JP3768833B2 - Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium - Google Patents

Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium Download PDF

Info

Publication number
JP3768833B2
JP3768833B2 JP2001150064A JP2001150064A JP3768833B2 JP 3768833 B2 JP3768833 B2 JP 3768833B2 JP 2001150064 A JP2001150064 A JP 2001150064A JP 2001150064 A JP2001150064 A JP 2001150064A JP 3768833 B2 JP3768833 B2 JP 3768833B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
heat
thermal storage
magnesium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001150064A
Other languages
Japanese (ja)
Other versions
JP2002338954A5 (en
JP2002338954A (en
Inventor
克則 長野
健次 小川
徹 持田
一實 嶋倉
英雅 生越
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001150064A priority Critical patent/JP3768833B2/en
Publication of JP2002338954A publication Critical patent/JP2002338954A/en
Publication of JP2002338954A5 publication Critical patent/JP2002338954A5/ja
Application granted granted Critical
Publication of JP3768833B2 publication Critical patent/JP3768833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
この発明は、排熱を利用した蓄熱システムに好適な蓄熱材、特に相変化に伴う潜熱を利用する蓄熱材、その製造方法、蓄熱システム、蓄熱方法、蓄熱槽および熱輸送媒体に関する。
【0002】
【従来の技術】
分散発電設備においては、発電設備等で発生する排熱を有効に利用する手段として蓄熱システムの導入が進められている。例えば、発電設備の稼動時間帯と熱需要の時間帯が一致しない場合にも、排熱を蓄熱しておくことにより有効活用できる。このような蓄熱システムで利用される蓄熱方法としては顕熱利用型、潜熱利用型、化学的な手法等の方法があるが、その中でも潜熱利用型の蓄熱方法は相変化に伴う潜熱を利用するため蓄熱容量が大きく注目されている。
【0003】
このような潜熱利用型の蓄熱システムで用いられる蓄熱材として、特開昭56−84784号公報及び特開昭59−47287号公報には、硝酸マグネシウムと塩化マグネシウムの混合物を用いる方法が開示されている(従来技術)。
【0004】
これらの公報においては、蓄熱材としては25〜45wt%の硝酸マグネシウム、10〜25wt%の塩化マグネシウム及び残部は、水からなり100wt%とする範囲が望ましいとされており、特に硝酸マグネシウム34wt%、塩化マグネシウム19wt%、水47wt%の場合が最も望ましいとされている。さらに、これらの混合物には核添加剤の添加が必須の構成として記載されている。
【0005】
【発明が解決しようとする課題】
しかし、特開昭56−84784号公報及び特開昭59−47287号公報に開示されている硝酸マグネシウムと塩化マグネシウムの混合割合の蓄熱材では、相変化温度は60℃程度となる。一方、給湯や暖房などの熱需要に対して利用し易い蓄熱温度域は60〜90℃の範囲であるが、上記従来技術の蓄熱材では60℃近傍以外の温度での潜熱蓄熱が不可能である。また発電設備の種類により排熱温度(熱源)が異なるため、最適の潜熱蓄熱温度も発電設備の種類毎に異なるものとなる。
【0006】
従来技術の蓄熱材は、このような熱需要に最適な温度や熱源温度に適合して蓄熱温度を所望温度に設定するように相変化温度を変えることができないという問題がある。
【0007】
本発明はこのような問題点を解決するためになされたもので、熱需要や熱源温度の条件に適合した蓄熱条件に応じて最適な相変化温度が調整可能な蓄熱材、その製造方法、蓄熱システム、蓄熱方法、蓄熱槽および熱輸送媒体を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題は次の発明により解決される。
【0009】
請求項1記載の蓄熱材は、硝酸マグネシウム・6水和塩と塩化マグネシウム・6水和塩を主体とする蓄熱材であって、塩化マグネシウム・6水和塩の割合が硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量の20%以下であることに特徴を有するものである。
【0010】
請求項2記載の蓄熱材の製造方法は、請求項1に記載の蓄熱材の製造方法であって、目標とする蓄熱材の相変化温度に応じて、硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で調整することに特徴を有するものである。
【0011】
請求項3記載の潜熱利用型の蓄熱システムは、請求項1記載の蓄熱材を用いることに特徴を有するものである。
【0012】
請求項4記載の潜熱利用型の蓄熱方法は、請求項1記載の蓄熱材を用いることに特徴を有するものである。
【0013】
請求項5記載の静置蓄熱槽は、請求項1記載の蓄熱材を蓄熱媒体として貯蔵することに特徴を有するものである。
【0014】
請求項6記載の熱輸送媒体は、請求項1記載の蓄熱材をマイクロカプセルに封入して液体中に分散させたことに特徴を有するものである。
【0015】
【発明の実施の形態】
以下、本発明の実施形態の一例を説明する。なお、以下の記載において「%」は「重量%」を意味するものとする。
【0016】
本発明に係る蓄熱材は、硝酸マグネシウム・6水和塩と塩化マグネシウム・6水和塩を主体とするものであって、塩化マグネシウム・6水和塩の割合が硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量の20%以下であることを特徴とするものである。
【0017】
硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量(以下、「混合物重量」という。)に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で変化させることによって、硝酸マグネシウム・6水和塩と塩化マグネシウム・6水和塩を主体とする混合物(以下、単に「混合物」という。)からなる蓄熱材の相変化温度の調整が可能となる。
【0018】
図1は、混合物重量に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で変化させた場合の蓄熱材の融点及び潜熱量の変化を示した図である。ここで、蓄熱材の融点とは、蓄熱材が固相から液相へ相変化するときの相変化温度である。
【0019】
図中、横軸の重量割合及び縦軸の潜熱量比は以下の式で定義される量である。
【0020】
重量割合=(塩化マグネシウム・6水和塩の重量/混合物重量)×100 [%]
潜熱量比=混合物の潜熱量/硝酸マグネシウム・6水和塩の潜熱量
【0021】
図1に示すように、塩化マグネシウム・6水和塩の割合を20%以下の範囲で変化させることによって、混合物からなる蓄熱材の潜熱量比をあまり低下させることなく融点を約60℃〜約90℃の範囲で任意に調整することができる。これにより、熱需要や熱源温度条件に適合した蓄熱条件に応じた最適な相変化温度を有する蓄熱材の製造が可能となる。ここで、塩化マグネシウム・6水和塩の割合がゼロ、つまり蓄熱材が硝酸マグネシウム・6水和塩単体の場合の相変化温度は、硝酸マグネシウム・6水和塩の融点である約90℃となる。
【0022】
ここで、塩化マグネシウム・6水和塩の割合が20%を超える場合、混合物からなる蓄熱材の融点は約60℃まで低下してしまい、本発明の目的を達成できない。
【0023】
本発明に係る蓄熱材は、静置蓄熱槽に貯蔵した状態で蓄熱媒体として使用しても良く、また、マイクロカプセル等に封入し液体中に分散させて熱輸送媒体として使用することもできる。
【0024】
なお、本発明に係る硝酸マグネシウム・6水和塩と塩化マグネシウム・6水和塩を主体とする混合物からなる蓄熱材には、過冷却を防止する目的で過冷却解除材としての発核材を添加しても良い。発核材を添加し過冷却温度を小さく抑えることで、エネルギーをより有効に利用できる蓄熱材が提供できる。ここで、発核材としては、通常発核材として用いられるものであれば特に制限なく使用できるが、例えばMgO、CoSO4、CuSO4、MgSO4、NiSO4、CaK2(SO42、Mg(OH)2、NaBO2等が使用できる。
【0025】
本発明に係る蓄熱材の製造方法は、目標とする蓄熱材の相変化温度に応じて、硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で調整することを特徴とするものである。
【0026】
熱需要や熱源温度条件に適合した蓄熱条件に最適な相変化温度の蓄熱材を自在に製造することができるので、蓄熱装置、排熱回収機構、熱取出し機構、温熱輸送機構などの排熱利用システムにおいて、エネルギー効率が高く、設備コスト、運転コストを低くした最適なシステムを構成することができる。
【0027】
また、排熱利用システムの運転条件を季節によって変えたり、設備の増設、リニューアルを行う場合にも蓄熱材の相変化温度を容易に調整できるので有用である。
【0028】
【発明の効果】
以上説明したように本発明によれば、蓄熱条件に応じて最適な相変化温度が調整可能な蓄熱材、その製造方法、蓄熱システム、蓄熱方法、蓄熱槽および熱輸送媒体が提供される。
【図面の簡単な説明】
【図1】 混合物重量に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で変化させた場合の蓄熱材の融点及び潜熱量の変化を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage material suitable for a heat storage system using exhaust heat, in particular, a heat storage material using latent heat accompanying phase change, a manufacturing method thereof, a heat storage system, a heat storage method, a heat storage tank, and a heat transport medium .
[0002]
[Prior art]
In distributed power generation facilities, introduction of a heat storage system is being promoted as a means for effectively using exhaust heat generated in power generation facilities and the like. For example, even when the operating time zone of the power generation equipment does not match the time zone of heat demand, it can be effectively utilized by storing the exhaust heat. The heat storage method used in such a heat storage system includes a sensible heat utilization type, a latent heat utilization type, and a chemical method. Among them, the latent heat utilization type heat storage method uses latent heat accompanying phase change. Therefore, the heat storage capacity has attracted much attention.
[0003]
JP-A-56-84784 and JP-A-59-47287 disclose a method of using a mixture of magnesium nitrate and magnesium chloride as a heat storage material used in such a latent heat utilization type heat storage system. (Prior art).
[0004]
In these publications, 25 to 45 wt% magnesium nitrate, 10 to 25 wt% magnesium chloride, and the balance of the heat storage material are preferably made of water and 100 wt%, and in particular, magnesium nitrate 34 wt%, The case of 19% by weight of magnesium chloride and 47% by weight of water is most desirable. Furthermore, the addition of a nuclear additive is described as an essential component in these mixtures.
[0005]
[Problems to be solved by the invention]
However, in the heat storage material having a mixing ratio of magnesium nitrate and magnesium chloride disclosed in JP-A-56-84784 and JP-A-59-47287, the phase change temperature is about 60 ° C. On the other hand, the heat storage temperature range that is easy to use for heat demand such as hot water supply and heating is in the range of 60 to 90 ° C, but the above-described conventional heat storage material cannot store latent heat at temperatures other than around 60 ° C. is there. In addition, since the exhaust heat temperature (heat source) varies depending on the type of power generation equipment, the optimum latent heat storage temperature also varies depending on the type of power generation equipment.
[0006]
The heat storage material of the prior art has a problem that the phase change temperature cannot be changed so that the heat storage temperature is set to a desired temperature in conformity with the optimum temperature or heat source temperature for such heat demand.
[0007]
The present invention has been made to solve such problems, and a heat storage material capable of adjusting the optimum phase change temperature according to heat storage conditions suitable for the conditions of heat demand and heat source temperature, its manufacturing method, heat storage An object is to provide a system, a heat storage method, a heat storage tank, and a heat transport medium .
[0008]
[Means for Solving the Problems]
The above problems are solved by the following invention.
[0009]
The heat storage material according to claim 1 is a heat storage material mainly composed of magnesium nitrate hexahydrate and magnesium chloride hexahydrate, wherein the ratio of magnesium chloride hexahydrate is magnesium nitrate hexahydrate. It is characterized by being 20% or less of the total weight of the salt and magnesium chloride hexahydrate.
[0010]
The method for manufacturing a heat storage material according to claim 2 is the method for manufacturing the heat storage material according to claim 1, wherein magnesium nitrate hexahydrate and magnesium chloride are formed according to a target phase change temperature of the heat storage material. -It is characterized by adjusting the ratio of magnesium chloride hexahydrate to the total weight of hexahydrate within a range of 20% or less.
[0011]
The latent heat utilization type heat storage system according to claim 3 is characterized in that the heat storage material according to claim 1 is used.
[0012]
The latent heat utilization type heat storage method according to claim 4 is characterized in that the heat storage material according to claim 1 is used.
[0013]
The stationary heat storage tank according to claim 5 is characterized by storing the heat storage material according to claim 1 as a heat storage medium.
[0014]
A heat transport medium according to a sixth aspect is characterized in that the heat storage material according to the first aspect is enclosed in microcapsules and dispersed in a liquid.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described. In the following description, “%” means “% by weight”.
[0016]
The heat storage material according to the present invention is mainly composed of magnesium nitrate hexahydrate and magnesium chloride hexahydrate, and the ratio of magnesium chloride hexahydrate is magnesium nitrate hexahydrate and The total weight of magnesium chloride hexahydrate is 20% or less.
[0017]
By changing the ratio of magnesium chloride hexahydrate to the total weight of magnesium nitrate hexahydrate and magnesium chloride hexahydrate (hereinafter referred to as “mixture weight”) within a range of 20% or less, It becomes possible to adjust the phase change temperature of the heat storage material composed of a mixture mainly composed of magnesium nitrate hexahydrate and magnesium chloride hexahydrate (hereinafter simply referred to as “mixture”).
[0018]
FIG. 1 is a graph showing changes in the melting point and latent heat amount of the heat storage material when the ratio of magnesium chloride hexahydrate to the weight of the mixture is changed within a range of 20% or less. Here, the melting point of the heat storage material is a phase change temperature when the heat storage material changes phase from a solid phase to a liquid phase.
[0019]
In the figure, the weight ratio on the horizontal axis and the latent heat ratio on the vertical axis are amounts defined by the following formula.
[0020]
Weight ratio = (magnesium chloride hexahydrate weight / mixture weight) × 100 [%]
Latent heat amount ratio = latent heat amount of the mixture / latent heat amount of magnesium nitrate hexahydrate salt [0021]
As shown in FIG. 1, by changing the ratio of magnesium chloride hexahydrate within a range of 20% or less, the melting point is reduced to about 60 ° C. to about 60 ° C. without much lowering the latent heat ratio of the heat storage material made of the mixture. It can adjust arbitrarily in the range of 90 degreeC. As a result, it is possible to manufacture a heat storage material having an optimum phase change temperature according to the heat storage condition suitable for the heat demand and the heat source temperature condition. Here, when the ratio of magnesium chloride hexahydrate is zero, that is, when the heat storage material is magnesium nitrate hexahydrate alone, the phase change temperature is about 90 ° C., which is the melting point of magnesium nitrate hexahydrate. Become.
[0022]
Here, when the ratio of magnesium chloride hexahydrate exceeds 20%, the melting point of the heat storage material made of the mixture decreases to about 60 ° C., and the object of the present invention cannot be achieved.
[0023]
The heat storage material according to the present invention may be used as a heat storage medium in a state of being stored in a stationary heat storage tank, or may be enclosed in a microcapsule or the like and dispersed in a liquid to be used as a heat transport medium.
[0024]
The heat storage material comprising a mixture mainly composed of magnesium nitrate hexahydrate and magnesium chloride hexahydrate according to the present invention includes a nucleating material as a supercooling release material for the purpose of preventing supercooling. It may be added. By adding a nucleating material and keeping the supercooling temperature small, a heat storage material that can use energy more effectively can be provided. Here, the nucleating material can be used without particular limitation as long as it is usually used as a nucleating material. For example, MgO, CoSO 4 , CuSO 4 , MgSO 4 , NiSO 4 , CaK 2 (SO 4 ) 2 , Mg (OH) 2 , NaBO 2 or the like can be used.
[0025]
The method for producing a heat storage material according to the present invention includes a magnesium chloride hexahydrate based on a total weight of magnesium nitrate hexahydrate and magnesium chloride hexahydrate according to a target phase change temperature of the heat storage material. The ratio is adjusted within a range of 20% or less.
[0026]
Since heat storage materials with the optimum phase change temperature for heat storage conditions suitable for heat demand and heat source temperature conditions can be produced freely, waste heat utilization such as heat storage devices, exhaust heat recovery mechanisms, heat extraction mechanisms, thermal transport mechanisms, etc. In the system, an optimum system with high energy efficiency and low facility cost and operation cost can be configured.
[0027]
In addition, it is useful because the phase change temperature of the heat storage material can be easily adjusted even when the operating conditions of the exhaust heat utilization system are changed according to the season, or when facilities are added or renewed.
[0028]
【The invention's effect】
As described above, according to the present invention, a heat storage material capable of adjusting an optimum phase change temperature according to heat storage conditions, a manufacturing method thereof, a heat storage system, a heat storage method, a heat storage tank, and a heat transport medium are provided.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in melting point and latent heat amount of a heat storage material when the ratio of magnesium chloride hexahydrate to the weight of a mixture is changed within a range of 20% or less.

Claims (6)

硝酸マグネシウム・6水和塩と塩化マグネシウム・6水和塩を主体とする蓄熱材であって、塩化マグネシウム・6水和塩の割合が硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量の20%以下であることを特徴とする蓄熱材。  A heat storage material mainly composed of magnesium nitrate hexahydrate and magnesium chloride hexahydrate, the ratio of magnesium chloride hexahydrate being magnesium nitrate hexahydrate and magnesium chloride hexahydrate A heat storage material characterized by being 20% or less of the total weight. 請求項1に記載の蓄熱材の製造方法であって、目標とする蓄熱材の相変化温度に応じて、硝酸マグネシウム・6水和塩及び塩化マグネシウム・6水和塩の合計重量に対する塩化マグネシウム・6水和塩の割合を20%以下の範囲で調整することを特徴とする蓄熱材の製造方法。  It is a manufacturing method of the heat storage material of Claim 1, Comprising: Magnesium chloride * with respect to the total weight of magnesium nitrate hexahydrate and magnesium chloride hexahydrate according to the phase change temperature of the target heat storage material The manufacturing method of the heat storage material characterized by adjusting the ratio of a hexahydrate salt in 20% or less of range. 請求項1記載の蓄熱材を用いることを特徴とする、潜熱利用型の蓄熱システム。A heat storage system using latent heat, wherein the heat storage material according to claim 1 is used. 請求項1記載の蓄熱材を用いることを特徴とする、潜熱利用型の蓄熱方法。A heat storage method using latent heat, wherein the heat storage material according to claim 1 is used. 請求項1記載の蓄熱材を蓄熱媒体として貯蔵することを特徴とする静置蓄熱槽。A stationary heat storage tank, wherein the heat storage material according to claim 1 is stored as a heat storage medium. 請求項1記載の蓄熱材をマイクロカプセルに封入して液体中に分散させたことを特徴とする熱輸送媒体。A heat transport medium, wherein the heat storage material according to claim 1 is enclosed in a microcapsule and dispersed in a liquid.
JP2001150064A 2001-05-18 2001-05-18 Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium Expired - Lifetime JP3768833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150064A JP3768833B2 (en) 2001-05-18 2001-05-18 Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150064A JP3768833B2 (en) 2001-05-18 2001-05-18 Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium

Publications (3)

Publication Number Publication Date
JP2002338954A JP2002338954A (en) 2002-11-27
JP2002338954A5 JP2002338954A5 (en) 2004-11-11
JP3768833B2 true JP3768833B2 (en) 2006-04-19

Family

ID=18995147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150064A Expired - Lifetime JP3768833B2 (en) 2001-05-18 2001-05-18 Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium

Country Status (1)

Country Link
JP (1) JP3768833B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device

Also Published As

Publication number Publication date
JP2002338954A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
Chandel et al. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials
Safari et al. A review on supercooling of Phase Change Materials in thermal energy storage systems
Alva et al. An overview of thermal energy storage systems
Noël et al. Phase change materials
Ge et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area
CN104087254A (en) High-heat-conductivity inorganic phase-change energy storage material
CA1327697C (en) Phase change thermal energy storage material
Wang et al. Preparation and properties of caprylic‐nonanoic acid mixture/expanded graphite composite as phase change material for thermal energy storage
CN107556972B (en) Normal-low temperature phase change energy storage medium and preparation method thereof
JP2006321949A (en) Paraffin-based latent heat-storing material composition
US20130284970A1 (en) Heat transfer medium for solar thermal systems
Prabhu et al. Review of phase change materials for thermal energy storage applications
Chen et al. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials
JP3768833B2 (en) Thermal storage material, manufacturing method thereof, thermal storage system, thermal storage method, thermal storage tank, and heat transport medium
CN101974313B (en) Phase change thermal storage material and manufacturing method thereof
JP2002338954A5 (en)
Cabeza Sensible Thermal Energy Storage at High Temperatures
CN109266932A (en) A kind of 500-600 degree resistance to oxidation high energy storage density magnesium alloy and technique
WO2015021403A1 (en) Ternary alloy and eutectic heat transfer fluid composition for fusion blankets
Zhang et al. Achieving efficient energy utilization by PCM in the food supply chain: Encapsulation technologies, current applications, and future prospects
CN109234566A (en) A kind of high heat storage density tin alloy and its technique of the operating temperature less than 100 degree
Drake et al. Reactive Phase‐Change Materials for Enhanced Thermal Energy Storage
Yan et al. Optimizing supercooling and phase stability by additives in calcium chloride hexahydrate for cyclical latent heat storage
JPS61197668A (en) Thermal energy storage material
Yadav et al. Energy Management of Solar Thermal Battery: Issues and Challenges

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Ref document number: 3768833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term