JP3761056B2 - Rear front wheel steering control device for rear biaxial vehicle - Google Patents

Rear front wheel steering control device for rear biaxial vehicle Download PDF

Info

Publication number
JP3761056B2
JP3761056B2 JP2506899A JP2506899A JP3761056B2 JP 3761056 B2 JP3761056 B2 JP 3761056B2 JP 2506899 A JP2506899 A JP 2506899A JP 2506899 A JP2506899 A JP 2506899A JP 3761056 B2 JP3761056 B2 JP 3761056B2
Authority
JP
Japan
Prior art keywords
front wheel
steering
steering angle
vehicle speed
rear front
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2506899A
Other languages
Japanese (ja)
Other versions
JP2000225960A (en
Inventor
冨士男 籾山
昇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2506899A priority Critical patent/JP3761056B2/en
Publication of JP2000225960A publication Critical patent/JP2000225960A/en
Application granted granted Critical
Publication of JP3761056B2 publication Critical patent/JP3761056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トラック等の後前軸及び後後軸を有する後2軸車両の後前輪の操舵を制御する装置に関するものである。
【0002】
【従来の技術】
従来、この種の装置として、ハンドル切り角に対応する後輪舵角が車速に関連して電気・油圧制御回路により制御され、電気・油圧制御回路が低速時に前輪に対する後輪の舵角比を大きく、車速の上昇に伴って上記舵角比を小さくし、更に所定車速以上で上記舵角比をゼロとするように構成された舵角比制御装置が開示されている(特開平2−124381号)[以下、第1従来例という]。この装置では、前輪舵取機構の出力軸と連動する入力軸の回転が舵角比制御機構により車速に関連して差動制御弁に伝達され、この差動制御弁により後輪操舵アクチュエータへの油圧回路が制御される。また後輪は後輪操舵アクチュエータにより操舵され、舵角比制御機構の特性が電気・油圧制御回路により制御される。上記舵角比制御機構は入力軸に設けられかつハンドル切り角に対応して回動する突片と、差動制御弁の駆動軸先端に設けられた切欠部材に形成されかつ上記突片と周方向に隙間をあけて係合する切欠とを有する。
【0003】
このように構成された舵角比制御装置では、電気・油圧制御回路が突片と切欠との隙間の大きさを車速に関連して調整する、即ち駆動軸に回動を伝えるまでのハンドルの中立位置からの不感帯(遊び)の幅を車速に関連して制御するので、車速の増加につれて前輪舵角に対する後輪舵角の舵角比が次第に小さくなる。この結果、低速走行では後輪が前輪と逆位相に比較的大きく操舵され、小回り性が発揮される。また中速走行では通常のハンドル切り角の範囲では後輪は殆ど操舵されず、高速走行では突片が切欠と係合不能の状態になって後輪は全く操舵されず、直進走行性が向上するようになっている。
【0004】
一方、本出願人は後前輪を前輪操舵と連動して同位相で操舵可能とし、前輪の舵角が小さい範囲では後前輪の舵角を前輪の舵角よりも多めに制御し、前輪の舵角が大きい範囲では後前輪の舵角を前輪の舵角より少なめに制御するように構成された後2軸車における後前軸車輪の操舵装置を実用新案登録出願した(実公平6−21818号)[以下、第2従来例という]。この操舵装置では、前輪操舵装置のピットマンアームがドラッグリンクを介して前輪ナックルアームに連結され、上記ドラッグリンクがリレーロッドを介して後輪ナックルアームに連結される。後輪ナックルアームには長溝が設けられ、リレーロッドは上記長溝にピンを介して摺動可能に連結される。また上記長溝は後前輪を前輪より多めの舵角で制御する第1案内溝と、この第1案内溝の前方及び後方にそれぞれ設けられ後前輪を前輪より少なめの舵角で制御する一対の第2案内溝と、第1案内溝と第2案内溝とを連通接続する一対の傾斜中間溝とを有する。
【0005】
このように構成された操舵装置では、前輪の操舵角の大小によって前輪ナックルアームのレバーの長さに対する後輪ナックルアームのレバーの長さのレバー比を変化させる。この結果、操舵角が小さい高速走行時には後前輪を前輪と同位相で前輪舵角よりも多めの舵角とすることにより、操縦安定性を向上させることができる。また操舵角が大きい低速走行時には後前輪を前輪と同位相で前輪舵角よりも少なめの舵角とすることにより、後前輪が滑らかに旋回することができるようになっている。
【0006】
【発明が解決しようとする課題】
しかし、上記第2従来例に上記第1従来例を適用する、即ち後2軸車において、低速時に前輪に対する後前輪の舵角比を大きく、車速の上昇に伴って上記舵角比を小さくし、更に所定車速以上で上記舵角比をゼロとするように構成した場合、車速がゼロであっても後輪が操舵されるため、後前輪を操舵するアクチュエータを大型化しなければならない不具合があった。
また、後2軸車において、所定車速以上で上記舵角比をゼロ(後前輪の舵角をゼロ)にすると、操縦安定性が低下する問題点があった。
本発明の目的は、後前輪を操舵するアクチュエータを比較的小型のアクチュエータにより後前輪を操舵することができ、低速走行時の後前輪の磨耗を低減でき、更に高速走行時の操縦安定性を向上できる、後2軸車両の後前輪操舵制御装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1、図5及び図6に示すように、前輪11を操舵する前輪操舵手段21と、後前輪13を操舵する後前輪操舵手段22と、前輪11の操舵角δfを検出するフロント舵角センサ56と、車速を検出する車速センサ58と、フロント舵角センサ56及び車速センサ58の各検出出力に基づいて後前輪13を前輪11と同一方向に操舵するように後前輪操舵手段22を制御するコントローラ59とを備えた後2軸車両の後前輪操舵制御装置であって、車速センサ58が第1所定値V1以上かつ第2所定値V2未満の車速を検出するときに前輪11の操舵角δfに対する後前輪13の操舵角δrの舵角比δr/δfが車速の増加とともに第1舵角比γ1から第2舵角比γ2に向って次第に小さくなるようにコントローラ59が後前輪操舵手段22を制御し、車速センサ58がゼロより大きくかつ第1所定値V1未満の車速を検出するときに舵角比δr/δfが車速に拘らず第1舵角比γ1となるようにコントローラ59が後前輪操舵手段22を制御し、車速センサ58が第2所定値V2以上の車速を検出するときに舵角比δr/δfが車速に拘らず第2舵角比γ2となるようにコントローラ59が後前輪操舵手段22を制御するように構成されたことを特徴とする後2軸車両の後前輪操舵制御装置である。
【0008】
この請求項1に記載された後2軸車両の後前輪操舵制御装置では、低速走行時(車速がゼロより大きくかつV1未満)に前輪11が操舵されると、コントローラ59は後前輪操舵手段22を介して後前輪13を前輪11と同一方向にかつ前輪11に対する後前輪13の舵角比δr/δfが第1舵角比γ1となるように操舵する。この結果、前軸12のアッカーマンステア角θfと前輪11の操舵角δfとが略同一になり、後前軸14のアッカーマンステア角θrと後前輪13の操舵角δrとが略同一になるので、後前輪13の磨耗を低減することができる。ここで、アッカーマンステア角とは、車両の旋回時にその旋回中心が後後軸17の延長線上にある場合、前軸12及び後後軸17の軸間距離(又は後前軸14及び後後軸17の軸間距離)と後後軸17中心の旋回半径の比を正接とする角度をいう。
【0009】
また中速走行時(車速がV1以上かつV2未満)に前輪11が操舵されると、コントローラ59は後前輪操舵手段22を介して後前輪13を前輪11と同一方向にかつ前輪11に対する後前輪13の舵角比δr/δfが第1舵角比γ1と第2舵角比γ2との間の所定値となるように操舵する。即ち、舵角比δr/δfが車速の増加とともに第1舵角比γ1から第2舵角比γ2に向って次第に小さくなるように、コントローラ59は後前輪13を制御する。この結果、低速走行に近い中速走行時には後前輪13の磨耗を低減することができ、高速走行に近い中速走行時には操縦安定性を向上することができる。
更に高速走行時(車速がV2以上)に前輪11が操舵されると、コントローラ59は後前輪操舵手段22を介して後前輪13を前輪11と同一方向にかつ前輪11に対する後前輪13の舵角比δr/δfが第1舵角より小さい第2舵角比となるように操舵する。この結果、高速走行時の操縦安定性を向上することができる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、トラック10は両端に前輪11が取付けられた前軸12と、両端に後前輪13が取付けられた後前軸14と、両端に後後輪16が取付けられた後後軸17とを備える。この実施の形態では、前輪11及び後前輪13が操舵可能に構成され、かつ後後輪16が操舵不能に構成される。後後軸17にはデファレンシャル18が設けられる(図1〜図3)。エンジンにより発生した駆動力は図示しない変速機及びプロペラシャフトを介してデファレンシャル18に伝達され、後後軸17の駆動軸17a(図3)を介して後後輪16に伝達されるように構成される。また前輪11は前輪操舵手段21により操舵され、後前輪13は後前輪操舵手段22により操舵されるように構成される。
【0011】
前輪操舵手段21は図5に示すように、ステアリングホイール23にステアリングシャフト24を介して連結されたパワーステアリング装置26と、このパワーステアリング装置26にピットマンアーム27及びフロントドラッグリンク28を介して連結されたフロントナックル29とを有する。フロントナックル29には前輪11が回転可能に取付けられる。またパワーステアリング装置26はこの実施の形態ではコントロールバルブ及びパワーシリンダがステアリングギヤと一体的に構成されたインテグラル式のパワーステアリング装置であり、ステアリングホイール23の操舵力を支援する。
【0012】
後前輪操舵手段22は図2〜図4に示すように、後前軸14の両端に一対のリヤキングピン31,31を介してそれぞれ枢着された一対のリヤナックル32,32と、後前軸14より後方に車幅方向に延びて設けられかつ両端が一対のリヤナックル32,32の連結アーム32a,32a(図2)にそれぞれ連結されたリヤタイロッド33と、基端が一方のリヤキングピン31に嵌着されかつ先端が油圧シリンダ34のピストンロッド34aに連結されたナックルアーム32bとを有する。シャシフレーム36の一対のサイドメンバ36a,36aには後前軸14の前方に位置するように第1クロスメンバ36bが架設され、後前軸14と第1クロスメンバ36bとの間に位置するように第2クロスメンバ36cが架設される(図2及び図3)。
【0013】
油圧シリンダ34の基端は第1クロスメンバ36bに枢着され、油圧シリンダ34のピストンロッド34aは後方に向って突出し揺動リンク37の上端に連結される。この揺動リンク37の略中央は第2クロスメンバ36cに枢着される。揺動リンク37の下端にはリヤドラッグリンク38の前端が連結され、リヤドラッグリンク38の後端はナックルアーム32bの先端に連結される(図2及び図3)。リヤキングピン31は後前軸14の端部に回動可能に挿通され、リヤナックル32の基端に回動不能に挿通される(図4)。またリヤナックル32の先端には従動軸39が挿着され、この従動軸39には軸受40を介して後前輪13が回転可能に取付けられる。油圧シリンダ34のピストンロッド34aが伸縮することにより、揺動リンク37、リヤドラッグリンク38、リヤナックル32及びリヤタイロッド33を介して後前輪13が操舵されるように構成される。
【0014】
一方、図5に示すように、パワーステアリング装置26にはエンジンにより駆動される油圧ポンプ41から主供給管42を通って作動油43が供給され、パワーステアリング装置26から排出された作動油43は主戻り管44を通ってオイルタンク46に戻されるように構成される。主供給管42には分流弁47が設けられ、この分流弁47は絞り部47aと分岐ポート47bとを有する。分岐ポート47bは分岐供給管48を介して油圧シリンダ34の第1ポート34bに接続され、油圧シリンダ34の第2ポート34cは分岐戻り管49を介して主戻り管44に接続される。分岐供給管48及び分岐戻り管49には比例バルブ51及びカットオフバルブ52が設けられる。油圧ポンプ41により分流弁47に供給された作動油43は絞り部47aにより一定流量に絞られてパワーステアリング装置26に供給され、上記一定流量を超える作動油43は分岐ポート47bから油圧シリンダ34に供給されるように構成される。
【0015】
比例バルブ51は4ポート3位置切換弁であり、第1ポート51aは分流弁47側の分岐供給管48に接続され、第2ポート51bは油圧シリンダ34側の分岐供給管48に接続される。また第3ポート51cは分流弁47側の分岐戻り管49に接続され、第4ポート51dは油圧シリンダ34側の分岐戻り管49に接続される。このバルブ51は第1及び第2制御部51e,51fにより電磁的及び機械的(ばね)に切換え制御されるように構成される。第1制御部51eをオンし第2制御部51fをオフすると、第1及び第2ポート51a,51bが連通接続され、かつ第3及び第4ポート51c,51dが連通接続される。また第1制御部51eをオフし第2制御部51fをオンすると、第1及び第4ポート51a,51dが連通接続され、かつ第2及び第3ポート51b,51cが連通接続される。更に第1及び第2制御部51e,51fをともにオフすると、各ポート51a〜51dが遮断されるように構成される。
【0016】
カットオフバルブ52は2ポート2位置切換弁であり、第1ポート52aは分岐供給管48に接続され、第2ポート52bは分岐戻り管49に接続される。このバルブ52は制御部52cにより電磁的及び機械的(ばね)に切換え制御されるように構成される。制御部52cをオンすると第1ポート52aと第2ポート52bが連通接続され、制御部52cをオフすると第1ポート52aと第2ポート52bとが遮断されるように構成される。このバルブ52は油圧シリンダ34が失陥した場合にオンするように構成される。なお、図5中の符号53及び54はリリーフ弁である。
【0017】
パワーステアリング装置26にはピットマンアーム27の回転角を検出するフロント舵角センサ56が設けられ、揺動リンク37の近傍にはこの揺動リンク37の回転角を検出するリヤ舵角センサ57が設けられる。図5の符号58はトラックの車速を検出する車速センサである。フロント舵角センサ56、リヤ舵角センサ57及び車速センサ58の各検出出力はコントローラ59の制御入力にそれぞれ接続され、コントローラ59の制御出力は比例バルブ51の第1及び第2制御部51e,51fとカットオフバルブ52の制御部52cにそれぞれ接続される。
【0018】
コントローラ59にはメモリ59aが設けられ、このメモリ59aには前輪11の操舵角をδfとし、後前輪13の操舵角をδrとするときに、車速の変化に対する舵角比δr/δfの変化がマップとして記憶される。即ち、メモリ59aには図6に示すように、車速センサ58が第1所定値V1以上かつ第2所定値V2未満の車速を検出するときに舵角比δr/δfが車速の増加とともに第1舵角比γ1から第2舵角比γ2に向って次第に小さくなり、車速センサ58がゼロより大きい最小値V0以上かつ第1所定値V1未満の車速を検出するときに舵角比δr/δfが車速に拘らず第1舵角比γ1となり、更に車速センサ58が第2所定値V2以上の車速を検出するときに舵角比δr/δfが車速に拘らず第2舵角比γ2となるようなマップが記憶される。
【0019】
図2及び図3に戻って、後前軸14には第1ばね61を介してシャシフレーム36が載置され、後後軸17には第2ばね62を介してシャシフレーム36が載置される。第1及び第2ばね61,62はこの実施の形態では空気ばねである。後前軸14の下面にはシャシフレーム36の一対のサイドメンバ36a,36aと略平行に延びる一対の第1支持具71,71の中央がそれぞれ取付けられる。これらの第1支持具71,71の前端及び後端と一対のサイドメンバ36a,36aとの間には4つの第1ばね61がそれぞれ介装される(図2)。また後後軸17の下面には一対のサイドメンバ36a,36aと略平行に延びる一対の第2支持具72,72の中央がそれぞれ取付けられる。これらの第2支持具72,72の前端及び後端と一対のサイドメンバ36a,36aとの間には4つの第2ばね62がそれぞれ介装される。
【0020】
後前軸14及び後後軸17はトランピング(地たんだ運動)及びワインドアップ等を抑制するために第1及び第2トルクロッド81,82によりシャシフレーム36にそれぞれ連結される(図2及び図3)。第1トルクロッド81は後端が後前軸14の中央上部に枢着され前端が後前軸14より前方のシャシフレーム36にそれぞれ枢着された一対の第1アッパロッド81a,81aと、後端が一対の第1支持具71,71の中央にそれぞれ枢着され前端が後前軸14より前方の第1スタビライザバー91の両端にそれぞれ固着された一対の第1ロアロッド81b,81bとを有する。また第2トルクロッド82は前端が後後軸17の中央上部に枢着され後端が後後軸17より後方のシャシフレーム36にそれぞれ枢着された一対の第2アッパロッド82a,82aと、前端が一対の第2支持具72,72の中央にそれぞれ枢着され後端が後後軸17より後方の第2スタビライザバー92の両端にそれぞれ固着された一対の第2ロアロッド82b,82bとを有する。第1スタビライザバー91は一対のサイドメンバ36a,36aから垂下されたフロントブラケット63(図3)により回動可能に保持され、第2スタビライザバー92は一対のサイドメンバ36a,36aから垂下されたリヤブラケット64(図3)により回動可能に保持される。
【0021】
このように構成された後前輪操舵制御装置の動作を説明する。
トラック10の走行中に左旋回するために運転者がステアリングホイール23を左(図5の実線矢印で示す方向)に回すと、ピットマンアーム27がパワーステアリング装置26の支援を受けて一点鎖線矢印で示す方向に回転するので、前輪11はステアリングホイール23の回転角に応じた角度だけ左向き(破線矢印で示す方向)に操舵される。一方、車速がゼロでなく最低値V0(例えば、V0=1km/時)以上かつ第1所定値V1(例えば、V1=40km/時)未満の低速走行であることを車速センサ58が検出し、ピットマンアーム27が一点鎖線矢印の方向に所定の角度だけ回転したことをフロント舵角センサ56が検出すると、コントローラ59はこれらセンサ58,56の各検出出力に基づいて比例バルブ51の第2制御部51fをオンする。
【0022】
これにより比例バルブ51の第1及び第4ポート51a,51dが連通接続し、かつ第2及び第3ポート51b,51cが連通接続するので、油圧シリンダ34の第2ポート34cから油圧シリンダ34の反ロッド側室(図示せず)に作動油43が供給され、油圧シリンダ34の第1ポート34bから油圧シリンダ34のロッド側室(図示せず)の作動油43が排出される。これによりピストンロッド34aが図5の実線で示す方向に突出し、揺動リンク37を介してリヤドラッグリンク38が一点鎖線矢印で示す方向に移動するので、後前輪13は前輪11と同一方向、即ち破線矢印で示す方向に回転する。揺動リンク37の回転角はコントローラ59の制御入力にフィードバックされ、前輪11に対する後前輪13の舵角比δr/δfが第1舵角比γ1(例えば、γ1=0.29)となったときに、比例バルブ51の第2制御部51fをオフして油圧シリンダ34への作動油43の供給を停止する。この結果、前軸12のアッカーマンステア角θfと前輪11の操舵角δfとが略同一になり、後前軸14のアッカーマンステア角θrと後前輪13の操舵角δrとが略同一になるので(図1)、後前輪13の磨耗を低減することができる。
【0023】
またトラック10が左旋回から直進に移行するために、運転者がステアリングホイール23を戻すと、ピットマンアーム27が上記とは逆の方向に回転し、前輪11が直進方向に向く。このときコントローラ59は車速センサ58及びフロント舵角センサ56の各検出出力に基づいて比例バルブ51の第1制御部51eをオンする。これにより比例バルブ51の第1及び第2ポート51a,51bが連通接続し、かつ第3及び第4ポート51c,51dが連通接続するので、油圧シリンダ34の第1ポート34bから油圧シリンダ34のロッド側室に作動油43が供給され、油圧シリンダ34の第2ポート34cから油圧シリンダ34の反ロッド側室の作動油43が排出される。この結果、ピストンロッド34aが引込むので、後前輪13は上記とは逆の方向に回転し、直進方向に向いたときに、コントローラ59が比例バルブ51の第1制御部51eをオフして油圧シリンダ34への作動油43の供給を停止する。
【0024】
また、ステアリングホイール23を右に回したときには、上記とは逆の動作となる。なお、トラック10が停止している場合には、車速がゼロであることを車速センサ58が検出するので、ステアリングホイール23を回しても、コントローラ59は上記センサ58の検出出力に基づいて比例バルブ51の第1及び第2制御部51e,51fをオフの状態に保つ、即ち後前輪13を操舵しない。これはトラック10が停止した状態で後前輪13を操舵するには極めて大きな力を必要とし、比較的小型の油圧シリンダ34では操舵できないためである。
【0025】
車速が第1所定値V1(例えば、V1=40km/時)以上かつ第2所定値V2(例えば、V2=120km/時)未満の中速走行であることを車速センサ58が検出し、ピットマンアーム27が一点鎖線矢印の方向に所定の角度だけ回転したことをフロント舵角センサ56が検出すると、コントローラ59はこれらセンサ58,56の各検出出力に基づいて比例バルブ51の第2制御部51fをオンして、ピストンロッド34aを図5の実線で示す方向に突出させ、後前輪13を前輪11と同一方向、即ち破線矢印で示す方向に回転させる。揺動リンク37の回転角はコントローラ59の制御入力にフィードバックされ、前輪11に対する後前輪13の舵角比δr/δfが第1舵角比γ1(例えば、γ1=0.29)と第2舵角比γ2(例えば、γ2=0.14)の間の所定値になったときに、比例バルブ51の第2制御部51fをオフして油圧シリンダ34への作動油43の供給を停止する。車速がV1からV2の範囲では、舵角比δr/δfが車速の増加とともに第1舵角比γ1から第2舵角比γ2に向って次第に小さくなるように、コントローラ59は後前輪13を制御するので(図6)、低速走行に近い中速走行時には後前輪13の磨耗を低減することができ、高速走行に近い中速走行時にはトラック10の操縦安定性を向上することができる。
【0026】
車速が第2所定値V2(例えば、V2=120km/時)以上の高速走行であることを車速センサ58が検出し、ピットマンアーム27が一点鎖線矢印の方向に所定の角度だけ回転したことをフロント舵角センサ56が検出すると、コントローラ59はこれらセンサ58,56の各検出出力に基づいて比例バルブ51の第2制御部51fをオンして、ピストンロッド34aを図5の実線で示す方向に突出させ、後前輪13を前輪11と同一方向、即ち破線矢印で示す方向に回転させる。揺動リンク37の回転角はコントローラ59の制御入力にフィードバックされ、前輪11に対する後前輪13の舵角比δr/δfが第2舵角比γ2(例えば、γ2=0.14)となったときに、比例バルブ51の第2制御部51fをオフして油圧シリンダ34への作動油43の供給を停止する。この結果、トラック10の高速走行時の操縦安定性を向上することができる。
なお、この実施の形態で挙げた車速及び舵角比の数値は一例であって、これらの数値に限定されるものではない。
【0027】
【発明の効果】
以上述べたように、本発明によれば、車速センサが第1所定値以上かつ第2所定値未満の車速を検出すると、コントローラが前輪に対する後前輪の舵角比が車速の増加とともに第1舵角比から第2舵角比に向って次第に小さくなるように後前輪操舵手段を制御し、車速センサがゼロより大きくかつ第1所定値未満の車速を検出すると、コントローラが第1舵角比となるように後前輪操舵手段を制御し、更に車速センサが第2所定値以上の車速を検出すると、コントローラが第2舵角比となるように後前輪操舵手段を制御するように構成したので、低速走行時に前輪が操舵されると、コントローラは後前輪操舵手段を介して後前輪を前輪と同一方向にかつ前輪に対する後前輪の舵角比が第1舵角比となるように操舵する。この結果、前軸のアッカーマンステア角と前輪の操舵角とが略同一になり、後前軸のアッカーマンステア角と後前輪の操舵角とが略同一になるので、後前輪の磨耗を低減することができる。
【0028】
また中速走行時に前輪が操舵されると、コントローラは後前輪操舵手段を介して後前輪を前輪と同一方向にかつ前輪に対する後前輪の舵角比が第1舵角比と第2舵角比との間の所定値となるように操舵する。即ち、舵角比が車速の増加とともに第1舵角比から第2舵角比に向って次第に小さくなるように、コントローラは後前輪を制御する。この結果、低速走行に近い中速走行時には後前輪の磨耗を低減することができ、高速走行に近い中速走行時には操縦安定性を向上することができる。
更に高速走行時に前輪が操舵されると、コントローラは後前輪操舵手段を介して後前輪を前輪と同一方向にかつ前輪に対する後前輪の舵角比が第1舵角より小さい第2舵角比となるように操舵する。この結果、高速走行時の操縦安定性を向上することができる。
【図面の簡単な説明】
【図1】本発明実施形態の後前輪操舵制御装置を備えたトラックの平面構成図。
【図2】図3のA矢視図。
【図3】図2のB−B線断面図。
【図4】図2のC−C線断面図。
【図5】その装置の制御回路構成図。
【図6】車速の変化に対する舵角比δr/δfの変化を示す図。
【符号の説明】
11 前輪
13 後前輪
21 前輪操舵手段
22 後前輪操舵手段
56 フロント舵角センサ
58 車速センサ
59 コントローラ
δf 前輪の操舵角
δr 後前輪の操舵角
1 車速の第1所定値
2 車速の第2所定値
γ1 第1舵角比
γ2 第2舵角比
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for controlling steering of a rear front wheel of a rear biaxial vehicle having a rear front axle and a rear rear axle such as a truck.
[0002]
[Prior art]
Conventionally, as this type of device, the rear wheel rudder angle corresponding to the steering angle is controlled by the electric / hydraulic control circuit in relation to the vehicle speed, and the electric / hydraulic control circuit adjusts the rudder angle ratio of the rear wheel to the front wheel at low speed. A steering angle ratio control device is disclosed which is configured to be large and to reduce the steering angle ratio as the vehicle speed increases, and to make the steering angle ratio zero at a predetermined vehicle speed or higher (Japanese Patent Laid-Open No. 2-12481). No.) [hereinafter referred to as the first conventional example]. In this device, the rotation of the input shaft interlocked with the output shaft of the front wheel steering mechanism is transmitted to the differential control valve in relation to the vehicle speed by the steering angle ratio control mechanism, and this differential control valve transmits the rotation to the rear wheel steering actuator. The hydraulic circuit is controlled. The rear wheels are steered by a rear wheel steering actuator, and the characteristics of the steering angle ratio control mechanism are controlled by an electric / hydraulic control circuit. The rudder angle ratio control mechanism is formed on a projecting piece provided on the input shaft and rotating in accordance with a handle turning angle, and a notch member provided on a driving shaft tip of the differential control valve. And a notch that engages with a gap in the direction.
[0003]
In the steering angle ratio control apparatus configured as described above, the electric / hydraulic control circuit adjusts the size of the gap between the projecting piece and the notch in relation to the vehicle speed, that is, until the rotation of the steering wheel is transmitted to the drive shaft. Since the width of the dead zone (play) from the neutral position is controlled in relation to the vehicle speed, the steering angle ratio of the rear wheel steering angle to the front wheel steering angle gradually decreases as the vehicle speed increases. As a result, in low-speed traveling, the rear wheels are steered relatively large in the opposite phase to the front wheels, and a small turning performance is exhibited. In medium speed driving, the rear wheels are hardly steered in the range of the normal steering angle, and in high speed driving, the projecting pieces are not engaged with the notches, and the rear wheels are not steered at all, improving straight running performance. It is supposed to be.
[0004]
On the other hand, the applicant makes it possible to steer the rear front wheels in phase with the front wheel steering, and in the range where the steering angle of the front wheels is small, the steering angle of the rear front wheels is controlled to be larger than the steering angle of the front wheels. A utility model registration application was filed for a steering device for a rear front axle wheel in a rear two-axle vehicle configured to control the steering angle of the rear front wheel to be less than the steering angle of the front wheel in a large angle range (No. 6-21818) ) [Hereinafter referred to as second conventional example]. In this steering device, the pitman arm of the front wheel steering device is connected to the front wheel knuckle arm via a drag link, and the drag link is connected to the rear wheel knuckle arm via a relay rod. The rear wheel knuckle arm is provided with a long groove, and the relay rod is slidably connected to the long groove through a pin. The long groove has a first guide groove for controlling the rear front wheel with a larger steering angle than the front wheel, and a pair of first grooves for controlling the rear front wheel with a smaller steering angle than the front wheel. 2 guide grooves, and a pair of inclined intermediate grooves that connect the first guide grooves and the second guide grooves.
[0005]
In the steering apparatus configured as described above, the lever ratio of the lever length of the rear wheel knuckle arm to the lever length of the front wheel knuckle arm is changed depending on the magnitude of the steering angle of the front wheel. As a result, when the vehicle is traveling at a high speed with a small steering angle, the steering stability can be improved by setting the rear front wheel in the same phase as the front wheel and a larger steering angle than the front wheel steering angle. Further, when the vehicle is traveling at a low speed with a large steering angle, the rear front wheel can be smoothly turned by setting the rear front wheel in the same phase as the front wheel and having a smaller steering angle than the front wheel steering angle.
[0006]
[Problems to be solved by the invention]
However, the first conventional example is applied to the second conventional example, that is, in a rear biaxial vehicle, the steering angle ratio of the rear front wheel to the front wheel is increased at low speeds, and the steering angle ratio is decreased as the vehicle speed increases. Furthermore, when the steering angle ratio is set to zero at a predetermined vehicle speed or higher, the rear wheels are steered even when the vehicle speed is zero, so there is a problem that the actuator for steering the rear front wheels must be enlarged. It was.
Further, in the rear two-axle vehicle, when the steering angle ratio is set to zero (the steering angle of the rear front wheel is zero) at a predetermined vehicle speed or higher, there is a problem that steering stability is lowered.
It is an object of the present invention to be able to steer a rear front wheel by using a relatively small actuator for steering a rear front wheel, reduce wear of the rear front wheel during low speed running, and further improve steering stability during high speed running. An object of the present invention is to provide a rear front wheel steering control device for a rear two-axis vehicle.
[0007]
[Means for Solving the Problems]
As shown in FIGS. 1, 5 and 6, the invention according to claim 1 is a front wheel steering means 21 for steering the front wheels 11, a rear front wheel steering means 22 for steering the rear front wheels 13, and a steering angle of the front wheels 11. δ f The front steering angle sensor 56 for detecting the vehicle speed, the vehicle speed sensor 58 for detecting the vehicle speed, and the rear front wheel 13 are steered in the same direction as the front wheels 11 based on the detection outputs of the front steering angle sensor 56 and the vehicle speed sensor 58. A rear front wheel steering control device including a controller 59 for controlling the front wheel steering means 22, wherein the vehicle speed sensor 58 has a first predetermined value V 1 And the second predetermined value V 2 The steering angle δ of the front wheels 11 when detecting a vehicle speed less than f The steering angle δ of the rear front wheel 13 with respect to r Rudder angle ratio δ r / Δ f As the vehicle speed increases, the first steering angle ratio γ 1 To second steering angle ratio γ 2 The controller 59 controls the rear front wheel steering means 22 so that the vehicle speed sensor 58 is greater than zero and the first predetermined value V 1 Rudder angle ratio δ when detecting vehicle speed below r / Δ f 1st steering angle ratio γ regardless of vehicle speed 1 The controller 59 controls the rear front wheel steering means 22 so that the vehicle speed sensor 58 becomes the second predetermined value V. 2 When the above vehicle speed is detected, the steering angle ratio δ r / Δ f 2nd steering angle ratio γ regardless of vehicle speed 2 The rear front wheel steering control device of the rear biaxial vehicle is characterized in that the controller 59 is configured to control the rear front wheel steering means 22 so that
[0008]
In the rear front wheel steering control device of the rear biaxial vehicle described in claim 1, during low speed traveling (the vehicle speed is greater than zero and V 1 When the front wheel 11 is steered, the controller 59 causes the rear front wheel 13 to move in the same direction as the front wheel 11 and the steering angle ratio δ of the rear front wheel 13 to the front wheel 11 via the rear front wheel steering means 22. r / Δ f Is the first steering angle ratio γ 1 Steer so that As a result, the Ackermann steer angle θ of the front shaft 12 f And the steering angle δ of the front wheel 11 f Are substantially the same, and the Ackermann steer angle θ of the rear front shaft 14 r And the steering angle δ of the rear front wheel 13 r Since they are substantially the same, wear of the rear front wheel 13 can be reduced. Here, the Ackermann steer angle is the distance between the front shaft 12 and the rear rear shaft 17 (or the rear front shaft 14 and the rear rear shaft when the turning center is on the extension line of the rear rear shaft 17 when the vehicle turns. 17 is the angle at which the ratio of the turning radius at the center of the rear rear shaft 17 is tangent.
[0009]
When driving at medium speed (Vehicle speed is V 1 And V 2 When the front wheel 11 is steered, the controller 59 causes the rear front wheel 13 to move in the same direction as the front wheel 11 and the steering angle ratio δ of the rear front wheel 13 to the front wheel 11 via the rear front wheel steering means 22. r / Δ f Is the first steering angle ratio γ 1 And second steering angle ratio γ 2 Is steered to a predetermined value between That is, the steering angle ratio δ r / Δ f As the vehicle speed increases, the first steering angle ratio γ 1 To second steering angle ratio γ 2 The controller 59 controls the rear front wheel 13 so as to gradually decrease toward the front. As a result, the wear of the rear front wheel 13 can be reduced during medium speed running close to low speed running, and the steering stability can be improved during medium speed running close to high speed running.
Furthermore, when driving at high speed (Vehicle speed is V 2 When the front wheel 11 is steered in the above manner, the controller 59 causes the rear front wheel 13 to move in the same direction as the front wheel 11 via the rear front wheel steering means 22 and the steering angle ratio δ of the rear front wheel 13 to the front wheel 11. r / Δ f Is steered so that the second steering angle ratio is smaller than the first steering angle. As a result, it is possible to improve steering stability during high-speed traveling.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the truck 10 has a front shaft 12 with front wheels 11 attached to both ends, a rear front shaft 14 with rear front wheels 13 attached to both ends, and a rear rear wheel 16 attached to both ends. A shaft 17. In this embodiment, the front wheel 11 and the rear front wheel 13 are configured to be steerable, and the rear rear wheel 16 is configured to be unsteerable. The rear rear shaft 17 is provided with a differential 18 (FIGS. 1 to 3). The driving force generated by the engine is transmitted to the differential 18 via a transmission and a propeller shaft (not shown), and is transmitted to the rear rear wheel 16 via the drive shaft 17a (FIG. 3) of the rear rear shaft 17. The The front wheels 11 are steered by the front wheel steering means 21, and the rear front wheels 13 are steered by the rear front wheel steering means 22.
[0011]
As shown in FIG. 5, the front wheel steering means 21 is connected to a steering wheel 23 via a steering shaft 24, and is connected to the power steering device 26 via a pitman arm 27 and a front drag link 28. And a front knuckle 29. A front wheel 11 is rotatably attached to the front knuckle 29. In this embodiment, the power steering device 26 is an integral type power steering device in which a control valve and a power cylinder are integrally formed with the steering gear, and supports the steering force of the steering wheel 23.
[0012]
2 to 4, the rear front wheel steering means 22 includes a pair of rear knuckles 32, 32 pivotally attached to both ends of the rear front shaft 14 via a pair of rear king pins 31, 31, respectively. 14, a rear tie rod 33 provided extending in the vehicle width direction and having both ends connected to connecting arms 32a, 32a (FIG. 2) of a pair of rear knuckles 32, 32, and a rear king pin 31 having a base end. And a knuckle arm 32b whose tip is connected to the piston rod 34a of the hydraulic cylinder 34. A first cross member 36b is installed on the pair of side members 36a, 36a of the chassis frame 36 so as to be positioned in front of the rear front shaft 14, and is positioned between the rear front shaft 14 and the first cross member 36b. The second cross member 36c is installed on the top (FIGS. 2 and 3).
[0013]
The base end of the hydraulic cylinder 34 is pivotally attached to the first cross member 36 b, and the piston rod 34 a of the hydraulic cylinder 34 projects rearward and is connected to the upper end of the swing link 37. The substantially center of the swing link 37 is pivotally attached to the second cross member 36c. The front end of the rear drag link 38 is connected to the lower end of the swing link 37, and the rear end of the rear drag link 38 is connected to the tip of the knuckle arm 32b (FIGS. 2 and 3). The rear king pin 31 is rotatably inserted into the end portion of the rear front shaft 14, and is inserted through the base end of the rear knuckle 32 so as not to rotate (FIG. 4). A driven shaft 39 is inserted into the tip of the rear knuckle 32, and the rear front wheel 13 is rotatably attached to the driven shaft 39 via a bearing 40. When the piston rod 34 a of the hydraulic cylinder 34 extends and contracts, the rear front wheel 13 is steered via the swing link 37, the rear drag link 38, the rear knuckle 32 and the rear tie rod 33.
[0014]
On the other hand, as shown in FIG. 5, hydraulic oil 43 is supplied to the power steering device 26 from the hydraulic pump 41 driven by the engine through the main supply pipe 42, and the hydraulic oil 43 discharged from the power steering device 26 is It is configured to return to the oil tank 46 through the main return pipe 44. The main supply pipe 42 is provided with a diversion valve 47, and the diversion valve 47 has a throttle portion 47a and a branch port 47b. The branch port 47 b is connected to the first port 34 b of the hydraulic cylinder 34 via the branch supply pipe 48, and the second port 34 c of the hydraulic cylinder 34 is connected to the main return pipe 44 via the branch return pipe 49. The branch supply pipe 48 and the branch return pipe 49 are provided with a proportional valve 51 and a cutoff valve 52. The hydraulic oil 43 supplied to the diverter valve 47 by the hydraulic pump 41 is throttled to a constant flow rate by the throttle portion 47a and supplied to the power steering device 26. The hydraulic oil 43 that exceeds the constant flow rate is supplied from the branch port 47b to the hydraulic cylinder 34. Configured to be supplied.
[0015]
The proportional valve 51 is a 4-port 3-position switching valve, the first port 51a is connected to the branch supply pipe 48 on the diversion valve 47 side, and the second port 51b is connected to the branch supply pipe 48 on the hydraulic cylinder 34 side. The third port 51c is connected to the branch return pipe 49 on the diversion valve 47 side, and the fourth port 51d is connected to the branch return pipe 49 on the hydraulic cylinder 34 side. The valve 51 is configured to be switched and controlled electromagnetically and mechanically (spring) by the first and second controllers 51e and 51f. When the first controller 51e is turned on and the second controller 51f is turned off, the first and second ports 51a and 51b are connected in communication, and the third and fourth ports 51c and 51d are connected in communication. When the first control unit 51e is turned off and the second control unit 51f is turned on, the first and fourth ports 51a and 51d are connected in communication, and the second and third ports 51b and 51c are connected in communication. Further, when both the first and second control units 51e and 51f are turned off, the respective ports 51a to 51d are blocked.
[0016]
The cutoff valve 52 is a 2-port 2-position switching valve, the first port 52 a is connected to the branch supply pipe 48, and the second port 52 b is connected to the branch return pipe 49. The valve 52 is configured to be switched and controlled electromagnetically and mechanically (spring) by the controller 52c. When the control unit 52c is turned on, the first port 52a and the second port 52b are connected in communication, and when the control unit 52c is turned off, the first port 52a and the second port 52b are blocked. The valve 52 is configured to be turned on when the hydraulic cylinder 34 fails. In addition, the code | symbols 53 and 54 in FIG. 5 are relief valves.
[0017]
The power steering device 26 is provided with a front rudder angle sensor 56 for detecting the rotation angle of the pitman arm 27, and a rear rudder angle sensor 57 for detecting the rotation angle of the swing link 37 is provided in the vicinity of the swing link 37. It is done. Reference numeral 58 in FIG. 5 is a vehicle speed sensor that detects the vehicle speed of the truck. The detection outputs of the front rudder angle sensor 56, the rear rudder angle sensor 57, and the vehicle speed sensor 58 are respectively connected to the control input of the controller 59, and the control output of the controller 59 is the first and second control parts 51e, 51f of the proportional valve 51. Are connected to the control unit 52c of the cut-off valve 52, respectively.
[0018]
The controller 59 is provided with a memory 59a, in which the steering angle of the front wheels 11 is set to δ. f And the steering angle of the rear front wheel 13 is δ r The steering angle ratio δ against changes in vehicle speed r / Δ f Changes are stored as a map. That is, as shown in FIG. 6, the vehicle speed sensor 58 stores the first predetermined value V in the memory 59 a. 1 And the second predetermined value V 2 Rudder angle ratio δ when detecting vehicle speed below r / Δ f As the vehicle speed increases, the first steering angle ratio γ 1 To second steering angle ratio γ 2 The minimum value V of the vehicle speed sensor 58 is greater than zero. 0 And the first predetermined value V 1 Rudder angle ratio δ when detecting vehicle speed below r / Δ f 1st steering angle ratio γ regardless of vehicle speed 1 Further, the vehicle speed sensor 58 is set to the second predetermined value V. 2 When the above vehicle speed is detected, the steering angle ratio δ r / Δ f 2nd steering angle ratio γ regardless of vehicle speed 2 Such a map is stored.
[0019]
2 and 3, the chassis frame 36 is placed on the rear front shaft 14 via the first spring 61, and the chassis frame 36 is placed on the rear rear shaft 17 via the second spring 62. The The first and second springs 61 and 62 are air springs in this embodiment. At the lower surface of the rear front shaft 14, the centers of a pair of first support members 71, 71 extending substantially parallel to the pair of side members 36a, 36a of the chassis frame 36 are respectively attached. Four first springs 61 are respectively interposed between the front and rear ends of the first support members 71 and 71 and the pair of side members 36a and 36a (FIG. 2). The center of a pair of second support members 72, 72 extending substantially parallel to the pair of side members 36a, 36a is attached to the lower surface of the rear rear shaft 17, respectively. Four second springs 62 are interposed between the front and rear ends of the second support members 72 and 72 and the pair of side members 36a and 36a, respectively.
[0020]
The rear front shaft 14 and the rear rear shaft 17 are coupled to the chassis frame 36 by first and second torque rods 81 and 82, respectively, in order to suppress trumping (ground movement), windup, and the like (see FIGS. 2 and 2). FIG. 3). The first torque rod 81 has a pair of first upper rods 81a and 81a each having a rear end pivotally attached to the upper center of the rear front shaft 14 and a front end pivotally attached to the chassis frame 36 ahead of the rear front shaft 14. Has a pair of first lower rods 81b, 81b which are pivotally attached to the center of the pair of first support members 71, 71 and whose front ends are respectively fixed to both ends of the first stabilizer bar 91 ahead of the rear front shaft 14. The second torque rod 82 has a pair of second upper rods 82a and 82a, the front end of which is pivotally attached to the upper center of the rear rear shaft 17 and the rear end of which is pivotally attached to the chassis frame 36 behind the rear rear shaft 17, respectively. Has a pair of second lower rods 82b and 82b which are pivotally attached to the center of the pair of second support members 72 and 72, respectively, and whose rear ends are respectively fixed to both ends of the second stabilizer bar 92 behind the rear rear shaft 17. . The first stabilizer bar 91 is rotatably held by a front bracket 63 (FIG. 3) suspended from a pair of side members 36a, 36a, and the second stabilizer bar 92 is a rear suspended from the pair of side members 36a, 36a. The bracket 64 (FIG. 3) is rotatably held.
[0021]
The operation of the rear front wheel steering control device configured as described above will be described.
When the driver turns the steering wheel 23 to the left (in the direction indicated by the solid line arrow in FIG. 5) in order to make a left turn while the truck 10 is traveling, the pitman arm 27 is supported by the power steering device 26 with a one-dot chain line arrow. Since the vehicle rotates in the direction shown, the front wheel 11 is steered leftward (in the direction indicated by the dashed arrow) by an angle corresponding to the rotation angle of the steering wheel 23. On the other hand, the vehicle speed is not zero but the minimum value V 0 (For example, V 0 = 1 km / hour) or more and the first predetermined value V 1 (For example, V 1 When the vehicle speed sensor 58 detects that the vehicle is traveling at a low speed of less than 40 km / hour, and the front steering angle sensor 56 detects that the pitman arm 27 has been rotated by a predetermined angle in the direction of the dashed line arrow, the controller 59 Based on the detection outputs of these sensors 58 and 56, the second control unit 51f of the proportional valve 51 is turned on.
[0022]
As a result, the first and fourth ports 51a and 51d of the proportional valve 51 are connected in communication, and the second and third ports 51b and 51c are connected in communication, so that the hydraulic cylinder 34 is counteracted from the second port 34c. The hydraulic oil 43 is supplied to the rod side chamber (not shown), and the hydraulic oil 43 in the rod side chamber (not shown) of the hydraulic cylinder 34 is discharged from the first port 34 b of the hydraulic cylinder 34. As a result, the piston rod 34a protrudes in the direction indicated by the solid line in FIG. 5, and the rear drag link 38 moves in the direction indicated by the one-dot chain line arrow via the swing link 37, so that the rear front wheel 13 is in the same direction as the front wheel 11, Rotate in the direction indicated by the dashed arrow. The rotation angle of the swing link 37 is fed back to the control input of the controller 59, and the steering angle ratio δ of the rear front wheel 13 with respect to the front wheel 11. r / Δ f Is the first steering angle ratio γ 1 (For example, γ 1 = 0.29), the second control unit 51f of the proportional valve 51 is turned off, and the supply of the hydraulic oil 43 to the hydraulic cylinder 34 is stopped. As a result, the Ackermann steer angle θ of the front shaft 12 f And the steering angle δ of the front wheel 11 f Are substantially the same, and the Ackermann steer angle θ of the rear front shaft 14 r And the steering angle δ of the rear front wheel 13 r Since they are substantially the same (FIG. 1), the wear of the rear front wheel 13 can be reduced.
[0023]
Further, when the driver returns the steering wheel 23 in order for the truck 10 to shift from a left turn to a straight drive, the pitman arm 27 rotates in a direction opposite to the above, and the front wheels 11 face the straight drive direction. At this time, the controller 59 turns on the first controller 51 e of the proportional valve 51 based on the detection outputs of the vehicle speed sensor 58 and the front rudder angle sensor 56. As a result, the first and second ports 51a and 51b of the proportional valve 51 are connected in communication and the third and fourth ports 51c and 51d are connected in communication, so that the rod of the hydraulic cylinder 34 is connected from the first port 34b of the hydraulic cylinder 34. The hydraulic oil 43 is supplied to the side chamber, and the hydraulic oil 43 in the non-rod side chamber of the hydraulic cylinder 34 is discharged from the second port 34 c of the hydraulic cylinder 34. As a result, the piston rod 34a is retracted, so that the rear front wheel 13 rotates in the direction opposite to the above, and the controller 59 turns off the first control unit 51e of the proportional valve 51 when it moves in the straight direction. The supply of the hydraulic oil 43 to 34 is stopped.
[0024]
Further, when the steering wheel 23 is turned to the right, the operation is the reverse of the above. When the truck 10 is stopped, the vehicle speed sensor 58 detects that the vehicle speed is zero. Therefore, even if the steering wheel 23 is rotated, the controller 59 is based on the detection output of the sensor 58. The first and second control units 51e and 51f of 51 are kept off, that is, the rear front wheel 13 is not steered. This is because an extremely large force is required to steer the rear front wheel 13 with the truck 10 stopped, and the steering cannot be performed with the relatively small hydraulic cylinder 34.
[0025]
The vehicle speed is the first predetermined value V 1 (For example, V 1 = 40 km / hr) or more and the second predetermined value V 2 (For example, V 2 When the vehicle speed sensor 58 detects that the vehicle is traveling at a medium speed less than 120 km / hour) and the front rudder angle sensor 56 detects that the pitman arm 27 has been rotated by a predetermined angle in the direction of the dashed line arrow, the controller 59 Turns on the second control portion 51f of the proportional valve 51 based on the detection outputs of these sensors 58 and 56, and causes the piston rod 34a to protrude in the direction indicated by the solid line in FIG. 5 so that the rear front wheel 13 is the same as the front wheel 11. Rotate in the direction, that is, the direction indicated by the dashed arrow. The rotation angle of the swing link 37 is fed back to the control input of the controller 59, and the steering angle ratio δ of the rear front wheel 13 with respect to the front wheel 11. r / Δ f Is the first steering angle ratio γ 1 (For example, γ 1 = 0.29) and the second steering angle ratio γ 2 (For example, γ 2 = 0.14), the second control unit 51f of the proportional valve 51 is turned off to stop the supply of the hydraulic oil 43 to the hydraulic cylinder 34. Vehicle speed is V 1 To V 2 In the range of rudder angle ratio δ r / Δ f As the vehicle speed increases, the first steering angle ratio γ 1 To second steering angle ratio γ 2 Since the controller 59 controls the rear front wheel 13 so as to gradually become smaller toward the vehicle (FIG. 6), the wear of the rear front wheel 13 can be reduced during medium speed running close to low speed running, and the medium speed close to high speed running. When traveling, the handling stability of the truck 10 can be improved.
[0026]
The vehicle speed is the second predetermined value V 2 (For example, V 2 = 120 km / hour) When the vehicle speed sensor 58 detects that the vehicle is traveling at a high speed, and the front rudder angle sensor 56 detects that the pitman arm 27 has been rotated by a predetermined angle in the direction of the dashed line arrow, the controller 59 Based on the detection outputs of these sensors 58 and 56, the second control portion 51f of the proportional valve 51 is turned on, the piston rod 34a is projected in the direction shown by the solid line in FIG. 5, and the rear front wheel 13 is in the same direction as the front wheel 11. That is, it is rotated in the direction indicated by the broken line arrow. The rotation angle of the swing link 37 is fed back to the control input of the controller 59, and the steering angle ratio δ of the rear front wheel 13 with respect to the front wheel 11. r / Δ f Is the second steering angle ratio γ 2 (For example, γ 2 = 0.14), the second control unit 51f of the proportional valve 51 is turned off, and the supply of the hydraulic oil 43 to the hydraulic cylinder 34 is stopped. As a result, it is possible to improve the steering stability when the truck 10 travels at a high speed.
In addition, the numerical values of the vehicle speed and the steering angle ratio given in this embodiment are merely examples, and are not limited to these numerical values.
[0027]
【The invention's effect】
As described above, according to the present invention, when the vehicle speed sensor detects a vehicle speed that is greater than or equal to the first predetermined value and less than the second predetermined value, the controller determines that the rudder angle ratio of the rear front wheel to the front wheel increases as the vehicle speed increases. When the rear front wheel steering means is controlled so as to gradually decrease from the angle ratio toward the second steering angle ratio and the vehicle speed sensor detects a vehicle speed greater than zero and less than the first predetermined value, the controller detects the first steering angle ratio. Since the rear front wheel steering means is controlled so that the controller further controls the rear front wheel steering means so that the second steering angle ratio is obtained when the vehicle speed sensor detects a vehicle speed greater than or equal to the second predetermined value, When the front wheels are steered during low speed travel, the controller steers the rear front wheels in the same direction as the front wheels via the rear front wheel steering means so that the steering angle ratio of the rear front wheels to the front wheels becomes the first steering angle ratio. As a result, the front shaft Ackermann steer angle and the front wheel steering angle are substantially the same, and the rear front shaft Ackerman steer angle and the rear front wheel steering angle are substantially the same, reducing the wear of the rear front wheels. Can do.
[0028]
When the front wheels are steered during medium speed traveling, the controller uses the rear front wheel steering means to make the rear front wheels in the same direction as the front wheels and the steering angle ratio of the rear front wheels to the front wheels is the first steering angle ratio and the second steering angle ratio. Is steered to a predetermined value between That is, the controller controls the rear front wheels so that the steering angle ratio gradually decreases from the first steering angle ratio toward the second steering angle ratio as the vehicle speed increases. As a result, it is possible to reduce the wear of the rear front wheels during medium speed traveling close to low speed traveling, and to improve steering stability during medium speed traveling close to high speed traveling.
Further, when the front wheels are steered during high speed traveling, the controller uses the rear front wheel steering means to set the rear front wheels in the same direction as the front wheels and the second steering angle ratio with the steering angle ratio of the rear front wheels to the front wheels being smaller than the first steering angle. Steer to be. As a result, it is possible to improve steering stability during high-speed traveling.
[Brief description of the drawings]
FIG. 1 is a plan configuration diagram of a truck provided with a rear front wheel steering control device according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrow A in FIG.
3 is a cross-sectional view taken along line BB in FIG.
4 is a cross-sectional view taken along the line CC in FIG. 2;
FIG. 5 is a configuration diagram of a control circuit of the apparatus.
FIG. 6 is a steering angle ratio δ with respect to a change in vehicle speed. r / Δ f FIG.
[Explanation of symbols]
11 Front wheels
13 Rear front wheel
21 Front wheel steering means
22 Rear front wheel steering means
56 Front rudder angle sensor
58 Vehicle speed sensor
59 Controller
δ f Front wheel steering angle
δ r Rear front wheel steering angle
V 1 First predetermined value of vehicle speed
V 2 Second predetermined value of vehicle speed
γ 1 1st rudder angle ratio
γ 2 Second steering angle ratio

Claims (1)

前輪(11)を操舵する前輪操舵手段(21)と、後前輪(13)を操舵する後前輪操舵手段(22)と、前記前輪(11)の操舵角(δf)を検出するフロント舵角センサ(56)と、車速を検出する車速センサ(58)と、前記フロント舵角センサ(56)及び前記車速センサ(58)の各検出出力に基づいて前記後前輪(13)を前記前輪(11)と同一方向に操舵するように前記後前輪操舵手段(22)を制御するコントローラ(59)とを備えた後2軸車両の後前輪操舵制御装置であって、
前記車速センサ(58)が第1所定値(V1)以上かつ第2所定値(V2)未満の車速を検出するときに前記前輪(11)の操舵角(δf)に対する前記後前輪(13)の操舵角(δr)の舵角比(δrf)が車速の増加とともに第1舵角比(γ1)から第2舵角比(γ2)に向って次第に小さくなるように前記コントローラ(59)が前記後前輪操舵手段(22)を制御し、
前記車速センサ(58)がゼロより大きくかつ前記第1所定値(V1)未満の車速を検出するときに前記舵角比(δrf)が車速に拘らず前記第1舵角比(γ1)となるように前記コントローラ(59)が前記後前輪操舵手段(22)を制御し、
前記車速センサ(58)が前記第2所定値(V2)以上の車速を検出するときに前記舵角比(δrf)が車速に拘らず前記第2舵角比(γ2)となるように前記コントローラ(59)が前記後前輪操舵手段(22)を制御するように構成された
ことを特徴とする後2軸車両の後前輪操舵制御装置。
Front steering means (21) for steering the front wheels (11), rear front wheel steering means (22) for steering the rear front wheels (13), and a front steering angle for detecting the steering angle (δ f ) of the front wheels (11) A sensor (56), a vehicle speed sensor (58) for detecting a vehicle speed, and the rear front wheel (13) is connected to the front wheel (11) based on detection outputs of the front steering angle sensor (56) and the vehicle speed sensor (58). And a controller (59) for controlling the rear front wheel steering means (22) to steer in the same direction as the rear front wheel steering control device,
When the vehicle speed sensor (58) detects a vehicle speed that is greater than or equal to a first predetermined value (V 1 ) and less than a second predetermined value (V 2 ), the rear front wheel relative to the steering angle (δ f ) of the front wheel (11) ( The steering angle ratio (δ r / δ f ) of the steering angle (δ r ) of 13) gradually decreases from the first steering angle ratio (γ 1 ) toward the second steering angle ratio (γ 2 ) as the vehicle speed increases. The controller (59) controls the rear front wheel steering means (22),
When the vehicle speed sensor (58) detects a vehicle speed greater than zero and less than the first predetermined value (V 1 ), the steering angle ratio (δ r / δ f ) is the first steering angle ratio regardless of the vehicle speed. The controller (59) controls the rear front wheel steering means (22) to be (γ 1 ),
When the vehicle speed sensor (58) detects a vehicle speed equal to or higher than the second predetermined value (V 2 ), the steering angle ratio (δ r / δ f ) is the second steering angle ratio (γ 2 ) regardless of the vehicle speed. The rear front wheel steering control device for a rear biaxial vehicle, wherein the controller (59) is configured to control the rear front wheel steering means (22).
JP2506899A 1999-02-02 1999-02-02 Rear front wheel steering control device for rear biaxial vehicle Expired - Fee Related JP3761056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2506899A JP3761056B2 (en) 1999-02-02 1999-02-02 Rear front wheel steering control device for rear biaxial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2506899A JP3761056B2 (en) 1999-02-02 1999-02-02 Rear front wheel steering control device for rear biaxial vehicle

Publications (2)

Publication Number Publication Date
JP2000225960A JP2000225960A (en) 2000-08-15
JP3761056B2 true JP3761056B2 (en) 2006-03-29

Family

ID=12155622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2506899A Expired - Fee Related JP3761056B2 (en) 1999-02-02 1999-02-02 Rear front wheel steering control device for rear biaxial vehicle

Country Status (1)

Country Link
JP (1) JP3761056B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771944A (en) * 2021-08-31 2021-12-10 浙江中车电车有限公司 Chassis structure of electric motor coach and steering method
CN114348105B (en) * 2022-02-16 2023-04-11 常州大学 Rear wheel steering system of heavy truck and control method

Also Published As

Publication number Publication date
JP2000225960A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
EP0682618B1 (en) Four-wheel steering system for vehicle
JP3856993B2 (en) Rear wheel steering control device for rear biaxial vehicle
JP3761056B2 (en) Rear front wheel steering control device for rear biaxial vehicle
JPH0419067B2 (en)
JP3759681B2 (en) Rear wheel steering device
JP3821613B2 (en) Rear front wheel steering control device for rear biaxial vehicle
JP2005335644A (en) Wheel alignment adjusting apparatus
JP3388504B2 (en) 3 axis truck
JPH04135974A (en) Steering device for vehicle
JP3675664B2 (en) Rear wheel steering device for rear biaxial vehicle
JPH0440229B2 (en)
JPH0425191B2 (en)
JPH0239425B2 (en)
JPH0355350B2 (en)
JPH0120107B2 (en)
JPH01262261A (en) Rear wheel steering device for vehicle
JPH0358946B2 (en)
JP2000289642A (en) Three axle vehicle
JPS6365547B2 (en)
JP2001213341A (en) Rear wheel steering control device for vehicle
JPH0379223B2 (en)
JPH0427068B2 (en)
JPH08268312A (en) Rear wheel steering device
JPH0516553U (en) Rear wheel steering system
JPS63176787A (en) Four-wheel steering device for vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060105

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060105

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees