JP3755836B2 - Vertical boat - Google Patents

Vertical boat Download PDF

Info

Publication number
JP3755836B2
JP3755836B2 JP26306294A JP26306294A JP3755836B2 JP 3755836 B2 JP3755836 B2 JP 3755836B2 JP 26306294 A JP26306294 A JP 26306294A JP 26306294 A JP26306294 A JP 26306294A JP 3755836 B2 JP3755836 B2 JP 3755836B2
Authority
JP
Japan
Prior art keywords
sic
vertical boat
silicon
wafer
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26306294A
Other languages
Japanese (ja)
Other versions
JPH08107081A (en
Inventor
一治 佐々
聖一 福岡
茂明 黒井
直樹 辻
泰実 佐々木
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP26306294A priority Critical patent/JP3755836B2/en
Publication of JPH08107081A publication Critical patent/JPH08107081A/en
Application granted granted Critical
Publication of JP3755836B2 publication Critical patent/JP3755836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Packaging Frangible Articles (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体ウエハの酸化処理,拡散処理等の際に多数の半導体ウエハを上下方向へ積層して搭載する縦型ボートに関する。
【0002】
【従来の技術】
従来、縦型ボートは、熱酸化処理や拡散処理等の高温下での各種処理時の機械的強度を得るため、炭化珪素を基材とする少なくとも3本(通常、4本)の支持部材を所要間隔で平行に立設し、各支持部材に半導体ウエハを支持する多数のウエハ支持部を所要間隔で突設して構成されている。
各支持部材は、基材としての炭化珪素の吸蔵ガスによる影響を除去するため、金属シリコンを含浸したり(Si−SiC)、更にその表面にSiC(炭化珪素)のCVDコートが施される(Si−SiC+CVD−SiC)。
又、各支持部材のウエハ支持部は、断面円形又は方形の支持部材に多数のスリットを水平若しくはそれより少し傾斜させて形成され、半導体ウエハの周縁部を支持するようにしたり(実開昭62−128633号参照)、又は大径化に伴う半導体ウエハの自重による撓み量を軽減するため、断面円弧状の支持部材に多数のスリットを形成すると共に、各スリットの開口端に支持突起を設け、半導体ウエハをその中心から半径の50〜90%の領域で支持するようにしたりしている(特開平6−169010号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の縦型ボートは、支持部材を形成する炭化珪素材が鉄をはじめとする重金属を不純物として含有しているので、熱酸化や拡散等の高温下での各種処理時に半導体ウエハの汚染を招来している。
特に、半導体ウエハの汚染は、各ウエハ支持部との接触部分で顕著であり、このために半導体ウエハにスリップを生じ、デバイスのライフタイムの劣化等を招来し、ひいてはLSIの歩留まりを悪くしている。
ところで、炭化珪素材の純度は、近年になって非常に向上した。特に、炭化珪素材中の鉄の含有量は、10年前に比べて大幅に減少され、その濃度は10分の1以下になっている。しかし、LSIの集積度は、3年毎に4倍となり、炭化珪素材の純度の向上以上の速いペースで進行している。このため、ICの集積度に見合った高純度の炭化珪素材を作れないのが現状である。
これに対し、確かに高純化を目的とし高純度な単結晶シリコン若しくは合成石英ガラスのみによる縦型ボートも各種提案されているが、例えば単結晶シリコンでは、その材質的特徴から各構成部材の接着が困難であり、組立て方式が採用されている。しかし、この方式では組立て部において少なからず間隙があり、これがガタツキの要因となり、結果として縦型ボートの短寿命、組立て部からのパーティクル発生等の問題が生じてしまう。また合成石英ガラスでは、軟化点が低く使用される温度の制限を大幅に受ける等の問題が生じ、いずれにおいても充分な利用がなされていない。
そこで、本発明は、広範囲の温度域で高い機械的強度を維持し、また縦型ボート基材からパーティクルが発生するおそれもなく、そして、半導体ウエハのスリップの発生を大幅に低減し得る縦型ボートの提供を目的とする。
【0004】
【課題を解決するための手段】
前記課題を解決するため、本発明の第1の縦型ボートは、Si−SiCあるいはSi−SiC+CVD−SiCを基材とする少なくとも3本の支持部材を所要間隔で平行に立設し、各支持部材に半導体ウエハを支持する多数のウエハ支持部を所要間隔で突設した縦型ボートにおいて、前記各ウエハ支持部上に、半球状の単結晶シリコンを上方凸となるように若しくは板状の単結晶シリコンを上面が平面となるように接着し、又は各ウエハ支持部に、断面コ字状の単結晶シリコンを上面が平面となるように若しくは角筒状の単結晶シリコンを上面が平面となるように嵌合して接着したことを特徴とする。
前記ウエハ支持部と単結晶シリコンの接着部は、微視的に炭化珪素粒子とシリコン粒子の焼結体の構造となっていることが好ましい。
前記接着部の微視的な焼結体構造におけるシリコン粒子の量は、10〜90重量%であることが望ましい。
前記接着部の微視的な焼結体構造におけるシリコン粒子の粒径は、15〜120μmであることが望ましい。
前記接着部の微視的な焼結体構造における炭化珪素粒子は、α−SiCであることが好ましい。
前記α−SiCの60重量%以上は、六方晶系であることが望ましい。
一方、第2の縦型ボートは、Si−SiCあるいはSi−SiC+CVD−SiCを基材とする少なくとも3本の支持部材を所要間隔で平行に立設し、各支持部材に半導体ウエハを支持する多数のウエハ支持部を所要間隔で突設した縦型ボートにおいて、前記各ウエハ支持部上に、半球状の合成石英ガラスを上方凸となるように若しくは板状の合成石英ガラスを上面が平面となるように接着し、又は各ウエハ支持部に、断面コ字状の合成石英ガラスを上面が平面となるように若しくは角筒状の合成石英ガラスを上面が平面となるように嵌合して接着したことを特徴とする。
【0005】
【作用】
本発明の第1の縦型ボートにおいては、半導体ウエハが、これと同程度に高純度である単結晶シリコンを介在し、Si−SiCあるいはSi−SiC+CVD−SiCからなるウエハ支持部に支持され、ウエハ支持部を形成する炭化珪素材に直接接触することがなく、半導体ウエハが汚染されにくい。
ウエハ支持部と単結晶シリコンを接着する炭化珪素粒子とシリコン粒子の焼結体は、炭化珪素粉とシリコン粉を含むペースト状の接着剤をウエハ支持部と単結晶シリコンとの間に介装した後に焼成して形成される。
接着部の微視的な焼結体構造におけるシリコン粒子の量が10〜90重量%、シリコン粒子の粒径が15〜120μm、炭化珪素粒子がα−SiC、α−SiCの60%重量以上が六方晶であることにより、高強度で、かつパーティクル発生の問題が生じないが、上記条件から外れると強度が低下し、かつパーティクルが発生する。
一方、第2の縦型ボートにおいては、半導体ウエハが、高純度である合成石英ガラスを介在し、Si−SiCあるいはSi−SiC+CVD−SiCからなるウエハ支持部に支持され、ウエハ支持部を形成する炭化珪素材に直接接触することがなく、半導体ウエハが汚染されにくい。
又、炭化珪素を基材とするウエハ支持部は、微視的に見ると表面粗さが粗く、支持部全体で半導体ウエハを支えているわけではなく、半導体ウエハに局部的に荷重がかかるが、合成石英ガラスは、半導体ウエハを処理する温度領域で軟化変形し、支持部全体で半導体ウエハを支えるので、半導体ウエハに局部的に大きな荷重がかからない。
ウエハ支持部と合成石英ガラスの接着は、ウエハ支持部と合成石英ガラスとの間にカルボシランと高純度SiC粉(#1200)をキシレンでペースト状にした接着剤を介装した後、加熱して行われる。
【0006】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
図1,図2及び図3は本発明の縦型ボートの一実施例を示す正面図,平断面図及び側面図である。
この縦型ボートは、Si−SiCすなわち高純度炭化珪素材に金属シリコンを含浸したものであり、所要間隔で平行に立設した4本の支持部材1,2の上下両端部をそれぞれ円輪板状の端板3により連結して構成されている。
各支持部材1,2は、端面円弧状の棒状を呈しており、それぞれの一側部(図1,2においては外側部)を残すようにして他側部から多数のスリット4,5を水平に形成することにより、半導体ウエハ6を支持する多数のウエハ支持部7,8を所要間隔で突設してある(図4〜図7参照)。各ウエハ支持部7,8の端部は、半導体ウエハ6をその中心から半径の50〜90%の領域Pで支持するように配設されており、それらの端部上には、半球状の単結晶シリコン9が上方凸となるように接着されている。
上記ウエハ支持部7,8と単結晶シリコン9の接着は、炭化珪素粉とシリコン粉を含むペースト状の接着剤を両者間に介装した後、焼成して形成される焼結体によって行われる。
接着部の微視的な焼結体構造におけるシリコン粒子の量は、10〜90重量%であり、そのシリコン粒子の粒径は、15〜120μmである。
又、接着部の微視的な焼結体構造における炭化珪素粒子は、α−SiCであり、このα−SiCの60重量%以上が六方晶系である。
【0007】
ここで、単結晶シリコン9を除く上記縦型ボート▲1▼と同様のボート本体の各ウエハ支持部の端部上に半球状の単結晶シリコン9を接着したものを▲2▼高純度炭化珪素材に金属シリコンを含浸しかつ表面に高純度SiCをCVDコートしたものに半球状の単結晶シリコンを同様に接着した縦型ボートを▲3▼とする一方、比較のため単結晶シリコン9を接着することなく、ボート本体を、高純度炭化珪素材に金属シリコンを含浸しかつ表面に高純度SiCをCVDコートしたもの及び石英ガラスでそれぞれ作製して縦型ボート▲4▼,▲5▼とし、各縦型ボート▲1▼〜▲5▼を用い、8インチのシリコンウエハを1250℃の温度で、HCl+O2 ガス中において20時間かけて純化処理した後、1250℃の温度で1時間かけてアニール処理を行ったところ、各縦型ボート▲1▼〜▲5▼によるシリコンウエハの特性及びスリップの発生は、表1に示すようになった。
【0008】
【表1】

Figure 0003755836
【0009】
したがって、ボート本体を、高純度炭化珪素材に金属シリコンを含浸したもの、又は高純度炭化珪素材に金属シリコンを含浸しかつ表面に高純度SiCをCVDコートしたものにより作製すると共に、それぞれのウエハ支持部の端部上に半球状の単結晶シリコンを接着して縦型ボートとすることにより、石英ガラス製の縦型ボートと同様にシリコンウエハのスリップの発生を大幅に低減できることがわかる。
なお、単結晶シリコンは、半球状に限らず、例えば図8又は図9に示すように、円板状又は断面コ字状の単結晶シリコン10,11あるいは角筒状の単結晶シリコンとし、それぞれ上面が平面となるようにウエハ支持部7,8に接着し又は嵌合して接着しても、図1〜図3の縦型ボートと同様の効果が得られた。
【0010】
一方、図1〜図3の縦型ボートと同様のボート本体を、高純度炭化珪素材に金属シリコンを含浸したもの、高純度炭化珪素材に金属シリコンを含浸しかつ表面に高純度SiCをCVDコートしたものでそれぞれ作製すると共に、各ウエハ支持部の端部上に半球状の合成石英ガラスを上方凸となるように接着して縦型ボート▲6▼,▲7▼とし、両縦型ボート▲6▼,▲7▼を用い、8インチのシリコンウエハを1200℃の温度で、HCl+O2 ガス中において20時間かけて純化処理した後、1200℃の温度で1時間かけてアニール処理を行ったところ、両縦型ボート▲6▼,▲7▼によるシリコンウエハの特性及びスリップの発生は、前述した縦型ボート▲1▼,▲4▼,▲5▼による場合のそれを併記する表2に示すようになった。
【0011】
【表2】
Figure 0003755836
【0012】
ウエハ支持部と合成石英ガラスの接着は、ウエハ支持部と合成石英ガラスとの間にカルボシランと高純度SiC粉(#1200)をキシレンでペースト状にした接着剤を介装した後、1200℃の温度で加熱して行った。
又、両縦型ボート▲6▼,▲7▼によるシリコンウエハのスリップの発生は、縦型ボート▲2▼,▲3▼の場合と同様になった。
したがって、縦型ボート▲6▼,▲7▼によれば、縦型ボート▲1▼〜▲3▼と同様にシリコンウエハのスリップの発生を大幅に低減できることがわかる。
【0013】
なお、縦型ボートは、上述したものに限定されるものではなく、例えば図10に示すものであってもよい。
この縦型ボートは、高純度炭化珪素材に金属シリコンを含浸したもの又は高純度炭化珪素に金属シリコンを含浸しかつ表面に高純度SiCをCVDコートしたものからなるものであり、所要間隔で平行に立設した4本の支持部材13の上下両端部をそれぞれ円輪板状の端板14(図においては上方の端板を省略してある)により連結して構成されている。
各支持部材13は、端面円形,方形若しくは長円形の棒状を呈しており、それぞれの側部に多数のスリット15を水平に形成することにより、半導体ウエハ16の周縁部を支持する多数のウエハ支持部17を所要間隔で突設してある。そして、各ウエハ支持部17上には、図11に示すように、半球状の単結晶シリコン18が上方凸となるように接着されている。ウエハ支持部17と単結晶シリコン18の接着は、図1〜図3に示す縦型ボートと同様に、炭化珪素粉とシリコン粉を含むペースト状の接着剤を両者間に介装した後、焼成して形成される焼結体によって行われる。
上記縦型ボートを用い、8インチのシリコンウエハを1250℃の温度で、HCl+O2 ガス中において20時間かけて純化処理した後、1250℃の温度で1時間かけてアニール処理を行ったところ、図1〜図3に示す縦型ボートと同様の効果が得られた。
又、半球状の単結晶シリコン18に代え、図12に示すように、円板状の単結晶シリコン19又は断面コ字状若しくは角筒状の単結晶シリコンとしたり、あるいは半球状,平板状,断面コ字状若しくは角筒状の合成石英ガラスとした場合にも、図1〜図3に示す縦型ボートと同様の効果が得られた。
【0014】
【発明の効果】
以上説明したように、本発明の第1の縦型ボートによれば、半導体ウエハが、これと同程度に高純度である単結晶シリコンを介在してウエハ支持部に支持され、ウエハ支持部を形成するSi−SiCあるいはSi−SiC+CVD−SiC材に直接接触することがなく、半導体ウエハが汚染されにくいので、広範囲の温度域で高い機械的強度を維持できると共に、縦型ボート基材からパーティクルが発生せず、かつ半導体ウエハの各種の処理に際し、そのスリップの発生を大幅に低減することができる。
又、第2の縦型ボートによれば、半導体ウエハが、高純度である合成石英ガラスを介在してウエハ支持部に支持され、ウエハ支持部を形成するSi−SiCあるいはSi−SiC+CVD−SiC材に直接接触することがなく、半導体ウエハが汚染されにくいので、第1のものと同様の効果を奏する。
【図面の簡単な説明】
【図1】本発明の縦型ボートの一実施例を示す正面図である。
【図2】図1におけるII−II線断面図である。
【図3】図1の縦型ボートの側面図である。
【図4】図1の縦型ボートにおける一方の支持部材の部分正面図である。
【図5】図4におけるV−V線断面図である。
【図6】図1の縦型ボートにおける他方の支持部材の部分正面図である。
【図7】図6における VII−VII 線断面図である。
【図8】図1の縦型ボートにおける要部の他の実施例を示す斜視図である。
【図9】図1の縦型ボートにおける要部の更に他の実施例を示す斜視図である。
【図10】本発明の縦型ボートの他の実施例を示す一部を省略した斜視図である。
【図11】図10の縦型ボートの要部の斜視図である。
【図12】図10の縦型ボートにおける要部の他の実施例を示す斜視図である。
【符号の説明】
1 支持部材
2 支持部材
6 半導体ウエハ
7 ウエハ支持部
8 ウエハ支持部
9 単結晶シリコン
10 単結晶シリコン
11 単結晶シリコン
13 支持部材
16 半導体ウエハ
17 ウエハ支持部
18 単結晶シリコン
19 単結晶シリコン[0001]
[Industrial application fields]
The present invention relates to a vertical boat on which a large number of semiconductor wafers are stacked in the vertical direction and mounted in the process of oxidation, diffusion, etc. of semiconductor wafers.
[0002]
[Prior art]
Conventionally, a vertical boat has at least three (usually four) support members based on silicon carbide in order to obtain mechanical strength during various treatments at high temperatures such as thermal oxidation treatment and diffusion treatment. A plurality of wafer support portions, which are erected in parallel at a required interval and support a semiconductor wafer on each support member, project at a required interval.
Each support member is impregnated with metal silicon (Si-SiC) or further coated with a CVD coat of SiC (silicon carbide) to remove the influence of the occlusion gas of silicon carbide as a base material ( Si-SiC + CVD-SiC).
Further, the wafer support portion of each support member is formed by supporting a peripheral portion of a semiconductor wafer by forming a large number of slits horizontally or slightly inclined on a support member having a circular or square cross section (see Japanese Utility Model Laid-Open No. 62). -128633)), or in order to reduce the amount of deflection due to the weight of the semiconductor wafer due to the increase in diameter, a plurality of slits are formed in the support member having an arcuate cross section, and support protrusions are provided at the opening ends of the slits. The semiconductor wafer is supported in an area of 50 to 90% of the radius from the center (see Japanese Patent Laid-Open No. 6-169010).
[0003]
[Problems to be solved by the invention]
However, in the conventional vertical boat, since the silicon carbide material forming the support member contains heavy metals such as iron as impurities, contamination of semiconductor wafers during various processing under high temperature such as thermal oxidation and diffusion Has been invited.
In particular, the contamination of the semiconductor wafer is remarkable at the contact portion with each wafer support portion, which causes the semiconductor wafer to slip, leading to deterioration of the device lifetime and the like, and thus worsening the LSI yield. Yes.
By the way, the purity of the silicon carbide material has been greatly improved in recent years. In particular, the iron content in the silicon carbide material is greatly reduced compared to 10 years ago, and its concentration is less than 1/10. However, the degree of integration of LSI has quadrupled every three years, and is progressing at a faster pace than improvement in the purity of silicon carbide materials. For this reason, the present condition is that the high purity silicon carbide material suitable for the integration degree of IC cannot be made.
On the other hand, for the purpose of high purity, various types of vertical boats made only of high-purity single crystal silicon or synthetic quartz glass have been proposed. For example, in the case of single crystal silicon, the bonding of each component due to its material characteristics Is difficult, and the assembly method is adopted. However, in this system, there are not a few gaps in the assembly part, which causes a backlash, resulting in problems such as short life of the vertical boat and generation of particles from the assembly part. Synthetic quartz glass has a problem that it has a low softening point and is greatly limited by the temperature at which it is used, and is not fully utilized in any case.
Therefore, the present invention maintains a high mechanical strength in a wide temperature range, there is no risk of particles being generated from the vertical boat base material, and the vertical type can greatly reduce the occurrence of semiconductor wafer slip. The purpose is to provide boats.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first vertical boat according to the present invention has at least three support members based on Si-SiC or Si-SiC + CVD-SiC standing in parallel at a required interval, and each support In a vertical boat in which a number of wafer support portions for supporting semiconductor wafers are projected at required intervals on a member, hemispherical single crystal silicon is formed on each wafer support portion so as to be convex upward or a plate-shaped single unit. Crystal silicon is bonded so that the upper surface is flat, or single-crystal silicon having a U-shaped cross section is formed on each wafer support so that the upper surface is flat, or single-crystal silicon having a rectangular tube shape is flat. Thus, they are fitted and bonded.
The bonded portion between the wafer support portion and the single crystal silicon preferably has a structure of a sintered body of silicon carbide particles and silicon particles microscopically.
The amount of silicon particles in the microscopic sintered body structure of the bonded portion is preferably 10 to 90% by weight.
The particle size of the silicon particles in the microscopic sintered body structure of the bonded portion is preferably 15 to 120 μm.
The silicon carbide particles in the microscopic sintered body structure of the bonding portion are preferably α-SiC.
It is desirable that 60% by weight or more of the α-SiC is hexagonal.
On the other hand, in the second vertical boat, a large number of at least three supporting members based on Si-SiC or Si-SiC + CVD-SiC are arranged in parallel at a predetermined interval, and a semiconductor wafer is supported on each supporting member. In the vertical boat in which the wafer support portions are projected at a required interval, a hemispherical synthetic quartz glass is projected upward on each wafer support portion or the upper surface of the plate-like synthetic quartz glass is flat. Or bonded to each wafer support by fitting a synthetic quartz glass with a U-shaped cross section so that the upper surface is a flat surface or a square cylindrical synthetic quartz glass so that the upper surface is a flat surface. It is characterized by that.
[0005]
[Action]
In the first vertical boat of the present invention, the semiconductor wafer is supported by a wafer support portion made of Si-SiC or Si-SiC + CVD-SiC with single crystal silicon having a purity as high as this, There is no direct contact with the silicon carbide material forming the wafer support portion, and the semiconductor wafer is not easily contaminated.
In the sintered body of silicon carbide particles and silicon particles for bonding the wafer support portion and single crystal silicon, a paste adhesive containing silicon carbide powder and silicon powder is interposed between the wafer support portion and the single crystal silicon. It is formed by firing later.
The amount of silicon particles in the microscopic sintered body structure of the bonded portion is 10 to 90% by weight, the particle size of the silicon particles is 15 to 120 μm, the silicon carbide particles are α-SiC, and 60% by weight or more of α-SiC. The hexagonal crystal has high strength and does not cause the problem of particle generation. However, when the above conditions are not satisfied, the strength decreases and particles are generated.
On the other hand, in the second vertical boat, the semiconductor wafer is supported by a wafer support portion made of Si-SiC or Si-SiC + CVD-SiC via a synthetic quartz glass having a high purity to form a wafer support portion. There is no direct contact with the silicon carbide material, and the semiconductor wafer is not easily contaminated.
Further, the wafer support portion based on silicon carbide has a rough surface when viewed microscopically, and does not support the semiconductor wafer with the entire support portion, but the semiconductor wafer is locally loaded. Synthetic quartz glass is softened and deformed in a temperature region where the semiconductor wafer is processed and supports the semiconductor wafer with the entire support portion, so that a large load is not locally applied to the semiconductor wafer.
Adhesion between the wafer support and the synthetic quartz glass is carried out by placing an adhesive in which carbosilane and high-purity SiC powder (# 1200) are pasted with xylene between the wafer support and the synthetic quartz glass, and then heating. Done.
[0006]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
1, 2 and 3 are a front view, a plan sectional view and a side view showing an embodiment of the vertical boat of the present invention.
This vertical boat is made by impregnating metal silicon with Si-SiC, that is, a high-purity silicon carbide material. The upper and lower ends of four support members 1 and 2 erected in parallel at a required interval are respectively circular plates. The end plates 3 are connected to each other.
Each support member 1, 2 has a bar shape with an arcuate end surface, and a number of slits 4, 5 are horizontally arranged from the other side so as to leave one side (the outer side in FIGS. 1 and 2). In this way, a large number of wafer support portions 7 and 8 that support the semiconductor wafer 6 are projected at a required interval (see FIGS. 4 to 7). The end portions of the wafer support portions 7 and 8 are disposed so as to support the semiconductor wafer 6 in a region P having a radius of 50 to 90% from the center thereof, and a hemispherical shape is formed on these end portions. The single crystal silicon 9 is bonded so as to be convex upward.
Adhesion between the wafer support parts 7 and 8 and the single crystal silicon 9 is performed by a sintered body formed by interposing a paste adhesive containing silicon carbide powder and silicon powder between them and then firing. .
The amount of silicon particles in the microscopic sintered body structure of the bonded portion is 10 to 90% by weight, and the particle size of the silicon particles is 15 to 120 μm.
Further, the silicon carbide particles in the microscopic sintered body structure of the bonded portion are α-SiC, and 60% by weight or more of the α-SiC is a hexagonal system.
[0007]
Here, (2) high-purity silicon carbide is obtained by adhering hemispherical single crystal silicon 9 on the end of each wafer support portion of the boat body similar to the vertical boat (1) except for single crystal silicon (2). A vertical boat in which metal silicon is impregnated and high-purity SiC is CVD coated on the surface and hemispherical single crystal silicon is similarly bonded is designated as (3), while single crystal silicon 9 is bonded for comparison. Without making it, the boat body is made of a high-purity silicon carbide material impregnated with metal silicon and the surface is coated with high-purity SiC by CVD and quartz glass, respectively, to make vertical boats {4}, {5}, using each vertical boat ▲ 1 ▼ ~ ▲ 5 ▼, at a temperature of 1250 ° C. the silicon wafer of 8-inch after purification treatment over a period of 20 hours at HCl + O 2 gas, over a period of 1 hour at a temperature of 1250 ° C. Ani Was subjected to Le processing, generation of the vertical boat ▲ 1 ▼ ~ ▲ 5 ▼ due to the characteristics of the silicon wafer and slip became as shown in Table 1.
[0008]
[Table 1]
Figure 0003755836
[0009]
Accordingly, the boat body is made of a high-purity silicon carbide material impregnated with metal silicon, or a high-purity silicon carbide material impregnated with metal silicon and coated with high-purity SiC on the surface, and each wafer. It can be seen that by attaching hemispherical single crystal silicon on the end of the support portion to form a vertical boat, the occurrence of silicon wafer slip can be greatly reduced as in the case of a vertical boat made of quartz glass.
Note that the single crystal silicon is not limited to a hemispherical shape, and for example, as shown in FIG. 8 or FIG. 9, single crystal silicon 10 or 11 having a disk shape or a U-shaped cross section or a single crystal silicon having a rectangular tube shape, Even if the wafer supports 7 and 8 are bonded or fitted so that the upper surface is flat, the same effect as the vertical boat of FIGS. 1 to 3 can be obtained.
[0010]
On the other hand, a boat body similar to the vertical boat of FIGS. 1 to 3 is formed by impregnating high-purity silicon carbide material with metal silicon, high-purity silicon carbide material with metal silicon, and CVD with high-purity SiC on the surface. Each of the vertical boats (6) and (7) was prepared by attaching a hemispherical synthetic quartz glass so as to be convex upward on the edge of each wafer support portion. Using (6) and (7), an 8-inch silicon wafer was purified at 1200 ° C. in HCl + O 2 gas for 20 hours, and then annealed at 1200 ° C. for 1 hour. However, the characteristics of silicon wafers and the occurrence of slips caused by the vertical boats {circle around (6)}, {circle around (7)} are shown in Table 2 together with those of the vertical boats {circle around (1)}, {4}, {5}. Came to show.
[0011]
[Table 2]
Figure 0003755836
[0012]
Adhesion between the wafer support and the synthetic quartz glass is carried out by inserting an adhesive in which carbosilane and high-purity SiC powder (# 1200) are pasted with xylene between the wafer support and the synthetic quartz glass. Performed by heating at temperature.
Further, the occurrence of silicon wafer slip by both vertical boats {circle around (6)}, {circle around (7)} is the same as that of the vertical boats {circle around (2)}, {circle around (3)}.
Therefore, according to the vertical boats {circle around (6)} and {circle around (7)}, it can be seen that the occurrence of silicon wafer slip can be greatly reduced as in the vertical boats {circle around (1)} to {circle around (3)}.
[0013]
In addition, a vertical boat is not limited to what was mentioned above, For example, what is shown in FIG. 10 may be used.
This vertical boat consists of a high-purity silicon carbide material impregnated with metallic silicon, or a high-purity silicon carbide impregnated with metallic silicon and CVD coated with high-purity SiC on the surface, and is parallel at a required interval. The upper and lower ends of the four support members 13 that are erected are connected to each other by an annular plate-like end plate 14 (the upper end plate is omitted in the drawing).
Each support member 13 has an end face circular, square, or oval bar shape, and a large number of wafer supports that support the peripheral portion of the semiconductor wafer 16 by horizontally forming a large number of slits 15 on the respective side portions. Portions 17 are projected at required intervals. As shown in FIG. 11, a hemispherical single crystal silicon 18 is bonded onto each wafer support portion 17 so as to be convex upward. The wafer support 17 and the single crystal silicon 18 are bonded to each other by interposing a paste adhesive containing silicon carbide powder and silicon powder between the two, as in the vertical boat shown in FIGS. This is performed by a sintered body formed as described above.
Using the above-mentioned vertical boat, an 8-inch silicon wafer was purified at 1250 ° C. in HCl + O 2 gas for 20 hours, and then annealed at 1250 ° C. for 1 hour. The same effect as the vertical boat shown in FIGS. 1 to 3 was obtained.
Further, in place of the hemispherical single crystal silicon 18, as shown in FIG. 12, a single crystal silicon 19 having a disk shape or a single crystal silicon having a U-shaped or rectangular tube shape, or hemispherical, flat plate, Even when a synthetic quartz glass having a U-shaped cross section or a rectangular tube shape was used, the same effect as the vertical boat shown in FIGS. 1 to 3 was obtained.
[0014]
【The invention's effect】
As described above, according to the first vertical boat of the present invention, the semiconductor wafer is supported on the wafer support portion with the single crystal silicon having the same high purity as this, and the wafer support portion is Since there is no direct contact with the Si-SiC or Si-SiC + CVD-SiC material to be formed and the semiconductor wafer is not easily contaminated, high mechanical strength can be maintained in a wide temperature range, and particles from the vertical boat base material can be maintained. It does not occur, and the occurrence of slip can be greatly reduced during various processing of semiconductor wafers.
In addition, according to the second vertical boat, the semiconductor wafer is supported by the wafer support portion with the synthetic quartz glass having high purity interposed therebetween, and the Si—SiC or Si—SiC + CVD-SiC material forming the wafer support portion. Since the semiconductor wafer is not easily contaminated without being in direct contact with the substrate, the same effect as the first one can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a vertical boat of the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a side view of the vertical boat of FIG. 1;
4 is a partial front view of one support member in the vertical boat of FIG. 1. FIG.
5 is a cross-sectional view taken along line VV in FIG.
6 is a partial front view of the other support member in the vertical boat of FIG. 1. FIG.
7 is a cross-sectional view taken along line VII-VII in FIG.
8 is a perspective view showing another embodiment of the main part of the vertical boat of FIG. 1. FIG.
FIG. 9 is a perspective view showing still another embodiment of the main part of the vertical boat of FIG. 1;
FIG. 10 is a perspective view with a part omitted showing another embodiment of the vertical boat of the present invention.
11 is a perspective view of a main part of the vertical boat of FIG.
12 is a perspective view showing another embodiment of the main part of the vertical boat of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support member 2 Support member 6 Semiconductor wafer 7 Wafer support part 8 Wafer support part 9 Single crystal silicon 10 Single crystal silicon 11 Single crystal silicon 13 Support member 16 Semiconductor wafer 17 Wafer support part 18 Single crystal silicon 19 Single crystal silicon

Claims (7)

Si−SiCあるいはSi−SiC+CVD−SiCを基材とする少なくとも3本の支持部材を所要間隔で平行に立設し、各支持部材に半導体ウエハを支持する多数のウエハ支持部を所要間隔で突設した縦型ボートにおいて、前記各ウエハ支持部上に、半球状の単結晶シリコンを上方凸となるように若しくは板状の単結晶シリコンを上面が平面となるように接着し、又は各ウエハ支持部に、断面コ字状の単結晶シリコンを上面が平面となるように若しくは角筒状の単結晶シリコンを上面が平面となるように嵌合して接着したことを特徴とする縦型ボート。At least three support members based on Si-SiC or Si-SiC + CVD-SiC are set up in parallel at a required interval, and a large number of wafer support portions for supporting a semiconductor wafer are projected on the support members at a required interval. In such a vertical boat, hemispherical single crystal silicon is bonded on each wafer support so as to be convex upward or plate-shaped single crystal silicon is bonded so that the upper surface is flat, or each wafer support is A vertical boat characterized in that single-crystal silicon having a U-shaped cross section is fitted and bonded so that the upper surface is a flat surface or a rectangular tube-shaped single crystal silicon is formed so that the upper surface is a flat surface. 前記ウエハ支持部と単結晶シリコンの接着部が、微視的に炭化珪素粒子とシリコン粒子の焼結体の構造となっていることを特徴とする請求項1記載の縦型ボート。2. The vertical boat according to claim 1, wherein the bonded portion between the wafer support portion and the single crystal silicon has a structure of a sintered body of silicon carbide particles and silicon particles microscopically. 前記接着部の微視的な焼結体構造におけるシリコン粒子の量が、10〜90重量%であることを特徴とする請求項2記載の縦型ボート。The vertical boat according to claim 2, wherein the amount of silicon particles in the microscopic sintered body structure of the bonding portion is 10 to 90% by weight. 前記接着部の微視的な焼結体構造におけるシリコン粒子の粒径が、15〜120μmであることを特徴とする請求項2又は3記載の縦型ボート。The vertical boat according to claim 2 or 3, wherein a particle size of silicon particles in a microscopic sintered body structure of the adhesion portion is 15 to 120 µm. 前記接着部の微視的な焼結体構造における炭化珪素粒子が、α−SiCであることを特徴とする請求項2,3又は4記載の縦型ボート。The vertical boat according to claim 2, 3 or 4, wherein the silicon carbide particles in the microscopic sintered body structure of the adhesion portion are α-SiC. 前記α−SiCの60重量%以上が六方晶系であることを特徴とする請求項5記載の縦型ボート。The vertical boat according to claim 5, wherein 60% by weight or more of the α-SiC is hexagonal. Si−SiCあるいはSi−SiC+CVD−SiCを基材とする少なくとも3本の支持部材を所要間隔で平行に立設し、各支持部材に半導体ウエハを支持する多数のウエハ支持部を所要間隔で突設した縦型ボートにおいて、前記各ウエハ支持部上に、半球状の合成石英ガラスを上方凸となるように若しくは板状の合成石英ガラスを上面が平面となるように接着し、又は各ウエハ支持部に、断面コ字状の合成石英ガラスを上面が平面となるように若しくは角筒状の合成石英ガラスを上面が平面となるように嵌合して接着したことを特徴とする縦型ボート。At least three support members based on Si-SiC or Si-SiC + CVD-SiC are set up in parallel at a required interval, and a large number of wafer support portions for supporting a semiconductor wafer are projected on the support members at a required interval. In such a vertical boat, hemispherical synthetic quartz glass is bonded on each wafer support so as to be convex upward or a plate-like synthetic quartz glass is bonded so that the upper surface is flat, or each wafer support A vertical boat characterized in that a synthetic quartz glass having a U-shaped cross section is fitted and bonded so that the upper surface is a flat surface or a square cylindrical synthetic quartz glass is mounted so that the upper surface is a flat surface.
JP26306294A 1994-10-03 1994-10-03 Vertical boat Expired - Fee Related JP3755836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26306294A JP3755836B2 (en) 1994-10-03 1994-10-03 Vertical boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26306294A JP3755836B2 (en) 1994-10-03 1994-10-03 Vertical boat

Publications (2)

Publication Number Publication Date
JPH08107081A JPH08107081A (en) 1996-04-23
JP3755836B2 true JP3755836B2 (en) 2006-03-15

Family

ID=17384326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26306294A Expired - Fee Related JP3755836B2 (en) 1994-10-03 1994-10-03 Vertical boat

Country Status (1)

Country Link
JP (1) JP3755836B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077350A (en) * 1996-02-29 1999-10-25 히가시 데쓰로 Heat treatment boat of semiconductor wafer
JP3507975B2 (en) * 1997-04-15 2004-03-15 東芝セラミックス株式会社 Vertical wafer boat
KR100877129B1 (en) 2003-03-26 2009-01-07 신에쯔 한도타이 가부시키가이샤 Heat treatment-purpose wafer support tool, and heat treatment device
JP2005019748A (en) * 2003-06-26 2005-01-20 Shin Etsu Handotai Co Ltd Thermal treatment jig and thermal treatment method for wafer
JP2005203648A (en) * 2004-01-19 2005-07-28 Shin Etsu Handotai Co Ltd Vertical type boat for heat treating silicon wafer and heat treating method
JP5071217B2 (en) 2008-04-17 2012-11-14 信越半導体株式会社 Vertical heat treatment boat and silicon wafer heat treatment method using the same
KR101659560B1 (en) * 2014-08-26 2016-09-23 주식회사 테라세미콘 Reactor of apparatus for processing substrate
WO2020048833A1 (en) * 2018-09-06 2020-03-12 centrotherm international AG Wafer boat

Also Published As

Publication number Publication date
JPH08107081A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
US5665260A (en) Ceramic electrostatic chuck with built-in heater
US5514439A (en) Wafer support fixtures for rapid thermal processing
US6099645A (en) Vertical semiconductor wafer carrier with slats
JP3755836B2 (en) Vertical boat
US6110285A (en) Vertical wafer boat
JP2004531891A (en) Apparatus and method for manufacturing wafer boat without slip
JPH0758041A (en) Susceptor
CN1526062A (en) Wafer boat with arcuate wafer support arms
US5566043A (en) Ceramic electrostatic chuck with built-in heater
WO2014196323A1 (en) Wafer carrier and epitaxial growth device using same
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP4003906B2 (en) Silicon single crystal semiconductor wafer heat treatment jig and silicon single crystal semiconductor wafer heat treatment apparatus using the same
JPH0745691A (en) Wafer holder
US5350720A (en) Triple-layered ceramic heater
KR101141939B1 (en) Silicon storage assembly with double nut coupling structure
JP3586034B2 (en) Electrostatic chuck
JP3511466B2 (en) Semiconductor wafer heat treatment member and jig using the same
JPH09275078A (en) Silicon wafer retaining jig
JP3094312B2 (en) Susceptor
JP3544481B2 (en) Silicon carbide assembly wafer boat for semiconductor manufacturing
US7679880B2 (en) Electrostatic chuck and manufacturing method thereof
JP3811540B2 (en) Method for producing silicon carbide molded body
JPS62189726A (en) Susceptor for vapor growth of semiconductor
JP3942317B2 (en) Semiconductor wafer heat treatment holder and heat treatment method
JP3069216B2 (en) Semiconductor components

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees