JPS6023460A - Paint for electrical resistor - Google Patents

Paint for electrical resistor

Info

Publication number
JPS6023460A
JPS6023460A JP58131045A JP13104583A JPS6023460A JP S6023460 A JPS6023460 A JP S6023460A JP 58131045 A JP58131045 A JP 58131045A JP 13104583 A JP13104583 A JP 13104583A JP S6023460 A JPS6023460 A JP S6023460A
Authority
JP
Japan
Prior art keywords
resin
paint
resistance value
resol
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58131045A
Other languages
Japanese (ja)
Other versions
JPS6348914B2 (en
Inventor
Setsuo Suzuki
節夫 鈴木
Junko Takeda
武田 順子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58131045A priority Critical patent/JPS6023460A/en
Publication of JPS6023460A publication Critical patent/JPS6023460A/en
Publication of JPS6348914B2 publication Critical patent/JPS6348914B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled paint for the printed resistor element of hybrid IC, having excellent stability of the electrical resistance, by dispersing carbon black, etc. in a mixed varnish composed of a resol phenolic resin and an amino resin. CONSTITUTION:The objective paint is produced by mixing (A) a resol phenolic resin (a phenolic resol resin prepared by ammonia catalyst process) with (B) an amino resin (e.g. oil-soluble melamine resin) at a weight ratio of 10/1-10/10 to obtain a mixed varnish, adding (C) fine powder of carbon black and/or graphite to the varnish, and dispersing the mixture in (D) a solvent such as butyl carbitol.

Description

【発明の詳細な説明】 刷抵抗素子作成のための電気抵抗体用塗料に関するもの
である。即ち、樹脂およびカーボンよシ成る混合系の電
気抵抗用塗料に係るものであり、特に有機基板を基体と
したハイブリッドIC作製において用いられるカーボン
〜レジン系抵抗塗料を提供せんとするものである。近年
厚膜回路と半導体を同一基板上に塔載する謂ゆるハイブ
リッドICの伸びが著しるしい。従来この用途に用いら
れる基板はアルミナ基板等のセラミックがほとんどであ
シ、この基板上にガラスをバインダーとするペーストを
用いて電極、抵抗を印刷焼成にょシ形成し、この上に半
導体を塔載するのが一般的な方法である。然しなからセ
ラミック系のHICはその信頼性は高いものの製造に高
温を用いるため、製造工程が複雑になること、回路形成
後の加工が出来ない(例えば穴アケ等)、壊れ易い等の
欠点もあるため、この分野でも有機基板によるHIC作
製の検討が成されて束ている。この方法は銅張り積層板
のエツチング加工によシ回路電極を形成し、この電極間
に印刷によシ抵抗を形成し、更に電極上に半導体を塔載
しようとするものである。然しなから該方式の末だ実用
化の域に達していない根本的な理由として、カーボン抵
抗塗料の抵抗値安定性が悪いととがあげられる。即ちH
IC作製工程では熱のかかる工程(ハンダ工程、粉体塗
装工程等)が多く、初期に調整した抵抗値が変化してし
甘うという問題が有シ、加えてプレッシャークッカーテ
ス)(PCT)の如き厳しい湿熱処理に対しても抵抗値
変化があってはならないといった要求性能も充たさなけ
ればならず、有機物バインダー抵抗塗料を以って有機基
板HICを作製せんといった考えは従来不可能に近いと
考えられていた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a paint for electrical resistors for producing printed resistor elements. That is, the present invention relates to a mixed electrical resistance paint consisting of resin and carbon, and particularly aims to provide a carbon-resin resistance paint used in the production of hybrid ICs based on organic substrates. In recent years, so-called hybrid ICs, in which thick film circuits and semiconductors are mounted on the same substrate, have been rapidly growing. Conventionally, most of the substrates used for this purpose are ceramics such as alumina substrates, and electrodes and resistors are printed and fired on this substrate using a paste with glass as a binder, and semiconductors are mounted on this substrate. This is a common method. However, although ceramic-based HICs are highly reliable, they also have drawbacks such as the complicated manufacturing process because they use high temperatures to manufacture them, the inability to process them after circuit formation (for example, damage to holes, etc.), and their ease of breakage. Therefore, in this field as well, studies are being conducted on the production of HICs using organic substrates. This method involves forming circuit electrodes by etching a copper-clad laminate, forming a resistor between the electrodes by printing, and then mounting a semiconductor on the electrodes. However, the fundamental reason why this method has not reached the level of practical use is that the resistance value stability of the carbon resistance paint is poor. That is, H
In the IC manufacturing process, there are many heat-intensive processes (soldering process, powder coating process, etc.), and there is a problem that the initially adjusted resistance value may change easily. It was also necessary to meet the required performance of not changing the resistance value even after such severe moist heat treatment, and we thought that the idea of creating an organic substrate HIC using an organic binder resistance paint was close to impossible in the past. It was getting worse.

本願発明者等はこれらの現状に鑑み、何んとか有機基板
HIC用カーボン抵抗塗料を開発せんと鋭意検討を重ね
本発明に到達した。勿論HICの抵抗をカバー出来る塗
料が得られれば一般の抵抗塗料としても優れていること
は論をまたない。即ちフェノール系樹脂とアミン系樹脂
の混合物に、カーボンブラックおよび/またはグラファ
イト粉末を適当な溶剤を用いて分散せしめた抵抗塗料の
みが上記の性能を満足するものであることを見い出した
点に本発明の意義が有る。本願発明を成すに六って本発
明者らは以下のような現象を発見しており、この現象を
巧みに利用したのが本発明である。
In view of these current circumstances, the inventors of the present application have conducted intensive studies to somehow develop a carbon resistance paint for organic substrate HIC, and have finally arrived at the present invention. Of course, if a paint that can cover the resistance of HIC can be obtained, it goes without saying that it is also excellent as a general resistance paint. That is, the present invention is based on the discovery that only a resistance paint in which carbon black and/or graphite powder is dispersed in a mixture of phenolic resin and amine resin using an appropriate solvent satisfies the above performance. There is a meaning to it. In order to achieve the present invention, the present inventors discovered the following phenomenon, and the present invention skillfully utilizes this phenomenon.

即ち難問であるPCT性能について検討した結果、フェ
ノール系樹脂単独の場合は、 PCT処理によシ抵抗値
は正の方向にドリフトするのに対して、アミン系樹脂単
独で塗料を調整した場合、PCT処理によシ負の方向に
ドリフトするという事実を見い出した。また両者を混合
したものはその中間の値を示し、混合比を適宜調整する
ことにより限シ無く変化の零に近い抵抗塗料が得られる
ということを見い出した。その理由については定かでは
無いが、興味ある事実であり、これにより従来不可能と
されていたHIC用抵抗塗料が得られる様になったもの
である。
In other words, as a result of examining the difficult problem of PCT performance, we found that when using phenolic resin alone, the resistance value drifts in the positive direction due to PCT treatment, whereas when adjusting the paint using amine resin alone, PCT It was discovered that the process causes a drift in the negative direction. It has also been found that a mixture of the two exhibits a value intermediate between the two, and that by appropriately adjusting the mixing ratio, a resistance paint with close to zero change can be obtained without limit. The reason for this is not clear, but it is an interesting fact, and it has made it possible to obtain HIC resistance paints, which was previously considered impossible.

以下に本発明の詳細につき述べる。The details of the present invention will be described below.

本願発明で用いられるレゾール型フェノール系樹脂とし
ては、フェノールレゾール、アルキルフェノールレゾー
ル、キシレンm 脂変性フェノールレゾール等のレゾー
ル類はすべて使用可能であるが、一般にはアンモニア触
媒によるフェノールレゾールが用いられる。一方アミノ
系樹脂としては尿素樹脂、メラミン樹脂、ベンゾグアナ
ミン樹脂等のN−メチロール化樹脂が用いられるが、耐
湿性、高架橋密度の観点からメラミン樹脂が本発明達成
の為には好んで用いられる。またメラミン樹脂はフェノ
ールレゾールとの相溶性の良いことが要求されるので、
一般にはブチルエーテル化メラミンを用いるのが好まし
い。次いで両樹脂を混合する。混合割合は実験によシ可
及的にPCTテストで抵抗値変化の少ない点を採用すべ
きであるが、一般にはフェノール樹脂単独の場合の正側
へのドリフトよシメラミン樹脂単独の場合の負側へのド
リフトが大きいので、メラミン樹脂の添加量はフェノー
ル樹脂に対して少ない。フェノール樹脂/メラミン樹脂
の比がIA 〜IX、の範囲(重量)が好′ましい。1
当よシメラミン樹脂の比率が小さいとメラミンの負側へ
のドリフト寄与が少なく、1%以上であると負側へのド
リフトになってし壕う。また用いられるカーボンは一般
の導電性カーボン類はすべて使用可能であシ、アセチレ
ンブラック等の鎖状構造の発達したカーボンブラック類
とかグラファイト類が単独もしくは併用で用いられる。
As the resol-type phenolic resin used in the present invention, all resols such as phenol resol, alkylphenol resol, and xylene-modified phenol resol can be used, but phenol resols using an ammonia catalyst are generally used. On the other hand, as the amino resin, N-methylolated resins such as urea resins, melamine resins, and benzoguanamine resins are used, but melamine resins are preferably used to achieve the present invention from the viewpoints of moisture resistance and high crosslink density. In addition, melamine resin is required to have good compatibility with phenol resol.
It is generally preferred to use butyl etherified melamine. Both resins are then mixed. The mixing ratio should be based on experiments and should be selected at the point where the resistance value changes as little as possible in the PCT test, but in general, the drift to the positive side when using phenol resin alone and the negative side when using simelamine resin alone. Since the drift to phenol resin is large, the amount of melamine resin added is smaller than that of phenolic resin. The ratio (weight) of phenol resin/melamine resin is preferably in the range of IA to IX. 1
If the ratio of the simelamine resin is small, the contribution of melamine to the negative side will be small, and if it is 1% or more, the drift will tend to be negative. Further, as the carbon used, all general conductive carbons can be used, and carbon blacks with a developed chain structure such as acetylene black or graphite are used alone or in combination.

特に両者の併用は抵抗値安定化の上で好ましい。またカ
ーボン類の添加量は所望の抵抗値に対応せしめて適宜調
整可能である。
In particular, it is preferable to use both in combination in order to stabilize the resistance value. Further, the amount of carbon added can be adjusted as appropriate depending on the desired resistance value.

上述の如く樹脂とカーボンを混合するが通常は粘度調整
印刷性調整のため溶剤が用いられる、この場合の溶剤は
印刷中に揮発しないという条件が必要となるため揮発速
度の遅い溶剤が好んで用いられる。一般にはブチルカル
ピトール、ブチルカルピトールアセテート、ブタノール
、ベンジルアルコール等の溶剤を単独もしくは併用して
用いられるが、両樹脂に対して良溶媒であればすべて使
用可能である。これら樹脂とカーボンと溶剤を主な成分
とした混合物を混練してカーボンペーストを得るが、混
線にはボールミル、三本インクロールなどが用いられる
。次いで抵抗値が適宜調整されたカーボンペーストを、
銅箔回路板の電極間に印刷により形成せしめ焼成するが
、この場合の温度は一般のカーボン抵抗塗料と同様で良
く、150℃〜200℃の範囲が用いられる。勿論この
温度は有機基板の耐熱性との関係で設定されなければな
らない。従って焼成温度を高く取れる有機基板が抵抗値
安定性の上から好ましく、一般にはポリイミド系銅張板
、耐熱エポキシ樹脂銅張板が好ましい。
As mentioned above, resin and carbon are mixed, but usually a solvent is used to adjust the viscosity and printability.In this case, it is necessary that the solvent does not volatilize during printing, so a solvent with a slow volatilization rate is preferably used. It will be done. Generally, solvents such as butyl carpitol, butyl carpitol acetate, butanol, benzyl alcohol, etc. are used alone or in combination, but any solvent can be used as long as it is a good solvent for both resins. A mixture consisting mainly of these resins, carbon, and a solvent is kneaded to obtain a carbon paste, and a ball mill, three-ink roll, or the like is used for mixing. Next, carbon paste with resistance value adjusted appropriately,
It is formed between the electrodes of a copper foil circuit board by printing and fired, but the temperature in this case may be the same as that for general carbon resistance paints, and is used in the range of 150°C to 200°C. Of course, this temperature must be set in relation to the heat resistance of the organic substrate. Therefore, an organic substrate that can be fired at a high temperature is preferable from the viewpoint of resistance stability, and polyimide copper-clad boards and heat-resistant epoxy resin copper-clad boards are generally preferred.

次に形成された抵抗および回路を端子部および半導体マ
ウント部(電極部)を残してレジスト被覆を施こし、加
熱硬化させる。この後抵抗体をトリミングによシ所望の
抵抗値に調整する。この結果抵抗体つきHIC用回路板
が得られる。この状態のものが従来の抵抗体つきセラミ
ック回路板に相当するものである。また必要に応じて端
子部および電極部、ステッチ部のみ金メッキを施こして
も良い。次いでICを塔載し金線ボンディングを施こし
、次いで金線ボンドされたIC部のみをチップコート樹
脂(一般にはシリコン樹脂)を用いて封じ、これも加熱
硬化させる。次にチップ部品を必要に応じて半田を用い
て塔載し、その後端子に半田を用いてリードをとりつけ
、最後の工程としてエポキシ樹脂粉4体塗料によシ外装
を施こす。この様にして足つきのHICが得られる。こ
の様に最終製品が得られる迄に印刷されたカーボン抵抗
体は熱にさらされるため、初期のトリミング後の抵抗値
からのブレ、即ちドリフトが生じてしまう。この熱工程
の温度および時間の代表例は以下の如くである。
Next, the formed resistor and circuit are coated with a resist, leaving the terminal portion and the semiconductor mount portion (electrode portion), and then heated and cured. Thereafter, the resistance of the resistor is adjusted to a desired resistance value by trimming. As a result, a HIC circuit board with a resistor is obtained. This state corresponds to a conventional ceramic circuit board with a resistor. Furthermore, if necessary, only the terminal portions, electrode portions, and stitch portions may be plated with gold. Next, the IC is mounted on the top and gold wire bonding is performed, and then only the gold wire bonded IC portion is sealed with a chip coat resin (generally silicone resin), which is also heated and cured. Next, the chip components are mounted using solder as necessary, and then leads are attached to the terminals using solder.As a final step, the exterior is applied with epoxy resin powder paint. In this way, a HIC with legs is obtained. In this way, the printed carbon resistor is exposed to heat until the final product is obtained, resulting in deviation from the initial resistance value after trimming, that is, drift. Representative examples of the temperature and time of this thermal step are as follows.

チップ部品の塔載 150℃0.5Hr金線ボンデイン
グ 150℃数分 チップコート樹脂の加熱硬化 100℃3Hr端子リー
ドの半田数シつけ 220℃数秒外装粉体樹脂の加熱硬
化 150℃2Hr以上この様な熱工程を経た後でも初
期値に対して3チ以下の安定性が要求される。また最後
に抵抗値の信頼性試験としてプレッシャークツカーテス
ト(条件、125℃、2.3気圧)があシ、50Hr処
理後での変化量が3チ以内である位の性能が要求される
。これらの非常に厳しい性能要求をすべて満足するよう
な有機樹脂をバインダーとするカーボン抵抗塗料などは
全く有シ得ないと考えられていた。然るに本発明者等ら
はフェノール系樹脂バインダー単独の場合とアミン樹脂
系バインダー単独の場合とでは抵抗値の熱および湿熱で
の変化が正・負の関係に有シ、両者を混合すると相殺さ
れて抵抗値変化は限シ無く零に近づくという全く考えら
れもしなかった現象を見い出し本発明をなしたものであ
る。
Mounting of chip parts Gold wire bonding at 150℃ for 0.5 hours Heat curing of chip coat resin at 150℃ for several minutes Soldering of terminal leads for several hours at 100℃ for several seconds Heat curing of exterior powder resin at 150℃ for more than 2 hours Even after the thermal process, stability of 3 degrees or less relative to the initial value is required. Finally, a pressure tester test (conditions: 125° C., 2.3 atm) is performed as a reliability test of the resistance value, and performance such that the amount of change after treatment for 50 hours is within 3 inches is required. It was thought that there was no possibility of a carbon resistance paint using an organic resin as a binder that would satisfy all of these extremely strict performance requirements. However, the present inventors found that the change in resistance value due to heat and moist heat had a positive and negative relationship between the case of using only a phenolic resin binder and the case of using only an amine resin binder, and that when the two were mixed, they were canceled out. The present invention was achieved by discovering a completely unthinkable phenomenon in which the change in resistance value approaches zero without limit.

以下に実施例につき述べる。Examples will be described below.

実施例ル ゾール型フェノール樹脂(スミライトレジンPR−51
833、住友デーレズ■製) 50重量部ブチルエーテ
ル化メラミン樹脂(スーパーベッカミンL−117−7
0B、大日本インキ■製)40重量部 触媒(キャタニッ)P、日東化学展)4重量部カーボン
ブラック(アセチレンブラック)22重量部 溶剤 10重量部 を秤取し、インク混線用3本ロールを用いて20分間攪
拌混合しペースト状カーボン抵抗塗料を作製した。次に
このペーストを予め用意した回路パターン(ガラスエポ
キシ基板)上にスクリーン印刷によって塗布し、120
℃で20分間乾燥し、さらにソルダーレジストを印刷硬
化後、150’Cで4時間加熱硬化せしめて抵抗付回路
基板を作成した。このようにして得られた印刷抵抗の抵
抗値は219にΩ/口であった。次にハイブリッドIC
組立てに必要な工程、す々わちダイボンディング用接着
剤硬化、ボンディング、チップコート用樹脂硬化、チッ
プ部品塔載用接着剤硬化に相当する条件に従い抵抗回路
基板を加熱し熱履歴を加え、さらに半田漬け、粉体外装
を行ない、抵抗ネットワークを形成した。このとき印刷
抵抗の抵抗値は2゜14にΩ/口であシ、熱履歴を加え
る前に比して−228−の変化であった。次にこの試験
片を125℃、23気圧の高温加湿下で32時間放置後
、抵抗値の測定を行なったところ2.18にΩ/口であ
シ、プレッシャークツカー処理前に対して僅か+1.8
7%の抵抗値変動であシ、極めて優れた抵抗値安定性を
示した。
Example Luzole type phenolic resin (Sumilight Resin PR-51
833, manufactured by Sumitomo Delez ■) 50 parts by weight butyl etherified melamine resin (Super Beckamine L-117-7
0B, manufactured by Dainippon Ink ■) 40 parts by weight Catalyst (Katanik) P, Nitto Kagakuten) 4 parts by weight Carbon black (acetylene black) 22 parts by weight Solvent 10 parts by weight were weighed out, and 3 rolls for ink mixing were used. The mixture was stirred and mixed for 20 minutes to prepare a paste-like carbon resistance paint. Next, this paste was applied by screen printing onto a pre-prepared circuit pattern (glass epoxy board).
C. for 20 minutes, and after printing and curing the solder resist, it was heated and cured at 150'C for 4 hours to produce a circuit board with a resistor. The resistance value of the printed resistor thus obtained was 219 Ω/hole. Next is the hybrid IC
The resistor circuit board is heated to give it a thermal history according to the processes necessary for assembly, which correspond to the curing of the adhesive for die bonding, bonding, curing of the resin for chip coating, and the curing of the adhesive for mounting chip components, and then A resistor network was formed by soldering and powder packaging. At this time, the resistance value of the printed resistor was 2°14 Ω/mouth, which was a change of -228 compared to before the heat history was applied. Next, this test piece was left in a high temperature humidified environment of 125°C and 23 atm for 32 hours, and the resistance value was measured. .8
The resistance value fluctuation was 7%, showing extremely excellent resistance value stability.

実施例2 レゾール型フェノール樹脂 50重量部ブチルエーテル
化メラミン樹脂 20重量部触 媒 21 カーボンブラツク 10 N グラファイト 7I 溶 剤 16 I 上述の処方のペーストを用いて、実施例1に示した方法
と全く同様にして、抵抗付回路基板を作成した。得られ
た印刷抵抗の抵抗値は34.2にΩ/口であった。次に
実施例1と同様にして熱履歴を加え抵抗値変化率の測定
を行なったところ−1,90チであシ、さらにPCT 
(125℃、2.3気圧)32時間後の抵抗値変化率は
プレッシャークツカー処理前に対して+2.1t%であ
シ、すぐれた抵抗値安定性を示した。
Example 2 Resol type phenolic resin 50 parts by weight Butyl etherified melamine resin 20 parts by weight Catalyst 21 Carbon black 10 N Graphite 7I Solvent 16 I Using the paste with the above formulation, the process was carried out in exactly the same manner as in Example 1. A circuit board with a resistor was created. The resistance value of the obtained printed resistor was 34.2 Ω/hole. Next, heat history was added in the same manner as in Example 1, and the rate of change in resistance was measured.
(125° C., 2.3 atm) The resistance value change rate after 32 hours was +2.1 t% compared to before the pressure cooker treatment, indicating excellent resistance value stability.

比較例 (処方1) レゾール型フェノール樹脂(PR−51833) 10
呼量部カーボンブラック 18 〃 グラファイト 6N 溶 剤 10 # (処方2) ブチルエーテル化メラミン樹脂(L−117−70B)
 10ONf部触 媒(キャタニットP) 11# カーボンブラツク(ファーネスブラック) 21 #溶
 剤 16 〃 処方例1.2について実施例と全く同様にして抵抗値安
定性の評価を行なったところ、第1表の通シでアシ、プ
レッシャークツカー処理に対して大きく抵抗値 第 1 表 が変化し、高信頼性即ち、高度の抵抗値安定性を要求さ
れる抵抗回路板として使用に耐えないものであった。
Comparative example (formulation 1) Resol type phenolic resin (PR-51833) 10
Volume: Carbon black 18 Graphite 6N Solvent 10 # (Formulation 2) Butyl etherified melamine resin (L-117-70B)
10ONf Part Catalyst (Catanit P) 11 #Carbon Black (Furnace Black) 21 #Solvent 16 For Formulation Examples 1 and 2, resistance value stability was evaluated in exactly the same manner as in Example. The resistance value in Table 1 changed significantly due to the reed and pressure stress treatment during the process, making it unusable as a resistor circuit board that requires high reliability, that is, a high degree of resistance value stability. .

特許出願人 住友ベークライト株式会社=42Patent applicant: Sumitomo Bakelite Co., Ltd. = 42

Claims (3)

【特許請求の範囲】[Claims] (1)レゾール型フェノール系樹脂とアミン系樹脂から
構成される混合フェノ中に、カーボンブラックおよび/
′またはグラファイトの微粉末を溶剤を用いて分散させ
て成ることを特徴とする電気抵抗体用塗料。
(1) Carbon black and/or
1. A paint for electrical resistors, characterized in that it is made by dispersing fine powder of 1 or graphite using a solvent.
(2)レゾール型フェノール系樹脂がアンモニア触媒法
で得られたフェノールレゾール樹脂であり、アミン系樹
脂が油溶性メラミン樹脂である特許請求の範囲第(1)
項記載の電気抵抗体用塗料。
(2) Claim No. 1, wherein the resol type phenolic resin is a phenol resol resin obtained by an ammonia catalyst method, and the amine resin is an oil-soluble melamine resin.
Paint for electrical resistors as described in section.
(3)フェノール樹脂とアミン系樹脂の重量混合比率数
が習〜1牙。の範囲である特許請求の範囲第(1)項ま
たは第(2)項記載の電気抵抗体用塗料。
(3) The weight mixing ratio of phenolic resin and amine resin is between 1 and 1. A paint for electrical resistors according to claim 1 or 2, which falls within the scope of claim 1.
JP58131045A 1983-07-20 1983-07-20 Paint for electrical resistor Granted JPS6023460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131045A JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131045A JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Publications (2)

Publication Number Publication Date
JPS6023460A true JPS6023460A (en) 1985-02-06
JPS6348914B2 JPS6348914B2 (en) 1988-10-03

Family

ID=15048723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131045A Granted JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Country Status (1)

Country Link
JP (1) JPS6023460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152101A (en) * 1985-12-26 1987-07-07 住友ベークライト株式会社 Paint for electric resistor
JPH01229204A (en) * 1988-03-09 1989-09-12 Toray Ind Inc Color filter
JPH03172370A (en) * 1989-12-01 1991-07-25 Toyo Ink Mfg Co Ltd Coating composition
JPH09505352A (en) * 1994-11-01 1997-05-27 株式会社ヒューマックステクノロジー Conductive paint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152101A (en) * 1985-12-26 1987-07-07 住友ベークライト株式会社 Paint for electric resistor
JPH01229204A (en) * 1988-03-09 1989-09-12 Toray Ind Inc Color filter
JPH03172370A (en) * 1989-12-01 1991-07-25 Toyo Ink Mfg Co Ltd Coating composition
JPH09505352A (en) * 1994-11-01 1997-05-27 株式会社ヒューマックステクノロジー Conductive paint

Also Published As

Publication number Publication date
JPS6348914B2 (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US7794628B2 (en) Chip-shaped electronic component
KR100678533B1 (en) Conductive powder and method for preparing the same
JP2008130301A (en) Conductive copper paste
JP5228921B2 (en) Conductive paste
JP3879749B2 (en) Conductive powder and method for producing the same
JPS6023460A (en) Paint for electrical resistor
US4849251A (en) Method of manufacturing an electric resistance element
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JP2002222701A (en) Chip electronic part and chip resistor
JPH0461703A (en) Electroconductive paste for printing
JPH01184901A (en) Coating material for electric resistor
JPH01159908A (en) Thermosetting silver paste composition with excellent heat resistance
JPH07138549A (en) Conductive adhesive
JP2779810B2 (en) Resin resistance paste
JPS63226901A (en) Printed resistor and manufacture of the same
JPH07312302A (en) Chip-like electronic part
JPH0238459A (en) Composition suited for organic thick film resistance element
JPS60123572A (en) One-pack epoxy resin ink composition
JP2005109316A (en) Inorganic material of high dielectric constant, and high dielectric constant composite material using the same
KR100366284B1 (en) Silver-copper paste composition for filling through hole of printed circuit board
JPH01275622A (en) Epoxy resin composition
JP3352551B2 (en) Conductive copper paste composition
JPS62147701A (en) Carbon system resistance paste
JPH0864469A (en) Electrode material and chiplike electronic component using the same
JP2006028213A (en) Functional electroconductive coating, electronic circuit using the same and its formation method