JP3759221B2 - Wide-angle lens system - Google Patents

Wide-angle lens system Download PDF

Info

Publication number
JP3759221B2
JP3759221B2 JP02775696A JP2775696A JP3759221B2 JP 3759221 B2 JP3759221 B2 JP 3759221B2 JP 02775696 A JP02775696 A JP 02775696A JP 2775696 A JP2775696 A JP 2775696A JP 3759221 B2 JP3759221 B2 JP 3759221B2
Authority
JP
Japan
Prior art keywords
lens
positive
negative
image
biconvex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02775696A
Other languages
Japanese (ja)
Other versions
JPH09222555A (en
Inventor
三原伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP02775696A priority Critical patent/JP3759221B2/en
Priority to US08/800,668 priority patent/US5796528A/en
Publication of JPH09222555A publication Critical patent/JPH09222555A/en
Priority to US09/129,871 priority patent/US6057971A/en
Application granted granted Critical
Publication of JP3759221B2 publication Critical patent/JP3759221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広角レンズ系に関し、特に、焦点距離の極めて短い結像レンズ系と電子撮像素子との間にプリズムやフィルター等の多くの光学素子を挿入するために、焦点距離に対して長いバックフォーカスを確保し、かつ、加工組立性の良好な小型で構成枚数の少ないシンプルな電子カメラ用広角撮影レンズに関するものである。
【0002】
【従来の技術】
最近では、銀塩35mmフィルム(通称ライカ版)カメラに代わる次世代カメラとして電子カメラ(デジタルカメラ)が注目されつつある。そのデジタルカメラの撮像素子として用いられるもののサイズは、銀塩35mmフィルムの場合と比較すると、対角長で数分の一から十数分の一である。したがって、同じ画角の画像を得る場合、結像レンズ系の焦点距離をそれに比例して極めて短くする必要が出てくる。理屈の上からはレンズ系のサイズもそれに比例して極めて小さくなるため、構成要素も当然その分だけ小さくなる。したがって、レンズの加工は困難を極めることになる。一方では、電子撮像素子の特性上、結像レンズ系からの光線射出角が極力撮像素子に対して垂直であることが望まれる。したがって、従来の銀塩35mmフィルムカメラ用の広角レンズ系(例えば、レトロフォーカスレンズ系)をそのまデジタルカメラ用とするのは困難である。
【0003】
【発明が解決しようとする課題】
本発明はこのような問題点を解決するためになされたものであり、その目的は、レンズ構成要素の緑肉や中肉の厚みや組立上必要なスペースを十分確保することを行いつつも、所定のバックフォーカスや射出瞳位置、かつ、良好な結像性能を有したデジタルカメラに適した小型で構成枚数の少ないシンプルで製作性の良好な広角レンズ系を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明の広角レンズ系は、物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、物体側から順に、像側に凸面を向けた正メニスカスレンズと、両凸正レンズ、像側に凸面を向けた負メニスカスレンズの2枚接合レンズの3枚のレンズからなり、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とするものである。
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
0.25<d1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0005】
本発明のもう1つの広角レンズ系は、物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、負レンズと2枚の両凸レンズの3枚のレンズからなり、
最も像側のレンズが前記両凸レンズの一方であり、その最も像側の両凸レンズのパワーと形状に関して以下の条件を満足することを特徴とするものである。
1.4<fR /f<3 ・・・(4)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0006】
本発明のさらにもう1つの広角レンズ系は、物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、負レンズと2枚の両凸レンズの3枚のレンズからなり、
最も像側のレンズが前記両凸レンズの一方であり、その最も像側の両凸レンズ及び最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とするものである。
2.5<f1 /f<10 ・・・(1)
1.4<fR /f<3 ・・・(4)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.25<d1 /f<0.8 ・・・(3)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚み、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
本発明のさらにもう1つの広角レンズ系は、物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
物体側から順に、前記の負群は、物体側に凸面を向けた正のメニスカスレンズ、像側に凹面を向けた負のメニスカスレンズの2枚のレンズであり、物体側から順に、前記の正群は、像側に凸面を向けた正メニスカスレンズと、両凸レンズ、像側に凸面を向けた負メニスカスレンズの合計3枚のレンズであり、前記の正群における負レンズは隣接する正レンズと接合され、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とするものである。
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
0.25<d1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
本発明のさらにもう1つの広角レンズ系は、物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
物体側から順に、前記の負群は、物体側に凸面を向けた正のメニスカスレンズ、像側に凹面を向けた負のメニスカスレンズの2枚のレンズであり、物体側から順に、前記の正群は、両凹レンズ、2枚の両凸レンズの合計3枚のレンズからなり、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とするものである。
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
0.25<d1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0007】
以下に、本発明において上記構成をとる理由と作用、また、更に好ましい構成について説明する。
【0008】
デジタルカメラ用の結像レンズ系は、撮像素子のサイズが小さく、かつ、広角レンズ系であるために、焦点距離は極めて短く、一方では、フィルターや撮像素子のカバーガラスのためのスペースを確保をするために、バックフォーカスを焦点距離以上にする必要がある。そのために、本発明においては、物体側から順に、負・正の2つの群から構成した。したがって、後群にパワーが集中するため、レンズ枚数は後群に多くなり、一方では、レンズ構成要素の縁肉、中肉等を確保するために空気間隔はできるだけ詰める関係上、従来の銀塩35mmフィルム(通称ライカ版)カメラ用の広角レンズ系のように後群に絞りを入れることはせず、前記の2つの群の中間に開口絞りを設けた。
【0009】
また、このように後群の厚みが増える傾向にあるため、バックフォーカスの確保のために、前記2つの群のそれぞれのパワーをさらに大きくする必要がある。これらの群のパワーを大きくすると、著しい湾曲収差が発生し、監視カメラならともかく、一般のデジタル写真用としては甚だ具合が悪い。そこで、本発明では、前記負の群(前群)の最も物体側に以下の条件を満足するような正レンズを配置した。そして、その焦点距離と形状ファクターを次のように規定した。
【0010】
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
ただし、fは全系の焦点距離、f1 、r11、r12は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径である。
【0011】
上記条件(1)の上限の10を越えると、歪曲収差補正効果が不足して、樽型の歪曲収差が発生しやすく、好ましくない。また、このレンズは色収差補正、そして、コマ収差、像面湾曲補正を兼ねており、これらの補正効果も少なくなる。一方、下限値の2.5を越えると、前群の負のパワーを維持するために高次の収差が発生しやすく、広い画角にわたって結像性能を維持し得なくなる。
【0012】
また、条件(2)の上限−0.7、下限−2.5を越えると、コマ収差が悪化するが、特に下限を越えると、高次の倍率色収差、歪曲収差への悪影響が大きい。上限を越えると、非点収差への悪影響が大きい。
【0013】
なお、本発明において、構成上の作用効果が得られる前提条件がある。それは、前述のようなデジタルカメラ用光学系として成り立つ条件である。つまり、レンズ構成要素の加工、組立上の条件、つまり、縁肉を十分に確保するための前提条件であり、次のように規定される。
0.25<d1 /f<0.8 ・・・(3)
ただし、d1 は前記の最も物体側の正レンズの光軸上の厚みである。
【0014】
条件(3)の下限の0.25を越えると、縁肉確保が十分できず、加工が困難になる。一方、上限の0.8を越えると、正レンズ先行型が往々にして陥りやすい径の大型化が問題となってくる。
【0015】
次に、デジタル写真用として、前述の如く射出側テレセントリックにする必要がある。これを実施した場合、従来の銀塩35mmフィルムカメラ用の広角レンズ系と異なり、最も像側のレンズへの軸外光束の入射、射出角が大きく異なり、光軸に対しより小さくなっている。しかも、切る高さが軸上マージナル光線高や焦点距離のわりに高く、元来収差が発生しやすい。この軸外光束に対する収差を極小とするには、入射、射出角をそれぞれ小さくする必要がある。そのためには、最も像側レンズを両凸レンズとする必要がある。さらに、その焦点距離と形状ファクターを以下の範囲とするのがよい。
【0016】
1.4<fR /f<3 ・・・(4)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
ただし、fR 、rR1、rR2は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径である。
【0017】
これらの範囲を何れの方向に越えても、軸上、軸外光束の収差(特に、球面収差、コマ収差、非点収差)の補正が困難となる。さらに、条件(5)については、
−0.1<(rR1+rR2)/(rR1−rR2)<0.4 ・・・(5')
とすればよりよくなる。
【0018】
なお、本発明の構成上の作用効果が得られる前提条件がある。それは、前述のようなデジタルカメラ用光学系として成り立つ条件である。つまり、レンズ構成要素の加工、組立上の条件、つまり、縁肉を十分に確保するための前提条件であり、次のように規定される。
0.5<dR /f<1 ・・・(6)
ただし、dR は前記の最も像側の両凸レンズの光軸上の厚みである。
【0019】
この条件(6)の下限の0.5を越えると、縁肉確保が十分できず、加工が困難になる。一方、上限の1を越えると、径が大きくなりやすく、また、バックフォーカスの確保が困難になる。
【0020】
先にも述べたように、最も像側のレンズでは、軸外光束の切る高さが軸上マージナル光線高や焦点距離のわりに高く、また、このレンズ要素はパワーも大きくなるため、元来収差が発生しやすい。この軸外光束に対する収差を極小とするため、入射、射出角をそれぞれ小さくするような形状にするのがよいが、画素のピッチが細かく、高い解像力が必要な場合、これだけでは不十分である。後群のパワー確保と収差補正を両立させるためには、正レンズの枚数を増加するという常套手段があるが、先にも述べたように、小型化やバックフォーカス確保のため、増加するスペースがない。そこで、構成枚数を増加せずに収差補正を良好に実施するため、前記の最も像側の両凸レンズに非球面を導入し、それを物体側の面にした。それは、軸上、軸外共収差補正効果が著しく高く、かつ、加工がしやすいためである。特に、後の理由は、非球面の有効径の対製品径の比は極力小さい方がよいが、そのためにわざわざ製品径を大きくすると、縁肉が不足してレンズ厚を大きくしなくてはならない。それは、今までの議論から分かる通り都合が悪い。一方、このレンズは像側の方が有効径が大きいため、製品径は像側の事情で決まる。したがって、非球面の有効径の対製品径の比は小さくしやすく、好ましい。
【0021】
0.5<DSR1 /f<3 ・・・(7)
0.2<(DSR2 −DSR1 )/DSR1 <3 ・・・(8)
ただし、DSR1 は前記の最も像側の両凸レンズの物体側の面の開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の開口絞りからの距離である。
【0022】
条件(7)は非球面の絞りからの距離を規定したものである。下限の0.5を越えると、非球面の各収差への補正効果が小さくなり、好ましくない。上限の3を越えると、バックフォーカスの確保が困難になる。条件(8)は最も像側のレンズの非球面(物体側)と像側の面の絞りからの距離の差をその非球面(物体側)の絞りからの距離で割った値を規定したものである。下限の0.2を越えると、両面の有効径の差が小さく、非球面の有効径の対製品径の比は小さくし難く、これを小さくするために製品径を大きくせざるを得ず、好ましくない。上限の3を越えると、バックフォーカスの確保が困難になる。なお、像側面は球面であってよい。
【0023】
さて、前群は負の屈折力を有するので、負レンズ要素が必要である。そして、それは前記の最も物体側の正のメニスカスレンズと開口絞りの間に配置される。また、その負レンズは比較的パワーが大きくなるため、特に軸外収差への影響が大きい。したがって、この軸外光束に対する収差を極小とするため、入射、射出角をそれぞれ小さくする必要がある。そのため、少なくとも像側に強い凹面を向けた負のメニスカスレンズが必要となる。一方、焦点距離に対しかなりの厚肉系であり、かつ、構成要素が少ないため、このレンズ系全体は、特に色収差、像面湾曲の補正も困難である。中でも像面湾曲と色収差を同時に補正するには、後群の正レンズの屈折率、アッベ数共に高く、負レンズはその逆としたいが、現実にそれを満足するガラスが存在しない。一方、前群では正レンズの屈折率は高く、アッベ数は低く、負レンズはその逆となるので、現実の硝材での組み合せがある程度可能である。そこで、
0.2<n1 −n2 <0.45 ・・・(9)
10<ν2 −ν1 <60 ・・・(10)
0.5<D2S/f<1.5 ・・・(11)
ただし、n1 、ν1 はそれぞれ前記の最も物体側の正レンズの媒質屈折率とアッベ数、n2 、ν2 はそれぞれ前記の像側に強い凹面を向けた負のメニスカスレンズの媒質屈折率とアッベ数、D2Sは前記の負のメニスカスレンズの最も像側の面から前記開口絞りまでの距離である。
【0024】
条件(9)、(10)はそれぞれ前群の2枚のレンズの屈折率差、アッベ数差を規定したものであるが、共に下限値を越えると、像面湾曲、色収差の補正が十分に行えない。一方、上限側には現実の硝材がない。なお、後群に比べ前群はパワーが小さいため、少々径を大きくしても縁肉の確保は容易である。したがって、絞り面つまり軸上マージナル光線を決定する面(部材)は極力後群に近付け、絞り関連の部材の挿入等は絞りよりも前にするようにし、そのためのスペースの確保が必要である。
【0025】
条件(11)は負メニスカスレンズの最も像側の面から絞りまでの距離を規定したものである。言うなれば、これは本発明構成上の作用効果が得られる前提条件である。それは、前述のようなデジタルカメラ用光学系として成り立つ条件である。つまり、組立上の条件、すなわち、絞り等の部材挿入に係わるスペースを確保するための前提条件である。下限の0.5を越えると、絞り等の部材挿入に係わるスペースを十分確保できないし、また、前後群の主点位置が近くなりすぎ、バックフォーカス確保のために両群共パワーが大きくなりがちで、好ましくない。上限の1.5を越えると、前群の径が大きくなりやすい。
【0026】
また、前記の像側に強い凹面を向けた負メニスカスレンズを1枚のみとしたとき、その像側の曲率の大きい凹面は前群の主たるパワーとなっているので、極力軸外収差への影響を少なくするために、その曲率中心を絞り面と光軸との交点に近くした方がよい。すなわち、
0.3<r22/f<1 ・・・(12)
ただし、r22は前記の負のメニスカスレンズの最も像側の面の曲率半径である。この条件の下限値の0.3を越えると、軸外収差が悪化しやすく、また、半球に近い凹面となり、加工が困難となる。上限の1を越えると、前群の負のパワーが維持できなくなる。
【0027】
さらに、後群については、パワー、結像性能、バックフォーカスの確保、径の小型化の点で、絞りと最も像側の両凸レンズの間に、正レンズ、負レンズ共各1枚ずつにするとよい。そして、次の条件を満足することが好ましい。
2<(DS41 +DS42 +DSR1 +DSR2 )/2(DS31 +DS32 )<10・・・(13)
ただし、DS31 、DS32 、DS41 、DS42 はそれぞれ開口絞りから負レンズの物体側の面、像側の面と、正レンズの物体側の面、像側の面までの距離、DSR1 は前記の最も像側の両凸レンズの物体側の面の開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の開口絞りからの距離である。
【0028】
条件(13)は収斂面の絞りからの距離の平均値と発散面の絞りからの距離のの比を規定したものである。射出側テレセントリックとするには、絞り位置に対し、後群の前側焦点位置が一致すればよいが、上記条件の下限の2を越えると、絞り位置に対し後群の前側焦点位置が物体側に離れて行き、射出側テレセントリックの確保が難しくなる。上限の10を越えると、同様に、射出側テレセントリックの確保が難しくなり、かつ、最も像側の正レンズの必要有効径が大きくなりすぎ、好ましくない。
【0029】
なお、絞りと最も像側の両凸レンズの間の構成は、バックフォーカス長の確保、各収差補正(特に、色収差、ペッツバール和、球面収差、コマ収差)、組立性の点で、物体側から、負レンズ、正レンズの順で接合したものがよい。球面収差補正の点で、軸上光線高が比較的高く、物体側に向かって凹面を向けた面が必要であるが、一方では、それをコマ収差を始めとする軸外の収差の発生を極力少なくしようとした場合、その面への軸外光束の入射角を小さくする、つまり、瞳像点に対して曲率中心が近いのが好ましい。それらを両立させるには、後群の最も物体側の面を凹面とするのが好ましい。すると、後群の最も物体側のレンズは負レンズとし、次に正レンズの順とするのがよい。なお、この並び順は倍率色収差の補正がし難いので、どうしてもこの2つのエレメントのパワーを大きくする必要がある。したがって、両者を接合として、接合面の曲率半径を小さくするのがよい。すなわち、
1<r41/f<4 ・・・(14)
ただし、r41は前記正レンズの物体側の面の曲率半径である。
【0030】
この条件(14)の上限値の4を越えると、倍率色収差の補正が困難となり、下限値の1をを越えると、正レンズの縁肉が不足して、好ましくない。一方では、その接合面で球面収差の補正効果を得るために、負レンズの方の屈折率を高くする関係上、ペッツバール和が大きくなる方向であることも問題である。したがって、両レンズの屈折率差は極力小さくするのがよい。すなわち、
0<n3 −n4 <0.2 ・・・(15)
ただし、n3 、n4 はそれぞれ前記負レンズ、正レンズの媒質屈折率である。
【0031】
この条件(15)の上限値の0.2を越えると、ペッツバール和が大きくなりすぎ、下限値0を越えると、球面収差補正効果がなくなり、補正不足となる。また、構成枚数も少ないので、屈折率そのものも高い方がよい。
【0032】
1.6<n4 <1.85 ・・・(16)
上限値の1.85を越えると、現実の硝材が存在しなくなり、下限値の1.6を越えると、レンズの曲率が大きくなり、縁肉確保が難しい。
【0033】
なお、レンズ系の絶対的サイズが極めて小さいため、絞りと後群の最も物体側の凹面との間にレンズを固定する鏡枠部位のためのスペースの確保が難しい。一方、軸外光束の光線高の関係上、正レンズの方が径が大きくなるので、径のより小さな負レンズを正レンズに接合してその正レンズの両面を抑えて固定するのがよい。それは、負レンズが正レンズより十分に径が小さいときにのみ可能な組み立て方式である。つまり、負レンズの像側の面の有効径が正レンズの像側の面の有効径より十分に小さくなる条件が必要である。すなわち
0.5<(DS42 −DS41 )/DS41 <4 ・・・(17)
を満足することが望ましい。下限値の0.5を越えると、負レンズの像側の面の有効径と正レンズのそれとの差が少なくなり、正レンズのみを枠に固定し難くなる。上限値の4を越えると、正レンズの厚みが大きくなり、最も像側のレンズの径が大きくなりすぎ、好ましくない。
【0034】
さらに、以下の条件を満足するのが好ましい。
−5<fN /f<−1.5 ・・・(18)
0.7<fP /f<2 ・・・(19)
1<DFS/f<3 ・・・(20)
1<DSR/f<5 ・・・(21)
ただし、fN 、fP は前記のそれぞれ負群、正群の合成焦点距離、DFSは最も物体側の面から開口絞りまでの距離、DSRは開口絞りから最も像側の面までの距離である。
【0035】
条件(18)ないし(21)は、焦点距離が数mmと極めて短く、そのために絶対的サイズの極めて小さな撮影レンズに対し、サイズと組立性や鏡枠設定可能性のバランスを良くするための条件である。これらのパラメータは、全般に焦点距離の長い光学系に比べると大きい。これらの条件の下限値を越えると、レンズの径や空気間隔が小さすぎて鏡枠設計や組立が困難となる。上限値を越えると、光学系が大きくなる。
【0036】
なお、全体を通じ、(1)〜(21)各条件の範囲を以下のように限定すればさらに良好である。
3.5<f1 /f<5 ・・・(1)’
−2<(r11+r12)/(r11−r12)<−0.7 ・・・(2)’
0.3<d1 /f<0.8 ・・・(3)’
1.5<fR /f<2.5 ・・・(4)’
−0.3<(rR1+rR2)/(rR1−rR2)<0.3 ・・・(5)’
0.6<dR /f<1 ・・・(6)’
0.8<DSR1 /f<2 ・・・(7)’
0.5<(DSR2 −DSR1 )/DSR1 <2 ・・・(8)’
0.3<n1 −n2 <0.45 ・・・(9)’
35<ν2 −ν1 <60 ・・・(10)’
0.6<D2S/f<1.3 ・・・(11)’
0.4<r22/f<0.8 ・・・(12)’
2.5<(DS41 +DS42 +DSR1 +DSR2 )/2(DS31 +DS32 )<7・・・(13)’
1.4<r41/f<3.5 ・・・(14)’
0.03<n3 −n4 <0.17 ・・・(15)’
1.65<n4 <1.8 ・・・(16)’
1<(DS42 −DS41 )/DS41 <3 ・・・(17)’
−4<fN /f<−1.5 ・・・(18)’
0.7<fP /f<1.8 ・・・(19)’
1<DFS/f<2.5 ・・・(20)’
1.2<DSR/f<4 ・・・(21)’
ただし、以下の範囲がベストである。
【0037】
3.8<f1 /f<4.7 ・・・(1)”
−1.7<(r11+r12)/(r11−r12)<−0.7 ・・・(2)”
0.3<d1 /f<0.6 ・・・(3)”
1.6<fR /f<2.1 ・・・(4)”
−0.25<(rR1+rR2)/(rR1−rR2)<0.25 ・・・(5)”
0.65<dR /f<0.85 ・・・(6)”
1.0<DSR1 /f<1.7 ・・・(7)”
0.6<(DSR2 −DSR1 )/DSR1 <1.5 ・・・(8)”
0.3<n1 −n2 <0.4 ・・・(9)”
40<ν2 −ν1 <60 ・・・(10)”
0.7<D2S/f<1.1 ・・・(11)”
0.45<r22/f<0.65 ・・・(12)”
3.2<(DS41 +DS42 +DSR1 +DSR2 )/2(DS31 +DS32 )<4.5・・・(13)”
1.8<r41/f<2.5 ・・・(14)”
0.07<n3 −n4 <0.15 ・・・(15)”
1.67<n4 <1.78 ・・・(16)”
1.4<(DS42 −DS41 )/DS41 <2.4 ・・・(17)”
−3.5<fN /f<−1.8 ・・・(18)”
0.9<fP /f<1.5 ・・・(19)”
1.2<DFS/f<1.8 ・・・(20)”
1.6<DSR/f<2.8 ・・・(21)”

