electrode and the number of negative current collecting tabs provided on the negative electrode is small, There has been a problem that the battery resistance in the lithium secondary battery is increased and the battery performance is lowered.
[0007]
For this reason, conventionally, in the cylindrical lithium secondary battery as described above, the number of positive electrode current collecting tabs and negative electrode current collecting tabs provided on the positive electrode and the negative electrode is increased. When attaching the negative electrode current collecting tab to the positive electrode terminal and the negative electrode terminal, respectively, generally, the fixing portions provided on the positive electrode terminal and the negative electrode terminal are fixed by tightening with screws or the like.
[0008]
However, when fixing the positive electrode current collector tab or the negative electrode current collector tab to the attachment portion provided on the positive electrode terminal or the negative electrode terminal in this way, the adhesion between these attachment portions and the positive electrode current collector tab or the negative electrode current collector tab is sufficient. However, there is a problem that the contact resistance at these attachment portions is increased, and the battery voltage and battery capacity of the lithium secondary battery are reduced.
[0009]
[Problems to be solved by the invention]
In the present invention, an electrode body wound in a spiral shape with a separator impregnated with a non-aqueous electrolyte interposed between a positive electrode and a negative electrode is accommodated in a battery can, and a positive electrode current collector extended from the positive electrode An object of the present invention is to solve the above-mentioned problems in a cylindrical lithium secondary battery in which a tab is attached to a positive electrode terminal and a negative electrode current collecting tab extended from the negative electrode is attached to the negative electrode terminal.
[0010]
That is, in the cylindrical lithium secondary battery as described above, the positive electrode current collecting tab extended from the positive electrode and the negative electrode current collecting tab extended from the negative electrode are attached to the positive electrode terminal and the negative electrode terminal. The contact resistance between the positive electrode current collector tab and the positive electrode terminal is improved by improving the adhesion between the positive electrode current collector tab and the positive electrode terminal and the adhesion between the negative electrode current collector tab and the negative electrode terminal. By reducing the contact resistance between the current collector tab and the negative electrode terminal, it is possible to suppress the battery voltage and the battery capacity from being lowered and to obtain a cylindrical lithium secondary battery having a high voltage and a high capacity. It is to be an issue.
[0011]
[Means for Solving the Problems]
In the cylindrical lithium secondary battery according to the present invention, in order to solve the above problems, a separator impregnated with a non-aqueous electrolyte is provided between a positive electrode including a lithium composite oxide and a negative electrode including a carbon material. The electrode body wound in an intervening manner is accommodated in a battery can, and the positive electrode current collecting tab extended from the positive electrode is attached to the positive electrode terminal, and the negative electrode current collecting tab extended from the negative electrode is attached to the negative electrode In the cylindrical lithium secondary battery attached to the terminal, a gold thin film is formed on at least one surface of the positive electrode current collecting tab and the negative electrode current collecting tab, and the positive electrode current collecting tab is made of an aluminum material. Alternatively, the negative electrode current collecting tab is made of a nickel material .
[0012]
Here, when the gold thin film is formed on the surface of the positive electrode current collecting tab attached to the positive electrode terminal or the surface of the negative electrode current collecting tab attached to the negative electrode terminal as in the cylindrical lithium secondary battery in the present invention, this gold thin film Improves the adhesion between the positive electrode current collector tab and the positive electrode terminal and the adhesion between the negative electrode current collector tab and the negative electrode terminal, and improves the contact resistance between the positive electrode current collector tab and the positive electrode terminal. The contact resistance between the electric tab and the negative electrode terminal is reduced, the internal resistance of the cylindrical lithium secondary battery is reduced, and the battery voltage and battery capacity are suppressed from being reduced, and the high voltage and high capacity cylinder Type lithium secondary battery can be obtained.
[0013]
Here, as the lithium composite oxide used for the positive electrode, known ones generally used in lithium secondary batteries can be used, for example, at least one of manganese, cobalt, nickel, iron, vanadium, and niobium. The lithium transition metal complex oxide etc. which contain can be used.
[0014]
As the carbon material used for the negative electrode, a known carbon material generally used for lithium secondary batteries can be used. For example, natural graphite, artificial graphite, coke that can occlude and release lithium ions can be used. An organic fired body or the like can be used.
[0015]
Furthermore, as the non-aqueous electrolyte, a known one generally used for lithium secondary batteries can be used. Examples of the solvent include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and cyclopentanone. , Sulfolane, dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, 1 organic solvent such as dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate Or in combination of two or more can be used.
[0016]
Moreover, as a solute added to the nonaqueous electrolytic solution, a known solute can be used. For example, lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , Lithium compounds such as lithium tetrafluoroborate LiBF 4 and lithium trifluoromethanesulfonate imido LiN (CF 3 SO 2 ) 2 can be used.
[0018]
In forming the gold thin film on the surface of the positive electrode current collecting tab or the negative electrode current collecting tab as described above, a plating method is generally used, but other known methods such as a vapor deposition method can also be used. .
[0019]
In addition, when forming a thin gold film on the positive electrode current collector tab or the negative electrode current collector tab as described above, if the film thickness is thin, it is between the positive electrode current collector tab and the positive electrode terminal, or between the negative electrode current collector tab and the negative electrode terminal. The contact resistance between the positive electrode current collector tab and the positive electrode terminal and the contact resistance between the negative electrode current collector tab and the negative electrode terminal are increased, while the film thickness is increased. If it is too high, there is a problem such as high cost, and therefore the thickness of the gold thin film is preferably in the range of 1 to 10 μm.
[0020]
【Example】
Hereinafter, the cylindrical lithium secondary battery according to the present invention will be specifically described with examples, and in the cylindrical lithium secondary battery in this example, between the positive electrode current collecting tab and the positive electrode terminal, It will be clarified by giving a comparative example that the contact resistance between the negative electrode current collecting tab and the negative electrode terminal is reduced and a battery having a high battery voltage can be obtained. In addition, the cylindrical lithium secondary battery in this invention is not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.
[0021]
(Examples 1 to 3 and Comparative Example 1)
In Examples 1 to 3 and Comparative Example 1, a positive electrode and a negative electrode prepared as described below were used, and a non-aqueous electrolyte prepared as described below was used. A cylindrical lithium secondary battery 10 as shown in FIG. 1 having a cylindrical shape of 294 mm and a battery capacity of 70 Ah was obtained.
[0022]
[Production of positive electrode]
In producing the positive electrode, LiCoO 2 was used as a positive electrode material, and the positive electrode material LiCoO 2 and carbon as a conductive agent were mixed at a weight ratio of 90: 5 to prepare a positive electrode mixture. A solution prepared by dissolving polyvinylidene fluoride as a binder in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added to this positive electrode mixture, and the above positive electrode mixture, polyvinylidene fluoride, Were mixed to prepare a slurry, and the slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil by a doctor blade method, and this was applied at 150 ° C. for 2 hours. Vacuum drying was performed to produce a sheet-like positive electrode.
[0023]
[Production of negative electrode]
In producing the negative electrode, graphite powder having an average particle diameter of 10 μm was used as the negative electrode material, and a solution obtained by dissolving polyvinylidene fluoride as a binder in the above NMP was added to the graphite powder. These were kneaded to prepare a slurry, and this slurry was applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method. A vacuum-dried negative electrode was produced for 2 hours.
[0024]
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, lithium hexafluorophosphate LiPF 6 was dissolved as a solute at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. .
[0025]
[Production of battery]
When manufacturing the battery, as shown in FIGS. 2 and 3, a plurality of positive electrode current collecting tabs 11a are attached to the positive electrode 11 manufactured as described above so as to extend from the positive electrode 11, as shown in FIG. At the same time, a plurality of negative electrode current collecting tabs 12 a are attached to the negative electrode 12 so as to extend from the negative electrode 12, and a separator 13 made of a polyethylene ion-permeable microporous film is interposed between the positive electrode 11 and the negative electrode 12. The electrode body 14 wound up in this way was accommodated in a cylindrical battery can 15.
[0026]
3 and 4, a pair of clamping plates 16b and 16c are provided on the positive terminal 16a provided on the positive electrode lid 16 for closing one end of the battery can 15, and the pair of clamping plates 16b, The positive electrode current collecting tabs 11a provided on the positive electrode 11 are interposed between the positive electrode 11 and the negative electrode terminal 17a provided on the negative electrode lid 17 for closing the other end of the battery can 15. 17b and 17c, and the negative electrode current collecting tabs 12a provided on the negative electrode 12 are sandwiched between the pair of holding plates 17b and 17c. Then, as shown in FIG. The positive electrode lid 16 and the negative electrode lid 17 are attached to both ends of the battery 15, and both ends of the battery can 15 are closed with the positive electrode cover 16 and the negative electrode cover 17, and then the battery can is inserted through the hole for attaching the safety valve 18. In the 5 by pouring the above non-aqueous electrolyte, to obtain a lithium secondary battery 10 of the cylindrical. In addition, a safety valve 18 is provided on each of the positive electrode lid 16 and the negative electrode lid 17.
[0027]
Here, as the positive electrode current collecting tab 11a and the negative electrode current collecting tab 12a, in the cylindrical lithium secondary battery 10 of Example 1, the positive electrode current collecting tab 11a made of aluminum having a width of 15 mm and a thickness of 100 μm is used. On the other hand, a nickel negative electrode current collecting tab 12a having a width of 15 mm and a thickness of 100 μm and a gold thin film having a thickness of 5 μm formed on the surface thereof was used.
[0028]
Further, in the cylindrical lithium secondary battery 10 of Example 2, a gold thin film having a thickness of 5 μm was formed on the surface of the positive electrode current collecting tab 11a made of aluminum having a width of 15 mm and a thickness of 100 μm. On the other hand, a negative electrode current collecting tab 12a made of nickel having a width of 15 mm and a thickness of 100 μm was used.
[0029]
Further, in the cylindrical lithium secondary battery 10 of Example 3, a gold thin film having a thickness of 5 μm was formed on the surface of the positive electrode current collecting tab 11a made of aluminum having a width of 15 mm and a thickness of 100 μm. In addition, a nickel thin-film current collecting tab 12a having a width of 15 mm and a thickness of 100 μm and a gold thin film having a thickness of 5 μm formed on the surface thereof were used.
[0030]
On the other hand, in the cylindrical lithium secondary battery 10 of Comparative Example 1, the positive electrode current collecting tab 11a made of aluminum having a width of 15 mm and a thickness of 100 μm was used, and made of nickel having a width of 15 mm and a thickness of 100 μm. The negative electrode current collector tab 12a was used, and no gold thin film was provided on the surface of either the positive electrode current collector tab 11a or the negative electrode current collector tab 12a.
[0031]
In each of the cylindrical lithium secondary batteries 10 of Examples 1 and 2 and Comparative Example 1, the resistance value between one positive current collecting tab 11a and the positive terminal 11 and one negative current collecting are respectively obtained. The resistance value between the tab 12a and the negative electrode terminal 12 was measured, and the result is shown in Table 1 below.
[0032]
[Table 1]
Figure 0003769377
[0033]
As a result, in Example 1 using the negative electrode current collecting tab 12a in which the gold thin film was formed, compared with those in Example 2 and Comparative Example 1 using the negative electrode current collecting tab 12a in which the gold thin film was not formed. The resistance value between the negative electrode current collecting tab 12a and the negative electrode terminal 12 is lower by 0.05 mΩ, and the second example using the positive electrode current collecting tab 11a formed with a gold thin film is as follows. The resistance value between one positive electrode current collecting tab 11a and the positive electrode terminal 11 is 0.03 mΩ compared to those in Example 1 and Comparative Example 1 using the positive electrode current collecting tab 12a that does not form a gold thin film. It was low.
[0034]
Next, the cylindrical lithium secondary battery 10 of Example 3 in which the surfaces of the positive electrode current collecting tab 11a and the negative electrode current collecting tab 12a were each formed with a gold thin film, the positive electrode current collecting tab 11a, and the negative electrode current collecting The internal resistance in each of the cylindrical lithium secondary batteries 10 was measured using the cylindrical lithium secondary battery 10 of Comparative Example 1 using the tab 12a on which no gold thin film was formed. The results are shown in Table 2 below.
[0035]
Moreover, about each cylindrical lithium secondary battery 10 of this Example 3 and the comparative example 1, it charged / discharged with the constant current of 8.75A (1 / 8C), respectively, the average discharge voltage was measured, and the result Is shown in Table 2 below.
[0036]
[Table 2]
Figure 0003769377
[0037]
As a result, as described above, the cylindrical lithium secondary battery 10 of Example 3 using the positive electrode current collecting tab 11a and the negative electrode current collecting tab 12a formed with a thin gold film on the surface thereof is the positive electrode current collecting tab 11a. As compared with the cylindrical lithium secondary battery 10 of Comparative Example 1 in which no gold thin film was formed on either surface of the negative electrode current collecting tab 12a, the internal resistance of the battery was lowered and the average discharge voltage was reduced. Was high.
[0038]
【The invention's effect】
As described in detail above, in the cylindrical lithium secondary battery according to the present invention, while forming a gold thin film on the surface of the positive electrode current collector tab attached to the positive electrode terminal and the surface of the negative electrode current collector tab attached to the negative electrode terminal , Since the above positive electrode current collecting tab is made of an aluminum material or the above negative electrode current collecting tab is made of a nickel material, the gold thin film is used between the positive electrode current collecting tab and the positive electrode terminal, or between the negative electrode current collecting tab and the negative electrode. Adhesion between the terminals was increased, and contact resistance between the positive electrode current collector tab and the positive electrode terminal and contact resistance between the negative electrode current collector tab and the negative electrode terminal were reduced.
[0039]
As a result, in the cylindrical lithium secondary battery according to the present invention, the internal resistance is reduced and the battery voltage and the battery capacity are prevented from decreasing, and a high voltage and high capacity cylindrical lithium secondary battery is obtained. It became so.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cylindrical lithium secondary battery in Examples 1 to 3 and Comparative Example 1 of the present invention.
FIG. 2 is a schematic explanatory view showing a state in which a separator is interposed between a positive electrode and a negative electrode and wound in a spiral shape when the cylindrical lithium secondary battery shown in FIG. 1 is manufactured.
3 is a schematic explanatory view showing a state in which the cylindrical lithium secondary battery shown in FIG. 1 is assembled. FIG.
4A and 4B, when assembling the cylindrical lithium secondary battery shown in FIG. 1, each positive electrode current collecting tab provided on the positive electrode is attached so as to be sandwiched between a pair of holding plates in the positive electrode terminal provided on the positive electrode lid. It is the schematic explanatory drawing which showed the state.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Cylindrical lithium secondary battery 11 Positive electrode 11a Positive electrode current collection tab 12 Negative electrode 12a Negative electrode current collection tab 13 Separator 14 Electrode body 15 Battery can 16a Positive electrode terminal 17a Negative electrode terminal

Claims (3)

リチウム複合酸化物を含む正極と、炭素材料を含む負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回した電極体を電池缶内に収容させ、上記の正極より延出された正極集電タブを正極端子に取り付けると共に、負極より延出された負極集電タブを負極端子に取り付けるようにした円筒型リチウム二次電池において、上記の正極集電タブと負極集電タブの少なくとも一方の表面に金の薄膜を形成すると共に、上記の正極集電タブをアルミニウム材料で構成したことを特徴とする円筒型リチウム二次電池。An electrode body wound in a spiral shape with a separator impregnated with a non-aqueous electrolyte interposed between a positive electrode including a lithium composite oxide and a negative electrode including a carbon material is accommodated in a battery can, and the positive electrode In the cylindrical lithium secondary battery in which the positive current collecting tab extended from the negative electrode is attached to the positive electrode terminal and the negative current collecting tab extended from the negative electrode is attached to the negative electrode terminal, the positive current collecting tab and the negative electrode described above A cylindrical lithium secondary battery, wherein a thin gold film is formed on at least one surface of a current collecting tab, and the positive electrode current collecting tab is made of an aluminum material . リチウム複合酸化物を含む正極と、炭素材料を含む負極との間に非水電解液が含浸されたセパレータを介在させて渦巻き状に巻回した電極体を電池缶内に収容させ、上記の正極より延出された正極集電タブを正極端子に取り付けると共に、負極より延出された負極集電タブを負極端子に取り付けるようにした円筒型リチウム二次電池において、上記の正極集電タブと負極集電タブの少なくとも一方の表面に金の薄膜を形成すると共に、上記の負極集電タブをニッケル材料で構成したことを特徴とする円筒型リチウム二次電池。An electrode body wound in a spiral shape with a separator impregnated with a non-aqueous electrolyte interposed between a positive electrode including a lithium composite oxide and a negative electrode including a carbon material is accommodated in a battery can, and the positive electrode In the cylindrical lithium secondary battery in which the positive current collecting tab extended from the negative electrode is attached to the positive electrode terminal and the negative current collecting tab extended from the negative electrode is attached to the negative electrode terminal, the positive current collecting tab and the negative electrode described above A cylindrical lithium secondary battery in which a thin gold film is formed on at least one surface of a current collecting tab and the negative electrode current collecting tab is made of a nickel material . 請求項2に記載した円筒型リチウム二次電池において、上記の正極集電タブをアルミニウム材料で構成したことを特徴とする円筒型リチウム二次電池。The cylindrical lithium secondary battery according to claim 2, wherein the positive electrode current collecting tab is made of an aluminum material .
JP04485398A 1998-02-26 1998-02-26 Cylindrical lithium secondary battery Expired - Fee Related JP3769377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04485398A JP3769377B2 (en) 1998-02-26 1998-02-26 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04485398A JP3769377B2 (en) 1998-02-26 1998-02-26 Cylindrical lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11250934A JPH11250934A (en) 1999-09-17
JP3769377B2 true JP3769377B2 (en) 2006-04-26

Family

ID=12703051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04485398A Expired - Fee Related JP3769377B2 (en) 1998-02-26 1998-02-26 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3769377B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605382B2 (en) 2000-04-26 2003-08-12 Quallion Llc Lithium ion battery suitable for hybrid electric vehicles
US7166388B2 (en) 2000-02-02 2007-01-23 Quallion Llc Brazed ceramic seal for batteries
US7041413B2 (en) 2000-02-02 2006-05-09 Quallion Llc Bipolar electronics package
CN102203978B (en) * 2009-09-25 2013-06-26 湖南科力远新能源股份有限公司 Cylindrical battery
CN113066957B (en) * 2021-03-18 2022-06-07 珠海冠宇电池股份有限公司 Battery with a battery cell

Also Published As

Publication number Publication date
JPH11250934A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
US7217475B2 (en) Non-aqueous electrolyte secondary battery
EP2991138B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
KR20150126843A (en) Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP3631202B2 (en) Non-aqueous electrolyte battery
JP5321116B2 (en) Non-aqueous electrolyte secondary battery
WO2014136794A1 (en) Lithium secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP2004087209A (en) Lithium secondary battery
JP4083040B2 (en) Lithium battery
JP4245219B2 (en) Lithium secondary battery
JP4412885B2 (en) Lithium secondary battery
JP3769377B2 (en) Cylindrical lithium secondary battery
JP2000036325A (en) Secondary power supply
JP4895625B2 (en) Lithium secondary battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP3825571B2 (en) Non-aqueous electrolyte battery
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same
JP2003132949A (en) Nonaqueous secondary battery and its manufacturing method
JP3691714B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees