JP2005016766A - Heat accumulating device - Google Patents

Heat accumulating device Download PDF

Info

Publication number
JP2005016766A
JP2005016766A JP2003178993A JP2003178993A JP2005016766A JP 2005016766 A JP2005016766 A JP 2005016766A JP 2003178993 A JP2003178993 A JP 2003178993A JP 2003178993 A JP2003178993 A JP 2003178993A JP 2005016766 A JP2005016766 A JP 2005016766A
Authority
JP
Japan
Prior art keywords
heat
heat storage
temperature
latent
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178993A
Other languages
Japanese (ja)
Inventor
Tatsuki Watarai
立樹 渡會
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2003178993A priority Critical patent/JP2005016766A/en
Publication of JP2005016766A publication Critical patent/JP2005016766A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat accumulating device in which heat medium after passing through a latent heat material reaches low temperature in accumulating heat, and in which heat medium after passing through the latent heat material reaches high temperature in emitting heat, that achieves high heat accumulation efficiency. <P>SOLUTION: In this heat accumulating device, a plurality of kinds of latent heat material having different fusing points are used for accumulating heat. The latent heat material of the higher fusing point is disposed on the inlet/outlet side of a heat accumulating tank where high-temperature heat medium passes. The latent heat material of the lower fusing point is disposed on the inlet/outlet side of the heat accumulating tank where low-temperature heat medium passes. In accumulating heat, heat medium cooled by the latent heat material of the lower fusing point is fed, so that heat accumulation efficiency is improved. In emitting heat, heat medium heated by the latent heat material of the higher fusing point can be supplied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、高温の熱媒体を受け入れて熱エネルギーを蓄熱し、蓄熱した熱エネルギーを必要時に放出する蓄熱装置に関する。特に、蓄熱材の潜熱を利用して蓄熱する蓄熱装置に関する。本発明の蓄熱装置は、蓄熱時に蓄熱材に熱を伝達することによって自らは冷却されて蓄熱装置から送出される熱媒体の温度が安定し、放熱時に蓄熱材からの熱で加熱された状態で蓄熱装置から送出される熱媒体の温度が安定することを特徴とする。
【0002】
【従来の技術】室温で凍結しており、高温の熱媒体にさらされると溶解するとともに溶解時に多量の潜熱を吸熱し、凍結するときに多量の潜熱を放出する潜熱材が知られている。温水で蓄熱する場合のように蓄熱材の顕熱を利用して蓄熱する場合と蓄熱材の潜熱を利用して蓄熱する場合を比較すると、蓄熱材の単位体積あたりの顕熱よりも潜熱の方が大きいことから、前者よりも後者の方が多量の熱を蓄熱することができる。同一体積の顕熱方式の蓄熱装置と潜熱方式の蓄熱装置を比較すれば、前者の蓄熱可能量よりも後者の蓄熱可能量が大きい。同一蓄熱可能量の蓄熱装置であれば、顕熱方式であれば大型となり、潜熱方式であれば小型化できる。
【0003】
できるだけ小型の蓄熱装置でできるだけ多量の熱エネルギーを蓄熱するためには、単位体積あたりの潜熱が大きく、室温よりもわずかに高い温度で融解凍結する潜熱材を用いることが好ましい。従来の潜熱式蓄熱装置の研究は、この課題に向けられている。
【0004】
しかしながら小型の蓄熱槽で多量の熱エネルギーを蓄熱できるというだけでは足らず、下記のような要求が存在することがある。
(1)蓄熱時に蓄熱材に熱を伝達することによって自らは冷却されて蓄熱装置から送出される熱媒体の温度が安定していること。
(2)放熱時に蓄熱材からの熱で加熱された状態で蓄熱装置から送出される熱媒体の温度が使いやすい温度で安定していること。
上記が必要とされる事情を次に例示する。
【0005】
図6に、燃料電池を使用するコージェネレーションシステム(電気と熱の併給システム)で発生する熱を蓄熱しておく蓄熱装置を示す。コージェネレーションシステムでは、発電に伴って発生する熱を蓄熱槽に蓄熱し、蓄熱された熱を必要時に給湯装置や暖房装置等に供給する。総合的なエネルギー効率が高い。
図6の参照番号102は固体高分子型の燃料電池を示している。発電時には、燃料電池102が熱を発生する。燃料電池102が過熱することを防ぎ、同時に発電熱を回収するために、燃料電池102を通過する冷却水循環路104が用意されている。ポンプ108によって冷却水循環路104を矢印方向に循環する水は、燃料電池102を通過するときに燃料電池102を冷却するとともに自らは加熱され、加熱された状態で熱交換器106に流入する。一方、蓄熱槽120の底部から蓄熱槽120外に伸びて蓄熱槽120の上部に戻る温水循環路112が、熱交換器106を通過している。ポンプ126が稼働することによって温水循環路112を矢印方向に水が循環する。冷却水循環路104を循環する冷却水と温水循環路112を循環する温水は、熱交換器106で熱交換される。
燃料電池102を通過したときに燃料電池102を冷却しつつ自らは加熱された冷却水は、熱交換器106を通過するときに、温水循環路112を循環する温水を加熱して自らは冷却される。冷却された冷却水は、シスターン110を経て再度燃料電池102を冷却するように利用される。
蓄熱槽120の底部から取り出された低温の水は、熱交換器106を通過するときに、冷却水循環路104を循環する冷却水を冷却して自らは加熱される。加熱された温水は、蓄熱槽120の上部に戻り、蓄熱槽120に収容されている蓄熱材122に蓄熱する。蓄熱材122に蓄熱する間に、温水循環路124を循環する温水は冷却され、冷却された後で再び熱交換器106を通過する。
【0006】
温水を利用するために蛇口118が開けられると、給水路130から温水循環路124に水道水が送られる。温水循環路124に送り込まれた水道水は、蓄熱材122によって加熱され、加熱された状態で給湯経路116に送出される。蛇口118から温水が得られる。
発電が行われている間に蛇口118が開けられた場合には、ポンプ126が稼働しているために、給水路130から送り込まれた水の一部が温水循環路112を通過する。温水循環路112を通過する水は、熱交換器106で加熱された後に、分岐114で温水循環路124を通過した水と合流し、蛇口118に供給される。温水循環路112を通過する水道水の量は、温水循環路124を通過する水道水の量と比較すると少量であり、蛇口118に供給される温水の温度は、温水循環路124を通過して加熱された水道水の温度とほぼ等しくなる。
発電が行われていないときには、ポンプ126が稼働していない。温水循環路112の流動抵抗は、温水循環路124の流動抵抗よりも大きく、蛇口118が開けられると、給水路130から送り込まれた水の大部分は温水循環路124を通過して加熱される。蛇口118に供給される温水の温度は、温水循環路124を通過して加熱された水道水の温度とほぼ等しくなる。
【0007】
上記のシステムでは、蓄熱中に蓄熱槽120の下部から送出される温水の温度は、基本的に蓄熱材122の融点に等しい。冷却水循環路104を循環する冷却水は蓄熱材122の融点まで冷却される。又、放熱中に蓄熱槽120の上部から送出される温水の温度は、基本的に蓄熱材122の融点に等しい。
【0008】
上記のシステムでは、(1)蓄熱時に熱交換器106に送出される温水の温度が、燃料電池102を適度に冷却できる温度で安定していることが必要とされ、(2)放熱時に蛇口118に送出される温水の温度が使いやすい温度で安定していることが必要とされる。
【0009】
小型の蓄熱槽で多量の熱エネルギーを蓄熱するというだけなら、単位体積あたりの潜熱が大きく、室温よりもわずかに高い温度で融解凍結する潜熱材122を用いることが好ましい。しかしながら、それでは、上記した(1)(2)の要求に応えることができない。
例えば、室温よりもわずかに高い30℃程度で融解凍結する潜熱材122を利用すると、潜熱で加温されて蛇口118に送出される温水の温度が30℃程度となり、使いやすい温度とならない。そこで、蓄熱量を犠牲にして50℃程度で融解凍結する潜熱材122を利用すると、潜熱で加温されて蛇口118に送出される温水の温度が50℃程度となって使いやすくはなるが、潜熱によって吸熱されて熱交換器106に送出される温水の温度が50℃程度となってしまい、燃料電池102を冷却することができなくなってしまう。
【0010】
以上から理解されるように、コージェネレーションシステムに必要な蓄熱装置は、(1)小型の蓄熱槽で多量の熱エネルギーを蓄熱できること、(2)蓄熱時に潜熱材の潜熱によって吸熱されて蓄熱装置から送出される熱媒体の温度が冷却に適した温度で安定していること、(3)放熱時に潜熱材の潜熱で加熱された状態で蓄熱装置から送出される熱媒体の温度が使いやすい温度で安定していることが必要とされる。
【0011】
特許文献1に、複数の蓄熱槽を直列に接続した蓄熱装置が開示されている。この技術を利用してコージェネレーションシステムの蓄熱装置を構成すると、最も下流に接続された蓄熱槽の潜熱材が溶解していない状態を長期に亘って維持できるために、顕熱と潜熱を利用して蓄熱することができる。しかしながら、顕熱を利用する方式では、充分な蓄熱量が得られないばかりか、送出される熱媒体の温度が安定しない。潜熱を利用する場合には、潜熱材が融点で安定する現象を利用することができ、送出される熱媒体の温度が安定する。
【0012】
【特許文献1】
特開平07−151360号公報
【0013】
【発明が解決しようとする課題】潜熱材を利用する現状の蓄熱装置は、小型の蓄熱槽で多量の熱エネルギーを蓄熱できることのみに主眼をおいて設計されており、「蓄熱時に潜熱材の潜熱に吸熱されて蓄熱装置から送出される熱媒体の温度が安定していることや、放熱時に潜熱材の潜熱で加熱された状態で蓄熱装置から送出される熱媒体の温度が使いやすい温度で安定していること」という要求が存在しているということについては意識されていない。
本発明では、蓄熱時に潜熱材を通過した熱媒体が、次の熱回収に適した温度にまで冷却されて送出され、放熱時に潜熱材を通過した熱媒体が、使いやすい温度にまで加熱されて送出される蓄熱装置を提供する。即ち、潜熱によって冷却されて低温となった熱媒体を送出すこともできるし、潜熱によって加熱されて高温となった熱媒体を送出すこともできる蓄熱装置を提供する。
特に、(1)小型の蓄熱槽で多量の熱エネルギーを蓄熱できること、(2)蓄熱時に潜熱材の潜熱で吸熱されたために冷却されて蓄熱装置から送出される温水の温度が燃料電池の冷却に適した温度で安定していること、(3)放熱時に潜熱材の潜熱で加熱されて蓄熱装置から送出される温水の温度が使いやすい温度で安定しているという要求を満たすことができる蓄熱装置を提供する。
【0014】
【課題を解決するための手段と作用】本発明の蓄熱装置は、潜熱材を収容している蓄熱槽と、その蓄熱槽に熱媒体を通過させる熱媒体通路を備えている。本発明の蓄熱装置は、高温の熱媒体が出入りする側に高融点の潜熱材が配置されており、低温の熱媒体が出入りする側に低融点の潜熱材が配置されていることを特徴とする。
【0015】
蓄熱装置の蓄熱槽に蓄熱するときには、高温の熱媒体が蓄熱槽に導入される。本発明では、高温の熱媒体が入る側に、高融点の潜熱材が収容されている。熱媒体の出口側には、入口側よりも低融点の潜熱材が収容されている。蓄熱が開始されると、高温の熱媒体は、入口側で凍結している高融点の潜熱材に熱エネルギーを供給する。潜熱材は温度が上昇し、融点まで温度上昇したところで溶解が始まって多量の熱を吸熱する。溶解の開始時から全ての潜熱材が溶解し終わるまでの期間は、熱媒体から供給された熱エネルギーは潜熱材に吸熱されて潜熱として蓄熱されることから、溶解中の潜熱材は温度変化を起こさずに融点を保つ。入口側の潜熱材を通過して潜熱材に熱エネルギーを供給した熱媒体の温度は、高融点の潜熱材の融点とほぼ同じ温度になっている。入口側の潜熱材の融点とほぼ同一温度になっている熱媒体は、次に出口側に収容されている低融点の潜熱材にも熱を供給する。低融点の潜熱材も溶解して吸熱し、潜熱蓄熱を行う。蓄熱槽を出るときの熱媒体は、出口側に収容されている低融点の潜熱材の融点とほぼ同じ温度まで冷却されている。潜熱で蓄熱するから小型の蓄熱槽で多量の熱エネルギーを蓄熱することができる。蓄熱時には低融点の潜熱材で吸熱されて冷却された熱媒体が送出されることから、送出される熱媒体の温度は低融点の潜熱材の融点で安定する。
放熱時には蓄熱槽に低温の熱媒体が入る。熱媒体が通過する方向は蓄熱時とは逆となる。蓄熱時の出口側から熱媒体が蓄熱槽に入り、蓄熱時の入口側から熱媒体が出る。放熱が開始されると、低温の熱媒体はまず入口側で融解している低融点の潜熱材から熱エネルギーを供給される。蓄熱して溶解している低融点潜熱材に低温の熱媒体を通過させると、低融点潜熱材は熱媒体に熱エネルギーを供給して凍結し始める。凍結の開始時から全ての潜熱材の凍結が完了するまでの期間、潜熱材は潜熱を放熱するために温度変化を起こさず融点を保つ。入口側の潜熱材を通過して熱エネルギーを供給された熱媒体の温度は、低融点の潜熱材の融点とほぼ同じ温度にまで温度が上がっている。次に熱媒体は、出口側に収容されている高融点の潜熱材を通過する。高融点の潜熱材は、凍結して放熱することで、更に熱媒体に熱を供給する。蓄熱槽を出るときの熱媒体は、出口側に収容されている高融点潜熱材の融点とほぼ同じ温度にまで昇温している。
放熱時に高融点潜熱材の潜熱で加熱されて蓄熱装置から送出される温水の温度は高融点潜熱材の融点で安定する。
本発明の蓄熱装置によると、蓄熱時に送出される熱媒体の温度は低融点の潜熱材の融点で安定し、放熱時に送出される熱媒体の温度は高融点の潜熱材の融点で安定する。前者の低温を利用して燃料電池を効率的に冷却し、後者の高温を利用して快適な温度の温水を給湯するといったことが可能となる。
【0016】
上記の蓄熱装置を用いることにより、蓄熱時に蓄熱槽を通過した熱媒体の出口温度は、出口側に配置された融点の低い潜熱材と同じ温度まで下がっている。充分冷却されているために、熱媒体はすぐに熱の回収に再利用することができる。また蓄熱槽には、熱媒体から多くの熱エネルギーが供給されて潜熱蓄熱されており、蓄熱効率がよい。さらに、放熱時に潜熱材を通過した熱媒体の出口温度は、出口側に配置された融点の高い潜熱材と同じ温度まで昇温しており、より広い用途に用いることが可能となる。
【0017】
ここで、蓄熱槽に収容される潜熱材の種類は、入口側と出口側の2種類のみに限定されることはなく、融点の異なる3種類以上の潜熱材を用いることも可能である。3種類以上の潜熱材を用いる場合には、高い温度の熱媒体の出入り口側に最も融点の高い潜熱材を収容し、低い温度の熱媒体の出入り口側に近づくに連れて、順に融点の低い潜熱材を収容することにより、効率よく蓄熱と放熱を行うことができる。即ち、蓄熱の場合には、高温の熱媒体と高融点の潜熱材の間で熱交換が始まり、熱媒体の温度が下がるのに従って、徐々に融点の低い潜熱材に蓄熱されるので、熱媒体と潜熱材の融点の温度差が少なく、効率のよい蓄熱が行われる。放熱の場合には、低温の熱媒体と低融点の潜熱材の間で熱交換が始まり、熱媒体の温度が上がると共に融点の高い潜熱材から順に熱を供給されるので、同様に効率のよい放熱が行われる。
【0018】
請求項2に示されるように、2以上の蓄熱槽と、それらの蓄熱槽に順々に熱媒体を通過させる熱媒体通路によって蓄熱装置を構成することもできる。この場合には、高温の熱媒体が通過する側の蓄熱槽に高融点の潜熱材を収容しておき、低温の熱媒体が通過する側の蓄熱槽に低融点の潜熱材を収容しておく。
【0019】
蓄熱時の高温の熱媒体は、最初に融点の高い潜熱材を収容した蓄熱槽に入る。潜熱材は熱媒体にさらされて溶解し、蓄熱する。熱媒体が最初の蓄熱槽を出るときには、潜熱材の融点まで温度が下がっているが、次に通過する蓄熱槽の潜熱材の融点よりも温度が高いので、次の蓄熱槽に収容された潜熱材も溶解して蓄熱する。このように、複数の融点の異なる潜熱材が収容された蓄熱槽と熱交換を繰り返すことで、最初高温であった熱媒体は熱を奪われて低い温度となる。蓄熱槽では、収容されている各々の潜熱材が各々の融点で溶解し、大量の潜熱蓄熱が行われる。放熱時には、低温の熱媒体が、融点の低い潜熱材を収容した蓄熱槽から順に通過して熱を供給される。最後に融点の高い潜熱材を収容した蓄熱槽を通過した熱媒体は高温となる。
本発明の蓄熱装置は、好適な融点温度の潜熱材を収容した蓄熱槽を選んで熱媒体通路に配置することにより、潜熱材を通過した熱媒体に求められる出口温度を調節することが可能となる。
【0020】
少量の融点降下剤が混合されている無機水和塩によって高融点の潜熱材を実現し、多量の融点降下剤が混合されている無機水和塩によって低融点の潜熱材を実現することができる。
本発明の潜熱材に使用する無機水和塩は、(1)潜熱蓄熱できる熱量が多いこと、(2)融点が、放熱時に蓄熱装置から送出される熱媒体に求められる温度とほぼ同じであることが好ましい。例えば、コージェネレーションシステムの蓄熱槽に使用可能な特性を有する無機水和塩としては、酢酸ナトリウム3水和塩やチオ硫酸ナトリウム5水和塩が知られている。
無機水和塩と混合することによって、潜熱材全体の融点を下げることのできる融点降下剤としては、水や、塩化ナトリウム等の塩類や、ハロゲン化合物が知られている。また、主成分の無機水和塩に対して、より融点の低い無機水和塩を混合して融点を降下させることもできる。この場合の、主成分の無機水和塩に添加する融点の低い無機水和塩も融点降下剤とみなすことができる。
【0021】
上記に示したような無機水和塩と融点降下剤の混合割合を変えることによって、融点を異にする潜熱材を得ることができるので、種々の特性の蓄熱槽を簡単に製造することができる。この場合、蓄熱槽の高温の熱媒体が出入りする側に少量の融点降下剤が混合されている無機水和塩を配置し、低温の熱媒体が出入りする側に多量の融点降下剤が混合されている無機水和塩を配置しておく。潜熱材の融点は、高い温度の熱媒体の出入り口側で高く、低い温度の熱媒体の出入り口側が低くなっている。蓄熱時に送出される熱媒体の温度は低融点の潜熱材の融点で安定し、放熱時に送出される熱媒体の温度は高融点の潜熱材の融点で安定することが、融点降下剤が混合されている無機水和塩を用いた蓄熱装置で可能となる。
【0022】
【発明の実施の形態】以下に説明する実施例の主要な特徴を次に列記する。
(形態1)蓄熱装置は、融点の異なる2種類の潜熱材を収容する蓄熱槽と、蓄熱槽を通過する熱媒体通路と、熱源から熱を回収する熱回収路と、蓄熱槽の潜熱材が放熱する熱を供給する熱供給路を備えている。
(形態2)給水路と熱媒体通路と熱回収路が、一つの分岐点で接続されている。さらに、熱供給路と熱媒体通路と熱供給路が、他の分岐点で接続されている。
(形態3)蓄熱槽の中には無機水和塩と融点降下剤から構成される潜熱材が充填されている。温度の高い熱媒体が出入りする側と温度の低い熱媒体が出入りする側では、無機水和塩と融点降下剤との混合割合が異なっており、潜熱材の融点が多段階で変化している。
(形態4)蓄熱装置は、融点の高い潜熱材を収容する第1の蓄熱槽と、第1の蓄熱槽よりも融点の低い潜熱材を収容する第2の蓄熱槽と、第2の蓄熱槽よりもさらに融点の低い潜熱材を収容する第3の蓄熱槽と、前記3つの蓄熱槽を直列に接続する熱媒体通路を備えている。
(形態5)蓄熱装置には、蓄熱時に熱媒体が蓄熱槽を通過する熱媒体通路と、放熱時に熱媒体が蓄熱槽を通過する熱媒体通路の2つの熱媒体通路が設けられている。
(形態6)収容する潜熱材の種類と量が全て等しい第1の蓄熱槽と第2の蓄熱槽が、熱媒体通路によって並列に接続されている。
【0023】
【実施例】本発明をコージェネレーションシステムの蓄熱槽に適用した実施例を添付図面を参照しながら詳細に説明する。
(第1実施例) 図1は、本実施例に係わるコージェネレーションシステムの構成を模式的に示している。本実施例のコージェネレーションシステムは、電力と発電熱を発生する燃料電池セル42と、燃料電池セル42の燃料となる水素ガスを発生させる改質器48と、内部に潜熱材4、6が収容された蓄熱槽2等を備えている。
蓄熱槽2の上部には、第1の潜熱材4として、融点が58℃の酢酸ナトリウム水和物が収容されている。蓄熱槽4の下部には、第2の潜熱材6として、融点が42℃のリン酸ナトリウム水和物が収容されている。第1の潜熱材4と第2の潜熱材6の間は、潜熱材同士が混じることのないように、隔壁が設けられている。蓄熱槽2の中を、上部から下部にかけて熱媒体通路8が通過している。蓄熱槽2の内部に収容された第1の潜熱材4及び第2の潜熱材6は、熱媒体通路8の中を通過する熱媒体と熱交換が可能に配置されている。
【0024】
蓄熱槽2の上部には、熱媒体通路8が熱回収路10と熱供給路12に接続する箇所に分岐18が設けられている。また、蓄熱槽2の底部には、熱媒体通路8と熱回収路10と給水路22が接続する箇所に分岐16が設けられている。熱媒体通路8と、熱回収路10と、熱供給路12の中を、給水路22から供給された水が通過することができる。
【0025】
蓄熱槽2に蓄熱を行う時は、給水路22からの新たな給水は行われない。ポンプ14が稼働して、熱回収路10と熱媒体通路8の中を水が循環する。水は、熱媒体通路8を上から下に流れる。熱回収路10は、第1の熱交換器32と第2の熱交換器34を経由して熱媒体通路8に接続しており、熱回収路10を循環する水は、熱交換器32,34で熱交換して発電熱を回収する。
燃料電池セル42が発電時に発生する熱は、燃料電池セル42を循環する冷却用循環路44の冷却水によって回収される。冷却水循環路44は、第1の熱交換器32を経由しており、冷却水と、熱回収路10を循環する水との間で熱交換が行われる。ここで、熱回収路10の水が温められると同時に、冷却水循環路44の冷却水は冷却されて燃料電池セル42に戻る。
改質器48は、燃料電池セル42の燃料となる水素ガスを原料の炭化水素系ガスから得るために、発電中はバーナ46の燃焼熱で高温に保たれる。発電中には、改質器48から高温の燃焼排ガスが発生する。改質器48の燃焼排ガスと熱回収路10を循環する水との間で熱交換する第2の熱交換器34が設けられており、熱回収路10を循環する水は、第2の熱交換器34の第2の熱交換によってさらに高温の温水となる。温水は、分岐18を経て、熱媒体通路8に入る。
【0026】
第1の熱交換器32と第2の熱交換器34で熱交換を行った温水は、熱媒体通路8を通って、蓄熱槽2に上部から入る。熱媒体通路8を通る温水は、最初に第1の潜熱材4に熱を供給し、次に第2の潜熱材6に熱を供給する。供給された熱は、第1の潜熱材4と第2の潜熱材6に潜熱として蓄熱される。図2(a)に、熱媒体通路8を循環する温水の温度と、熱媒体通路8の分岐18からの距離との関係を示す。
発電熱を回収して高温となった温水は、蓄熱槽2の上部から蓄熱槽2に入り、第1の潜熱材4である酢酸ナトリウム水和物と熱交換により熱を供給して、徐々に温度が下がる。熱を供給された第1の潜熱材4は温度が上昇し、融点である58℃まで温度上昇したところで溶解が始まって多量の熱を吸熱する。溶解の開始時から全ての潜熱材が溶解し終わるまでの期間は、温水から供給された熱は第1の潜熱材4に吸熱されて潜熱として蓄熱されることから、溶解中の潜熱材は温度変化を起こさずに融点の58℃を保つ。また、潜熱材の溶解中は、潜熱材の凍結している部分に溶解している部分が入り込んで熱の循環がよく行われており、第1の潜熱材の温度はほぼ均一になっている。そこで、第1の潜熱材4を通過して熱を供給した温水の温度は、潜熱材の融点である58℃とほぼ同じ温度になっている。58℃となった温水は、次に第2の潜熱材6のリン酸ナトリウムに熱を供給する。温水と熱交換を行うことで、融点が42℃の第2の潜熱材6が溶解して潜熱蓄熱を行う。第2の潜熱材6を通過して熱を供給した温水の温度は、潜熱材の融点である42℃とほぼ同じ温度に下がって、蓄熱槽2を出る。
蓄熱槽2を出た水は、再び分岐16を通過して熱回収路10を循環する。熱回収路10に入った水の温度は42℃以下に下がっており、燃料電池セル42の発電熱と改質器48の燃焼排ガスの熱を大量に回収することができると同時に、冷却水循環路44の水を充分冷却することができる。
【0027】
第1の潜熱材4と第2の潜熱材6が溶解して潜熱蓄熱を行った蓄熱槽2が、放熱を行うときは、給水路22から熱媒体である水が供給される。発電が行われていないとき、ポンプ14は停止するので水は熱回収路10を通過しない。給水路22から供給された水は、分岐16から熱媒体通路8に入り、蓄熱槽2を通過する。
放熱時に蓄熱槽2を通過する水は、最初に第2の潜熱材6から熱を供給されて温められ、次に第1の潜熱材4から熱を供給されて更に高温となる。図2(b)に、熱媒体通路8を循環する温水の温度と、熱媒体通路8の分岐16からの距離との関係を示す。放熱が開始されると、給水路22から供給された水は第2の潜熱材6を通過して熱交換を行う。蓄熱して溶解している第2の潜熱材6に低温の水を通過させると、第2の潜熱材6は水に熱を供給して凍結を開始する。凍結の開始時から全ての潜熱材の凍結が完了するまでの期間に亘って、第2の潜熱材6は潜熱を放熱しつつ融点の42℃を保つ。凍結が進む間、凍結している部分と溶解している部分は熱の循環がよく行われているので、第2の潜熱材6全体の温度はほぼ均一になっている。そこで、第2の潜熱材6を通過した熱媒体通路8内の水の温度は、第2の潜熱材6の融点とほぼ同じ約42℃まで温められる。次に、熱媒体通路8内の水は、第1の潜熱材4と熱交換を行う。第1の潜熱材4が、凍結して潜熱を放熱することで、更に熱媒体通路8内の水は加熱される。蓄熱槽2を出るときの水、即ち、熱媒体通路8の上部における水の温度は、第1の潜熱材4の融点とほぼ同じ約58℃まで昇温している。
高温となった熱媒体通路8内の水は、分岐18を通って熱供給路12に供給される。熱供給路12は、ミキシングユニット24と補助熱源26を経由して様々な温水利用装置に供給される。温水利用装置が必要とする温水の温度が58℃よりも低い場合には、ミキシングユニット24が温水と水道水を混合し、温水利用装置が必要とする温度に調整する。温水利用装置が必要とする温水の温度が58℃よりも高い場合には、補助熱源26が点火して、温水を更に加熱して温水利用装置が必要とする温度にした後に供給する。温水利用装置が必要とする温水の温度が58℃を超えることはめったにないために、熱供給路12に58℃の温水が供給されている限り、補助熱源26が点火されることはほとんどない。熱供給路12に供給される温水は使いやすい58℃で安定している。補助熱源26は専ら、蓄熱槽2の蓄熱量を使い切ってしまった後に利用される。
【0028】
発電中に温水の供給が行われる場合には、ポンプ14が稼働しているために、熱回収路10の中を水が通過する。給水路22から供給された水は、分岐16から,熱媒体通路8と熱回収路10に入る。熱回収路10を通過した温水の温度は燃料電池セル42で行われている発電の量に対応して変化する。しかし、熱回収路10に供給される水の量は、熱媒体通路8に供給される水の量に較べると非常に少量であるため、分岐18で合流したときの温水の温度は、ほぼ58℃となる。さらに、ミキシングユニット24と補助熱源26によって、温水利用装置に供給する温水の温度の調整を正確に行う。
【0029】
本実施例のコージェネレーションシステムに適用された蓄熱装置は、2種類の融点の異なる潜熱材を収容した蓄熱槽を備えており、大量の潜熱蓄熱を行うことができる。また、蓄熱時に蓄熱槽を通過して冷却された水の出口温度を、蓄熱槽の底部に配置された低融点の第2の潜熱材と同じ温度まで下げることができる。この水を再び発電熱の回収に使用すると、燃料電池セル42の発電熱を大量に回収すると同時に、燃料電池の冷却水を効率よく冷却することができる。更に、放熱時に潜熱材を通過して加熱された水の出口温度は、蓄熱槽の上部に配置された高融点の第1の潜熱材と同じ温度まで昇温しており、より広い用途に用いることが可能となる。
【0030】
(第2実施例) 本実施例における蓄熱装置の蓄熱槽2には、酢酸ナトリウムと水とから成る潜熱材が充填されている。酢酸ナトリウムと水の混合比を調整することによって、潜熱材の融点が5段階に調整されている。
温度の高い熱媒体が出入りする蓄熱槽2の上部に、融点が最も高い第1潜熱材が収容されている。第1潜熱材は酢酸ナトリウム3水和物のみからなり、水を含まない。第1潜熱材の下に第2潜熱材が配置され、第2潜熱材の下に第3潜熱材が配置され、第3潜熱材の下に第4潜熱材が配置され、第4潜熱材の下方であって温度の低い熱媒体が出入りする蓄熱槽2の底部に、第5潜熱材が配置されている。番号の大きい潜熱材ほど水の混入量が多く、融点が下げられている。これらの潜熱材は、互いに混じり合うことがないように、それぞれが樹脂製の容器に充填されている。発電装置および発電装置と蓄熱装置を経由する経路は第1実施例と同一の構成を有している。
図3に、蓄熱槽2の上部に設けられた分岐18からの距離に対する熱媒体通路8内を上部から底部に通過する温水の温度の関係を実線で示し、分岐18からの距離と蓄熱槽2の中に収容された潜熱材の融点の関係を点線で示す。
発電熱を回収して高温となった温水は、上部から蓄熱槽2に入り、第1潜熱材と熱交換を行う。熱交換によって第1潜熱材が溶解して潜熱蓄熱を行い、温水の温度は第1潜熱材の融点とほぼ同じまで下がる。蓄熱槽2の底部に近づくに連れて潜熱材の融点が順に下がっており、全ての潜熱材を加熱して自身は冷却されることによって、熱媒体通路8を通過する温水の温度も徐々に下がる。蓄熱槽2の底部から出た温水の温度は、底部に収容された第5潜熱材の融点とほぼ同じ温度にまで冷却されている。
【0031】
本実施例における蓄熱装置の蓄熱槽には、同一の種類の無機水和塩と水の混合割合を変えることによって融点を変えた潜熱材が用いられており、非常に簡易に蓄熱槽の製造を行うことができる。また蓄熱槽の上部と底部で、無機水和塩と水との混合割合を多段階で変えることにより、潜熱材の融点を徐々に変化させている。これにより、熱交換を行う水と潜熱材の温度差を小さくすることができるので、熱交換時の熱の損失を少なくして効率よく熱を供給することができる。
【0032】
本実施例の潜熱材は、酢酸ナトリウム3水和物に水を添加して融点を調整しているが、他の種類の無機水和塩と融点降下剤を組み合わせて融点を調整した潜熱材を用いてもよい。例えば、チオ硫酸ナトリウム5水和物の無機水和塩を用いたり、塩化ナトリウムの融点降下剤を用いることができる。又、過冷却防止剤や層分離防止剤を添加することもできる。
【0033】
(第3実施例) 本実施例の蓄熱装置の構成を、図4に示す。第1実施例と構成の同一のものに対しては、同一符号を付与して重複説明を割愛する。
本実施例では、融点の高い潜熱材を収容する第1の蓄熱槽52と、第1の蓄熱槽よりも融点の低い潜熱材を収容する第2の蓄熱槽54と、第2の蓄熱槽よりもさらに融点の低い潜熱材を収容する第3の蓄熱槽56を備えている。前記3つの蓄熱槽52,54,56は、蓄熱時に熱媒体が循環する熱媒体循環路58と、放熱時に水が蓄熱槽を通過する温水供給路60の2つの経路によって直列に接続されている。
【0034】
熱媒体循環路58は、第1の熱交換器32と、第2の熱交換器34と、蓄熱槽52,54,56の間に設けられており、内部に熱媒体が充填されている。蓄熱時には、ポンプ14が稼働して熱媒体循環路58の中を熱媒体が循環する。熱媒体循環路58を循環する熱媒体は、燃料電池セル42の冷却水と熱交換器32で熱交換を行って高温となり、改質器48の高温の燃焼排ガスと熱交換器34で熱交換を行ってさらに高温となる。高温となった熱媒体は、第1の蓄熱槽52に入って熱交換を行う。凍結している第1の蓄熱槽52の潜熱材は溶解して潜熱蓄熱を行い、熱媒体は第1の蓄熱槽52の潜熱材の融点とほぼ同じ温度となって第1の蓄熱槽52を出る。次に熱媒体は、第2の蓄熱槽54に入る。第2の蓄熱槽54の潜熱材の融点は、第1の蓄熱槽52の潜熱材よりも低いために、第1の蓄熱槽52の潜熱材の融点とほぼ同じ温度の熱媒体と熱交換を行い、溶解して潜熱蓄熱を行う。熱媒体は第2の蓄熱槽54の潜熱材の融点とほぼ同じ温度となって第2の蓄熱槽を出て、第3の蓄熱槽56に入る。第3の蓄熱槽56の潜熱材の融点は、第2の蓄熱槽54の潜熱材よりも更に低いために、熱媒体との熱交換を行って溶解して潜熱蓄熱を行う。熱媒体は、第3の蓄熱槽56を出るときに、第3の蓄熱槽56の潜熱材の融点とほぼ同じ温度まで冷却されており、再び熱交換器32,34を循環して熱を回収する。
【0035】
蓄熱槽52,54,56が放熱するときには、温水供給路60を通過する水に熱が供給される。放熱が開始されると、給水路22から温水供給路60に供給された水は、第3の蓄熱槽56に入り、熱交換を行う。蓄熱して溶解している第3の蓄熱槽56に低温の水を通過させると、第3の蓄熱槽56の潜熱材は水に熱を供給して凍結を開始する。第3の蓄熱槽56を通過した温水供給路60内の水の温度は、第3の蓄熱槽56の潜熱材の融点とほぼ同じ温度まで暖められる。第3の蓄熱槽56を出た温水供給路60内の水は、第2の蓄熱槽54の潜熱材と第1の蓄熱槽52の潜熱材と順に熱交換を行い、第1の蓄熱槽52の潜熱材の融点とほぼ同じ温度まで昇温して温水となって、ミキシングユニット24に入る。ミキシングユニット24に入った温水は、温度を調整された後に、様々な温水利用装置に供給される。
【0036】
本実施例の蓄熱装置は、収容する潜熱材の融点が異なる複数の蓄熱槽を備えている。蓄熱槽が融点の違いによってユニット化しているので、蓄熱槽の組み合わせを変えて複数の蓄熱槽を接続することにより、容易に必要とされる蓄熱量や温水の供給温度を有する蓄熱装置を得ることができる。
また、蓄熱槽を通過する熱媒体の通路を、蓄熱を行うための循環路と放熱を行うための通路に分けることによって、蓄熱と放熱を同時に行うことができる。
【0037】
(第4実施例) 本実施例の蓄熱装置の構成を図5に示す。本実施例の蓄熱装置は、同一の形状の蓄熱槽2aと蓄熱槽2bを備えている。熱媒体循環路8は、蓄熱槽2a、2bの上部で分岐して蓄熱槽2a,2bを並列に接続し、蓄熱槽2a,2bの下部で再び合流している。蓄熱槽2aと2bの上部には、融点の高い第1の潜熱材が、同一量収容されている。蓄熱槽2aと2bの底部には、融点の低い第2の潜熱材が、同一量収容されている。蓄熱が行われるときには、高温の熱媒体が蓄熱槽2aと2bを通過する。蓄熱槽2aと2bは同一量の蓄熱を行い、蓄熱槽2aと2bを通過した熱媒体の出口温度はいずれも第2の潜熱材の温度とほぼ等しくなる。放熱が行われて低温の熱媒体が蓄熱槽2aと2bを通過するときには、蓄熱槽2aと2bを通過した熱媒体の出口温度は、いずれも第1の潜熱材の温度とほぼ等しくなる。
本実施例の蓄熱装置は、同一の構成を有する蓄熱槽2aと2bを並列で接続して蓄熱を行っている。熱媒体通路8の接続箇所を増減させることによって、使用する蓄熱槽の数を増減させることができるので、蓄熱量の調整を容易に行うことができる。
【0038】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、実施例では、蓄熱材に、無機水和塩若しくは無機水和塩と融点降下剤の混合物を使用しているが、パラフィン等の有機物化合物や、糖アルコール類を使用することもできる。また、熱媒体として水を用いたが、不凍液等の液体を用いることも可能である。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項記載の組み合わせに限定されるものではない。
【0039】
【発明の効果】本願発明の蓄熱装置によると、蓄熱槽に収容する潜熱材として、融点の異なる複数の潜熱材を使用する。一つの蓄熱槽の中に複数の潜熱材が収容される場合には、高温の熱媒体が通過する蓄熱槽の出入口側に融点の高い潜熱材を収容し、低温の熱媒体が通過する蓄熱槽の出入口側には、融点の低い潜熱材を収容する。2以上の蓄熱槽に単一の融点を有する潜熱材を収容して接続する場合には、高い温度の熱媒体が通過する側に融点の高い潜熱材を収容した蓄熱槽を配置し、低い温度の熱媒体が通過する側に融点の低い潜熱材を収容した蓄熱槽を配置する。これにより、蓄熱時には、最初に融点の高い潜熱材が高温の熱媒体にさらされて溶解し、潜熱蓄熱する。熱媒体は、融点の低い潜熱材にまで順に熱を供給して、最も温度の低い潜熱材の融点まで温度が下がる。蓄熱槽の出口では熱媒体の温度が低くなっているので、熱媒体を熱の回収に利用すると再び多くの熱を回収することができる。同時に、融点の異なる潜熱材を収容するそれぞれの蓄熱槽は、大量の熱が潜熱蓄熱されるので、蓄熱効率がよい。
放熱時には、融点の低い潜熱材が最初に低温の熱媒体にさらされて凍結して放熱する。下流に収容されている、より融点の高い熱媒体から熱を供給されて、蓄熱槽を出るときには出口に収容されている潜熱材の融点と同じ高い温度まで昇温するので、熱媒体を様々な熱の供給のために用いることができる。
【図面の簡単な説明】
【図1】第1実施例の蓄熱装置の構成を模式的に示す図。
【図2】第1実施例の潜熱材を通過した距離に対する熱媒体の温度変化の関係を示す図。
【図3】第2実施例の潜熱材を通過した距離に対する熱媒体の温度変化の関係を示す図。
【図4】第3実施例の蓄熱装置の構成を模式的に示す図。
【図5】第4実施例の蓄熱装置の構成を模式的に示す図。
【図6】従来の蓄熱装置の構成を模式的に示す図。
【符号の説明】
2,2a,2b,52,54,56,120:蓄熱槽
4:第1の潜熱材
6:第2の潜熱材
8:熱媒体通路
10,112:熱回収路
12:熱供給路
14,126:ポンプ
16,18,20,114,128:分岐
22,130:給水路
24:ミキシングユニット
26:補助熱源
32,34,106:熱交換器
42,102:燃料電池セル
44,104:冷却用循環路
58:熱媒体循環路
60:温水供給路
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device that receives a high-temperature heat medium, stores heat energy, and releases the stored heat energy when necessary. In particular, the present invention relates to a heat storage device that stores heat using latent heat of a heat storage material. In the heat storage device of the present invention, the temperature of the heat medium that is cooled by itself and transmitted from the heat storage device is stabilized by transferring heat to the heat storage material during heat storage, and is heated by the heat from the heat storage material during heat dissipation. The temperature of the heat medium sent from the heat storage device is stable.
[0002]
2. Description of the Related Art A latent heat material is known that is frozen at room temperature, melts when exposed to a high-temperature heat medium, absorbs a large amount of latent heat during melting, and releases a large amount of latent heat when frozen. Comparing the case of storing heat using the sensible heat of the heat storage material as in the case of storing heat with hot water and the case of storing heat using the latent heat of the heat storage material, the latent heat is more than the sensible heat per unit volume of the heat storage material. Therefore, the latter can store more heat than the former. Comparing the sensible heat storage device and the latent heat storage device of the same volume, the latter heat storage capacity is larger than the former heat storage capacity. If the heat storage devices have the same heat storage capacity, the sensible heat method is large, and the latent heat method is small.
[0003]
In order to store as much heat energy as possible with a heat storage device as small as possible, it is preferable to use a latent heat material that has a large latent heat per unit volume and melts and freezes at a temperature slightly higher than room temperature. Research on conventional latent heat storage devices is directed to this issue.
[0004]
However, it is not only that a large amount of heat energy can be stored in a small heat storage tank, and the following requirements may exist.
(1) The temperature of the heat medium that is cooled by itself by transferring heat to the heat storage material during heat storage and that is sent from the heat storage device is stable.
(2) The temperature of the heat medium sent from the heat storage device in a state heated by heat from the heat storage material during heat radiation is stable at an easy-to-use temperature.
The situation where the above is required is illustrated below.
[0005]
FIG. 6 shows a heat storage device that stores heat generated by a cogeneration system (a combined supply system of electricity and heat) that uses a fuel cell. In the cogeneration system, heat generated with power generation is stored in a heat storage tank, and the stored heat is supplied to a hot water supply device, a heating device, or the like when necessary. High overall energy efficiency.
Reference numeral 102 in FIG. 6 indicates a polymer electrolyte fuel cell. During power generation, the fuel cell 102 generates heat. In order to prevent the fuel cell 102 from being overheated and at the same time to recover the generated heat, a cooling water circulation path 104 passing through the fuel cell 102 is prepared. The water circulating in the cooling water circulation path 104 by the pump 108 in the direction of the arrow cools the fuel cell 102 when passing through the fuel cell 102 and is heated by itself, and flows into the heat exchanger 106 in a heated state. On the other hand, a hot water circulation path 112 that extends from the bottom of the heat storage tank 120 to the outside of the heat storage tank 120 and returns to the top of the heat storage tank 120 passes through the heat exchanger 106. By operating the pump 126, water circulates in the hot water circulation path 112 in the direction of the arrow. Heat exchange between the cooling water circulating in the cooling water circulation path 104 and the hot water circulating in the hot water circulation path 112 is performed by the heat exchanger 106.
The cooling water heated by itself while cooling the fuel cell 102 when passing through the fuel cell 102 is heated by passing through the heat exchanger 106 to heat the hot water circulating in the hot water circulation path 112 and cooling itself. The The cooled cooling water is utilized so as to cool the fuel cell 102 again via the cistern 110.
When the low-temperature water taken out from the bottom of the heat storage tank 120 passes through the heat exchanger 106, it cools the cooling water circulating in the cooling water circulation path 104 and is heated by itself. The heated hot water returns to the upper part of the heat storage tank 120 and stores heat in the heat storage material 122 accommodated in the heat storage tank 120. While the heat storage material 122 stores heat, the hot water circulating in the hot water circulation path 124 is cooled, and after being cooled, passes through the heat exchanger 106 again.
[0006]
When the faucet 118 is opened to use hot water, tap water is sent from the water supply path 130 to the hot water circulation path 124. The tap water sent to the hot water circulation path 124 is heated by the heat storage material 122 and sent to the hot water supply path 116 in a heated state. Hot water is obtained from the faucet 118.
When the faucet 118 is opened while power is being generated, the pump 126 is in operation, so a part of the water fed from the water supply passage 130 passes through the hot water circulation passage 112. The water passing through the hot water circulation path 112 is heated by the heat exchanger 106, merges with the water passed through the hot water circulation path 124 at the branch 114, and supplied to the faucet 118. The amount of tap water passing through the hot water circuit 112 is small compared to the amount of tap water passing through the hot water circuit 124, and the temperature of the hot water supplied to the faucet 118 passes through the hot water circuit 124. It becomes almost equal to the temperature of the heated tap water.
When power generation is not performed, the pump 126 is not operating. The flow resistance of the hot water circulation path 112 is larger than the flow resistance of the hot water circulation path 124, and when the faucet 118 is opened, most of the water fed from the water supply path 130 passes through the hot water circulation path 124 and is heated. . The temperature of the hot water supplied to the faucet 118 is substantially equal to the temperature of the tap water heated through the hot water circuit 124.
[0007]
In the above system, the temperature of the hot water sent from the lower part of the heat storage tank 120 during heat storage is basically equal to the melting point of the heat storage material 122. The cooling water circulating in the cooling water circulation path 104 is cooled to the melting point of the heat storage material 122. Moreover, the temperature of the hot water sent from the upper part of the heat storage tank 120 during heat radiation is basically equal to the melting point of the heat storage material 122.
[0008]
In the above system, (1) it is necessary that the temperature of the hot water sent to the heat exchanger 106 during heat storage is stable at a temperature at which the fuel cell 102 can be appropriately cooled, and (2) the faucet 118 during heat dissipation. It is necessary that the temperature of the hot water delivered to the tank is stable at an easy-to-use temperature.
[0009]
If only a large amount of heat energy is stored in a small heat storage tank, it is preferable to use a latent heat material 122 that has a large latent heat per unit volume and that melts and freezes at a temperature slightly higher than room temperature. However, this cannot meet the above requirements (1) and (2).
For example, when the latent heat material 122 that is thawed and frozen at about 30 ° C., which is slightly higher than room temperature, is used, the temperature of the warm water heated by the latent heat and delivered to the faucet 118 is about 30 ° C., and the temperature is not easy to use. Therefore, when using the latent heat material 122 that is melted and frozen at about 50 ° C. at the expense of the heat storage amount, the temperature of the warm water heated by the latent heat and sent to the faucet 118 becomes about 50 ° C., which is easy to use. The temperature of the hot water absorbed by the latent heat and sent to the heat exchanger 106 becomes about 50 ° C., and the fuel cell 102 cannot be cooled.
[0010]
As can be understood from the above, the heat storage device required for the cogeneration system is (1) that a large amount of heat energy can be stored in a small heat storage tank, and (2) the heat storage device absorbs heat by the latent heat of the latent heat material during heat storage. The temperature of the heat medium sent out is stable at a temperature suitable for cooling, and (3) the temperature of the heat medium sent from the heat storage device is easy to use while being heated by the latent heat of the latent heat material during heat radiation. It needs to be stable.
[0011]
Patent Document 1 discloses a heat storage device in which a plurality of heat storage tanks are connected in series. When this technology is used to construct a heat storage device for a cogeneration system, the latent heat material of the heat storage tank connected to the most downstream side can be maintained for a long time, so sensible heat and latent heat are used. Heat storage. However, in the method using sensible heat, not only a sufficient amount of heat storage cannot be obtained, but also the temperature of the heat medium to be delivered is not stable. When using latent heat, the phenomenon that the latent heat material is stabilized at the melting point can be used, and the temperature of the heat medium to be sent out becomes stable.
[0012]
[Patent Document 1]
JP 07-151360 A
[0013]
SUMMARY OF THE INVENTION Current heat storage devices that use latent heat materials are designed with the primary focus on being able to store large amounts of thermal energy in a small heat storage tank. The temperature of the heat medium that is absorbed by the heat storage device and sent from the heat storage device is stable, and the temperature of the heat medium that is sent from the heat storage device while being heated by the latent heat of the latent heat material during heat dissipation is stable at a temperature that is easy to use. It is not conscious that there is a demand for “what we do”.
In the present invention, the heat medium that has passed through the latent heat material during heat storage is cooled and sent to a temperature suitable for the next heat recovery, and the heat medium that has passed through the latent heat material during heat dissipation is heated to a temperature that is easy to use. A heat storage device to be delivered is provided. That is, the present invention provides a heat storage device that can send out a heat medium that has been cooled by latent heat to a low temperature, and can also send a heat medium that has been heated by latent heat to a high temperature.
In particular, (1) a large amount of heat energy can be stored in a small heat storage tank, and (2) the temperature of hot water that is cooled and sent from the heat storage device because it is absorbed by the latent heat of the latent heat material during heat storage is used to cool the fuel cell. (3) A heat storage device that can satisfy the requirement that the temperature of the hot water that is heated by the latent heat of the latent heat material during heat radiation and is sent from the heat storage device is stable at an easy-to-use temperature. I will provide a.
[0014]
The heat storage device of the present invention comprises a heat storage tank containing a latent heat material and a heat medium passage for allowing the heat medium to pass through the heat storage tank. The heat storage device of the present invention is characterized in that a high melting point latent heat material is disposed on the side where the high temperature heat medium enters and exits, and a low melting point latent heat material is disposed on the side where the low temperature heat medium enters and exits. To do.
[0015]
When heat is stored in the heat storage tank of the heat storage device, a high-temperature heat medium is introduced into the heat storage tank. In the present invention, a high-melting-point latent heat material is accommodated on the side where a high-temperature heat medium enters. A latent heat material having a lower melting point than that of the inlet side is accommodated on the outlet side of the heat medium. When heat storage is started, the high-temperature heat medium supplies heat energy to the high melting point latent heat material frozen on the inlet side. The temperature of the latent heat material rises, and when the temperature rises to the melting point, melting starts and absorbs a large amount of heat. Since the heat energy supplied from the heat medium is absorbed by the latent heat material and stored as latent heat during the period from the start of melting until all the latent heat material is melted, the temperature of the latent heat material being melted changes. Keep melting point without waking up. The temperature of the heat medium that passes through the latent heat material on the inlet side and supplies heat energy to the latent heat material is substantially the same as the melting point of the high-melting latent heat material. The heat medium having the same temperature as the melting point of the inlet side latent heat material supplies heat to the low melting point latent heat material accommodated on the outlet side. The low-melting-point latent heat material also melts and absorbs heat to perform latent heat storage. The heat medium exiting the heat storage tank is cooled to substantially the same temperature as the melting point of the low melting point latent heat material accommodated on the outlet side. Since heat is stored by latent heat, a large amount of heat energy can be stored in a small heat storage tank. At the time of heat storage, the heat medium that is absorbed and cooled by the low-melting-point latent heat material is sent out, so that the temperature of the heat medium that is sent out is stabilized at the melting point of the low-melting-point latent heat material.
A low-temperature heat medium enters the heat storage tank during heat dissipation. The direction in which the heat medium passes is opposite to that during heat storage. The heat medium enters the heat storage tank from the outlet side during heat storage, and the heat medium exits from the inlet side during heat storage. When heat release is started, the low-temperature heat medium is first supplied with heat energy from the low melting point latent heat material melted on the inlet side. When a low-temperature heat medium is passed through the low-melting-point latent heat material that has been stored and melted, the low-melting-point latent heat material starts to freeze by supplying heat energy to the heat medium. During the period from the start of freezing to the completion of freezing of all the latent heat materials, the latent heat materials maintain their melting point without causing a temperature change in order to dissipate the latent heat. The temperature of the heat medium supplied with heat energy after passing through the latent heat material on the inlet side has risen to substantially the same temperature as the melting point of the low melting point latent heat material. Next, the heat medium passes through the high melting point latent heat material accommodated on the outlet side. The high melting point latent heat material freezes and dissipates heat, thereby supplying heat to the heat medium. The heating medium that exits the heat storage tank is heated to a temperature substantially equal to the melting point of the high melting point latent heat material accommodated on the outlet side.
The temperature of the hot water heated by the latent heat of the high melting point latent heat material and delivered from the heat storage device during heat radiation is stabilized at the melting point of the high melting point latent heat material.
According to the heat storage device of the present invention, the temperature of the heat medium sent out during heat storage is stabilized at the melting point of the low melting point latent heat material, and the temperature of the heat medium sent out during heat dissipation is stabilized at the melting point of the high melting point latent heat material. It is possible to efficiently cool the fuel cell using the former low temperature and to supply hot water having a comfortable temperature using the latter high temperature.
[0016]
By using the above heat storage device, the outlet temperature of the heat medium that has passed through the heat storage tank during heat storage is lowered to the same temperature as the latent heat material having a low melting point disposed on the outlet side. Since it is sufficiently cooled, the heat medium can be immediately reused for heat recovery. Further, the heat storage tank is supplied with a large amount of heat energy from the heat medium to store the latent heat, and the heat storage efficiency is good. Furthermore, the outlet temperature of the heat medium that has passed through the latent heat material during heat dissipation is raised to the same temperature as the latent heat material having a high melting point disposed on the outlet side, and can be used for a wider range of applications.
[0017]
Here, the kind of the latent heat material accommodated in the heat storage tank is not limited to only two kinds of the inlet side and the outlet side, and three or more kinds of latent heat materials having different melting points may be used. When three or more types of latent heat materials are used, the latent heat material with the highest melting point is accommodated on the entrance / exit side of the high-temperature heat medium, and the latent heat with the low melting point is gradually increased as the temperature approaches the entrance / exit side of the low-temperature heat medium. By storing the material, it is possible to efficiently store and release heat. That is, in the case of heat storage, heat exchange begins between the high-temperature heat medium and the high melting point latent heat material, and as the temperature of the heat medium decreases, heat is gradually stored in the latent heat material having a low melting point. And the temperature difference between the melting points of the latent heat materials is small and efficient heat storage is performed. In the case of heat dissipation, heat exchange starts between the low-temperature heat medium and the low melting point latent heat material, and the heat medium is increased and heat is supplied in order from the latent heat material having the highest melting point, so that the efficiency is similarly high. Heat is dissipated.
[0018]
As shown in claim 2, the heat storage device can also be configured by two or more heat storage tanks and a heat medium passage through which the heat medium passes in order. In this case, a high melting point latent heat material is accommodated in the heat storage tank on the side through which the high temperature heat medium passes, and a low melting point latent heat material is accommodated in the heat storage tank on the side through which the low temperature heat medium passes. .
[0019]
The high-temperature heat medium at the time of heat storage first enters the heat storage tank containing the latent heat material having a high melting point. The latent heat material dissolves when exposed to a heat medium and stores heat. When the heat medium exits the first heat storage tank, the temperature is lowered to the melting point of the latent heat material, but since the temperature is higher than the melting point of the latent heat material of the next heat storage tank, the latent heat stored in the next heat storage tank The material also melts and stores heat. In this way, by repeating heat exchange with the heat storage tank in which a plurality of latent heat materials having different melting points are accommodated, the heat medium that was initially high in temperature is deprived of heat and becomes a low temperature. In the heat storage tank, each stored latent heat material is melted at each melting point, and a large amount of latent heat storage is performed. At the time of heat radiation, a low-temperature heat medium passes through the heat storage tank containing the latent heat material having a low melting point in order and is supplied with heat. Finally, the heat medium that has passed through the heat storage tank containing the latent heat material having a high melting point becomes high temperature.
The heat storage device of the present invention can adjust the outlet temperature required for the heat medium that has passed through the latent heat material by selecting a heat storage tank containing the latent heat material having a suitable melting point temperature and placing it in the heat medium passage. Become.
[0020]
A high melting point latent heat material can be realized by an inorganic hydrate salt mixed with a small amount of a melting point depressant, and a low melting point latent heat material can be realized by an inorganic hydrate salt mixed with a large amount of a melting point depressant. .
The inorganic hydrate salt used in the latent heat material of the present invention has (1) a large amount of heat that can store latent heat, and (2) the melting point is substantially the same as the temperature required for the heat medium sent from the heat storage device during heat dissipation. It is preferable. For example, sodium acetate trihydrate and sodium thiosulfate pentahydrate are known as inorganic hydrate salts having characteristics that can be used in a heat storage tank of a cogeneration system.
Known melting point depressants that can lower the melting point of the entire latent heat material by mixing with an inorganic hydrated salt include salts such as water and sodium chloride, and halogen compounds. Moreover, the inorganic hydrate salt having a lower melting point can be mixed with the main component inorganic hydrate salt to lower the melting point. In this case, an inorganic hydrate salt with a low melting point added to the main component inorganic hydrate salt can also be regarded as a melting point depressant.
[0021]
By changing the mixing ratio of the inorganic hydrate salt and the melting point depressant as shown above, it is possible to obtain a latent heat material having a different melting point, so that a heat storage tank with various characteristics can be easily manufactured. . In this case, an inorganic hydrate salt mixed with a small amount of melting point depressant is placed on the side of the heat storage tank where the high temperature heat medium enters and exits, and a large amount of melting point depressant is mixed on the side where the low temperature heat medium enters and exits. An inorganic hydrated salt is placed. The melting point of the latent heat material is high on the entrance / exit side of the high-temperature heat medium, and is low on the entrance / exit side of the low-temperature heat medium. The temperature of the heat medium sent out during heat storage is stable at the melting point of the low melting point latent heat material, and the temperature of the heat medium sent out during heat dissipation is stable at the melting point of the high melting point latent heat material. It becomes possible with the heat storage device using the inorganic hydrated salt.
[0022]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The main features of the embodiments described below are listed below.
(Embodiment 1) The heat storage device includes a heat storage tank that accommodates two types of latent heat materials having different melting points, a heat medium passage that passes through the heat storage tank, a heat recovery path that recovers heat from a heat source, and a latent heat material of the heat storage tank. A heat supply path for supplying heat to dissipate heat is provided.
(Mode 2) The water supply path, the heat medium path, and the heat recovery path are connected at one branch point. Furthermore, the heat supply path, the heat medium path, and the heat supply path are connected at another branch point.
(Mode 3) The heat storage tank is filled with a latent heat material composed of an inorganic hydrate salt and a melting point depressant. The mixing ratio of the inorganic hydrated salt and the melting point depressant is different between the side where the high temperature heat medium enters and exits and the side where the low temperature heat medium enters and exits, and the melting point of the latent heat material changes in multiple stages. .
(Mode 4) The heat storage device includes a first heat storage tank that stores a latent heat material having a high melting point, a second heat storage tank that stores a latent heat material having a melting point lower than that of the first heat storage tank, and a second heat storage tank. A third heat storage tank that accommodates a latent heat material having a lower melting point than the first heat storage tank and a heat medium passage that connects the three heat storage tanks in series are provided.
(Mode 5) The heat storage device is provided with two heat medium passages, a heat medium passage through which the heat medium passes through the heat storage tank during heat storage and a heat medium passage through which the heat medium passes through the heat storage tank during heat dissipation.
(Mode 6) The first heat storage tank and the second heat storage tank in which the types and amounts of the latent heat materials to be stored are all equal are connected in parallel by the heat medium passage.
[0023]
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a heat storage tank of a cogeneration system will be described in detail with reference to the accompanying drawings.
First Embodiment FIG. 1 schematically shows a configuration of a cogeneration system according to the present embodiment. The cogeneration system of the present embodiment includes a fuel cell 42 that generates electric power and generated heat, a reformer 48 that generates hydrogen gas as fuel for the fuel cell 42, and latent heat materials 4 and 6 accommodated therein. The heat storage tank 2 etc. which were made are provided.
In the upper part of the heat storage tank 2, sodium acetate hydrate having a melting point of 58 ° C. is accommodated as the first latent heat material 4. In the lower part of the heat storage tank 4, sodium phosphate hydrate having a melting point of 42 ° C. is accommodated as the second latent heat material 6. A partition wall is provided between the first latent heat material 4 and the second latent heat material 6 so that the latent heat materials are not mixed with each other. A heat medium passage 8 passes through the heat storage tank 2 from the upper part to the lower part. The first latent heat material 4 and the second latent heat material 6 accommodated in the heat storage tank 2 are arranged so as to be able to exchange heat with the heat medium passing through the heat medium passage 8.
[0024]
In the upper part of the heat storage tank 2, a branch 18 is provided at a location where the heat medium passage 8 connects to the heat recovery passage 10 and the heat supply passage 12. A branch 16 is provided at the bottom of the heat storage tank 2 where the heat medium passage 8, the heat recovery passage 10, and the water supply passage 22 are connected. Water supplied from the water supply passage 22 can pass through the heat medium passage 8, the heat recovery passage 10, and the heat supply passage 12.
[0025]
When storing heat in the heat storage tank 2, new water supply from the water supply path 22 is not performed. The pump 14 operates to circulate water through the heat recovery path 10 and the heat medium path 8. Water flows from the top to the bottom in the heat medium passage 8. The heat recovery path 10 is connected to the heat medium path 8 via the first heat exchanger 32 and the second heat exchanger 34, and the water circulating in the heat recovery path 10 is supplied to the heat exchanger 32, The heat generated is recovered by exchanging heat at 34.
The heat generated by the fuel cell 42 during power generation is recovered by the cooling water in the cooling circuit 44 that circulates through the fuel cell 42. The cooling water circulation path 44 passes through the first heat exchanger 32, and heat exchange is performed between the cooling water and the water circulating in the heat recovery path 10. Here, at the same time as the water in the heat recovery path 10 is warmed, the cooling water in the cooling water circulation path 44 is cooled and returns to the fuel cell 42.
The reformer 48 is kept at a high temperature by the combustion heat of the burner 46 during power generation in order to obtain hydrogen gas as fuel for the fuel battery cell 42 from the raw material hydrocarbon gas. During power generation, high-temperature combustion exhaust gas is generated from the reformer 48. A second heat exchanger 34 for exchanging heat between the combustion exhaust gas of the reformer 48 and the water circulating in the heat recovery path 10 is provided, and the water circulating in the heat recovery path 10 is second heat. By the second heat exchange of the exchanger 34, the hot water becomes even hotter. The hot water enters the heat medium passage 8 via the branch 18.
[0026]
The hot water that has been heat-exchanged by the first heat exchanger 32 and the second heat exchanger 34 enters the heat storage tank 2 from above through the heat medium passage 8. The hot water passing through the heat medium passage 8 first supplies heat to the first latent heat material 4 and then supplies heat to the second latent heat material 6. The supplied heat is stored as latent heat in the first latent heat material 4 and the second latent heat material 6. FIG. 2A shows the relationship between the temperature of the hot water circulating through the heat medium passage 8 and the distance from the branch 18 of the heat medium passage 8.
The hot water that has been recovered from the generated heat enters the heat storage tank 2 from the upper part of the heat storage tank 2, supplies heat by heat exchange with sodium acetate hydrate as the first latent heat material 4, and gradually The temperature goes down. The first latent heat material 4 to which heat is supplied rises in temperature, and when the temperature rises to 58 ° C., which is the melting point, melting starts and absorbs a large amount of heat. Since the heat supplied from the hot water is absorbed by the first latent heat material 4 and stored as latent heat during the period from the start of melting until all the latent heat materials are melted, the temperature of the latent heat material being melted is Maintain a melting point of 58 ° C. without change. Further, during the melting of the latent heat material, the melted portion enters the frozen portion of the latent heat material so that the heat is circulated well, and the temperature of the first latent heat material is substantially uniform. . Therefore, the temperature of the hot water that has supplied heat through the first latent heat material 4 is substantially the same as 58 ° C., which is the melting point of the latent heat material. The hot water having reached 58 ° C. then supplies heat to the sodium phosphate of the second latent heat material 6. By performing heat exchange with warm water, the second latent heat material 6 having a melting point of 42 ° C. is dissolved to perform latent heat storage. The temperature of the hot water that has supplied heat through the second latent heat material 6 drops to approximately the same temperature as 42 ° C., which is the melting point of the latent heat material, and exits the heat storage tank 2.
The water exiting the heat storage tank 2 passes through the branch 16 again and circulates in the heat recovery path 10. The temperature of the water entering the heat recovery path 10 has dropped to 42 ° C. or lower, and a large amount of power generated by the fuel cell 42 and heat of the combustion exhaust gas from the reformer 48 can be recovered, and at the same time, the cooling water circulation path 44 water can be cooled sufficiently.
[0027]
When the heat storage tank 2 in which the first latent heat material 4 and the second latent heat material 6 are melted to perform latent heat storage performs heat radiation, water as a heat medium is supplied from the water supply path 22. When power generation is not performed, the pump 14 is stopped, so that water does not pass through the heat recovery path 10. Water supplied from the water supply path 22 enters the heat medium passage 8 from the branch 16 and passes through the heat storage tank 2.
The water that passes through the heat storage tank 2 at the time of heat dissipation is first supplied with heat from the second latent heat material 6 to be warmed, and then supplied with heat from the first latent heat material 4 to further increase the temperature. FIG. 2B shows the relationship between the temperature of the hot water circulating in the heat medium passage 8 and the distance from the branch 16 of the heat medium passage 8. When heat dissipation is started, the water supplied from the water supply path 22 passes through the second latent heat material 6 and performs heat exchange. When low-temperature water is passed through the second latent heat material 6 that is stored and melted, the second latent heat material 6 supplies heat to the water and starts freezing. Over the period from the start of freezing to the completion of freezing of all the latent heat materials, the second latent heat material 6 maintains the melting point of 42 ° C. while releasing the latent heat. While the freezing proceeds, the frozen portion and the melted portion are well circulated, so that the temperature of the entire second latent heat member 6 is substantially uniform. Therefore, the temperature of the water in the heat medium passage 8 that has passed through the second latent heat material 6 is heated to about 42 ° C., which is substantially the same as the melting point of the second latent heat material 6. Next, the water in the heat medium passage 8 exchanges heat with the first latent heat material 4. The first latent heat material 4 freezes and releases the latent heat, so that the water in the heat medium passage 8 is further heated. The temperature of the water when leaving the heat storage tank 2, that is, the water in the upper part of the heat medium passage 8 is raised to about 58 ° C., which is substantially the same as the melting point of the first latent heat material 4.
The water in the heat medium passage 8 having a high temperature is supplied to the heat supply passage 12 through the branch 18. The heat supply path 12 is supplied to various hot water utilization devices via the mixing unit 24 and the auxiliary heat source 26. When the temperature of the hot water required by the hot water utilization device is lower than 58 ° C., the mixing unit 24 mixes the hot water and tap water and adjusts the temperature to be required by the hot water utilization device. When the temperature of the hot water required by the hot water utilization device is higher than 58 ° C., the auxiliary heat source 26 is ignited, and the hot water is further heated to reach the temperature required by the hot water utilization device. Since the temperature of the hot water required by the hot water utilization device rarely exceeds 58 ° C., the auxiliary heat source 26 is hardly ignited as long as 58 ° C. hot water is supplied to the heat supply path 12. The hot water supplied to the heat supply path 12 is stable at 58 ° C. which is easy to use. The auxiliary heat source 26 is exclusively used after the amount of heat stored in the heat storage tank 2 has been used up.
[0028]
When hot water is supplied during power generation, since the pump 14 is operating, water passes through the heat recovery path 10. The water supplied from the water supply path 22 enters the heat medium path 8 and the heat recovery path 10 from the branch 16. The temperature of the hot water that has passed through the heat recovery path 10 changes in accordance with the amount of power generated in the fuel cell 42. However, since the amount of water supplied to the heat recovery passage 10 is very small compared to the amount of water supplied to the heat medium passage 8, the temperature of the hot water when combined at the branch 18 is approximately 58. It becomes ℃. Furthermore, the mixing unit 24 and the auxiliary heat source 26 accurately adjust the temperature of the hot water supplied to the hot water utilization device.
[0029]
The heat storage device applied to the cogeneration system of the present embodiment includes a heat storage tank containing two types of latent heat materials having different melting points, and can perform a large amount of latent heat storage. Moreover, the outlet temperature of the water cooled by passing through the heat storage tank at the time of heat storage can be lowered to the same temperature as the second latent heat material having a low melting point arranged at the bottom of the heat storage tank. If this water is used again for recovering the generated heat, a large amount of generated heat of the fuel cell 42 can be recovered and at the same time the cooling water of the fuel cell can be efficiently cooled. Furthermore, the outlet temperature of the water heated by passing through the latent heat material at the time of heat release is raised to the same temperature as the high melting point first latent heat material arranged in the upper part of the heat storage tank, and is used for wider applications. It becomes possible.
[0030]
(2nd Example) The heat storage tank 2 of the heat storage apparatus in a present Example is filled with the latent heat material which consists of sodium acetate and water. By adjusting the mixing ratio of sodium acetate and water, the melting point of the latent heat material is adjusted in five stages.
The first latent heat material having the highest melting point is accommodated in the upper part of the heat storage tank 2 through which the high-temperature heat medium enters and exits. A 1st latent heat material consists only of sodium acetate trihydrate, and does not contain water. The second latent heat material is disposed under the first latent heat material, the third latent heat material is disposed under the second latent heat material, the fourth latent heat material is disposed under the third latent heat material, and the fourth latent heat material A fifth latent heat material is disposed at the bottom of the heat storage tank 2 where the heat medium having a low temperature enters and exits. The larger the number of the latent heat material, the more water is mixed in, and the melting point is lowered. Each of these latent heat materials is filled in a resin container so as not to mix with each other. The power generation device and the path passing through the power generation device and the heat storage device have the same configuration as in the first embodiment.
FIG. 3 shows the relationship between the temperature of the hot water passing from the top to the bottom in the heat medium passage 8 with respect to the distance from the branch 18 provided in the upper part of the heat storage tank 2 by a solid line, and the distance from the branch 18 and the heat storage tank 2. The relationship of the melting point of the latent heat material accommodated in is shown by a dotted line.
The hot water that has become high temperature by collecting the generated heat enters the heat storage tank 2 from above and exchanges heat with the first latent heat material. The first latent heat material is melted by heat exchange to store latent heat, and the temperature of the hot water is lowered to substantially the same as the melting point of the first latent heat material. As the temperature approaches the bottom of the heat storage tank 2, the melting point of the latent heat material is lowered in order, and by heating all the latent heat materials and cooling itself, the temperature of the hot water passing through the heat medium passage 8 gradually decreases. . The temperature of the hot water coming out from the bottom of the heat storage tank 2 is cooled to substantially the same temperature as the melting point of the fifth latent heat material accommodated in the bottom.
[0031]
In the heat storage tank of the heat storage device in the present embodiment, a latent heat material whose melting point is changed by changing the mixing ratio of the same kind of inorganic hydrated salt and water is used, and it is very easy to manufacture the heat storage tank. It can be carried out. In addition, the melting point of the latent heat material is gradually changed by changing the mixing ratio of the inorganic hydrate salt and water in multiple stages at the top and bottom of the heat storage tank. As a result, the temperature difference between the water to be heat exchanged and the latent heat material can be reduced, so that heat can be efficiently supplied with less heat loss during heat exchange.
[0032]
In the latent heat material of this example, the melting point is adjusted by adding water to sodium acetate trihydrate, but the latent heat material having a melting point adjusted by combining another kind of inorganic hydrated salt and a melting point depressant is used. It may be used. For example, an inorganic hydrate salt of sodium thiosulfate pentahydrate or a melting point depressant of sodium chloride can be used. Moreover, a supercooling inhibitor or a layer separation inhibitor can be added.
[0033]
(3rd Example) The structure of the thermal storage apparatus of a present Example is shown in FIG. The same components as those in the first embodiment are designated by the same reference numerals, and redundant description is omitted.
In a present Example, From the 1st heat storage tank 52 which accommodates a latent heat material with a high melting | fusing point, The 2nd heat storage tank 54 which accommodates the latent heat material whose melting | fusing point is lower than a 1st heat storage tank, From a 2nd heat storage tank In addition, a third heat storage tank 56 for storing a latent heat material having a lower melting point is provided. The three heat storage tanks 52, 54, and 56 are connected in series by two paths: a heat medium circulation path 58 through which the heat medium circulates during heat storage and a hot water supply path 60 through which water passes through the heat storage tank during heat dissipation. .
[0034]
The heat medium circulation path 58 is provided between the first heat exchanger 32, the second heat exchanger 34, and the heat storage tanks 52, 54, and 56, and is filled with the heat medium. At the time of heat storage, the pump 14 operates and the heat medium circulates in the heat medium circulation path 58. The heat medium circulating in the heat medium circulation path 58 is heat-exchanged by the cooling water of the fuel cell 42 and the heat exchanger 32 and becomes a high temperature, and heat is exchanged by the high-temperature combustion exhaust gas of the reformer 48 and the heat exchanger 34. The temperature rises even further. The heat medium having reached a high temperature enters the first heat storage tank 52 and performs heat exchange. The frozen latent heat material of the first heat storage tank 52 is melted and latent heat storage is performed, and the heat medium becomes substantially the same temperature as the melting point of the latent heat material of the first heat storage tank 52 and the first heat storage tank 52 Get out. Next, the heat medium enters the second heat storage tank 54. Since the melting point of the latent heat material of the second heat storage tank 54 is lower than the latent heat material of the first heat storage tank 52, heat exchange is performed with a heat medium having substantially the same temperature as the melting point of the latent heat material of the first heat storage tank 52. Perform and melt to perform latent heat storage. The heat medium becomes substantially the same temperature as the melting point of the latent heat material in the second heat storage tank 54, leaves the second heat storage tank, and enters the third heat storage tank 56. Since the melting point of the latent heat material of the third heat storage tank 56 is lower than that of the latent heat material of the second heat storage tank 54, the heat exchange with the heat medium is performed to melt and latent heat storage is performed. When the heat medium leaves the third heat storage tank 56, it is cooled to substantially the same temperature as the melting point of the latent heat material in the third heat storage tank 56, and again circulates through the heat exchangers 32 and 34 to recover heat. To do.
[0035]
When the heat storage tanks 52, 54, 56 radiate heat, heat is supplied to the water passing through the hot water supply path 60. When heat dissipation is started, the water supplied from the water supply path 22 to the hot water supply path 60 enters the third heat storage tank 56 and performs heat exchange. When low-temperature water is allowed to pass through the third heat storage tank 56 that stores heat and melts, the latent heat material of the third heat storage tank 56 supplies heat to the water and starts freezing. The temperature of the water in the hot water supply path 60 that has passed through the third heat storage tank 56 is warmed to substantially the same temperature as the melting point of the latent heat material in the third heat storage tank 56. The water in the hot water supply path 60 that has exited the third heat storage tank 56 performs heat exchange with the latent heat material of the second heat storage tank 54 and the latent heat material of the first heat storage tank 52 in order, and thus the first heat storage tank 52. The temperature is raised to substantially the same temperature as the melting point of the latent heat material to become hot water, and enters the mixing unit 24. The hot water that has entered the mixing unit 24 is supplied to various hot water utilization devices after the temperature is adjusted.
[0036]
The heat storage device of the present embodiment includes a plurality of heat storage tanks having different melting points of the latent heat material to be accommodated. Since the heat storage tank is unitized according to the difference in melting point, by connecting a plurality of heat storage tanks by changing the combination of the heat storage tanks, it is possible to easily obtain the heat storage device having the required amount of heat storage and the supply temperature of hot water Can do.
Moreover, heat storage and heat dissipation can be performed simultaneously by dividing the passage of the heat medium passing through the heat storage tank into a circulation path for performing heat storage and a path for performing heat dissipation.
[0037]
(4th Example) The structure of the thermal storage apparatus of a present Example is shown in FIG. The heat storage device of the present embodiment includes a heat storage tank 2a and a heat storage tank 2b having the same shape. The heat medium circulation path 8 branches at the upper part of the heat storage tanks 2a and 2b, connects the heat storage tanks 2a and 2b in parallel, and merges again at the lower part of the heat storage tanks 2a and 2b. The same amount of the first latent heat material having a high melting point is accommodated in the upper part of the heat storage tanks 2a and 2b. The same amount of the second latent heat material having a low melting point is accommodated in the bottoms of the heat storage tanks 2a and 2b. When heat storage is performed, a high-temperature heat medium passes through the heat storage tanks 2a and 2b. The heat storage tanks 2a and 2b store the same amount of heat, and the outlet temperature of the heat medium that has passed through the heat storage tanks 2a and 2b is almost equal to the temperature of the second latent heat material. When heat dissipation is performed and the low-temperature heat medium passes through the heat storage tanks 2a and 2b, the outlet temperatures of the heat medium that have passed through the heat storage tanks 2a and 2b are almost equal to the temperature of the first latent heat material.
The heat storage device of the present embodiment performs heat storage by connecting the heat storage tanks 2a and 2b having the same configuration in parallel. Since the number of heat storage tanks to be used can be increased / decreased by increasing / decreasing the connection location of the heat-medium channel | path 8, the amount of heat storage can be adjusted easily.
[0038]
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, in the examples, an inorganic hydrate salt or a mixture of an inorganic hydrate salt and a melting point depressant is used as the heat storage material, but organic compounds such as paraffin and sugar alcohols can also be used. Moreover, although water was used as a heat medium, it is also possible to use liquids, such as an antifreeze.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing.
[0039]
According to the heat storage device of the present invention, a plurality of latent heat materials having different melting points are used as the latent heat material accommodated in the heat storage tank. When a plurality of latent heat materials are stored in one heat storage tank, a heat storage tank in which a latent heat material having a high melting point is stored on the inlet / outlet side of the heat storage tank through which a high-temperature heat medium passes and a low-temperature heat medium passes through A latent heat material having a low melting point is accommodated on the entrance / exit side. When accommodating and connecting a latent heat material having a single melting point to two or more heat storage tanks, a heat storage tank containing a latent heat material having a high melting point is disposed on the side through which a high-temperature heat medium passes, and a low temperature A heat storage tank containing a latent heat material having a low melting point is disposed on the side through which the heat medium passes. Thereby, at the time of heat storage, first, the latent heat material having a high melting point is exposed to a high-temperature heat medium and melted to store the latent heat. The heat medium sequentially supplies heat to the latent heat material having a low melting point, and the temperature is lowered to the melting point of the latent heat material having the lowest temperature. Since the temperature of the heat medium is low at the outlet of the heat storage tank, a large amount of heat can be recovered again when the heat medium is used for heat recovery. At the same time, each heat storage tank containing latent heat materials having different melting points has a high heat storage efficiency because a large amount of heat is stored in the latent heat.
At the time of heat dissipation, the latent heat material having a low melting point is first exposed to a low-temperature heat medium and freezes to dissipate heat. When heat is supplied from a heat medium having a higher melting point accommodated downstream and exits the heat storage tank, the temperature is raised to the same temperature as the melting point of the latent heat material accommodated at the outlet, Can be used for heat supply.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of a heat storage device according to a first embodiment.
FIG. 2 is a diagram showing a relationship of a temperature change of a heat medium with respect to a distance that has passed through the latent heat material of the first embodiment.
FIG. 3 is a diagram showing a relationship of a temperature change of a heat medium with respect to a distance that has passed through a latent heat material according to a second embodiment.
FIG. 4 is a diagram schematically showing a configuration of a heat storage device according to a third embodiment.
FIG. 5 is a diagram schematically showing a configuration of a heat storage device according to a fourth embodiment.
FIG. 6 is a diagram schematically showing a configuration of a conventional heat storage device.
[Explanation of symbols]
2, 2a, 2b, 52, 54, 56, 120: heat storage tank
4: First latent heat material
6: Second latent heat material
8: Heat medium passage
10, 112: Heat recovery path
12: Heat supply path
14, 126: Pump
16, 18, 20, 114, 128: Branch
22, 130: Water supply channel
24: Mixing unit
26: Auxiliary heat source
32, 34, 106: heat exchanger
42, 102: Fuel cell
44, 104: Cooling circuit
58: Heat medium circuit
60: Hot water supply channel

Claims (3)

潜熱材を収容している蓄熱槽と、その蓄熱槽に熱媒体を通過させる熱媒体通路を備えた蓄熱装置であって、高温の熱媒体が出入りする側に高融点の潜熱材が配置されており、低温の熱媒体が出入りする側に低融点の潜熱材が配置されていることを特徴とする蓄熱装置。A heat storage device having a heat storage tank containing a latent heat material and a heat medium passage for allowing the heat medium to pass through the heat storage tank, wherein a high-melting-point latent heat material is arranged on the side where the high-temperature heat medium enters and exits And a low-melting-point latent heat material is disposed on the side where the low-temperature heat medium enters and exits. 2以上の蓄熱槽と、それらの蓄熱槽に順々に熱媒体を通過させる熱媒体通路を備えた蓄熱装置であって、高温の熱媒体が通過する側の蓄熱槽に高融点の潜熱材が収容されており、低温の熱媒体が通過する側の蓄熱槽に低融点の潜熱材が収容されていることを特徴とする蓄熱装置。A heat storage device including two or more heat storage tanks and a heat medium passage for sequentially passing the heat medium through the heat storage tanks, and a high-melting-point latent heat material is provided in the heat storage tank on the side through which the high-temperature heat medium passes. A heat storage device characterized in that a low-melting-point latent heat material is housed in a heat storage tank on the side through which a low-temperature heat medium passes. 少量の融点降下剤が混合されている無機水和塩によって高融点の潜熱材が実現されており、多量の融点降下剤が混合されている無機水和塩によって低融点の潜熱材が実現されていることを特徴とする請求項1又は2に記載の蓄熱装置。A high melting point latent heat material is realized by an inorganic hydrate salt mixed with a small amount of a melting point depressant, and a low melting point latent heat material is realized by an inorganic hydrate salt mixed with a large amount of a melting point depressant. The heat storage device according to claim 1, wherein the heat storage device is a heat storage device.
JP2003178993A 2003-06-24 2003-06-24 Heat accumulating device Pending JP2005016766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178993A JP2005016766A (en) 2003-06-24 2003-06-24 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178993A JP2005016766A (en) 2003-06-24 2003-06-24 Heat accumulating device

Publications (1)

Publication Number Publication Date
JP2005016766A true JP2005016766A (en) 2005-01-20

Family

ID=34180421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178993A Pending JP2005016766A (en) 2003-06-24 2003-06-24 Heat accumulating device

Country Status (1)

Country Link
JP (1) JP2005016766A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2007292435A (en) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd Atmosphere open type heat storage tank
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device
JP2014511989A (en) * 2011-04-18 2014-05-19 エスゲーエル カーボン ソシエタス ヨーロピア Latent heat storage device and operation method of latent heat storage device
JP2014149147A (en) * 2013-01-09 2014-08-21 Osaka Gas Co Ltd Heat supply system
JP2015175538A (en) * 2014-03-14 2015-10-05 株式会社デンソー Thermal storage device
JP2016142514A (en) * 2015-02-05 2016-08-08 八洋エンジニアリング株式会社 Thermal storage device
CN107367063A (en) * 2017-07-18 2017-11-21 天津城建大学 One kind of multiple temperature plug and play phase-transition heat-storage energy-saving water boilers
JP6765573B1 (en) * 2019-10-04 2020-10-07 三菱電機株式会社 Hot water heater
WO2020202487A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat storage device
JP2021063629A (en) * 2019-10-16 2021-04-22 株式会社Ihi Energy storage device
CN113669775A (en) * 2021-07-07 2021-11-19 国网江苏省电力有限公司电力科学研究院 Low-entropy-increase double-gradient efficient comprehensive heating system
JP7034402B1 (en) * 2021-08-11 2022-03-11 三菱電機株式会社 Water heater
CN115164265A (en) * 2022-07-19 2022-10-11 国网陕西省电力有限公司电力科学研究院 Heat storage device and heating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151360A (en) * 1991-12-26 1995-06-13 Matsushita Electric Works Ltd Latent heat storage tank
JPH11325769A (en) * 1998-05-13 1999-11-26 Mitsubishi Chemical Corp Heat storage type heat exchanger
JP2001207163A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Heat storage tank and heat storage apparatus using the same
JP2002338954A (en) * 2001-05-18 2002-11-27 Nkk Corp Heat storage material and method for producing the same
JP2003090548A (en) * 2001-09-14 2003-03-28 Daikin Ind Ltd Heat accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151360A (en) * 1991-12-26 1995-06-13 Matsushita Electric Works Ltd Latent heat storage tank
JPH11325769A (en) * 1998-05-13 1999-11-26 Mitsubishi Chemical Corp Heat storage type heat exchanger
JP2001207163A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Heat storage tank and heat storage apparatus using the same
JP2002338954A (en) * 2001-05-18 2002-11-27 Nkk Corp Heat storage material and method for producing the same
JP2003090548A (en) * 2001-09-14 2003-03-28 Daikin Ind Ltd Heat accumulator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2007292435A (en) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd Atmosphere open type heat storage tank
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device
JP2014511989A (en) * 2011-04-18 2014-05-19 エスゲーエル カーボン ソシエタス ヨーロピア Latent heat storage device and operation method of latent heat storage device
JP2014149147A (en) * 2013-01-09 2014-08-21 Osaka Gas Co Ltd Heat supply system
JP2015175538A (en) * 2014-03-14 2015-10-05 株式会社デンソー Thermal storage device
JP2016142514A (en) * 2015-02-05 2016-08-08 八洋エンジニアリング株式会社 Thermal storage device
CN107367063A (en) * 2017-07-18 2017-11-21 天津城建大学 One kind of multiple temperature plug and play phase-transition heat-storage energy-saving water boilers
JPWO2020202487A1 (en) * 2019-04-03 2021-04-30 三菱電機株式会社 Heat storage device
WO2020202487A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat storage device
WO2021064994A1 (en) * 2019-10-04 2021-04-08 三菱電機株式会社 Hot-water supply and heating apparatus
JP6765573B1 (en) * 2019-10-04 2020-10-07 三菱電機株式会社 Hot water heater
JP2021063629A (en) * 2019-10-16 2021-04-22 株式会社Ihi Energy storage device
JP7388118B2 (en) 2019-10-16 2023-11-29 株式会社Ihi energy storage device
CN113669775A (en) * 2021-07-07 2021-11-19 国网江苏省电力有限公司电力科学研究院 Low-entropy-increase double-gradient efficient comprehensive heating system
JP7034402B1 (en) * 2021-08-11 2022-03-11 三菱電機株式会社 Water heater
CN115164265A (en) * 2022-07-19 2022-10-11 国网陕西省电力有限公司电力科学研究院 Heat storage device and heating system
CN115164265B (en) * 2022-07-19 2024-04-26 国网陕西省电力有限公司电力科学研究院 Heat storage device and heating system

Similar Documents

Publication Publication Date Title
JP2005016766A (en) Heat accumulating device
KR100740542B1 (en) System for keeping cooling energy of fuel cell
JP4981589B2 (en) Solar power generation / heat collection combined use device
JP4776391B2 (en) Waste heat utilization system
JPH04349357A (en) Simultaneously heat supplying fuel cell
JP2015002093A (en) Fuel cell system
JP2010212099A (en) Battery system
CN109585729A (en) A kind of controlling temp type power battery pack
JPH1197044A (en) Fuel cell and hot water supply cogeneration system
JP2006234310A (en) Heat storage device
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
KR101335277B1 (en) Heat storaging tank used in solar heat power system, solar heat dynamo used therein and solar heat power system including the same
JP2012057923A (en) Hot water supply system
EP4395098A1 (en) Energy storage and charging station
JP2004127841A (en) Fuel battery cogeneration system
JP2007064548A (en) Heat-storage and hot-water-storage type water heater
JP6186530B1 (en) Fuel cell system, control device, and program
CN113381096B (en) Real-time optimization battery thermal management system based on cooling path
JP4388253B2 (en) Latent heat storage device
JP2023538763A (en) Fuel cell system and method
JP3990600B2 (en) Power generation heat utilization system
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
JP2007051829A (en) Heat storage type hot water supply apparatus
JP6229484B2 (en) Cogeneration system
CN113097540A (en) Fuel cell with side radiator thermal management system and cold start

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013