【0038】
【発明の実施の形態】
以下、本発明の広角レンズ系の実施例1〜3について説明する。
図1〜図3にそれぞれ実施例1〜3のレンズ系の断面図を示す。また、図4〜図6にそれぞれ実施例1〜3のレンズ系の収差図を示す。これらの収差図中、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)は倍率色収差である。
【0039】
実施例1は、図1に断面を示すように、物体側から順に、負群GN、開口絞りD、正群GP、フィルター、カバーガラス等の平行平面板群Fからなり、負群GNは、物体側に凸面を向けた正メニスカスレンズと、像側に凹面を向けた負メニスカスレンズとからなり、正群GPは、像側に凸面を向けた正メニスカスレンズと、両凸レンズ、像側に凸面を向けた負メニスカスレンズの2枚接合レンズとからなる。また、正群GP中の正メニスカスレンズの像側の面に非球面を用いている。
【0040】
実施例2及び3は、それぞれ図2、図3に断面を示すように、物体側から順に、負群GN、開口絞りD、正群GP、フィルター、カバーガラス等の平行平面板群Fからなり、負群GNは、物体側に凸面を向けた正メニスカスレンズと、像側に凹面を向けた負メニスカスレンズとからなり、正群GPは、両凹レンズ、両凸レンズの2枚接合レンズと、両凸レンズとからなる。また、正群GP中の像側の両凸レンズの物体側の面に非球面を用いている。
【0041】
各実施例のFナンバーは、実施例1〜3共2.79、像高は、実施例1が3.3、実施例2が3.0、実施例3が3.0、全系の焦点距離(f)は、実施例1〜3共5.15、半画角(ω)は、実施例1が32.65°、実施例2が30.22°、実施例3が30.22°である。
【0042】
以下に、上記各実施例の数値データを示すが、記号は、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、光軸上光の進行方向をx、光軸に直交する方向をyとしたとき、次の式で表される。

Figure 0003759221
ただし、rは近軸曲率半径、A4、A6、A8、A10 はそれぞれ4次、6次、8次、10次の非球面係数である。
【0043】
実施例1
1 = 17.8851 d1 = 1.8000 nd1 =1.84666 νd1 =23.78
2 = 336.9061 d2 = 0.2500
3 = 9.0262 d3 = 0.7500 nd2 =1.57501 νd2 =41.49
4 = 2.5636 d4 = 4.9923
5 = ∞(絞り) d5 = 2.8885
6 = -10.6871 d6 = 2.5116 nd3 =1.56384 νd3 =60.70
7 = -5.4539(非球面) d7 = 0.3493
8 = 9.1827 d8 = 5.7000 nd4 =1.56384 νd4 =60.70
9 = -4.8522 d9 = 0.8500 nd5 =1.84666 νd5 =23.78
10= -8.4474 d10= 1.5000
11= ∞ d11= 1.6000 nd6 =1.51633 νd6 =64.15
12= ∞ d12= 2.3000 nd7 =1.54771 νd7 =62.84
13= ∞ d13= 1.5000
14= ∞ d14= 0.7500 nd8 =1.48749 νd8 =70.21
15= ∞
非球面係数
第7面
A4 = 2.5592×10-6
A6 = 2.8708×10-5
A8 = 1.0675×10-5
A10= -9.2566×10-7
【0044】
実施例2
1 = 14.7669 d1 = 2.4000 nd1 =1.84666 νd1 =23.78
2 = 77.2137 d2 = 0.2500
3 = 8.6633 d3 = 0.7500 nd2 =1.48749 νd2 =70.21
4 = 2.6379 d4 = 3.8149
5 = ∞(絞り) d5 = 1.1000
6 = -9.4638 d6 = 1.2000 nd3 =1.84666 νd3 =23.78
7 = 12.0733 d7 = 3.6000 nd4 =1.72916 νd4 =54.68
8 = -5.5956 d8 = 0.1500
9 = 9.4226(非球面) d9 = 3.8000 nd5 =1.56384 νd5 =60.70
10= -12.3053 d10= 1.5000
11= ∞ d11= 1.6000 nd6 =1.51633 νd6 =64.15
12= ∞ d12= 2.3000 nd7 =1.54771 νd7 =62.84
13= ∞ d13= 1.0000
14= ∞ d14= 0.7500 nd8 =1.48749 νd8 =70.21
15= ∞
非球面係数
第9面
A4 = -3.1037×10-4
A6 = -2.4543×10-5
A8 = 2.1418×10-6
A10= -7.2117×10-8
【0045】
実施例3
1 = 14.4595 d1 = 2.3000 nd1 =1.84666 νd1 =23.78
2 = 73.2856 d2 = 0.2500
3 = 8.3092 d3 = 0.7500 nd2 =1.48749 νd2 =70.21
4 = 2.6330 d4 = 3.7620
5 = ∞(絞り) d5 = 1.1000
6 = -7.4826 d6 = 0.8000 nd3 =1.84666 νd3 =23.78
7 = 10.0000 d7 = 3.5000 nd4 =1.72916 νd4 =54.68
8 = -5.5677 d8 = 0.1500
9 = 10.1428(非球面) d9 = 3.6000 nd5 =1.56384 νd5 =60.70
10= -8.6705 d10= 1.5000
11= ∞ d11= 1.6000 nd6 =1.51633 νd6 =64.15
12= ∞ d12= 2.0200 nd7 =1.54771 νd7 =62.84
13= ∞ d13= 1.6500
14= ∞ d14= 0.7500 nd8 =1.48749 νd8 =70.21
15= ∞
非球面係数
第9面
A4 = -5.5278×10-4
A6 = -2.0032×10-5
A8 = 2.1245×10-6
A10= -8.0626×10-8
【0046】
次に、上記実施例1〜3の前記条件(1)〜(21)の値を示す。
Figure 0003759221
【0047】
以上の本発明の広角レンズ系は例えば次のように構成することができる。
〔1〕 物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、最も物体側のレンズが正レンズからなり、その正レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
【0048】
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
0.25<d1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0049】
〔2〕 物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、最も像側のレンズが両凸レンズからなり、その両凸レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
【0050】
1.4<fR /f<3 ・・・(4)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0051】
〔3〕 物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、最も物体側のレンズが正レンズからなり、かつ、最も像側のレンズが両凸レンズからなり、それらレンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
【0052】
2.5<f1 /f<10 ・・・(1)
1.4<fR /f<3 ・・・(4)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.25<d1 /f<0.8 ・・・(3)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚み、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
【0053】
〔4〕 前記の最も像側の両凸レンズの物体側の面が非球面で構成され、以下の条件を満足することを特徴とする上記〔2〕又は〔3〕記載の広角レンズ系。
0.5<DSR1 /f<3 ・・・(7)
0.2<(DSR2 −DSR1 )/DSR1 <3 ・・・(8)
ただし、DSR1 は前記の最も像側の両凸レンズの物体側の面の前記開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の前記開口絞りからの距離である。
【0054】
〔5〕 前記の最も像側の両凸レンズの像側の面が球面で構成されていることを特徴とする上記〔4〕記載の広角レンズ系。
【0055】
〔6〕 前記の最も物体側の正レンズと前記開口絞りの間に、少なくとも像側に強い凹面を向けた負のメニスカスレンズを有し、以下の条件を満足することを特徴とする上記〔1〕又は〔3〕記載の広角レンズ系。
0.2<n1 −n2 <0.45 ・・・(9)
10<ν2 −ν1 <60 ・・・(10)
ただし、n1 、ν1 はそれぞれ前記の最も物体側の正レンズの媒質屈折率とアッベ数、n2 、ν2 はそれぞれ前記の像側に強い凹面を向けた負のメニスカスレンズの媒質屈折率とアッベ数である。
【0056】
〔7〕 前記の最も物体側の正レンズと前記開口絞りの間に、1枚の像側に強い凹面を向けた負のメニスカスレンズを有し、以下の条件を満足することを特徴とする上記〔6〕記載の広角レンズ系。
0.5<D2S/f<1.5 ・・・(11)
0.3<r22/f<1 ・・・(12)
ただし、D2Sは前記の負のメニスカスレンズの最も像側の面から前記開口絞りまでの距離、r22は前記の負のメニスカスレンズの最も像側の面の曲率半径である。
【0057】
〔8〕 前記開口絞りと前記の最も像側の両凸レンズの間に、正レンズと負レンズとも有し、以下の条件を満足することを特徴とする上記〔2〕から〔4〕の何れか1項記載の広角レンズ系。
2<(DS41 +DS42 +DSR1 +DSR2 )/2(DS31 +DS32 )<10・・・(13)
ただし、DS31 、DS32 、DS41 、DS42 はそれぞれ前記開口絞りから前記負レンズの物体側の面、像側の面と、前記正レンズの物体側の面、像側の面までの距離、DSR1 は前記の最も像側の両凸レンズの物体側の面の前記開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の前記開口絞りからの距離である。
【0058】
〔9〕 前記開口絞りと前記の最も像側の両凸レンズの間に、物体側から負レンズ、正レンズの順で接合されたレンズを有し、以下の条件を満足することを特徴とする上記〔8〕記載の広角レンズ系。
1<r41/f<4 ・・・(14)
0<n3 −n4 <0.2 ・・・(15)
1.6<n4 <1.85 ・・・(16)
0.5<(DS42 −DS41 )/DS41 <4 ・・・(17)
ただし、r41は前記正レンズの物体側の面の曲率半径、n3 、n4 はそれぞれ前記負レンズ、正レンズの媒質屈折率である。
【0059】
〔10〕 以下の条件を満足することを特徴とする上記〔1〕から〔9〕の何れか1項記載の広角レンズ系。
−5<fN /f<−1.5 ・・・(18)
0.7<fP /f<2 ・・・(19)
1<DFS/f<3 ・・・(20)
1<DSR/f<5 ・・・(21)
ただし、fN 、fP は前記のそれぞれ負群、正群の合成焦点距離、DFSは最も物体側の面から前記開口絞りまでの距離、DSRは前記開口絞りから最も像側の面までの距離である。
【0060】
〔11〕 物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、物体側から順に、前記の負群は、正のメニスカスレンズ、像側に強い凹面を向けた負のメニスカスレンズの2枚のレンズを有し、前記の正群は、両凹レンズ、2枚の両凸レンズの合計3枚のレンズを有することを特徴とする上記〔1〕から〔10〕の何れか1項記載の広角レンズ系。
【0061】
【発明の効果】
以上の説明から明らかなように、本発明によると、電子カメラ(デジタルカメラ)のように撮像有効領域が極めて小さく、そのために焦点距離が極端に短くなるケースであっても、レンズ構成要素の縁肉や中肉の厚みや組立上必要なスペースを十分確保することを行いつつも、フィルター類が挿入できるだけの十分なバックフォーカス、十分遠い射出瞳位置、かつ、良好な結像性能を有した小型で構成枚数の少ないシンプルで製作性の良好なデジタルカメラに適した広角レンズ系を得ることができる。
【図面の簡単な説明】
【図1】 本発明の広角レンズ系の実施例1の断面図である。
【図2】 本発明の広角レンズ系の実施例2の断面図である。
【図3】 本発明の広角レンズ系の実施例3の断面図である。
【図4】 本発明の広角レンズ系の実施例1の収差図である。
【図5】 本発明の広角レンズ系の実施例2の収差図である。
【図6】 本発明の広角レンズ系の実施例3の収差図である。
【符号の説明】
GN…負群
GP…正群
D …開口絞り
F …フィルター、カバーガラス等の平行平面板群[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wide-angle lens system, and in particular, since a large number of optical elements such as prisms and filters are inserted between an imaging lens system having an extremely short focal length and an electronic image pickup device, The present invention relates to a simple wide-angle imaging lens for an electronic camera that has a small size and a small number of constituent elements that secures focus and is easy to process and assemble.
[0002]
[Prior art]
Recently, an electronic camera (digital camera) is attracting attention as a next-generation camera that replaces a silver salt 35 mm film (commonly known as Leica version) camera. The size of what is used as an image pickup element of the digital camera is one-tenth to one-tenth as a diagonal length as compared with the case of a silver salt 35 mm film. Therefore, when obtaining images having the same angle of view, it is necessary to make the focal length of the imaging lens system extremely short in proportion thereto. From a theoretical point of view, the size of the lens system also becomes extremely small in proportion to it, so that the components are naturally reduced accordingly. Therefore, processing of the lens becomes extremely difficult. On the other hand, it is desired that the light emission angle from the imaging lens system is as perpendicular to the image sensor as possible because of the characteristics of the electronic image sensor. Therefore, it is difficult to use a conventional wide-angle lens system (for example, a retrofocus lens system) for a silver salt 35 mm film camera as it is for a digital camera.
[0003]
[Problems to be solved by the invention]
The present invention has been made in order to solve such problems, and its purpose is to ensure sufficient space for assembling the thickness and the thickness of the green and medium of the lens component, To provide a small-sized, simple and highly manufacturable wide-angle lens system suitable for a digital camera having a predetermined back focus, exit pupil position, and good imaging performance.
[0004]
[Means for Solving the Problems]
  The wide-angle lens system of the present invention that achieves the above object is composed of two groups, negative and positive, in order from the object side, and further has an aperture stop between them.
  The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
  The positive group, in order from the object side, consists of three lenses: a positive meniscus lens having a convex surface facing the image side, a biconvex positive lens, and a negative meniscus lens having a convex surface facing the image side. ,
  The following conditions are satisfied regarding the power and shape of the positive lens closest to the object side in the negative group.
    2.5 <f1/ F <10 (1)
    −2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
    0.25 <d1/F<0.8 (3)
Where f is the focal length of the entire system, and f1, R11, R12, D1Are the focal length of the positive lens closest to the object side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0005]
  Another wide-angle lens system of the present invention is composed of two negative and positive groups in order from the object side, and further has an aperture stop in the middle thereof.
  The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
  The positive group consists of three lenses, a negative lens and two biconvex lenses,
  The most image-side lens is one of the biconvex lenses, and the following conditions are satisfied with respect to the power and shape of the most image-side biconvex lens.
    1.4 <fR/ F <3 (4)
    −0.5 <(rR1+ RR2) / (RR1-RR2<0.5 (5)
    0.5 <dR/ F <1 (6)
Where f is the focal length of the entire system, and fR, RR1, RR2, DRAre the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0006]
  Still another wide-angle lens system of the present invention is composed of two groups, negative and positive, in order from the object side, and further has an aperture stop in the middle thereof.
  The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
  The positive group consists of three lenses, a negative lens and two biconvex lenses,
  The most image side lens is one of the biconvex lenses, and the following conditions are satisfied with respect to the power and shape of the most image side biconvex lens and the most object side positive lens.
    2.5 <f1/ F <10 (1)
    1.4 <fR/ F <3 (4)
    −2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
    −0.5 <(rR1+ RR2) / (RR1-RR2<0.5 (5)
    0.25 <d1/F<0.8 (3)
    0.5 <dR/ F <1 (6)
Where f is the focal length of the entire system, and f1, R11, R12, D1Is the focal length of the most object side positive lens, the radius of curvature of the object side surface, the radius of curvature of the image side surface, the thickness on the optical axis, fR, RR1, RR2, DRAre the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
  Still another wide-angle lens system of the present invention is composed of two groups, negative and positive, in order from the object side, and further has an aperture stop in the middle thereof.
  In order from the object side, the negative group includes two lenses, a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the image side. The group is a total of three lenses, a positive meniscus lens having a convex surface facing the image side, a biconvex lens, and a negative meniscus lens having a convex surface facing the image side. The negative lens in the positive group includes an adjacent positive lens and Joined and
  The following conditions are satisfied regarding the power and shape of the positive lens closest to the object side in the negative group.
    2.5 <f1/ F <10 (1)
    −2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
    0.25 <d1/F<0.8 (3)
Where f is the focal length of the entire system, and f1, R11, R12, D1Are the focal length of the positive lens closest to the object side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
  Still another wide-angle lens system of the present invention is composed of two groups, negative and positive, in order from the object side, and further has an aperture stop in the middle thereof.
  In order from the object side, the negative group includes two lenses, a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the image side. The group consists of a total of three lenses, a biconcave lens and two biconvex lenses.
  The following conditions are satisfied regarding the power and shape of the positive lens closest to the object side in the negative group.
    2.5 <f1/ F <10 (1)
    −2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
    0.25 <d1/F<0.8 (3)
Where f is the focal length of the entire system, and f1, R11, R12, D1Are the focal length of the positive lens closest to the object side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0007]
Hereinafter, the reason and action of the above configuration in the present invention, and a more preferable configuration will be described.
[0008]
The imaging lens system for digital cameras has a small image sensor size and a wide-angle lens system, so the focal length is extremely short. On the other hand, the space for the filter and the cover glass of the image sensor is secured. In order to achieve this, the back focus needs to be greater than the focal length. Therefore, in this invention, it comprised from two groups, negative and positive, in an order from the object side. Therefore, since the power concentrates in the rear group, the number of lenses increases in the rear group. On the other hand, the conventional silver salt is used in order to keep the air gap as small as possible in order to secure the edge of the lens component, the inner wall, etc. Unlike the wide-angle lens system for 35 mm film (commonly known as Leica version) cameras, the rear group was not provided with an aperture stop, and an aperture stop was provided between the two groups.
[0009]
In addition, since the thickness of the rear group tends to increase in this way, it is necessary to further increase the power of each of the two groups in order to secure the back focus. When the power of these groups is increased, a remarkable curvature aberration is generated, which is not very good for general digital photography, regardless of the surveillance camera. Therefore, in the present invention, a positive lens that satisfies the following condition is arranged closest to the object side of the negative group (front group). The focal length and shape factor were defined as follows.
[0010]
2.5 <f1/ F <10 (1)
−2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
Where f is the focal length of the entire system, and f1, R11, R12Are the focal length of the positive lens closest to the object side, the radius of curvature of the object side surface, and the radius of curvature of the image side surface, respectively.
[0011]
Exceeding the upper limit of 10 to the above condition (1) is not preferable because the distortion correction effect is insufficient and barrel distortion is likely to occur. This lens also serves as chromatic aberration correction, coma aberration, and field curvature correction, and these correction effects are reduced. On the other hand, if the lower limit of 2.5 is exceeded, high-order aberrations are likely to occur in order to maintain the negative power of the front group, and the imaging performance cannot be maintained over a wide field angle.
[0012]
Further, when the upper limit −0.7 and the lower limit −2.5 of the condition (2) are exceeded, coma worsens, but particularly when the lower limit is exceeded, the adverse effects on high-order lateral chromatic aberration and distortion are large. If the upper limit is exceeded, the adverse effect on astigmatism is large.
[0013]
In the present invention, there are preconditions for obtaining operational effects on the configuration. This is a condition that holds for the optical system for a digital camera as described above. In other words, it is a condition for processing and assembling the lens components, that is, a precondition for ensuring a sufficient margin, and is defined as follows.
0.25 <d1/F<0.8 (3)
Where d1Is the thickness of the most object side positive lens on the optical axis.
[0014]
If the lower limit of 0.25 of the condition (3) is exceeded, the margin cannot be secured sufficiently and the processing becomes difficult. On the other hand, when the upper limit of 0.8 is exceeded, there is a problem in that the diameter of the positive lens leading type is easily increased.
[0015]
Next, for digital photography, it is necessary to make the exit side telecentric as described above. When this is carried out, unlike the conventional wide-angle lens system for a silver salt 35 mm film camera, the incidence and exit angles of the off-axis light beam on the most image-side lens are greatly different and smaller than the optical axis. In addition, the cutting height is high instead of the axial marginal ray height and focal length, and aberrations tend to occur naturally. In order to minimize the aberration with respect to the off-axis light beam, it is necessary to reduce the incident and exit angles. For this purpose, the most image side lens needs to be a biconvex lens. Further, the focal length and the shape factor should be in the following ranges.
[0016]
1.4 <fR/ F <3 (4)
−0.5 <(rR1+ RR2) / (RR1-RR2<0.5 (5)
Where fR, RR1, RR2Are the focal length of the most image-side biconvex lens, the radius of curvature of the object-side surface, and the radius of curvature of the image-side surface, respectively.
[0017]
Even if these ranges are exceeded in any direction, it becomes difficult to correct on-axis and off-axis light beam aberrations (particularly spherical aberration, coma aberration, and astigmatism). Furthermore, for condition (5),
−0.1 <(rR1+ RR2) / (RR1-RR2<0.4 (5 ')
Then it will be better.
[0018]
There are preconditions for obtaining the operational effects of the present invention. This is a condition that holds for the optical system for a digital camera as described above. In other words, it is a condition for processing and assembling the lens components, that is, a precondition for ensuring a sufficient margin, and is defined as follows.
0.5 <dR/ F <1 (6)
Where dRIs the thickness on the optical axis of the biconvex lens closest to the image side.
[0019]
If the lower limit of 0.5 of this condition (6) is exceeded, the margin cannot be secured sufficiently and processing becomes difficult. On the other hand, when the upper limit of 1 is exceeded, the diameter tends to increase, and it becomes difficult to ensure the back focus.
[0020]
As mentioned earlier, in the most image-side lens, the off-axis light beam cut height is high instead of the on-axis marginal ray height and focal length, and this lens element also has high power, so there is inherent aberration. Is likely to occur. In order to minimize the aberration with respect to the off-axis light beam, it is preferable to reduce the incident and exit angles. However, this is not sufficient when the pixel pitch is fine and high resolving power is required. In order to achieve both rear group power and aberration correction, there is a conventional method of increasing the number of positive lenses. However, as mentioned earlier, there is an increased space for downsizing and ensuring back focus. Absent. Therefore, in order to satisfactorily correct aberrations without increasing the number of components, an aspherical surface is introduced into the most image-side biconvex lens to make it the object-side surface. This is because the on-axis and off-axis co-aberration correction effects are remarkably high and processing is easy. In particular, the reason is that the ratio of the effective diameter of the aspherical surface to the product diameter should be as small as possible. However, if the product diameter is purposely increased, the thickness of the lens must be increased due to insufficient margin. . That is inconvenient as you can see from the discussion so far. On the other hand, since this lens has a larger effective diameter on the image side, the product diameter is determined by circumstances on the image side. Accordingly, the ratio of the effective diameter of the aspheric surface to the product diameter is easy to reduce, which is preferable.
[0021]
0.5 <DSR1/ F <3 (7)
0.2 <(DSR2-DSR1) / DSR1<3 (8)
However, DSR1Is the distance from the aperture stop of the object side surface of the biconvex lens closest to the image side, DSR2Is the distance from the aperture stop on the image side surface of the most convex lens on the image side.
[0022]
Condition (7) defines the distance from the aspherical stop. If the lower limit of 0.5 is exceeded, the effect of correcting aspherical aberrations becomes small, which is not preferable. When the upper limit of 3 is exceeded, it is difficult to ensure the back focus. Condition (8) stipulates the value obtained by dividing the difference between the distance between the aspherical surface (object side) of the lens closest to the image side and the aperture on the image side by the distance from the aperture on the aspherical surface (object side). It is. When the lower limit of 0.2 is exceeded, the difference between the effective diameters of both surfaces is small, the ratio of the effective diameter of the aspheric surface to the product diameter is difficult to reduce, and in order to reduce this, the product diameter must be increased, It is not preferable. When the upper limit of 3 is exceeded, it is difficult to ensure the back focus. The image side surface may be a spherical surface.
[0023]
Now, since the front group has a negative refractive power, a negative lens element is necessary. It is arranged between the positive meniscus lens closest to the object and the aperture stop. In addition, since the negative lens has a relatively large power, the influence on off-axis aberrations is particularly great. Therefore, in order to minimize the aberration with respect to the off-axis light beam, it is necessary to reduce the incident and exit angles. Therefore, a negative meniscus lens having a strong concave surface at least on the image side is required. On the other hand, the lens system is quite thick with respect to the focal length and has few constituent elements, so that the entire lens system is particularly difficult to correct chromatic aberration and curvature of field. In particular, in order to correct curvature of field and chromatic aberration at the same time, both the refractive index and Abbe number of the rear group positive lens are high, and the negative lens is the opposite, but there is no glass that actually satisfies them. On the other hand, in the front group, since the refractive index of the positive lens is high, the Abbe number is low, and the negative lens is the opposite, the combination with the actual glass material is possible to some extent. Therefore,
0.2 <n1-N2<0.45 (9)
10 <ν2−ν1<60 (10)
0.5 <D2S/F<1.5 (11)
Where n1, Ν1Are the medium refractive index and Abbe number of the positive lens on the most object side, n2, Ν2Is the medium refractive index and Abbe number of a negative meniscus lens with a strong concave surface facing the image side, D2SIs a distance from the most image side surface of the negative meniscus lens to the aperture stop.
[0024]
Conditions (9) and (10) define the refractive index difference and Abbe number difference of the two lenses in the front group, respectively. However, if both exceed the lower limit values, the field curvature and chromatic aberration are sufficiently corrected. I can't. On the other hand, there is no actual glass material on the upper limit side. Since the front group has a lower power than the rear group, it is easy to secure the edge even if the diameter is slightly increased. Therefore, the diaphragm surface, that is, the surface (member) for determining the on-axis marginal ray should be as close as possible to the rear group, and the diaphragm-related member should be inserted before the diaphragm, and a space for that purpose must be secured.
[0025]
Condition (11) defines the distance from the most image side surface of the negative meniscus lens to the stop. In other words, this is a prerequisite for obtaining the operational effects of the present invention. This is a condition that holds for the optical system for a digital camera as described above. That is, it is a precondition for assembling conditions, that is, a space for securing a member insertion such as a diaphragm. If the lower limit of 0.5 is exceeded, there will be insufficient space for insertion of a member such as an aperture, and the principal points of the front and rear groups will be too close, and both groups will tend to have a large power to ensure back focus. It is not preferable. When the upper limit of 1.5 is exceeded, the diameter of the front group tends to increase.
[0026]
In addition, when only one negative meniscus lens having a strong concave surface facing the image side is used, the concave surface having a large curvature on the image side serves as the main power of the front group, so that the influence on off-axis aberrations is as much as possible. In order to reduce this, it is better to make the center of curvature close to the intersection of the diaphragm surface and the optical axis. That is,
0.3 <rtwenty two/ F <1 (12)
Where rtwenty twoIs the radius of curvature of the most image side surface of the negative meniscus lens. If the lower limit of 0.3 of this condition is exceeded, off-axis aberrations are likely to deteriorate, and a concave surface close to a hemisphere is formed, making processing difficult. If the upper limit of 1 is exceeded, the negative power of the previous group cannot be maintained.
[0027]
Furthermore, with respect to the rear group, each of the positive lens and the negative lens is provided between the stop and the biconvex lens closest to the image side in terms of power, imaging performance, back focus, and diameter reduction. Good. And it is preferable to satisfy the following conditions.
2 <(DS41+ DS42+ DSR1+ DSR2) / 2 (DS31+ DS32) <10 ... (13)
However, DS31, DS32, DS41, DS42Are the distances from the aperture stop to the object side surface of the negative lens, the image side surface, the object side surface of the positive lens, and the image side surface, DSR1Is the distance from the aperture stop of the object side surface of the biconvex lens closest to the image side, DSR2Is the distance from the aperture stop on the image side surface of the most convex lens on the image side.
[0028]
Condition (13) defines the ratio of the average value of the distance from the stop on the convergent surface to the distance from the stop on the diverging surface. For exit side telecentricity, the front focal position of the rear group should coincide with the aperture position. However, if the lower limit of 2 of the above condition is exceeded, the front focal position of the rear group is closer to the object side than the aperture position. Going away, it becomes difficult to secure the exit side telecentricity. If the upper limit of 10 is exceeded, similarly, it is difficult to ensure the exit-side telecentricity, and the necessary effective diameter of the most image-side positive lens becomes too large, which is not preferable.
[0029]
The configuration between the diaphragm and the biconvex lens closest to the image side is from the object side in terms of securing the back focus length, correcting each aberration (particularly chromatic aberration, Petzval sum, spherical aberration, coma aberration), and assembling. A negative lens and a positive lens are preferably joined in this order. In terms of spherical aberration correction, the axial ray height is relatively high, and a surface with a concave surface facing the object side is required, but on the other hand, it can generate off-axis aberrations such as coma. When trying to reduce as much as possible, it is preferable to reduce the incident angle of the off-axis light beam on the surface, that is, the center of curvature is close to the pupil image point. In order to make them compatible, it is preferable that the most object side surface of the rear group is a concave surface. Then, it is preferable that the lens closest to the object side in the rear group is a negative lens and then the positive lens. In this arrangement order, it is difficult to correct the lateral chromatic aberration, so it is necessary to increase the power of these two elements. Therefore, it is preferable to reduce the curvature radius of the joint surface by joining the two. That is,
1 <r41/ F <4 (14)
Where r41Is the radius of curvature of the object side surface of the positive lens.
[0030]
Exceeding the upper limit of 4 of the condition (14) makes it difficult to correct lateral chromatic aberration, and exceeding the lower limit of 1 is not preferable because the thickness of the positive lens is insufficient. On the other hand, in order to obtain a spherical aberration correction effect on the cemented surface, there is also a problem that the Petzval sum is increased in view of increasing the refractive index of the negative lens. Therefore, the difference in refractive index between both lenses should be as small as possible. That is,
0 <nThree-NFour<0.2 (15)
Where nThree, NFourAre the medium refractive indexes of the negative lens and the positive lens, respectively.
[0031]
When the upper limit of 0.2 of the condition (15) is exceeded, the Petzval sum becomes too large, and when the lower limit of 0 is exceeded, the spherical aberration correction effect is lost and the correction becomes insufficient. Further, since the number of components is small, it is preferable that the refractive index itself is high.
[0032]
1.6 <nFour<1.85 (16)
When the upper limit value of 1.85 is exceeded, there is no actual glass material, and when the upper limit value of 1.6 is exceeded, the curvature of the lens becomes large, and it is difficult to secure the edge.
[0033]
Since the absolute size of the lens system is extremely small, it is difficult to secure a space for a lens frame portion for fixing the lens between the stop and the concave surface on the most object side of the rear group. On the other hand, the positive lens has a larger diameter because of the height of the off-axis light beam. Therefore, it is preferable that a negative lens having a smaller diameter is joined to the positive lens and both sides of the positive lens are suppressed and fixed. It is an assembly method that is possible only when the negative lens is sufficiently smaller in diameter than the positive lens. That is, a condition is necessary in which the effective diameter of the image side surface of the negative lens is sufficiently smaller than the effective diameter of the image side surface of the positive lens. Ie
0.5 <(DS42-DS41) / DS41<4 (17)
It is desirable to satisfy When the lower limit of 0.5 is exceeded, the difference between the effective diameter of the negative lens image-side surface and that of the positive lens decreases, making it difficult to fix only the positive lens to the frame. If the upper limit of 4 is exceeded, the thickness of the positive lens increases, and the diameter of the lens on the most image side becomes too large, which is not preferable.
[0034]
Furthermore, it is preferable to satisfy the following conditions.
−5 <fN/F<−1.5 (18)
0.7 <fP/ F <2 (19)
1 <DFS/ F <3 (20)
1 <DSR/ F <5 (21)
Where fN, FPIs the combined focal length of the negative group and the positive group, respectively, DFSIs the distance from the surface closest to the object to the aperture stop, DSRIs the distance from the aperture stop to the surface closest to the image side.
[0035]
Conditions (18) to (21) are conditions for improving the balance between size, assemblability, and the possibility of setting a lens frame for a photographing lens having an extremely short focal length and a very small absolute size. It is. These parameters are generally larger than those of an optical system having a long focal length. If the lower limit values of these conditions are exceeded, the lens diameter and the air gap are too small, making it difficult to design and assemble the lens frame. If the upper limit is exceeded, the optical system becomes larger.
[0036]
Note that it is even better if the range of each condition (1) to (21) is limited as follows throughout.
3.5 <f1/ F <5 (1) '
-2 <(r11+ R12) / (R11-R12) <− 0.7 (2) ′
0.3 <d1/F<0.8 (3) '
1.5 <fR/F<2.5 (4) '
−0.3 <(rR1+ RR2) / (RR1-RR2) <0.3 (5) '
0.6 <dR/ F <1 (6) '
0.8 <DSR1/ F <2 (7) '
0.5 <(DSR2-DSR1) / DSR1<2 (8) '
0.3 <n1-N2<0.45 (9) '
35 <ν2−ν1<60 (10) ’
0.6 <D2S/F<1.3 (11) '
0.4 <rtwenty two/F<0.8 (12) '
2.5 <(DS41+ DS42+ DSR1+ DSR2) / 2 (DS31+ DS32) <7 ... (13) '
1.4 <r41/F<3.5 (14) '
0.03 <nThree-NFour<0.17 (15) '
1.65 <nFour<1.8 (16) ’
1 <(DS42-DS41) / DS41<3 (17) ’
-4 <fN/F<−1.5 (18) '
0.7 <fP/F<1.8 (19) '
1 <DFS/F<2.5 (20) '
1.2 <DSR/ F <4 (21) '
However, the following ranges are the best.
[0037]
3.8 <f1/F<4.7 (1) "
-1.7 <(r11+ R12) / (R11-R12) <− 0.7 (2) ”
0.3 <d1/F<0.6 (3) "
1.6 <fR/F<2.1 (4) "
−0.25 <(rR1+ RR2) / (RR1-RR2) <0.25 (5) "
0.65 <dR/F<0.85 (6) "
1.0 <DSR1/F<1.7 (7) "
0.6 <(DSR2-DSR1) / DSR1<1.5 (8) "
0.3 <n1-N2<0.4 (9) "
40 <ν2−ν1<60 (10) "
0.7 <D2S/F<1.1 (11) "
0.45 <rtwenty two/F<0.65 (12) "
3.2 <(DS41+ DS42+ DSR1+ DSR2) / 2 (DS31+ DS32<4.5 ... (13) ”
1.8 <r41/F<2.5 (14) "
0.07 <nThree-NFour<0.15 (15) "
1.67 <nFour<1.78 (16) "
1.4 <(DS42-DS41) / DS41<2.4 (17) "
−3.5 <fN/F<-1.8 (18) "
0.9 <fP/F<1.5 (19) "
1.2 <DFS/F<1.8 (20) "
1.6 <DSR/F<2.8 (21) "
.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
  Examples 1 to 3 of the wide-angle lens system of the present invention will be described below.
  1 to 3 show sectional views of the lens systems of Examples 1 to 3, respectively. FIGS. 4 to 6 show aberration diagrams of the lens systems of Examples 1 to 3, respectively. In these aberration diagrams, (a) is spherical aberration, (b) is astigmatism, (c) is distortion, and (d) is chromatic aberration of magnification.
[0039]
As shown in the cross section of FIG. 1, Example 1 includes, in order from the object side, a negative plane GN, an aperture stop D, a positive group GP, a parallel plane plate group F such as a filter, a cover glass, and the like. It consists of a positive meniscus lens with a convex surface facing the object side and a negative meniscus lens with a concave surface facing the image side. The negative meniscus lens is a two-lens cemented lens. In addition, an aspherical surface is used for the image side surface of the positive meniscus lens in the positive group GP.
[0040]
  Examples 2 and 3 are each composed of a parallel plane plate group F such as a negative group GN, an aperture stop D, a positive group GP, a filter, and a cover glass in order from the object side, as shown in cross sections in FIGS. The negative group GN is composed of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the image side. The positive group GP includes a bi-concave lens, a biconvex lens, a double cemented lens, Consists of a convex lens. In addition, an aspherical surface is used for the object-side surface of the biconvex lens on the image side in the positive group GP.
[0041]
The F number of each example is 2.79 for both Examples 1 to 3, the image height is 3.3 for Example 1, 3.0 for Example 2, 3.0 for Example 3, and the focal point of the entire system. The distance (f) is 5.15 in Examples 1 to 3, and the half angle of view (ω) is 32.65 ° in Example 1, 30.22 ° in Example 2, and 30.22 ° in Example 3. It is.
[0042]
The numerical data of each of the above examples is shown below, but the symbol is r1, R2... is the radius of curvature of each lens surface, d1, D2... is the distance between each lens surface, nd1, Nd2... is the refractive index of d-line of each lens, νd1, Νd2... is the Abbe number of each lens. The aspherical shape is expressed by the following equation, where x is the traveling direction of light on the optical axis and y is the direction orthogonal to the optical axis.
Figure 0003759221
Where r is the paraxial radius of curvature and AFour, A6, A8, ATenAre the 4th, 6th, 8th and 10th order aspherical coefficients, respectively.
[0043]
Example 1
r1= 17.8851 d1= 1.8000 nd1 = 1.84666 νd1 = 23.78
r2= 336.9061 d2= 0.2500
rThree= 9.0262 dThree= 0.7500 nd2 = 1.57501 νd2 = 41.49
rFour= 2.5636 dFour= 4.9923
rFive= ∞ (aperture) dFive= 2.8885
r6= -10.6871 d6= 2.5116 nd3 = 1.56384 νd3 = 60.70
r7= -5.4539 (aspherical surface) d7= 0.3493
r8= 9.1827 d8= 5.7000 nd4 = 1.56384 νd4 = 60.70
r9= -4.8522 d9= 0.8500 nd5 = 1.84666 νd5 = 23.78
rTen= -8.4474 dTen= 1.5000
r11= ∞ d11= 1.6000 nd6 = 1.51633 νd6 = 64.15
r12= ∞ d12= 2.3000 nd7 = 1.54771 νd7 = 62.84
r13= ∞ d13= 1.5000
r14= ∞ d14= 0.7500 nd8 = 1.48749 νd8 = 70.21
r15= ∞
Aspheric coefficient
7th page
AFour = 2.5592 × 10-6
A6 = 2.8708 × 10-Five
A8 = 1.0675 × 10-Five
ATen= -9.2566 × 10-7                                              .
[0044]
Example 2
r1= 14.7669 d1= 2.4000 nd1 = 1.84666 νd1 = 23.78
r2= 77.2137 d2= 0.2500
rThree= 8.6633 dThree= 0.7500 nd2 = 1.48749 νd2 = 70.21
rFour= 2.6379 dFour= 3.8149
rFive= ∞ (aperture) dFive= 1.1000
r6= -9.4638 d6= 1.2000 nd3 = 1.84666 νd3 = 23.78
r7= 12.0733 d7= 3.6000 nd4 = 1.72916 νd4 = 54.68
r8= -5.5956 d8= 0.1500
r9= 9.4226 (aspherical surface) d9= 3.8000 nd5 = 1.56384 νd5 = 60.70
rTen= -12.3053 dTen= 1.5000
r11= ∞ d11= 1.6000 nd6 = 1.51633 νd6 = 64.15
r12= ∞ d12= 2.3000 nd7 = 1.54771 νd7 = 62.84
r13= ∞ d13= 1.0000
r14= ∞ d14= 0.7500 nd8 = 1.48749 νd8 = 70.21
r15= ∞
Aspheric coefficient
9th page
AFour = -3.1037 × 10-Four
A6 = -2.4543 × 10-Five
A8 = 2.1418 × 10-6
ATen= -7.2117 × 10-8                                              .
[0045]
Example 3
r1= 14.4595 d1= 2.3000 nd1 = 1.84666 νd1 = 23.78
r2= 73.2856 d2= 0.2500
rThree= 8.3092 dThree= 0.7500 nd2 = 1.48749 νd2 = 70.21
rFour= 2.6330 dFour= 3.7620
rFive= ∞ (aperture) dFive= 1.1000
r6= -7.4826 d6= 0.8000 nd3 = 1.84666 νd3 = 23.78
r7= 10.0000 d7= 3.5000 nd4 = 1.72916 νd4 = 54.68
r8= -5.5677 d8= 0.1500
r9= 10.1428 (Aspherical surface) d9= 3.6000 nd5 = 1.56384 νd5 = 60.70
rTen= -8.6705 dTen= 1.5000
r11= ∞ d11= 1.6000 nd6 = 1.51633 νd6 = 64.15
r12= ∞ d12= 2.0200 nd7 = 1.54771 νd7 = 62.84
r13= ∞ d13= 1.6500
r14= ∞ d14= 0.7500 nd8 = 1.48749 νd8 = 70.21
r15= ∞
Aspheric coefficient
9th page
AFour = -5.5278 × 10-Four
A6 = -2.0032 × 10-Five
A8 = 2.1245 × 10-6
ATen= -8.0626 × 10-8                                              .
[0046]
Next, the values of the conditions (1) to (21) of the above Examples 1 to 3 are shown.
Figure 0003759221
[0047]
The wide-angle lens system of the present invention can be configured as follows, for example.
[1] In order from the object side, it is composed of two groups of negative and positive, and further has an aperture stop in the middle. The most object side lens is a positive lens, and the power and shape of the positive lens are as follows. A wide-angle lens system that satisfies the following conditions.
[0048]
2.5 <f1/ F <10 (1)
−2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
0.25 <d1/F<0.8 (3)
Where f is the focal length of the entire system, and f1, R11, R12, D1Are the focal length of the positive lens closest to the object side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0049]
[2] Consists of two groups of negative and positive in order from the object side, and further has an aperture stop in the middle, the most image side lens is a biconvex lens, and the power and shape of the biconvex lens are as follows: A wide-angle lens system that satisfies the following conditions.
[0050]
1.4 <fR/ F <3 (4)
−0.5 <(rR1+ RR2) / (RR1-RR2<0.5 (5)
0.5 <dR/ F <1 (6)
Where f is the focal length of the entire system, and fR, RR1, RR2, DRAre the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0051]
[3] It consists of two groups, negative and positive, in order from the object side, and further has an aperture stop in the middle, the most object side lens is a positive lens, and the most image side lens is both A wide-angle lens system comprising a convex lens and satisfying the following conditions regarding the power and shape of the lenses.
[0052]
2.5 <f1/ F <10 (1)
1.4 <fR/ F <3 (4)
−2.5 <(r11+ R12) / (R11-R12) <− 0.7 (2)
−0.5 <(rR1+ RR2) / (RR1-RR2<0.5 (5)
0.25 <d1/F<0.8 (3)
0.5 <dR/ F <1 (6)
Where f is the focal length of the entire system, and f1, R11, R12, D1Is the focal length of the most object side positive lens, the radius of curvature of the object side surface, the radius of curvature of the image side surface, the thickness on the optical axis, fR, RR1, RR2, DRAre the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, and the thickness on the optical axis.
[0053]
[4] The wide-angle lens system according to [2] or [3], wherein the object side surface of the biconvex lens closest to the image side is an aspherical surface and satisfies the following conditions.
0.5 <DSR1/ F <3 (7)
0.2 <(DSR2-DSR1) / DSR1<3 (8)
However, DSR1Is the distance from the aperture stop of the object-side surface of the most image-side biconvex lens, DSR2Is the distance from the aperture stop of the image side surface of the biconvex lens closest to the image side.
[0054]
[5] The wide-angle lens system according to [4], wherein the image-side surface of the most image-side biconvex lens is a spherical surface.
[0055]
[6] A negative meniscus lens having a strong concave surface facing at least the image side is provided between the most object side positive lens and the aperture stop, and satisfies the following condition: [1] ] Or the wide-angle lens system according to [3].
0.2 <n1-N2<0.45 (9)
10 <ν2−ν1<60 (10)
Where n1, Ν1Are the medium refractive index and Abbe number of the positive lens on the most object side, n2, Ν2Are the medium refractive index and Abbe number of a negative meniscus lens with a strong concave surface facing the image side.
[0056]
[7] A negative meniscus lens having a strong concave surface facing one image side between the most object side positive lens and the aperture stop, and satisfies the following condition: [6] The wide-angle lens system according to [6].
0.5 <D2S/F<1.5 (11)
0.3 <rtwenty two/ F <1 (12)
However, D2SIs the distance from the most image side surface of the negative meniscus lens to the aperture stop, rtwenty twoIs the radius of curvature of the most image side surface of the negative meniscus lens.
[0057]
[8] Any one of [2] to [4] above, wherein both a positive lens and a negative lens are provided between the aperture stop and the biconvex lens closest to the image side, and satisfy the following conditions: 2. A wide-angle lens system according to item 1.
2 <(DS41+ DS42+ DSR1+ DSR2) / 2 (DS31+ DS32) <10 ... (13)
However, DS31, DS32, DS41, DS42Are the distances from the aperture stop to the object side surface and image side surface of the negative lens and the object side surface and image side surface of the positive lens, respectively.SR1Is the distance from the aperture stop of the object-side surface of the most image-side biconvex lens, DSR2Is the distance from the aperture stop of the image side surface of the biconvex lens closest to the image side.
[0058]
[9] The above-mentioned lens having a lens cemented in order of a negative lens and a positive lens from the object side between the aperture stop and the biconvex lens closest to the image side, and satisfying the following conditions: [8] The wide-angle lens system according to [8].
1 <r41/ F <4 (14)
0 <nThree-NFour<0.2 (15)
1.6 <nFour<1.85 (16)
0.5 <(DS42-DS41) / DS41<4 (17)
Where r41Is the radius of curvature of the object side surface of the positive lens, nThree, NFourAre the medium refractive indexes of the negative lens and the positive lens, respectively.
[0059]
[10] The wide-angle lens system according to any one of [1] to [9], wherein the following condition is satisfied.
−5 <fN/F<−1.5 (18)
0.7 <fP/ F <2 (19)
1 <DFS/ F <3 (20)
1 <DSR/ F <5 (21)
Where fN, FPIs the combined focal length of the negative group and the positive group, respectively, DFSIs the distance from the surface closest to the object to the aperture stop, DSRIs the distance from the aperture stop to the surface closest to the image side.
[0060]
[11] Consists of two groups of negative and positive in order from the object side, and further has an aperture stop in the middle, and in order from the object side, the negative group is strong to the positive meniscus lens and the image side. [1] to [1] characterized in that it has two negative meniscus lenses with a concave surface, and the positive group has a total of three lenses: a biconcave lens and two biconvex lenses. [10] The wide-angle lens system according to any one of [10].
[0061]
【The invention's effect】
As is clear from the above description, according to the present invention, even in the case where the effective imaging area is extremely small as in an electronic camera (digital camera) and the focal distance is extremely short, the edge of the lens component Small enough to have sufficient back focus, enough exit pupil position to allow insertion of filters, and good imaging performance, while ensuring sufficient thickness for meat and fill and assembly space Thus, it is possible to obtain a wide-angle lens system suitable for a digital camera with a small number of constituent elements and a good productivity.
[Brief description of the drawings]
FIG. 1 is a sectional view of Embodiment 1 of a wide-angle lens system of the present invention.
FIG. 2 is a sectional view of Embodiment 2 of the wide-angle lens system of the present invention.
FIG. 3 is a cross-sectional view of Embodiment 3 of the wide-angle lens system of the present invention.
FIG. 4 is an aberration diagram of Example 1 of the wide-angle lens system of the present invention.
FIG. 5 is an aberration diagram of Example 2 of the wide-angle lens system of the present invention.
FIG. 6 is an aberration diagram of Example 3 of the wide-angle lens system of the present invention.
[Explanation of symbols]
GN ... Negative group
GP ... Positive group
D: Aperture stop
F ... Parallel plane plate group such as filter and cover glass

Claims (13)

物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、物体側から順に、像側に凸面を向けたメニスカスレンズと、両凸正レンズ、像側に凸面を向けたメニスカスレンズの2枚接合レンズの3枚のレンズからなり、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
2.5<f1 /f<10 ・・・(1)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
0.25<d1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
In order from the object side, it consists of two groups, negative and positive, and has an aperture stop in the middle,
The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
The positive group includes, in order from the object side and a three lenses of two cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface directed toward the image side, a biconvex positive lens, a convex surface on the image side ,
A wide-angle lens system satisfying the following conditions regarding the power and shape of the positive lens closest to the object side in the negative group.
2.5 <f 1 / f <10 (1)
−2.5 <(r 11 + r 12 ) / (r 11 −r 12 ) <− 0.7 (2)
0.25 <d 1 /f<0.8 (3)
Where f is the focal length of the entire system, f 1 , r 11 , r 12 , and d 1 are the focal length of the most object-side positive lens, the radius of curvature of the object-side surface, and the curvature of the image-side surface, respectively. Radius, thickness on the optical axis.
物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、負レンズと2枚の両凸レンズの3枚のレンズからなり、
最も像側のレンズが前記両凸レンズの一方であり、その最も像側の両凸レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
1.4<fR /f<3 ・・・(4)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
In order from the object side, it consists of two groups, negative and positive, and has an aperture stop in the middle,
The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
The positive group consists of three lenses, a negative lens and two biconvex lenses,
A wide-angle lens system characterized in that the most image-side lens is one of the biconvex lenses, and the following conditions are satisfied with respect to the power and shape of the most image-side biconvex lens.
1.4 <f R / f <3 (4)
−0.5 <(r R1 + r R2 ) / (r R1 −r R2 ) <0.5 (5)
0.5 <d R / f <1 (6)
Where f is the focal length of the entire system, f R , r R1 , r R2 , and d R are the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, and the curvature of the image side surface, respectively. Radius, thickness on the optical axis.
物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
前記負の群は、物体側から順に、正レンズ、像側が凹面の負メニスカスレンズの2枚のレンズからなり、
前記正の群は、負レンズと2枚の両凸レンズの3枚のレンズからなり、
最も像側のレンズが前記両凸レンズの一方であり、その最も像側の両凸レンズ及び最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
2.5<f1 /f<10 ・・・(1)
1.4<fR /f<3 ・・・(4)
−2.5<(r11+r12)/(r11−r12)<−0.7 ・・・(2)
−0.5<(rR1+rR2)/(rR1−rR2)<0.5 ・・・(5)
0.25<d1 /f<0.8 ・・・(3)
0.5<dR /f<1 ・・・(6)
ただし、fは全系の焦点距離、f1 、r11、r12、d1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚み、fR 、rR1、rR2、dR は、それぞれ前記の最も像側の両凸レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
In order from the object side, it consists of two groups, negative and positive, and has an aperture stop in the middle,
The negative group is composed of two lenses in order from the object side: a positive lens, and a negative meniscus lens having a concave surface on the image side.
The positive group consists of three lenses, a negative lens and two biconvex lenses,
A wide-angle lens system characterized in that the most image side lens is one of the biconvex lenses, and the following conditions are satisfied with respect to the power and shape of the most image side biconvex lens and the most object side positive lens.
2.5 <f 1 / f <10 (1)
1.4 <f R / f <3 (4)
−2.5 <(r 11 + r 12 ) / (r 11 −r 12 ) <− 0.7 (2)
−0.5 <(r R1 + r R2 ) / (r R1 −r R2 ) <0.5 (5)
0.25 <d 1 /f<0.8 (3)
0.5 <d R / f <1 (6)
Where f is the focal length of the entire system, f 1 , r 11 , r 12 , and d 1 are the focal length of the most object-side positive lens, the radius of curvature of the object-side surface, and the curvature of the image-side surface, respectively. The radius, the thickness on the optical axis, f R , r R1 , r R2 , and d R are the focal length of the biconvex lens closest to the image side, the radius of curvature of the object side surface, the radius of curvature of the image side surface, It is the thickness on the optical axis.
物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
物体側から順に、前記の負群は、物体側に凸面を向けた正のメニスカスレンズ、像側に凹面を向けた負のメニスカスレンズの2枚のレンズであり、物体側から順に、前記の正群は、像側に凸面を向けた正メニスカスレンズと、両凸レンズ、像側に凸面を向けた負メニスカスレンズの合計3枚のレンズであり、前記の正群における負レンズは隣接する正レンズと接合され、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
2.5<f 1 /f<10 ・・・(1)
−2.5<(r 11 +r 12 )/(r 11 −r 12 )<−0.7 ・・・(2)
0.25<d 1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f 1 、r 11 、r 12 、d 1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
In order from the object side, it consists of two groups, negative and positive, and has an aperture stop in the middle,
In order from the object side, the negative group includes two lenses, a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the image side. group, a positive meniscus lens having a convex surface directed toward the image side, a biconvex lens, Ri total of three lenses der negative meniscus lens having a convex surface directed toward the image side, a positive lens the negative lens in the positive group of the adjacent Joined with
A wide-angle lens system satisfying the following conditions regarding the power and shape of the positive lens closest to the object side in the negative group .
2.5 <f 1 / f <10 (1)
−2.5 <(r 11 + r 12 ) / (r 11 −r 12 ) <− 0.7 (2)
0.25 <d 1 /f<0.8 (3)
Where f is the focal length of the entire system, f 1 , r 11 , r 12 , and d 1 are the focal length of the most object-side positive lens, the radius of curvature of the object-side surface, and the curvature of the image-side surface, respectively. Radius, thickness on the optical axis.
物体側から順に、負・正の2つの群で構成され、さらに、その中間に開口絞りを有し、
物体側から順に、前記の負群は、物体側に凸面を向けた正のメニスカスレンズ、像側に凹面を向けた負のメニスカスレンズの2枚のレンズであり、物体側から順に、前記の正群は、両凹レンズ、2枚の両凸レンズの合計3枚のレンズからなり、
前記負の群における最も物体側の前記正レンズのパワーと形状に関して以下の条件を満足することを特徴とする広角レンズ系。
2.5<f 1 /f<10 ・・・(1)
−2.5<(r 11 +r 12 )/(r 11 −r 12 )<−0.7 ・・・(2)
0.25<d 1 /f<0.8 ・・・(3)
ただし、fは全系の焦点距離、f 1 、r 11 、r 12 、d 1 は、それぞれ前記の最も物体側の正レンズの焦点距離、物体側の面の曲率半径、像側の面の曲率半径、光軸上の厚みである。
In order from the object side, it consists of two groups, negative and positive, and has an aperture stop in the middle,
In order from the object side, the negative group includes two lenses, a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the image side. The group consists of a total of three lenses, a biconcave lens and two biconvex lenses .
A wide-angle lens system satisfying the following conditions regarding the power and shape of the positive lens closest to the object side in the negative group .
2.5 <f 1 / f <10 (1)
−2.5 <(r 11 + r 12 ) / (r 11 −r 12 ) <− 0.7 (2)
0.25 <d 1 /f<0.8 (3)
Where f is the focal length of the entire system, f 1 , r 11 , r 12 , and d 1 are the focal length of the most object-side positive lens, the radius of curvature of the object-side surface, and the curvature of the image-side surface, respectively. Radius, thickness on the optical axis.
前記の正群における負レンズは隣接する正レンズと接合されていることを特徴とする請求項記載の広角レンズ系。6. The wide-angle lens system according to claim 5, wherein the negative lens in the positive group is cemented with an adjacent positive lens. 前記の最も像側の両凸レンズの物体側の面が非球面で構成され、以下の条件を満足することを特徴とする請求項2、3、5、6の何れか1項記載の広角レンズ系。
0.5<DSR1 /f<3 ・・・(7)
0.2<(DSR2 −DSR1 )/DSR1 <3 ・・・(8)
ただし、DSR1 は前記の最も像側の両凸レンズの物体側の面の前記開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の前記開口絞りからの距離である。
The wide-angle lens system according to any one of claims 2, 3, 5 , and 6 , wherein the object-side surface of the most image-side biconvex lens is an aspherical surface and satisfies the following conditions: .
0.5 <D SR1 / f <3 (7)
0.2 <(D SR2 −D SR1 ) / D SR1 <3 (8)
However, D SR1 is the distance from the aperture stop of the object side surface of the most convex biconvex lens on the image side, and D SR2 is the distance from the aperture stop of the image side surface of the biconvex lens on the most image side. is there.
前記の最も像側の両凸レンズの像側の面が球面で構成されていることを特徴とする請求項記載の広角レンズ系。8. The wide-angle lens system according to claim 7, wherein the image-side surface of the most image-side biconvex lens is a spherical surface. 以下の条件を満足することを特徴とする請求項1からの何れか1項記載の広角レンズ系。
0.2<n1 −n2 <0.45 ・・・(9)
10<ν2 −ν1 <60 ・・・(10)
ただし、n1 、ν1 はそれぞれ前記の最も物体側の正レンズの媒質屈折率とアッベ数、n2 、ν2 はそれぞれ前記の像側に凹面を向けた負のメニスカスレンズの媒質屈折率とアッベ数である。
Wide-angle lens system of any one of claims 1 to 8, characterized in that the following condition is satisfied.
0.2 <n 1 −n 2 <0.45 (9)
10 <ν 2 −ν 1 <60 (10)
Where n 1 and ν 1 are the medium refractive index and Abbe number of the most object-side positive lens, and n 2 and ν 2 are the medium refractive index of the negative meniscus lens with the concave surface facing the image side, respectively. Abbe number.
以下の条件を満足することを特徴とする請求項記載の広角レンズ系。
0.5<D2S/f<1.5 ・・・(11)
0.3<r22/f<1 ・・・(12)
ただし、D2Sは前記の負のメニスカスレンズの最も像側の面から前記開口絞りまでの距離、r22は前記の負のメニスカスレンズの最も像側の面の曲率半径である。
The wide-angle lens system according to claim 9, wherein the following condition is satisfied.
0.5 <D 2S /f<1.5 (11)
0.3 <r 22 / f <1 (12)
Where D 2S is the distance from the most image side surface of the negative meniscus lens to the aperture stop, and r 22 is the radius of curvature of the most image side surface of the negative meniscus lens.
前記開口絞りと前記の最も像側の両凸レンズの間に配された、前記両凸レンズと前記負レンズについて、以下の条件を満足することを特徴とする請求項2、3、5、6、7、8の何れか1項記載の広角レンズ系。
2<(DS41 +DS42 +DSR1 +DSR2 )/2(DS31 +DS32 )<10
・・・(13)
ただし、DS31 、DS32 、DS41 、DS42 はそれぞれ前記開口絞りから前記負レンズの物体側の面、像側の面と、開口絞りと両凸レンズに挟まれた前記両凸レンズの物体側の面、像側の面までの距離、DSR1 は前記の最も像側の両凸レンズの物体側の面の前記開口絞りからの距離、DSR2 は前記の最も像側の両凸レンズの像側の面の前記開口絞りからの距離である。
The aperture stop disposed between the biconvex lens on the most image side of the said the biconvex lens and the negative lens, according to claim 2, characterized in that the following condition is satisfied, 5,6,7 The wide-angle lens system according to any one of items 8 and 8 .
2 <(D S41 + D S42 + D SR1 + D SR2 ) / 2 (D S31 + D S32 ) <10
···(13)
However, D S31 , D S32 , D S41 , and D S42 are respectively the object side surface of the negative lens from the aperture stop, the image side surface, and the object side of the biconvex lens sandwiched between the aperture stop and the biconvex lens. DSR1 is the distance from the aperture stop of the object-side surface of the most image-side biconvex lens, and DSR2 is the image-side surface of the most image-side biconvex lens. The distance from the aperture stop.
前記開口絞りと前記の最も像側の両凸レンズの間を、物体側から前記負レンズ、前記両凸レンズの順で接合されたレンズとし、前記接合されたレンズについて以下の条件を満足することを特徴とする請求項11記載の広角レンズ系。
1<r41/f<4 ・・・(14)
0<n3 −n4 <0.2 ・・・(15)
1.6<n4 <1.85 ・・・(16)
0.5<(DS42 −DS41 )/DS41 <4 ・・・(17)
ただし、r41は前記正レンズの物体側の面の曲率半径、n3 、n4 はそれぞれ前記負レンズ、正レンズの媒質屈折率である。
The lens between the aperture stop and the biconvex lens closest to the image side is cemented in order of the negative lens and the biconvex lens from the object side, and the following conditions are satisfied for the cemented lens: The wide-angle lens system according to claim 11 .
1 <r 41 / f <4 (14)
0 <n 3 −n 4 <0.2 (15)
1.6 <n 4 <1.85 (16)
0.5 <(D S42 -D S41 ) / D S41 <4 (17)
Here, r 41 is the radius of curvature of the object side surface of the positive lens, and n 3 and n 4 are the medium refractive indices of the negative lens and the positive lens, respectively.
以下の条件を満足することを特徴とする請求項1から12の何れか1項記載の広角レンズ系。
−5<fN /f<−1.5 ・・・(18)
0.7<fP /f<2 ・・・(19)
1<DFS/f<3 ・・・(20)
1<DSR/f<5 ・・・(21)
ただし、fN 、fP は前記のそれぞれ負群、正群の合成焦点距離、DFSは最も物体側の面から前記開口絞りまでの距離、DSRは前記開口絞りから最も像側の面までの距離である。
Wide-angle lens system of any one of claims 1, characterized in that the following condition is satisfied 12.
−5 <f N /f<−1.5 (18)
0.7 <f P / f <2 (19)
1 <D FS / f <3 (20)
1 <D SR / f <5 (21)
However, f N, f P each negative group of the combined focal length of the positive group, D FS is the distance from the most object side surface to the aperture stop, D SR until the surface of the most image side from the aperture stop Is the distance.
JP02775696A 1996-02-15 1996-02-15 Wide-angle lens system Expired - Fee Related JP3759221B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02775696A JP3759221B2 (en) 1996-02-15 1996-02-15 Wide-angle lens system
US08/800,668 US5796528A (en) 1996-02-15 1997-02-14 Wide-angle lens system
US09/129,871 US6057971A (en) 1996-02-15 1998-08-06 Wide-angle lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02775696A JP3759221B2 (en) 1996-02-15 1996-02-15 Wide-angle lens system

Publications (2)

Publication Number Publication Date
JPH09222555A JPH09222555A (en) 1997-08-26
JP3759221B2 true JP3759221B2 (en) 2006-03-22

Family

ID=12229867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02775696A Expired - Fee Related JP3759221B2 (en) 1996-02-15 1996-02-15 Wide-angle lens system

Country Status (1)

Country Link
JP (1) JP3759221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707621B2 (en) 2001-12-14 2004-03-16 Nidec Copal Corporation Wide-angle lens
CN110908095B (en) * 2019-12-24 2023-05-26 协益电子(苏州)有限公司 Small-view-field infrared monitoring and early warning lens

Also Published As

Publication number Publication date
JPH09222555A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP4416391B2 (en) Wide-angle lens, camera and projection display device
JP3723637B2 (en) Shooting lens
US5796528A (en) Wide-angle lens system
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
JP2015094883A (en) Zoom lens and imaging apparatus
WO2014129149A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP6468978B2 (en) Imaging lens and imaging apparatus
JP5391565B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP2010250233A (en) Two-unit zoom lens for photographing and imaging apparatus having the same
JP6789898B2 (en) Imaging lens and imaging device
JP5434447B2 (en) Wide-angle lens and optical equipment
JPH0990220A (en) Zoom lens
JP3735909B2 (en) Retro focus lens
JP5423299B2 (en) Wide-angle lens and optical equipment
JP7433875B2 (en) Optical system and imaging device
JPH10293246A (en) Retrofocus type lens
JPH11119094A (en) Retrofocusing wide-angle lens having large diameter ratio
JP2001133684A (en) Photographic lens
WO2014141349A1 (en) Wide-angle lens and imaging device
JP2984956B2 (en) Shooting lens
JPH09281387A (en) Image pickup lens
JP2966080B2 (en) Pre-aperture triplet lens
CN115220180A (en) Optical system and image pickup apparatus having the same
JP3759221B2 (en) Wide-angle lens system
JP6320904B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees