JP3767187B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP3767187B2
JP3767187B2 JP23531498A JP23531498A JP3767187B2 JP 3767187 B2 JP3767187 B2 JP 3767187B2 JP 23531498 A JP23531498 A JP 23531498A JP 23531498 A JP23531498 A JP 23531498A JP 3767187 B2 JP3767187 B2 JP 3767187B2
Authority
JP
Japan
Prior art keywords
conductive material
conductive
resistance value
solvent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23531498A
Other languages
Japanese (ja)
Other versions
JP2000068106A5 (en
JP2000068106A (en
Inventor
稔 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23531498A priority Critical patent/JP3767187B2/en
Publication of JP2000068106A publication Critical patent/JP2000068106A/en
Publication of JP2000068106A5 publication Critical patent/JP2000068106A5/ja
Application granted granted Critical
Publication of JP3767187B2 publication Critical patent/JP3767187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器に使用されるポテンショメータ式の可変抵抗器、センサ等の接触子が摺動する抵抗体の抵抗被膜または印刷配線回路基板の配線回路を形成するために用いる分散樹脂系の導電ペーストに関するものである。
【0002】
【従来の技術】
従来の導電ペーストは、導電性材料による分散樹脂系ペーストが多く使用されており、カーボンブラック、天然もしくは人造のグラファイト、またはグラファイトとカーボンブラックとの混合パウダ(以下、これらを総称して「導電性材料」と記す。)を、適当な溶剤で溶解したフェノール樹脂、エポキシ樹脂、ポリエステル樹脂、またはポリイミド樹脂等の合成樹脂バインダに混練分散させ、更に印刷適正な粘度にするために溶剤で希釈して作製していた。
【0003】
そして、スクリーン印刷等の膜厚形成法により、主として紙フェノール積層板、ガラスエポキシ積層板、セラミック基板、樹脂フィルムまたは樹脂成形体等の基板上に上記導電ペーストを印刷した後、加熱・硬化させてポテンショメータ式の可変抵抗器、またはセンサ等の抵抗被膜を形成していた。この際、導電ペーストの抵抗値の調整は、導電性材料の充填比率を任意に変えて行っていた。
【0004】
【発明が解決しようとする課題】
この導電ペーストの抵抗値を調整するために、導電性材料の充填比率を減少させすぎると、塗膜の表面張力が低下するため、導電ペーストをスクリーン印刷などで印刷した後に、塗膜表面上に発泡現象による突起およびピンホール等が発生し表面性が悪化する。そのため、加熱・硬化させてポテンショメータ式の可変抵抗器、またはセンサ等の接触子等が摺動する際に接触不良が発生しやすくなるという問題点を有していた。
【0005】
また、反対に導電性材料の充填比率を増加させすぎるとペースト化できなくなり、導電性材料の充填比率の増減による抵抗値調整には限界があるという問題点を有していた。
【0006】
本発明は、上記従来の課題を解決するもので、導電ペーストに用いる導電性材料および合成樹脂バインダとを同配合充填比率とした分散樹脂系ペーストの抵抗値を容易に調整することができるとともに、印刷後の塗膜表面が良好な導電ペーストを提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明は、合成樹脂バインダおよび導電性材料の充填率を変更することなく、加える希釈溶剤をブチルセロソルブアセテートまたはエチルカルビトールアセテート、または、ベンジルアルコールまたはエチルカルビトールまたはシクロヘキサノンまたはシクロヘキサノールとしたものである。
【0008】
この発明により、有機溶剤の物性を変えた希釈溶剤を用いることにより導電性材料の充填比率を変えることなく印刷、焼付後の被膜表面状態が良好であるとともに容易に所望の抵抗値に調整できるものである。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、合成樹脂バインダおよび導電性材料からなる分散樹脂系ペーストに希釈溶剤を混合含有してなる導電ペーストにおいて、上記合成樹脂バインダがフェノール樹脂で充填比率35重量%、上記導電性材料がカーボンブラックで充填比率65重量%、上記希釈溶剤がブチルセロソルブアセテートまたはエチルカルビトールアセテートであることを特徴とする導電ペーストであり、導電ペーストに希釈溶剤としてブチルセロソルブアセテートまたはエチルカルビトールアセテートを使用することにより、導電性材料の充填比率を変えることなく塗布後、加熱・硬化した際の導電性被膜の抵抗値を容易に低い抵抗値に調整することができると共に、印刷、焼付後の被膜表面状態が良好であるという作用を有するものである。
【0010】
また、本発明の請求項2に記載の発明は、請求項1に記載の発明において、フェノール樹脂が充填比率80重量%、カーボンブラックが充填比率20重量%、希釈溶剤がベンジルアルコールまたはエチルカルビトールまたはシクロヘキサノンまたはシクロヘキサノールであるものであり、希釈溶剤をベンジルアルコールまたはエチルカルビトールまたはシクロヘキサノンまたはシクロヘキサノールに変えることにより、導電性材料の充填比率を変えることなく塗布後、加熱・硬化した際の導電性被膜の抵抗値を容易に高い抵抗値に調整できると共に、印刷、焼付後の被膜表面状態が良好なものにできるという作用を有するものである。
【0011】
以下、本発明の一実施の形態における導電ペーストについて説明する。
本実施の形態における分散樹脂系の導電ペーストは、合成樹脂バインダとしてフェノール樹脂等からなる熱硬化性樹脂に、アセチレンブラックまたはファーネスブラック、グラファイト等の単独または混合のパウダ等からなる導電性材料を混合し、ロールミルにて分散させて作製した後、印刷適正粘度に溶剤を用いて調整した分散樹脂系ペーストを作製する。その後、塗布後に加熱・硬化させた導電性被膜の抵抗値を調整可能な有機系の希釈溶剤の溶解性および会合度の物性が異なるものを混合含有して作製するものである。
【0012】
この方法で作製された導電ペーストを、主として紙フェノール積層板、ガラスエポキシ積層板、セラミック基板、樹脂フィルムまたは樹脂成形体等の基板上に、加熱・硬化させてポテンショメータ式の可変抵抗器、センサ等の抵抗被膜を形成すると、基板上の抵抗被膜中に分散している導電性材料のカーボン粒子等の導電粒子の粒子間を流れる導電パスを容易に変化させることが可能となる。
【0013】
以下、本発明の一実施の形態における導電ペーストのメカニズムについて、図面を参照しながら説明する。
【0014】
図1、図2は本発明の一実施の形態における導電ペーストの導電メカニズムを説明する図である。
【0015】
図1において、1は合成樹脂バインダである。この合成樹脂バインダは、導電性材料2を含有している。3は導電性材料2の粒子間の主導電パスである。この主導電パス3による抵抗被膜の抵抗値は、図2に示すように、「導電性材料2(本図では、図示せず。)の抵抗値4」と「導電性材料2(本図では、図示せず。)の粒子間の抵抗値5」との総和で決まる。しかしながら、導電性材料2は良導電体であるので、「導電性材料2の抵抗値4」は「導電性材料2の粒子間の抵抗値5」より非常に小さいため、抵抗被膜の抵抗値は「導電性材料2の粒子間の抵抗値5」で決まることになり、この導電性材料2の粒子間の抵抗値5を変えることにより、抵抗値を調整することができるものである。
【0016】
図3は本発明の一実施の形態における導電ペーストの要部である導電性材料粒子間の抵抗について説明する図である。この導電性材料2の粒子間の抵抗は、合成樹脂バインダ1による導電性材料2の粒子を包み込む状態の変化に密接に関係するもので、導電性材料2の粒子間の隙間に作用するものである。導電性材料2の粒子間の抵抗を大きくするには、図3(a)に示すように、「導電性材料の粒子間の隙間6」を広くすることが必要であり、反対に抵抗を小さくするためには、図3(b)に示すように、「導電性材料の粒子間の隙間7」を狭くする必要がある。そこで、希釈溶剤の合成樹脂バインダ1に対する溶解性を変えることは、溶剤中に樹脂の高分子鎖を伸ばす状態に作用するため、合成樹脂バインダ1に対する溶解性が高いと溶剤中に樹脂の高分子鎖を伸ばし導電性材料2の粒子を包み込み易い状態になり、加熱時にこの状態を維持して溶剤が揮発し、樹脂が硬化すると導電性材料2の粒子間の抵抗は樹脂により阻害され易くなり、その抵抗値は必然的に高くなる。
【0017】
また、一般的に加熱時に印刷塗膜はかなりの溶剤が蒸発するまで塗膜内で対流を起こし、この時、微粒子である導電性材料2の粒子も動くため2次凝集を起こし易い。2次凝集が起こると導電性材料2の粒子間の隙間が狭くなるためその抵抗値は低下する。つまり溶剤の分子量が近似であっても溶剤同士の会合状態如何によって物性的には溶剤単体の粘度が大きく異なる。会合度の高い溶剤では加熱時に上述した塗膜内対流が阻害される。その結果、導電性材料2の導電粒子の2次凝集が起こりにくく導電性材料2の分散状態や樹脂の溶解状態が維持された状態で溶剤が蒸発し樹脂が硬化してくるため、導電性材料2粒子間の抵抗は高くなる。
【0018】
したがって、合成樹脂バインダ1への溶解性が高く、且つ会合度の高い有機溶剤を希釈溶剤として適用すると導電性材料2の充填比率を変えることなく高い抵抗値を得ることが可能となるものである。
【0019】
また反対に溶解性が低く、且つ会合度の低い有機溶剤を希釈溶剤として適用すると導電性材料2の充填比率を変えることなく最も低い抵抗値を得ることが可能となるものである。希釈溶剤に対する樹脂バインダの溶解性はSP(Solubility Parameter)値により推定できSP値が近いと溶解性がよく、会合度の程度は分子量に対する希釈溶剤の有機溶剤粘度で推定できる。このSP値とは、溶解度パラメータを意味するものであり、各物質の分子の凝集エネルギー密度を示しており、特定温度における蒸発熱から蒸発に伴う膨張による仕事量を差し引いたものである。また会合度とは、同一分子間に水素結合、電荷移動結合、疎水結合などのような比較的弱い結合力が働き、2分子あるいはそれ以上の分子が結合して、比較的規則性の良い集合体を形成する度合いを意味することである。
【0020】
(実施例)
本発明の実施例として、まず合成樹脂バインダとしてフェノール樹脂等の熱硬化性樹脂を用い、導電性材料としてアセチレンブラック、ファーネスブラックまたはグラファイト等を用い、導電性材料の分散樹脂系ペーストを作製する。その後、有機系の希釈溶剤を混合含有し、さらに印刷適正粘度となるように粘度を調整する。ここで用いる希釈溶剤であるシクロヘキサノール、ブチルカルビトールアセテート等の有機溶剤を変えることでその溶解性および会合度の物性を異ならせるとともに、導電性樹脂材料の含有量を変化させて(表1)に示す実施例1〜6に示す導電ペーストを作製する。
【0021】
(比較例)
本発明の比較例として、実施例と同一の分散樹脂系ペーストに、希釈溶剤としてイソホロンを用いて(表1)に示す比較例1〜6に示す導電性ペーストを作製する。この際、他の条件等は、実施例と同条件として作製するものである。
【0022】
(比較方法)
実施例または比較例で得られた導電ペーストを、上面の両側部に予め樹脂系銀ペーストを印刷・焼成した電極を有する紙フェノール基板に、この電極を跨ぐように(表1)に示す実施例1〜6および比較例1〜6の導電ペーストをスクリーン印刷し、これを遠赤外併用熱風循環炉にて約200℃で約10分間加熱・硬化させて抵抗被膜を形成して抵抗値測定用の抵抗体とする。そして、この抵抗体の抵抗値の出方を評価し、(表1)に示すものである。この際、シート抵抗値は3mm*30mmパターンに出力される抵抗値により算出するものである。
【0023】
(良否判定)
紙フェノール基板上に形成した抵抗被膜表面状態について、スクリーン印刷、焼成後の突起・ピンホールの有無により、表面状態の良否判定をした。
【0024】
【表1】

Figure 0003767187
【0025】
(表1)から明らかなように、比較例1の導電性材料の充填比率が65重量%を越えると導電ペースト中の粉体量が多すぎてペースト化が困難であった。そこで、ペースト化できる導電性材料の充填比率を65重量%とした際に、希釈溶剤がイソホロンの場合においてシート抵抗値が0.052kΩ/□(52Ω/□)と最も低くなり、徐々に導電性材料の充填比率を減少させていくとシート抵抗値が上がっていく(比較例2〜5)。しかし、比較例6の導電性材料の充填比率を20重量%未満では、導電性材料の粉体量減少により、スクリーン印刷後の塗膜の表面張力が低下するため、発泡現象により塗膜表面上に突起およびピンホールが発生してきた。
【0026】
そして、実施例1〜2は比較例2と同様に、導電性材料の充填比率を65重量%とし、希釈溶剤を変えシート抵抗値を測定すると、希釈溶剤をイソホロンに比べ溶解性が低く、会合度が低いブチルカルビトールアセテートおよびエチルカルビトールアセテートとすることにより比較例2よりシート抵抗値を低く調整することができる。
【0027】
さらに、比較例5と同様に、導電性材料の充填比率を20重量%とし、希釈溶剤を変えシート抵抗値を確認すると、実施例3において、比較例5の希釈溶剤のイソホロンに比べ溶解性のみ高いベンジルアルコールを適用した場合、比較例5よりシート抵抗値を高くすることができる。また、実施例4〜5において溶解性および会合度の高い有機系の希釈溶剤として適用することにより更に高いシート抵抗を得ることができる。特に、実施例6の溶解性および会合度が実施例の中で最も高いシクロヘキサノールを希釈溶剤とすることによりシート抵抗値が最も高い値に調整できる。
【0028】
なお、本実施の形態では、フェノール樹脂に対する溶解度において希釈溶剤を選択したが、他の樹脂バインダにおいても溶解性および会合度により抵抗値を調整できるという同様の効果が得られるものである。
【0029】
【発明の効果】
以上のように本発明は、合成樹脂バインダおよび導電性材料の充填比率を変更することなく、加える希釈溶剤をブチルセロソルブアセテートまたはエチルカルビトールアセテート、または、ベンジルアルコールまたはエチルカルビトールまたはシクロヘキサノンまたはシクロヘキサノールに変えることにより、容易に抵抗値を低くしたり、高くしたりすることができると共に、印刷、焼付後の被膜表面状態が良好である導電ペーストを提供できるという効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態における導電ペーストの導電メカニズムを説明する図
【図2】同導電メカニズムを説明する図
【図3】同要部である導電性材料粒子間の抵抗について説明する図
【符号の説明】
1 合成樹脂バインダ
2 導電性材料
3 主導電パス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a potentiometer type variable resistor used in various electronic devices, a resistive resin film on which a contactor such as a sensor slides, or a dispersed resin system used for forming a printed circuit board wiring circuit. The present invention relates to a conductive paste.
[0002]
[Prior art]
Conventional conductive pastes are often dispersed resin-based pastes made of conductive materials. Carbon black, natural or artificial graphite, or mixed powder of graphite and carbon black (hereinafter collectively referred to as “conductive”). Material ”) is kneaded and dispersed in a synthetic resin binder such as phenol resin, epoxy resin, polyester resin, or polyimide resin dissolved in a suitable solvent, and diluted with a solvent to obtain a suitable viscosity for printing. I was making it.
[0003]
And after printing the conductive paste on a substrate such as a paper phenol laminate, a glass epoxy laminate, a ceramic substrate, a resin film or a resin molding by a film thickness forming method such as screen printing, it is heated and cured. A resistive film such as a potentiometer type variable resistor or a sensor was formed. At this time, the resistance value of the conductive paste was adjusted by arbitrarily changing the filling ratio of the conductive material.
[0004]
[Problems to be solved by the invention]
If the filling ratio of the conductive material is decreased too much in order to adjust the resistance value of the conductive paste, the surface tension of the coating film is lowered. Protrusions and pinholes due to the foaming phenomenon occur and the surface properties deteriorate. For this reason, there is a problem that contact failure is likely to occur when a potentiometer-type variable resistor or a contact such as a sensor slides after being heated and cured.
[0005]
On the other hand, if the filling ratio of the conductive material is increased too much, it cannot be made into a paste, and there is a problem that there is a limit in adjusting the resistance value by increasing or decreasing the filling ratio of the conductive material.
[0006]
The present invention solves the above-described conventional problems, and can easily adjust the resistance value of a dispersed resin paste having the same filling ratio of the conductive material and the synthetic resin binder used for the conductive paste, An object of the present invention is to provide a conductive paste having a good coating surface after printing.
[0007]
[Means for Solving the Problems]
To accomplish the above object, the synthesis without changing the filling ratio of the resin binder and conductive material, butyl cellosolve acetate or ethyl carbitol acetate dilution solvent is added, or, benzyl alcohol or ethyl carbitol or cyclohexanone, Alternatively, cyclohexanol is used.
[0008]
According to the present invention, by using a diluting solvent in which the physical properties of the organic solvent are changed, the coating surface state after printing and baking is good and can be easily adjusted to a desired resistance value without changing the filling ratio of the conductive material. It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, in the conductive paste obtained by mixing a dispersion resin paste composed of a synthetic resin binder and a conductive material with a diluent solvent, the synthetic resin binder is a phenol resin and a filling ratio of 35 wt. %, the conductive material filling ratio 65% by weight of carbon black, a conductive paste, wherein the diluting solvent is butyl cellosolve acetate or ethyl carbitol acetate, or butyl cellosolve acetate as a diluting solvent in the conductive paste Echirukarubi By using tall acetate, the resistance value of the conductive film when heated and cured after application without changing the filling ratio of the conductive material can be easily adjusted to a low resistance value , as well as printing and baking which coating surface condition after having the effect that a good A.
[0010]
Further, the invention according to claim 2 of the present invention is the invention according to claim 1, wherein the phenol resin is 80% by weight filling, the carbon black is 20% by weight, and the diluent is benzyl alcohol or ethyl carbitol. Or it is cyclohexanone or cyclohexanol, and by changing the diluent solvent to benzyl alcohol, ethyl carbitol, cyclohexanone or cyclohexanol, the conductivity when heated and cured after application without changing the filling ratio of the conductive material. The resistance value of the conductive film can be easily adjusted to a high resistance value, and the film surface state after printing and baking can be improved .
[0011]
Hereinafter, the conductive paste in one embodiment of the present invention will be described.
The dispersion resin-based conductive paste in the present embodiment is a mixture of a thermosetting resin made of phenol resin or the like as a synthetic resin binder and a conductive material made of acetylene black, furnace black, graphite or the like alone or mixed powder. Then, after being dispersed by a roll mill, a dispersed resin paste adjusted to have a proper printing viscosity using a solvent is prepared. Thereafter, the conductive coating film heated and cured after coating is prepared by mixing and containing organic solvent having different solubility and association degree physical properties capable of adjusting the resistance value.
[0012]
The conductive paste produced by this method is heated and cured on a substrate such as a paper phenol laminate, a glass epoxy laminate, a ceramic substrate, a resin film or a resin molded body, and a potentiometer type variable resistor, sensor, etc. When the resistive coating is formed, it is possible to easily change the conductive path flowing between particles of conductive particles such as carbon particles of the conductive material dispersed in the resistive coating on the substrate.
[0013]
Hereinafter, the mechanism of the conductive paste in one embodiment of the present invention will be described with reference to the drawings.
[0014]
1 and 2 are diagrams for explaining the conductive mechanism of the conductive paste in one embodiment of the present invention.
[0015]
In FIG. 1, 1 is a synthetic resin binder. This synthetic resin binder contains the conductive material 2. Reference numeral 3 denotes a main conductive path between particles of the conductive material 2. As shown in FIG. 2, the resistance value of the resistance film by the main conductive path 3 is “the resistance value 4 of the conductive material 2 (not shown in this figure)” and “the conductive material 2 (in this figure). , Not shown)) and the sum of the resistance value between the particles 5 ”. However, since the conductive material 2 is a good conductor, the “resistance value 4 of the conductive material 2” is much smaller than the “resistance value 5 between the particles of the conductive material 2”. It is determined by “resistance value 5 between particles of the conductive material 2”, and the resistance value can be adjusted by changing the resistance value 5 between the particles of the conductive material 2.
[0016]
FIG. 3 is a view for explaining the resistance between conductive material particles, which is a main part of the conductive paste in one embodiment of the present invention. The resistance between the particles of the conductive material 2 is closely related to the change in the state of enveloping the particles of the conductive material 2 by the synthetic resin binder 1, and acts on the gap between the particles of the conductive material 2. is there. In order to increase the resistance between the particles of the conductive material 2, it is necessary to widen the "gap 6 between the particles of the conductive material" as shown in FIG. In order to do this, as shown in FIG. 3B, it is necessary to narrow the “gap 7 between the particles of the conductive material”. Therefore, changing the solubility of the diluting solvent in the synthetic resin binder 1 acts to extend the polymer chain of the resin in the solvent. Therefore, if the solubility in the synthetic resin binder 1 is high, the polymer of the resin in the solvent is high. When the chain is stretched and the particles of the conductive material 2 are easily encapsulated, this state is maintained during heating, the solvent is volatilized, and the resin is cured, the resistance between the particles of the conductive material 2 is easily inhibited by the resin. The resistance value is inevitably high.
[0017]
In general, the printed coating film undergoes convection during heating until a considerable amount of solvent evaporates. At this time, the particles of the conductive material 2 which are fine particles also move, so that secondary aggregation tends to occur. When secondary agglomeration occurs, the gap between the particles of the conductive material 2 becomes narrow, and the resistance value decreases. That is, even if the molecular weight of the solvent is approximate, the viscosity of the solvent alone varies greatly depending on the state of association between the solvents. In a solvent having a high degree of association, the convection in the coating film described above is inhibited during heating. As a result, secondary aggregation of the conductive particles of the conductive material 2 is unlikely to occur, and the solvent is evaporated and the resin is cured while the dispersed state of the conductive material 2 and the dissolved state of the resin are maintained. The resistance between the two particles increases.
[0018]
Therefore, when an organic solvent having a high solubility in the synthetic resin binder 1 and a high degree of association is applied as a dilution solvent, a high resistance value can be obtained without changing the filling ratio of the conductive material 2. .
[0019]
On the other hand, when an organic solvent having low solubility and low degree of association is applied as a dilution solvent, the lowest resistance value can be obtained without changing the filling ratio of the conductive material 2. The solubility of the resin binder in the diluting solvent can be estimated by an SP (Solubility Parameter) value, and the solubility is good when the SP value is close, and the degree of association can be estimated by the organic solvent viscosity of the diluting solvent with respect to the molecular weight. The SP value means a solubility parameter, which indicates the cohesive energy density of molecules of each substance, and is obtained by subtracting the work due to expansion accompanying evaporation from the heat of evaporation at a specific temperature. The degree of association refers to a relatively regular assembly in which two or more molecules are bonded by a relatively weak binding force such as a hydrogen bond, a charge transfer bond, or a hydrophobic bond between the same molecules. It means the degree of body formation.
[0020]
(Example)
As an example of the present invention, first, a thermosetting resin such as a phenol resin is used as a synthetic resin binder, and acetylene black, furnace black, graphite, or the like is used as a conductive material to produce a dispersed resin paste of a conductive material. Thereafter, an organic dilution solvent is mixed and contained, and the viscosity is adjusted so as to obtain an appropriate printing viscosity. By changing the organic solvent such as cyclohexanol and butyl carbitol acetate, which are dilution solvents used here, the physical properties of the solubility and the degree of association are changed, and the content of the conductive resin material is changed (Table 1). The conductive paste shown in Examples 1 to 6 shown in FIG.
[0021]
(Comparative example)
As comparative examples of the present invention, conductive pastes shown in Comparative Examples 1 to 6 shown in (Table 1) are prepared using isophorone as a diluent solvent in the same dispersion resin paste as in the examples. At this time, other conditions are produced under the same conditions as in the example.
[0022]
(Comparison method)
Examples shown in Table 1 in which the conductive paste obtained in the example or the comparative example is straddled on a paper phenol substrate having an electrode on which both sides of the upper surface are pre-printed and fired with a resin-based silver paste (Table 1) 1 to 6 and Comparative Examples 1 to 6 are screen-printed, and this is heated and cured at about 200 ° C. for about 10 minutes in a hot-air circulating furnace combined with far infrared to form a resistance film, for resistance value measurement This is a resistor. And how to output the resistance value of this resistor is evaluated and shown in (Table 1). At this time, the sheet resistance value is calculated from the resistance value output in a 3 mm * 30 mm pattern.
[0023]
(Pass / fail judgment)
About the surface state of the resistance film formed on the paper phenol substrate, the quality of the surface state was judged by the presence or absence of projections and pinholes after screen printing and baking.
[0024]
[Table 1]
Figure 0003767187
[0025]
As is clear from Table 1, when the filling ratio of the conductive material of Comparative Example 1 exceeds 65% by weight, the amount of powder in the conductive paste is too large to make a paste. Therefore, when the filling ratio of the conductive material that can be made into paste is 65% by weight, the sheet resistance value becomes the lowest of 0.052 kΩ / □ (52Ω / □) when the dilution solvent is isophorone, and the conductivity is gradually increased. When the filling ratio of the material is decreased, the sheet resistance value is increased (Comparative Examples 2 to 5). However, when the filling ratio of the conductive material of Comparative Example 6 is less than 20% by weight, the surface tension of the coating film after screen printing decreases due to the decrease in the powder amount of the conductive material. Protrusions and pinholes have occurred.
[0026]
In Examples 1 and 2, as in Comparative Example 2, when the filling ratio of the conductive material was 65% by weight and the sheet resistance value was measured by changing the dilution solvent, the dilution solvent was less soluble than isophorone, and the association was By using butyl carbitol acetate and ethyl carbitol acetate having a low degree, the sheet resistance value can be adjusted lower than that of Comparative Example 2.
[0027]
Further, as in Comparative Example 5, when the filling ratio of the conductive material was set to 20% by weight, and the sheet resistance value was confirmed by changing the dilution solvent, only the solubility in Example 3 was compared with that of isophorone as the dilution solvent of Comparative Example 5. When high benzyl alcohol is applied, the sheet resistance value can be made higher than that in Comparative Example 5. In Examples 4 to 5, higher sheet resistance can be obtained by applying as an organic dilution solvent having high solubility and high degree of association. In particular, the sheet resistance value can be adjusted to the highest value by using cyclohexanol, which has the highest solubility and degree of association in Example 6, as the diluent solvent.
[0028]
In the present embodiment, the diluting solvent is selected in terms of solubility in the phenol resin, but the same effect that the resistance value can be adjusted by the solubility and the degree of association in other resin binders can be obtained.
[0029]
【The invention's effect】
As described above, in the present invention, the dilution solvent to be added is changed to butyl cellosolve acetate or ethyl carbitol acetate, or benzyl alcohol, ethyl carbitol, cyclohexanone, or cyclohexanol without changing the filling ratio of the synthetic resin binder and the conductive material. By changing it, it is possible to easily lower or increase the resistance value and to provide an effect of providing a conductive paste having a good coating surface state after printing and baking .
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a conductive mechanism of a conductive paste according to an embodiment of the present invention. FIG. 2 is a diagram illustrating the conductive mechanism. FIG. 3 is a diagram illustrating resistance between conductive material particles, which is the main part. Figure [Explanation of symbols]
1 Synthetic resin binder 2 Conductive material 3 Main conductive path

Claims (2)

合成樹脂バインダおよび導電性材料からなる分散樹脂系ペーストに希釈溶剤を混合含有してなる導電ペーストにおいて、上記合成樹脂バインダがフェノール樹脂で充填比率35重量%、上記導電性材料がカーボンブラックで充填比率65重量%、上記希釈溶剤がブチルセロソルブアセテートまたはエチルカルビトールアセテートであることを特徴とする導電ペースト。In a conductive paste comprising a dispersion resin paste composed of a synthetic resin binder and a conductive material mixed with a diluting solvent, the synthetic resin binder is a phenol resin with a filling ratio of 35% by weight, and the conductive material is a carbon black with a filling ratio. 65% by weight of conductive paste, wherein the diluent solvent is butyl cellosolve acetate or ethyl carbitol acetate. フェノール樹脂が充填比率80重量%、カーボンブラックが充填比率20重量%、希釈溶剤がベンジルアルコールまたはエチルカルビトールまたはシクロヘキサノンまたはシクロヘキサノールである請求項1記載の導電ペースト。2. The conductive paste according to claim 1, wherein the phenol resin is 80% by weight, carbon black is 20% by weight, and the diluent is benzyl alcohol, ethyl carbitol, cyclohexanone, or cyclohexanol.
JP23531498A 1998-08-21 1998-08-21 Conductive paste Expired - Fee Related JP3767187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23531498A JP3767187B2 (en) 1998-08-21 1998-08-21 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23531498A JP3767187B2 (en) 1998-08-21 1998-08-21 Conductive paste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005301499A Division JP3767631B2 (en) 2005-10-17 2005-10-17 Method for adjusting resistance value of conductive film

Publications (3)

Publication Number Publication Date
JP2000068106A JP2000068106A (en) 2000-03-03
JP2000068106A5 JP2000068106A5 (en) 2004-12-02
JP3767187B2 true JP3767187B2 (en) 2006-04-19

Family

ID=16984284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23531498A Expired - Fee Related JP3767187B2 (en) 1998-08-21 1998-08-21 Conductive paste

Country Status (1)

Country Link
JP (1) JP3767187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722275B2 (en) 2000-06-15 2005-11-30 Tdk株式会社 Metal particle-containing composition, conductive paste and method for producing the same
JP3722282B2 (en) 2001-08-21 2005-11-30 Tdk株式会社 Metal particle-containing composition, conductive paste and method for producing the same
JP4628718B2 (en) * 2004-07-23 2011-02-09 株式会社フジクラ Method for forming conductive film

Also Published As

Publication number Publication date
JP2000068106A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP2544892B2 (en) Polymer thick film resistor composition
US5181006A (en) Method of making an electrical device comprising a conductive polymer composition
US5993698A (en) Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device
US4722853A (en) Method of printing a polymer thick film ink
US7458150B2 (en) Method of producing circuit board
CA1336637C (en) Conductive polymer composition
JP3558771B2 (en) Positive temperature coefficient composition
JP6412106B2 (en) Polymer thick film positive temperature coefficient carbon composition
JP3767187B2 (en) Conductive paste
KR101584202B1 (en) The product method of ptc calorific plate using ptc ink for gravure
JP5342603B2 (en) Method for forming copper fine particles for copper paste and copper fired film
JP3767631B2 (en) Method for adjusting resistance value of conductive film
US4600602A (en) Low resistance resistor compositions
US20060043343A1 (en) Polymer composition and film having positive temperature coefficient
JPH07243805A (en) Resistance ink for strain gage and strain gage
JP2007134195A (en) Conductive film, conductive coating, and their forming and producing methods
KR100795571B1 (en) Paste for thick-film resistor, manufacturing method thereof and thick-film resistor
JP2007134196A (en) Conductive film, conductive coating, and their forming and producing methods
DE102007013276A1 (en) Aqueous printing ink composition, useful to produce electrically functional structures and product e.g. heatable cushions and back windows, comprises electrically conductive polymer in an aqueous dispersion, graphite, soot and a solvent
JPH03293701A (en) Paste composition for organic thick film resistor
EP0143660A2 (en) Resistors, methods of forming said resistors, and articles comprising said resistors
JPS6023460A (en) Paint for electrical resistor
JPH01184901A (en) Coating material for electric resistor
JP3829373B2 (en) Resistance paste
WO2008030227A1 (en) Low temperature coefficient of resistivity of polymeric resistors based on metal carbides and nitrides

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees