JP3759559B2 - Heat medium for treating polymer-containing waste and method for treating polymer-containing waste - Google Patents

Heat medium for treating polymer-containing waste and method for treating polymer-containing waste Download PDF

Info

Publication number
JP3759559B2
JP3759559B2 JP26031998A JP26031998A JP3759559B2 JP 3759559 B2 JP3759559 B2 JP 3759559B2 JP 26031998 A JP26031998 A JP 26031998A JP 26031998 A JP26031998 A JP 26031998A JP 3759559 B2 JP3759559 B2 JP 3759559B2
Authority
JP
Japan
Prior art keywords
polymer
containing waste
waste
plastic
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26031998A
Other languages
Japanese (ja)
Other versions
JP2000087018A (en
Inventor
敏彦 岡田
稔 浅沼
達郎 有山
秀憲 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP26031998A priority Critical patent/JP3759559B2/en
Priority to PCT/JP1999/002004 priority patent/WO1999058599A1/en
Priority to EP99913670A priority patent/EP1090951A4/en
Publication of JP2000087018A publication Critical patent/JP2000087018A/en
Application granted granted Critical
Publication of JP3759559B2 publication Critical patent/JP3759559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃自動車や廃家電製品のような金属やその他の無機物と多種類のプラスチックが互いに入り組んだ複雑形状物やこれらの破砕物であるシュレッダーダスト等のポリマー含有廃棄物を迅速、簡便に処理する為の熱媒体と、それを用いたポリマー含有廃棄物の処理方法に関する。
【0002】
【従来の技術】
近年、産業廃棄物や一般廃棄物としてプラスチック等の合成樹脂類が増加しており、その処理が社会的、環境上、大きな問題となっている。特に、廃自動車や廃家電製品から発生するシュレッダーダストはさまざまな物質からなる混合物であり、プラスチックの他、金属、ゴム、木、紙、ガラス等が含まれ、かつ嵩密度が低く非常に取り扱いにくい廃棄物である。その構成成分であるプラスチックは燃焼時に発生する発熱量が高く、焼却処理した場合に焼却炉の炉壁を傷める等の問題から専用の焼却設備を必要とすることや、ダスト中に含まれる亜鉛や鉛等の有害な金属もその回収・固定化技術が必要となる等の問題があった。かかる状況下で現状は投棄処理されているが、投棄は埋め立て地の地盤の低下をもたらすとともに、環境上好ましくない。また、昨今では処理費の高騰とともに埋め立て地用の用地確保が社会問題となりつつあり、このため、投棄によらない無機材料含有ポリマー、例えばシュレッダーダストの大量処理方法の開発が切望されている。
【0003】
この廃プラスチックの処理方法として、植物性油、鉱物性油を加熱して廃プラスチックを投入して軟化溶解させ、浮上したプラスチックを取り出し、溶解プラスチックに廃油を加え液状化し液化燃料と固形燃料とに分離する廃プラスチックの処理方法(特開平4−270793号公報)や、食用油廃液を媒体としてポリエチレン等接着性を有する樹脂を金属素材から除去し、金属を採り出す方法(特開平5−147041号公報)が知られている。また同様な方法として、廃プラスチックを廃エンジンオイル、廃潤滑油、廃洗浄油、廃溶剤等の廃油と混合して100〜200℃で30〜120分加熱して廃プラスチック中に含まれるポリエチレン、ポリプロピレンおよびポリスチレンを抽出し、得られた抽出廃油を燃料として用いる廃プラスチックの処理方法(特開平9−268297号公報)も知られている。
【0004】
【発明が解決しようとする課題】
上記先行技術は、樹脂と金属の複合物から特定の媒体によってプラスチックを分離し、プラスチック等の再利用を行うものであるが、例えば分離したプラスチックを高炉用還元材として利用するにはハンドリング性の向上など多くの問題がある。さらに、経済的に金属、無機物、プラスチックおよび媒体を分離・回収するには媒体との効率的な分離、再生が不可欠であるが、上記先行技術ではこの点も考慮されていない。
【0005】
具体的には、特開平4−270793号公報、特開平5−147041号公報、特開平9−268297号公報に記載の方法では、プラスチック成分、例えばポリエチレン、ポリプロピレンやポリスチレン等をこれらが分解しない温度で廃油等の炭化水素油に溶解させるために、次第にその炭化水素油の粘度が高くなり、また、媒体の酸化が起きて次第に粘度が上昇して、固液分離操作が行い難くなったり、燃料油として用いる際にも、処理油自体に粘りが生じて配管内面等に凝集し閉塞等を誘引し、その取扱いにも問題がある。さらに、分離回収したポリマーを高炉用還元材等として再利用する場合には安定して気流輸送等の移送可能なものでなければならないが、ポリマー表面に残存する媒体が粘りを有しているため、べとついて凝集して閉塞等を誘引するため、その後のハンドリング性が良くない。
【0006】
本発明は、ポリマー含有廃棄物から金属等の無機材料成分とポリマーと媒体とを分離し、ポリマー等の再利用を進める際に障害となるハンドリング性の悪さを改善すると共に固液分離をもスムーズに行うことのできる廃棄物処理用の媒体と廃棄物の処理方法を提供し、分離物の再利用を促進することを目的としている。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するべくなされたものであり、ポリマー含有廃棄物を浸漬してポリマー成分と無機物に分離する熱媒体であって、該熱媒体が石油系または石炭系重油とピッチおよび/または軟化点上昇剤の混合物で、かつ軟化点が50〜150℃であり、かつポリマー含有廃棄物を浸漬してポリマー成分と無機物に分離する温度における粘度が200cp以下であることを特徴とするポリマー含有廃棄物処理用熱媒体と、
上記熱媒体を、その沸点以下で200〜400℃に加熱するとともに、その中にポリマー含有廃棄物を浸漬して、ポリマー成分を無機物から分離することを特徴とするポリマー含有廃棄物の処理方法によってかかる目的を達成したものである。
【0008】
【発明の実施の形態】
ポリマー含有廃棄物は無機物を含有しており、その無機物は鉄、銅、アルミニウム、亜鉛、鉛、ニッケル、クロム等の金属、これらのいずれかを主成分とする合金等の金属材料、カーボンブラック、タルク、炭酸カルシウム、シリカ、ガラス繊維等の骨材やガラス等の非金属無機材料のいずれであってもよい。廃ポリマーはポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等のプラスチック類の他、ブタジエン、イソプレンゴム等合成ゴムや天然ゴムも対象になる。含有状態も各材料が組み合わさった複合材料の他、各材料が混ざり合った混合材料であってもよい。
【0009】
本発明を適用し得るポリマー含有廃棄物の種類は問わないが、例えば、廃自動車、廃家電製品、廃OA機器等が適用可能である。こられのポリマー含有廃棄物はそのままでも処理可能であるが、それらから発生するシュレッダーダストなどが好ましく適用可能である。シュレッダーダストとは廃車や廃家電製品をシュレッダー、ギロチン、シャーなどで粉砕して金属を回収した後の破片状の廃棄物である。その主成分はプラスチック、繊維、鉄、銅、アルミ、ゴム、ガラス等である。
【0010】
熱媒体として使用される材料は、ポリマー含有廃棄物の浸漬温度で液体として存在し、分離されたポリマーに高炉操業上有害となるアルカリ塩等有害成分の混入が無く、この浸漬温度では少なくともほとんど分解せずにその粘度等の物理的性質が変化しないこと、分離されたポリマーがこの熱媒体に溶解せずにかつ均一に分散するものが望ましい。また、ポリマーの分離操作にはその粘度が低いことが望ましい。さらに、分離されたポリマーを高炉用還元材として利用する場合、分離されたポリマーが移送管内管に付着せず、気流輸送が可能な性状が必要となる。これらの条件を満たすものは該熱媒体の軟化点40℃以上を有するものである。熱媒体の粘度は高温粘度計で測定が可能であるが、本発明の浸漬温度200〜400℃において200cp以下である。これより高い粘度では粘度が高いためにポリマー含有廃棄物からポリマーおよび無機物の分離が困難となるからである。軟化点はR&B測定法(JIS−8806)によって測定が可能であるが、好ましくは50℃以上、特に好ましくは60℃以上であり、上限は150℃以下、特に好ましくは110℃以下である。軟化点が50℃より低い場合は、回収されるポリマーの表面に付着した溶融液体である熱媒体が粘調なためにポリマー同志および配管に付着して、その移送が困難になるからである。他方、150℃より高いものでは処理時の粘度が高いためにポリマーの回収が困難になる。
【0011】
本発明で用いられる石油系または石炭系重油は、例示すれば、減圧重油、エチレンボトム、コールタール重油、石炭液化油重油などである。また、ピッチはコールタール中ピッチ、硬ピッチ、石炭液化油残渣、石油系の改質ピッチ等あるいはこれらのいずれかの混合物、軽質油分量の調整したもの、重合処理したものである。また、石油系または石炭系重油は廃油であってもよい。ピッチを混合してポリマー含有廃棄物処理用熱媒体を調製する場合は、ピッチを石油系または石炭系重油に対して5〜95重量%添加することが望ましく、特に10〜90重量%の範囲で添加することが望ましい。添加する量が低いと軟化点を50℃以上に調整できないためである。また、添加する量が多いと浸漬温度における粘度が高くなり、固液分離に問題となる。本発明では、石油系または石炭系重油に軟化点上昇剤を添加して所望のポリマー含有廃棄物処理用熱媒体を調製することも可能である。軟化点上昇剤としては炭化水素化合物の架橋を促進する架橋剤やゲル化作用を示すゲル化剤などが挙げられる。例示すれば、フェニレンジアミン、過酸化ベンゾイル、アゾビスイソブチロニトリル、塩化アルミニウム等の架橋剤、N−ドデカノイル−L−グルタミン酸−α、γ−ジブチルアミド等のゲル化剤がある。軟化点上昇剤の添加量は石油系または石炭系重油に対して0.1重量%〜20重量%、特に1重量%〜10重量%の範囲で添加することが望ましい。添加量が低いと軟化点を50℃以上に調整できず、一方、添加する量が多い場合は添加量に対してその効果が少なく経済的でないからである。石油系または石炭系重油に軟化点上昇剤を添加してポリマー含有廃棄物処理用熱媒体とする場合は、処理に先立ち、予め100〜200℃程度で熱処理して軟化点を上昇させておくことも可能である。
【0012】
浸漬温度と時間は通常ポリマーの溶融、分解が十分に進行するように定められ、これはポリマーおよび軟化点上昇剤の種類、使用量によって異なるが、200〜400℃程度、好ましくは250〜350℃で、0.5〜30分間程度、好ましくは1.5〜15分程度が適当である。この時、ポリマーの種類により分解挙動は異なるが、おおむね、溶融し、一部、ガス化が生起する。ポリ塩化ビニル系樹脂の場合には塩素はそのほぼ全量がHClとして除去できる。溶融したポリマーは本発明で使用される熱媒体中ではその溶解性が低いために浮上分離、ないしは凝集、分散される。回収したプラスチックはそのまま、あるいは含有する熱媒体を分離して高炉用還元材として用いることができる。また、回収したポリマーを10mm程度の大きさに粉砕して使用することも可能である。高炉への吹き込みは従来の羽口への微粉炭吹き込み等の方法で可能である。高炉羽口への移送方法はエアーによる気流輸送が一般的であるが、本発明では回収したポリマーは貯蔵時の凝集や移送時の移送管壁への付着による閉塞等は起こらず、安定な移送が可能である。
【0013】
次に浸漬槽から沈降する金属やその他の無機材料を取り出す。主要金属は通常、鉄分であるので、磁選機を用いて浸漬槽から鉄分を選別、回収するのが良い。取り出した鉄分から付着している熱媒体はハンマリングで剥離するか、水蒸気吹き付けによって除去する。浸漬槽に沈降する銅や亜鉛等の金属は槽から抜き出して回収する。なお、空容積が大きいときは回収した鉄分を溶解する溶解炉の効率的使用のためにプレス等で適当な大きさまで圧縮するのが良い。カーボンブラック等の非鉄無機材料粉末は熱媒体中に分散浮遊しているのでろ別して回収する。
【0014】
【実施例】
[実施例1]
中心に外径20mmφ、長さ20mmの棒鋼を外径30mmφ、内径20mmφ、長さ20mmのプラスチック(ポリプロピレン、ポリエチレン)で包んだ金属複合プラスチックを熱間成型で作製し、これをポリマー含有廃棄物試料として本発明方法で以下のように処理した。
【0015】
沸点が350℃以上のコールタール重油に対して軟化点が110℃であるコールタール中ピッチを80重量%添加して調整した熱媒体(280℃における溶融粘度が120cp、R&B法で測定した軟化点が75℃)をポリマー含有廃棄物処理用熱媒体として用い、窒素流通下、280℃に加熱、充満させた反応炉に試料を浸漬し、5分間熱処理を実施した。熱処理後、プラスチックは液面に浮上しているのでこれを回収した。その後、沈降している棒鋼を引き上げた。表1に得られたプラスチックの回収率とその様態、棒鋼の分離率の結果を示す。
【0016】
[実施例2]
ポリマー含有廃棄物処理用熱媒体として、沸点350℃以上のコールタール系重油に塩化アルミニウムを10重量%添加し、窒素中で200℃,5時間処理して得られた250℃における溶融粘度が100cp、軟化点65℃の熱媒を用いた以外は実施例1と同様な方法で無機複合材料含有廃ポリマーを処理してプラスチックと棒鋼を得た。表1に結果を示す。
【0017】
[実施例3]
ポリマー含有廃棄物処理用熱媒体として沸点350℃以上のコールタール系重油にN−ドデカノイル−L−グルタミン酸−α、γ−ジブチルアミドを10重量%添加した250℃における溶融粘度が100cp、軟化点55℃の熱媒を用いた以外は実施例1と同様な方法で無機複合材料含有廃ポリマーを処理してプラスチックと棒鋼を得た。表1に結果を示す。
【0018】
[実施例4]
実施例1と同じポリマー含有廃棄物処理用熱媒体を用いて廃車から取り外したプラスチックを8.5重量%含有するドア(7kg)を本発明の方法で以下のように処理した。熱媒体を窒素流通下、280℃に加熱、充満させた反応炉に試料を浸漬し、5分間熱処理を実施した。熱処理後、プラスチックは液面に浮上しているのでこれを回収した。その後、ドアを引き上げ、洗浄チャンバーに移送し、密閉下で水蒸気を吹き付けて熱媒体を除去した。なお、このドアに付着した炭素量は0.1重量%以下であった。浮上分離したプラスチックを回収し、ろ過分別した。回収したプラスチックは常温で粘着性が無く、容易に気流輸送が可能なものであった。また、プラスチックの回収率は92重量%であった。
【0019】
次に、回収したプラスチックは10mm以下に粉砕した後、貯蔵タンク、気流輸送ライン、吹き込みランスからなる廃プラスチック吹き込み設備により、空気気流輸送し銑鉄に対して40kg/トンの比率で高炉に吹き込み、溶銑と溶滓を排出した。貯蔵中および気流輸送中は棚ずりや輸送管閉塞等のトラブルも無く、吹き込み作業は安定操業が可能であった。なお、コークス比、微粉炭吹き込み比はそれぞれ400kg/トン、60kg/トンとした。得られた溶銑は廃プラスチックの吹き込みを実施しない場合(440kg/トン)とその出銑量、性状ともに変化がなく、コークスの低減が可能であった。また、高炉ガス冷却設備にも操業上の影響は認められなかった。
【0020】
[実施例5]
プラスチックを40重量%、鉄を10重量%含有するシュレッダーダストを本発明の方法で以下のように処理した。実施例1と同じポリマー含有廃棄物処理用熱媒体を窒素流通下、280℃に加熱、充満させた浸漬槽にシュレッダーダストを投入し、5分間熱処理を実施した。熱処理後、プラスチックは液面に浮上しているのでこれをスクレーパーで回収した。その後、沈降する残渣をチェインコンベアで回収し、振動篩で熱媒体を除去し、磁選機で鉄を回収した。回収率は95重量%であった。一方、回収したプラスチックは常温で粘着性が無く、容易に気流輸送が可能なものであった。また、プラスチックの回収率は92重量%であった。次に、回収したプラスチックは実施例4と同様な方法で高炉に吹き込み、溶銑と溶滓を排出した。貯蔵中および気流輸送中は棚ずりや輸送管閉塞等のトラブルも無く、吹き込み作業は安定操業が可能であった。
【0021】
[比較例1]
熱媒体として、280℃における溶融粘度が100cpであり、軟化点が35℃である石油系減圧蒸留残油を用いた以外は実施例1と同様な方法でポリマー含有廃棄物試料を処理して棒鋼とプラスチックを得た。結果を表1に示す。本発明の実施例に比べ、プラスチックの分離性が悪い上に、室温でその表面は粘着性があり凝集していた。また残油は非常に粘調な液体であった。
【0022】
[比較例2]
熱媒体として、280℃における溶融粘度が100cpであり、軟化点が35℃である石油系減圧蒸留残油を用いた以外は実施例4と同様な方法で処理して、ドアとプラスチック含有残油を回収した。ろ過分別したプラスチック量はドアに含有されるプラスチックに対して55%の収率であった。また、室温でもその表面は粘着性があって凝集しており、粉砕性も低かった。なお、廃プラスチック吹き込み設備で得られたプラスチックを吹き込むことを検討したが、貯蔵タンク壁に付着したり、移送管内部に閉塞をおこしたため、その吹き込みを断念した。
【0023】
[比較例3]
熱媒体として、280℃における溶融粘度が230cpであり、軟化点が155℃である石油系減圧蒸留残油を用いた以外は実施例5と同様な方法でシュレッダーダストを処理して残渣とプラスチックの分別を試みたが、粘度が高いためにその分別が困難であった。しかも、プラスチックには無機物の他に溶融した熱媒体が付着しており、回収されたプラスチックは高炉吹き込みには問題があった。
【0024】
【表1】

Figure 0003759559
【0025】
【発明の効果】
本発明によりポリマー含有廃棄物から、ポリマー成分、無機物および熱媒体が容易に分離でき、それぞれ有用物として再利用することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention quickly and easily removes polymer-containing waste such as shredder dust, which is a complex shape in which metals and other inorganic substances such as scrap automobiles and waste home appliances and various types of plastics are intricately intermingled with each other, and these crushed materials. The present invention relates to a heat medium for treatment and a method for treating a polymer-containing waste using the heat medium.
[0002]
[Prior art]
In recent years, plastics and other synthetic resins are increasing as industrial waste and general waste, and the treatment thereof has become a serious problem in terms of society and environment. In particular, shredder dust generated from scrapped automobiles and waste home appliances is a mixture of various substances, including plastic, metal, rubber, wood, paper, glass, etc., and has a low bulk density and is very difficult to handle. Waste. The component plastic has a high calorific value during combustion, and it requires special incineration equipment due to problems such as damaging the furnace wall when incinerated. There were also problems such as the need for recovery and immobilization of harmful metals such as lead. Under such circumstances, the dumping process is currently performed, but dumping brings about a decrease in the ground of the landfill site and is not environmentally preferable. In recent years, securing land for landfills has become a social problem as the treatment costs have soared. For this reason, development of a mass treatment method for inorganic material-containing polymers, for example, shredder dust, which is not dumped, is eagerly desired.
[0003]
As a processing method of this waste plastic, vegetable oil and mineral oil are heated, waste plastic is added and softened and dissolved, the floating plastic is taken out, waste oil is added to the dissolved plastic and liquefied into liquefied fuel and solid fuel A method for treating waste plastics to be separated (JP-A-4-270793) and a method for removing a resin having adhesive properties such as polyethylene from edible oil waste liquid as a medium and taking out the metal (JP-A-5-147041) Publication) is known. As a similar method, waste plastic is mixed with waste engine oil, waste lubricant oil, waste cleaning oil, waste solvent and other waste oil and heated at 100 to 200 ° C. for 30 to 120 minutes to be contained in the waste plastic, There is also known a waste plastic processing method (Japanese Patent Laid-Open No. 9-268297) using polypropylene and polystyrene extracted and using the obtained extracted waste oil as a fuel.
[0004]
[Problems to be solved by the invention]
In the above prior art, a plastic is separated from a composite of a resin and a metal by a specific medium, and the plastic is reused. For example, in order to use the separated plastic as a reducing material for a blast furnace, it is easy to handle. There are many problems such as improvement. Further, efficient separation and regeneration from a medium is indispensable for economically separating and recovering metals, inorganic substances, plastics and media, but this is not considered in the above prior art.
[0005]
Specifically, in the methods described in JP-A-4-270793, JP-A-5-147041, and JP-A-9-268297, the temperature at which they do not decompose plastic components such as polyethylene, polypropylene, and polystyrene. In order to dissolve in hydrocarbon oil such as waste oil, the viscosity of the hydrocarbon oil gradually increases, and the viscosity of the medium gradually increases due to oxidation of the medium. Even when used as oil, the treated oil itself becomes sticky and agglomerates on the inner surface of the pipe to induce clogging, and there is a problem in its handling. Furthermore, when the separated and recovered polymer is reused as a reducing material for a blast furnace, it must be stably transportable, such as air transport, but the medium remaining on the polymer surface is sticky Since it sticks together and induces blockage and the like, subsequent handling properties are not good.
[0006]
The present invention separates an inorganic material component such as a metal from a polymer-containing waste, a polymer, and a medium, improves the poor handling properties that hinder the reuse of the polymer, and smoothes the solid-liquid separation. It is an object of the present invention to provide a waste treatment medium and a waste treatment method that can be carried out in order to promote the reuse of separated materials.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and is a heat medium that immerses a polymer-containing waste to separate it into a polymer component and an inorganic substance, and the heat medium comprises petroleum-based or coal-based heavy oil, pitch, and And / or a softening point increasing agent, having a softening point of 50 to 150 ° C., and a viscosity at a temperature at which the polymer-containing waste is soaked and separated into a polymer component and an inorganic substance is 200 cp or less. A heat medium for treating polymer-containing waste;
According to a method for treating a polymer-containing waste, wherein the heating medium is heated to 200 to 400 ° C. below its boiling point, and the polymer-containing waste is immersed therein to separate a polymer component from an inorganic substance. This objective has been achieved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The polymer-containing waste contains an inorganic substance, and the inorganic substance is a metal such as iron, copper, aluminum, zinc, lead, nickel, chromium, or a metal material such as an alloy mainly composed of any of these, carbon black, Any of aggregates such as talc, calcium carbonate, silica, glass fiber, and non-metallic inorganic materials such as glass may be used. Waste polymers include plastics such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, as well as synthetic rubber such as butadiene and isoprene rubber, and natural rubber. In addition to the composite material in which the materials are combined, the contained state may be a mixed material in which the materials are mixed.
[0009]
The type of the polymer-containing waste to which the present invention can be applied is not limited, but for example, a waste car, a waste home appliance, a waste OA device, and the like are applicable. These polymer-containing wastes can be treated as they are, but shredder dust and the like generated therefrom are preferably applicable. Shredder dust is debris-like waste after scrapping a scrap car, scrapped home appliances with a shredder, guillotine, shear, etc. to recover the metal. Its main components are plastic, fiber, iron, copper, aluminum, rubber, glass and the like.
[0010]
The material used as the heat medium exists as a liquid at the immersion temperature of the polymer-containing waste, and the separated polymer is free from contamination with harmful components such as alkali salts that are harmful to blast furnace operation. Therefore, it is desirable that the physical properties such as the viscosity do not change, and that the separated polymer is not dissolved in the heat medium and is uniformly dispersed. Further, it is desirable that the viscosity be low for the polymer separation operation. Further, when the separated polymer is used as a reducing material for a blast furnace, the separated polymer does not adhere to the inner pipe of the transfer pipe, and a property capable of air current transport is required. Those satisfying these conditions have a softening point of 40 ° C. or higher. The viscosity of the heat medium can be measured with a high-temperature viscometer, but is 200 cp or less at an immersion temperature of 200 to 400 ° C. of the present invention. This is because if the viscosity is higher than this, since the viscosity is high, it is difficult to separate the polymer and the inorganic substance from the polymer-containing waste. Although the softening point can be measured by the R & B measurement method (JIS-8806), it is preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher, and the upper limit is 150 ° C. or lower, particularly preferably 110 ° C. or lower. This is because when the softening point is lower than 50 ° C., the heat medium, which is a molten liquid attached to the surface of the polymer to be recovered, is viscous and adheres to the polymers and piping, making it difficult to transfer. On the other hand, when the temperature is higher than 150 ° C., it is difficult to recover the polymer because the viscosity at the time of processing is high.
[0011]
Examples of the petroleum-based or coal-based heavy oil used in the present invention include reduced-pressure heavy oil, ethylene bottom, coal tar heavy oil, coal liquefied oil heavy oil, and the like. The pitch is a pitch in coal tar, a hard pitch, a coal liquefied oil residue, a petroleum-based modified pitch, or a mixture of any of these, a light oil content adjusted, or a polymerized treatment. The petroleum-based or coal-based heavy oil may be waste oil. When preparing a heat medium for treating polymer-containing waste by mixing pitch, it is desirable to add 5 to 95% by weight of the pitch with respect to petroleum-based or coal-based heavy oil, particularly in the range of 10 to 90% by weight. It is desirable to add. This is because if the amount to be added is low, the softening point cannot be adjusted to 50 ° C. or higher. Moreover, when there is much quantity to add, the viscosity in immersion temperature will become high and will pose a problem for solid-liquid separation. In the present invention, it is also possible to prepare a desired polymer-containing waste treatment heat medium by adding a softening point increasing agent to petroleum-based or coal-based heavy oil. Examples of the softening point raising agent include a crosslinking agent that promotes crosslinking of a hydrocarbon compound and a gelling agent that exhibits a gelling action. Examples include cross-linking agents such as phenylenediamine, benzoyl peroxide, azobisisobutyronitrile, aluminum chloride, and gelling agents such as N-dodecanoyl-L-glutamic acid-α and γ-dibutylamide. The addition amount of the softening point raising agent is preferably 0.1 to 20% by weight, particularly 1 to 10% by weight, based on petroleum-based or coal-based heavy oil. This is because if the addition amount is low, the softening point cannot be adjusted to 50 ° C. or more, whereas if the addition amount is large, the effect is small with respect to the addition amount and it is not economical. When adding a softening point increasing agent to petroleum-based or coal-based heavy oil to obtain a heat medium for treating polymer-containing waste, heat treatment at about 100 to 200 ° C. is performed beforehand to increase the softening point. Is also possible.
[0012]
The soaking temperature and time are usually determined so that the polymer melts and decomposes sufficiently, and this depends on the type and amount of the polymer and softening point increasing agent, but is about 200 to 400 ° C., preferably 250 to 350 ° C. Thus, about 0.5 to 30 minutes, preferably about 1.5 to 15 minutes is appropriate. At this time, although the decomposition behavior varies depending on the type of polymer, it generally melts and partially gasifies. In the case of a polyvinyl chloride resin, almost all of chlorine can be removed as HCl. Since the melted polymer has low solubility in the heat medium used in the present invention, it is floated, separated or agglomerated and dispersed. The collected plastic can be used as it is or after separating the contained heat medium as a blast furnace reducing material. The recovered polymer can be used after being pulverized to a size of about 10 mm. The blast furnace can be blown by a conventional method such as pulverized coal blowing into a tuyere. In general, the transport method to the blast furnace tuyere is air transport by air, but in the present invention, the recovered polymer does not cause clogging due to aggregation during storage or adhesion to the transfer pipe wall during transport, and stable transport. Is possible.
[0013]
Next, the metal and other inorganic materials that settle out of the immersion bath are taken out. Since the main metal is usually iron, it is better to select and collect iron from the immersion tank using a magnetic separator. The heat medium adhering to the extracted iron is removed by hammering or removed by spraying with water vapor. Metals such as copper and zinc that settle in the immersion bath are extracted from the bath and collected. In addition, when the empty volume is large, it is preferable to compress to an appropriate size with a press or the like for efficient use of the melting furnace for melting the recovered iron. Non-ferrous inorganic material powder such as carbon black is dispersed and suspended in the heat medium, and is collected by filtration.
[0014]
【Example】
[Example 1]
A metal composite plastic in which a steel bar with an outer diameter of 20 mmφ and a length of 20 mm is wrapped in a plastic (polypropylene, polyethylene) with an outer diameter of 30 mmφ, an inner diameter of 20 mmφ and a length of 20 mm is produced by hot molding, and this is a polymer-containing waste sample. As follows, it was processed by the method of the present invention as follows.
[0015]
Heat medium adjusted by adding 80% by weight of pitch in coal tar having a softening point of 110 ° C. to coal tar heavy oil having a boiling point of 350 ° C. or higher (melting viscosity at 280 ° C. is 120 cp, softening point measured by R & B method) Was 75 ° C.) as a heat medium for treating polymer-containing waste, and the sample was immersed in a reactor heated and filled at 280 ° C. under a nitrogen flow, and heat treatment was performed for 5 minutes. After the heat treatment, the plastic floated on the liquid surface and was collected. Then, the settled steel bar was pulled up. Table 1 shows the recovery rate of the plastic obtained, its mode, and the results of the steel bar separation rate.
[0016]
[Example 2]
As a heat medium for treating polymer-containing waste, a melt viscosity at 250 ° C. obtained by adding 10% by weight of aluminum chloride to coal tar heavy oil having a boiling point of 350 ° C. or higher and treating in nitrogen at 200 ° C. for 5 hours is 100 cp. The waste polymer containing the inorganic composite material was treated in the same manner as in Example 1 except that a heat medium having a softening point of 65 ° C. was used to obtain a plastic and a steel bar. Table 1 shows the results.
[0017]
[Example 3]
10 wt% of N-dodecanoyl-L-glutamic acid-α and γ-dibutyramide added to coal tar heavy oil having a boiling point of 350 ° C. or higher as a heat medium for treating polymer-containing waste, melt viscosity at 250 ° C. at 100 ° C., softening point 55 A waste polymer containing the inorganic composite material was treated in the same manner as in Example 1 except that a heat medium at 0 ° C. was used to obtain a plastic and a steel bar. Table 1 shows the results.
[0018]
[Example 4]
A door (7 kg) containing 8.5% by weight of plastic removed from a scrap car using the same polymer-containing waste treatment heat medium as in Example 1 was treated as follows by the method of the present invention. The sample was immersed in a reaction furnace heated and filled at 280 ° C. under a nitrogen flow, and heat treatment was performed for 5 minutes. After the heat treatment, the plastic floated on the liquid surface and was collected. Thereafter, the door was pulled up, transferred to a cleaning chamber, and steam was blown under hermetic conditions to remove the heat medium. The amount of carbon adhering to the door was 0.1% by weight or less. The plastic that floated and separated was collected and separated by filtration. The recovered plastic was not sticky at room temperature and could be easily transported by airflow. The plastic recovery rate was 92% by weight.
[0019]
Next, the recovered plastic is pulverized to 10 mm or less, then transported by air to a blast furnace at a rate of 40 kg / ton with respect to pig iron, using a waste plastic blowing facility consisting of a storage tank, an air transportation line, and a blowing lance. And the hot metal was discharged. During storage and air transportation, there were no troubles such as shelves or clogging of the transport pipe, and the blowing operation was stable. The coke ratio and pulverized coal blowing ratio were 400 kg / ton and 60 kg / ton, respectively. The obtained hot metal had no change in the amount and properties of waste when the waste plastic was not blown (440 kg / ton), and the coke could be reduced. In addition, no operational impact was observed in the blast furnace gas cooling facility.
[0020]
[Example 5]
Shredder dust containing 40% by weight of plastic and 10% by weight of iron was treated by the method of the present invention as follows. The same polymer-containing waste treatment heat medium as in Example 1 was heated to 280 ° C. and filled with shredder dust under nitrogen flow, and heat treatment was performed for 5 minutes. After the heat treatment, the plastic floated on the liquid surface, and this was recovered with a scraper. Then, the residue which settled was collect | recovered with the chain conveyor, the heat carrier was removed with the vibration sieve, and iron was collect | recovered with the magnetic separator. The recovery rate was 95% by weight. On the other hand, the collected plastic was not sticky at room temperature and could be easily transported by airflow. The plastic recovery rate was 92% by weight. Next, the recovered plastic was blown into the blast furnace in the same manner as in Example 4, and the hot metal and hot metal were discharged. During storage and air transportation, there were no troubles such as shelves or clogging of the transport pipe, and the blowing operation was stable.
[0021]
[Comparative Example 1]
A polymer-containing waste sample was treated in the same manner as in Example 1 except that a petroleum-based vacuum distillation residue having a melt viscosity at 280 ° C. of 100 cp and a softening point of 35 ° C. was used as the heat medium. And got the plastic. The results are shown in Table 1. Compared with the examples of the present invention, the plastics were not easily separated, and the surface was sticky and aggregated at room temperature. The residual oil was a very viscous liquid.
[0022]
[Comparative Example 2]
The door and the plastic-containing residual oil were treated in the same manner as in Example 4 except that a petroleum-based vacuum distillation residual oil having a melt viscosity at 280 ° C. of 100 cp and a softening point of 35 ° C. was used as the heat medium. Was recovered. The amount of plastic fractionated by filtration was 55% with respect to the plastic contained in the door. Further, even at room temperature, the surface was sticky and agglomerated, and the grindability was low. In addition, although we considered blowing the plastic obtained with the waste plastic blowing facility, it adhered to the storage tank wall or closed the inside of the transfer pipe, so we abandoned the blowing.
[0023]
[Comparative Example 3]
The shredder dust was treated in the same manner as in Example 5 except that a petroleum-based vacuum distillation residue having a melt viscosity of 280 ° C. at 280 ° C. and a softening point of 155 ° C. was used as the heat medium. Although separation was attempted, it was difficult to separate because of its high viscosity. In addition to the inorganic material, a molten heat medium adheres to the plastic, and the recovered plastic has a problem in blowing into the blast furnace.
[0024]
[Table 1]
Figure 0003759559
[0025]
【The invention's effect】
According to the present invention, a polymer component, an inorganic substance, and a heat medium can be easily separated from a polymer-containing waste, and each can be reused as a useful substance.

Claims (2)

ポリマー含有廃棄物を浸漬してポリマー成分と無機物に分離する熱媒体であって、該熱媒体が石油系または石炭系重油とピッチおよび/または軟化点上昇剤の混合物で、かつ軟化点が50〜150℃であり、かつポリマー含有廃棄物を浸漬してポリマー成分と無機物に分離する温度における粘度が200cp以下であることを特徴とするポリマー含有廃棄物処理用熱媒体A heating medium for immersing a polymer-containing waste into a polymer component and an inorganic substance , wherein the heating medium is a mixture of petroleum-based or coal-based heavy oil and pitch and / or softening point increasing agent, and has a softening point of 50 to 0.99 ° C. der is, and polymer-containing waste immersed in a polymer-containing waste heat medium viscosity at separating the polymer component and inorganic material, characterized in der Rukoto below 200cp 請求項1に記載の熱媒体を、その沸点以下で200〜400℃に加熱するとともに、その中にポリマー含有廃棄物を浸漬して、ポリマー成分を無機物から分離することを特徴とするポリマー含有廃棄物の処理方法A polymer-containing waste characterized in that the heating medium according to claim 1 is heated to 200 to 400 ° C below its boiling point, and the polymer-containing waste is immersed therein to separate the polymer component from the inorganic matter. Processing method
JP26031998A 1998-05-08 1998-09-14 Heat medium for treating polymer-containing waste and method for treating polymer-containing waste Expired - Fee Related JP3759559B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26031998A JP3759559B2 (en) 1998-09-14 1998-09-14 Heat medium for treating polymer-containing waste and method for treating polymer-containing waste
PCT/JP1999/002004 WO1999058599A1 (en) 1998-05-08 1999-04-15 Method for waste plastics disposal and apparatus used therein
EP99913670A EP1090951A4 (en) 1998-05-08 1999-04-15 Method for waste plastics disposal and apparatus used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26031998A JP3759559B2 (en) 1998-09-14 1998-09-14 Heat medium for treating polymer-containing waste and method for treating polymer-containing waste

Publications (2)

Publication Number Publication Date
JP2000087018A JP2000087018A (en) 2000-03-28
JP3759559B2 true JP3759559B2 (en) 2006-03-29

Family

ID=17346372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26031998A Expired - Fee Related JP3759559B2 (en) 1998-05-08 1998-09-14 Heat medium for treating polymer-containing waste and method for treating polymer-containing waste

Country Status (1)

Country Link
JP (1) JP3759559B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213480A (en) * 2002-02-06 2008-09-18 Sanai Fujita Metal-containing plastic product treatment equipment

Also Published As

Publication number Publication date
JP2000087018A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US5632863A (en) Battery pyrolysis process
US5780696A (en) Process for recycling plastic waste
WO2005037510A2 (en) Method of recycling waste plastic and method of molding
EP1090951A1 (en) Method for waste plastics disposal and apparatus used therein
JP3759559B2 (en) Heat medium for treating polymer-containing waste and method for treating polymer-containing waste
JP3346300B2 (en) Method for recovering polymer components from waste plastic
JP2000086807A (en) Apparatus and method for treating oversized plastic- containing waste
JPH01304093A (en) Particle flocculation method and particle floc
CN200963586Y (en) Chemical industry waste material regenerating device
JP3351294B2 (en) Method and apparatus for treating chlorine-containing synthetic resin
JP2000119670A (en) Organic medium for immersion treatment of polymer- containing composite waste material and method for treatment of the waste material
JP2000043044A (en) Apparatus for heat-treating plastic/inorganic composite waste
JP4857540B2 (en) Method for producing coking coal and method for producing coke
JP2001200264A (en) Process for preparing coke from inorganic material- containing waste polymer
JP2000157958A (en) Recovering method of organic matter and inorganic matter from waste
JP2000117741A (en) Method for processing polymer-containing composite waste by two step processing
JP3359559B2 (en) Plastic processing method, solid fuel obtained by the processing method, ore reducing agent
JP2002018849A (en) Method for recycling waste plastic
JP2000117740A (en) Disposal method of polymer-containing composite waste with organic adsorbent
JPH11116727A (en) Method for recovering metal and resin component from metal/plastic composite
JP2000024616A (en) Heat treatment device for plastic/inorganic material combined waste
JP2004131516A (en) Thermal decomposition recycling method for organic substance
JP2000256503A (en) Utilization of organic medium after treatment of waste material
JP4457753B2 (en) Coke production method using waste plastic
JP2002263613A (en) Facilities for treating plastics/inorganics-mixed waste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees