JP3755422B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3755422B2
JP3755422B2 JP2001149076A JP2001149076A JP3755422B2 JP 3755422 B2 JP3755422 B2 JP 3755422B2 JP 2001149076 A JP2001149076 A JP 2001149076A JP 2001149076 A JP2001149076 A JP 2001149076A JP 3755422 B2 JP3755422 B2 JP 3755422B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
refrigerant
set temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001149076A
Other languages
Japanese (ja)
Other versions
JP2002340400A (en
Inventor
竹司 渡辺
昌宏 尾浜
松本  聡
吉継 西山
誠一 安木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001149076A priority Critical patent/JP3755422B2/en
Publication of JP2002340400A publication Critical patent/JP2002340400A/en
Application granted granted Critical
Publication of JP3755422B2 publication Critical patent/JP3755422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ利用給湯装置に関するものである。
【0002】
【従来の技術】
従来、この種のヒートポンプ利用給湯装置としては、例えば、特開昭59−15778号公報に記載されているようなものがあった。図11は前記公報に記載された従来のヒートポンプ利用給湯装置を示すものである。
【0003】
図11において、1は圧縮機、2は凝縮器、3は減圧装置、4は蒸発器、5は貯湯槽、6は循環ポンプであり、圧縮機1、凝縮器2、減圧弁3、蒸発器4と連結してヒートポンプ装置を形成する。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その湯水混合層が次第に拡大していく。図12は、貯湯層内の湯と水の混合層の温度分布を示す。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱され、その境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ完了近くになると、前記給湯熱交換器に流入する水温は高くなる。そのため、圧縮機の吐出冷媒圧力、吐出冷媒温度が高くなり、モータの巻線温度の上昇など圧縮機の耐久性が課題となるため運転を停止しなくてはならない。よって、貯湯槽の下部は中低温の水を貯水する状態となるため、貯湯槽容量を有効に利用して貯湯することができない。
【0005】
本発明は、前記従来の課題を解決するもので、運転中に給湯熱交換器に流入する水温が設定温度より高くなったことを検出して、圧縮機の吐出冷媒温度の設定温度を低くして、給湯熱交換器に流入する水温が高温となるまで運転を継続できるようにして、貯湯槽の容積全体に高温水を貯湯するものである。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷媒回路と、下部の水を冷媒回路で加熱して上部から貯湯する貯湯槽、循環ポンプ、放熱器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、圧縮機の吐出冷媒温度が設定温度Aとなるように減圧装置の弁開度を制御する冷媒制御手段と、給湯熱交換器出口の湯温が設定温度Bとなるように給湯回路の水循環流量を制御する水量制御手段とを有し、前記貯湯槽に給水された水を沸き上げる運転中の沸き上げ完了近くにおいて、前記給湯熱交換器入口の水温が上昇して設定温度Cに達すると前記圧縮機の吐出冷媒温度が上昇する場合は、設定温度Aを低温側へ変更するものである
【0007】
これによって、運転中に湯水混合層の中低温水が給湯熱交換器へ流入しはじめると、それにつれて冷媒温度、冷媒圧力が上昇する。そして、給湯熱交換器へ流入する中低温水の温度が急激に上昇するため、圧縮機の吐出冷媒温度も急激に上昇する。従って、給湯熱交換器へ流入しはじめる温水が設定温度Cに達すると、圧縮機の吐出冷媒温度の設定温度Aを下げて、給湯熱交換器に流入する水温が高温となるまで運転して、貯湯槽の容積全体に高温水を貯湯する。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷媒回路と、下部の水を冷媒回路で加熱して上部から貯湯する貯湯槽、循環ポンプ、放熱器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、圧縮機の吐出冷媒温度が設定温度Aとなるように減圧装置の弁開度を制御する冷媒制御手段と、給湯熱交換器出口の湯温が設定温度Bとなるように給湯回路の水循環流量を制御する水量制御手段とを有し、前記貯湯槽に給水された水を沸き上げる運転中の沸き上げ完了近くにおいて、前記給湯熱交換器入口の水温が上昇して設定温度Cに達すると前記圧縮機の吐出冷媒温度が上昇する場合は、設定温度Aを低温側へ変更するものである。運転中に給湯熱交換器入口の水温が設定温度Cに達したことを検出して、運転中に設定温度Cの湯水混合層の温水が給湯熱交換器へ流入しはじめると、圧縮機の吐出冷媒温度の設定温度Aを下げて、給湯熱交換器に流入する水温が高温となるまで運転を継続できるようにして、貯湯槽の容積全体に高温水を貯湯する。
【0009】
請求項に記載の発明は、前述の構成に加え、給湯熱交換器入口の水温が設定温度Cに達してから設定温度Aを段階的に低温側へ変更する時間間隔を短くするようにしたものであり、夏季などの沸き上げ運転時間が短い場合には、貯湯槽内の湯水の熱交換時間が短いため湯水混合層領域が少ない。そのため、給湯熱交換器に流入する水温が急激に上昇するけれども、圧縮機の吐出冷媒温度の設定温度Aを低温側に設定変更する時間間隔を短くして圧縮機の吐出冷媒温度の上昇を抑え、給湯熱交換器に流入する水温が高温となるまで運転を継続できるようにして、貯湯槽の容積全体に高温水を貯湯する。
【0010】
請求項に記載の発明は、前述の構成に加え、給湯熱交換器入口の水温が設定温度Cに達してから設定温度Aを段階的に下げ、温度低下の幅を大きくするようにしたものであり、沸き上げ完了直後に少量出湯して、再度沸き上げ運転する場合など、貯湯槽下部に給水された水温と沸き上げ湯温の温度差が大きくなるため給湯熱交換器に流入する水温が不連続に急激に変化する。このような急激な水温変化に対して、圧縮機の吐出冷媒温度の設定温度Aを下げ、その温度低下の幅を大きくして、圧縮機の吐出冷媒温度の異常上昇を防止し、給湯熱交換器に流入する水温が高温となるまで運転を継続できるようにする。
【0011】
請求項に記載の発明は、圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷媒回路と、下部の水を前記冷媒回路で加熱して上部から貯湯する貯湯槽、循環ポンプ、前記放熱器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、前記圧縮機の吐出冷媒温度が設定温度Aとなるように前記減圧装置の弁開度を制御する冷媒制御手段と、前記給湯熱交換器出口の湯温が設定温度Bとなるように前記給湯回路の水循環流量を制御する水量制御手段とを有し、前記貯湯槽に給水された水を沸き上げる運転中の沸き上げ完了近くにおいて、前記給湯熱交換器入口の水温が上昇して設定温度Cに達すると前記圧縮機の吐出冷媒温度が低くなる場合は、設定温度Aを高温側へ変更することを特徴とするヒートポンプ給湯機であり、この場合には、高圧側は臨界圧力以上で動作して、高効率高温沸き上げの運転をおこなうためには、圧縮機の吐出冷媒温度と吐出冷媒圧力をかなり高温高圧化で運転する。そして、湯水混合層の温水が給湯熱交換器に流入すると、放熱器から流出する冷媒温度が高くなって冷媒の放熱量が低下する。そのため、冷媒と水の平均温度差が小さくなるため、給湯熱交換器出口の湯温を一定とする場合には、放熱器に流入する冷媒温度が低下する。従って、給湯熱交換器に流入する水温が高温になるまで運転を継続して貯湯槽の容積全体に高温水を貯湯することができる。
【0012】
請求項に記載の発明は、前述の構成に加え、圧縮機の駆動周波数を可変する駆動制御手段と、給湯熱交換器入口の水温が設定温度Cに達したことを検出して、圧縮機の駆動周波数を大きくする制御をおこなう圧縮機制御手段を備え、給湯熱交換器入口の水温が設定温度Cに達したことを検出して、圧縮機の駆動周波数を大きくして、吐出冷媒温度を高めて高効率、かつ給湯加熱能力を大きくして貯湯槽の容積全体に高温水を貯湯する。
【0013】
請求項に記載の発明は、冷媒回路に封入する冷媒を二酸化炭素とする場合、前述の構成に加え、給湯熱交換器入口の水温が設定温度Cに達したことを検出して、圧縮機の冷媒吐出温度の設定温度Aを高温側に変更し、さらに高温湯で貯湯槽の容積全体を貯湯する。
【0014】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をするものについては同一符号を付し、一部説明を省略する。
【0015】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ給湯機の構成図を示すものである。図1において、1は圧縮機、2は放熱器、3は減圧装置、4は蒸発器であり、大気熱あるいは太陽熱を集熱する。そして、圧縮機1、放熱器2、減圧装置3、蒸発器4は順次接続され、フロンHFC冷媒を封入する冷媒回路を構成する。5は貯湯槽、6は循環ポンプ、7は給湯熱交換器であり、放熱器2と熱交換関係を有する。そして、貯湯5の下部から循環ポンプ6、給湯熱交換器7、貯湯槽5の上部を順次接続した給湯回路を構成する。8は冷媒温度検出手段であり、圧縮機1の吐出冷媒温度を検出する。9は冷媒制御手段であり、冷媒温度検出手段8の検出信号から圧縮機1の吐出冷媒温度が予め設定された設定温度Aとなるように減圧装置3の弁開度を制御する。10は湯温検出手段であり、給湯熱交換器7の出口湯温を検出する。11は水量制御手段であり、給湯熱交換器7出口の湯温が設定温度Bとなるように湯温検出手段10の検出信号と比較しながら給湯回路の水循環流量を制御する。例えば、循環ポンプ6の回転数を可変して水循環流量を制御する。12は水温検出手段であり、給湯熱交換器7に流入する水温を検出するものであり、給湯熱交換器7の入口、あるいは給湯熱交換器7へ流出する貯湯槽5の下部出口近傍に設けられている。13は設定温度制御手段であり、運転中に給湯熱交換器7入口の水温が設定温度Cに達した後、設定温度Aを変更する。
【0016】
以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。図1において、最初に、貯湯槽5に給水された水を沸き上げる運転について述べる。この場合、圧縮機1から吐出された高温高圧の冷媒は放熱器2に流入し、ここで循環ポンプ6から送られてきた水を加熱する。そして、減圧装置3で減圧されて蒸発器4に流入する。そして、大気熱を吸熱して蒸発ガス化し、圧縮機1にもどる。このサイクルにおいて、外気温度条件、あるいは太陽日射量、給水温度などに対して、圧縮機1の吐出冷媒温度が予め設定された設定温度Aとなるように冷媒制御手段9が減圧装置3の弁開度を制御する。本発明では、設定温度Aをおよそ100℃とする。一方、貯湯槽5の下部から流出した水は循環ポンプ6を介して給湯熱交換器7に流入し、放熱器2を介して設定温度Bとなるように昇温して貯湯槽5の上部にたくわえられる。ここで、給湯熱交換器7の出口湯温を湯温検出手段10が検知し、水量制御手段11が設定温度Bとなるように湯温検出手段10の検出信号と比較しながら給湯回路の水循環流量を制御する。そして、この運転を継続しながら、貯湯槽5の上部から貯湯し、湯面がしだいに貯湯槽5の下部に下がってくる。この運転中に貯湯槽5内では、上部の湯と下部の低温水の境界で熱伝導による熱交換がおこなわれ、上部の湯温は下がり、下部の水温は上昇する湯水混合層を形成し、この混合層は時間経過とともに拡大する。そして、沸き上げ完了近くになると貯湯槽5内の湯水混合層の水が給湯熱交換器7に流入しはじめて、圧縮機1の吐出冷媒温度が上昇する。そして、水温検出手段12の検出信号から流入温度が設定温度Cに達したことを認識して、設定温度制御手段13が圧縮機1の吐出冷媒温度の設定温度Aを下げる。そして、圧縮機1の吐出冷媒温度が変更された設定温度となるように冷媒制御手段9が減圧措置3を制御する。よって、圧縮機の吐出冷媒温度を下げて運転するため、給湯熱交換器に流入する水温が高温になるまで運転できるようになる。従って、圧縮機の耐久性を確保しつつ、貯湯槽の容積全体に高温水を貯湯できる。
【0017】
また、図2のように、水量制御手段11は給湯回路に流量制御弁14を備えて弁開度を可変し、水循環流量を制御しても設定温度Bの湯を貯湯することができ、同様の効果が得られる。但し、この場合には、循環ポンプの定格循環流量から弁最小絞りまで流量変化幅は大きくなる利点がある。しかし、低流量時も定格消費電力を費やすため、消費電力量が大きくなる課題がある。
【0018】
(実施例2)
図3は本発明の実施例2のヒートポンプ給湯機の構成図である。図4は実施例2のヒートポンプ給湯機運転中の貯湯槽内の湯温分布を表わす。図5は湯水混合層域に達した時の圧縮機の吐出冷媒温度、給湯熱交換器出口水温の経時変化を表わし、実線は本発明の温度変化を表わし、破線は従来制御の温度変化を表わすグラフである。図3において、15は設定温度制御手段であり、給湯熱交換器7入口の水温が設定温度Cに達してから設定温度Aを段階的に低温側へ変更する時間の間隔を短くする。
【0019】
以上の構成において、その動作、作用について説明する。夏季などの沸き上げ運転時間が短い場合には、図4に表わす如く、湯水の熱交換時間が短いため湯水混合層領域が少ない。そのため、給湯熱交換器7に流入する水温が急激に上昇する。そして、水温検出手段12の検出信号から給湯熱交換器7への流入温度が設定温度Cに達したことを認識して、設定温度制御手段15が圧縮機1の吐出冷媒温度の設定温度Aを下げる。そして、図5に表わす如く、圧縮機1の吐出冷媒温度の設定値を下げる設定温度Aの設定変更をおこなう時間間隔をしだいに短くするため急激な水温上昇に追随できるようになり、吐出冷媒温度の異常上昇が生じない。従って、圧縮機の耐久性を確保しつつ給湯熱交換器に流入する水温が高温となるまで運転を継続でき、貯湯槽の容積全体に高温水を貯湯する。
【0020】
(実施例3)
図6は本発明の実施例3のヒートポンプ給湯機の構成図である。図7は湯水混合層域に達した時の圧縮機の吐出冷媒温度、給湯熱交換器出口水温の経時変化を表わし、実線は本発明の温度変化を表わし、破線は従来制御の温度変化を表わすグラフである。図6において、16は設定温度制御手段であり、給湯熱交換器7入口の水温が設定温度Cに達してから設定温度Aを段階的に下げ、温度低下の幅を大きくする。
【0021】
以上の構成において、その動作、作用について説明する。
【0022】
沸き上げ完了直後に少量出湯して、再度沸き上げ運転する場合について説明する。この場合、少量出湯すると水道の圧力によって出湯量と同じ水量が貯湯槽下部に給水される。そして、再度沸き上げ運転をおこなうと、給水した水温と沸き上げ直後の湯温の差が大きいため、給湯熱交換器に流入する水温は不連続的に急激に上昇変化する。そのため、水温検出手段12の検出信号から給湯熱交換器7への流入温度が設定温度Cに達したことを認識して、設定温度制御手段16が圧縮機1の吐出冷媒温度の設定温度Aを下げる。そして、圧縮機の吐出冷媒温度の設定温度Aを下げる変更幅を大きくして、急激な水温変化に対しても圧縮機の吐出冷媒温度の異常上昇を防止する。従って、圧縮機の耐久性を確保しつつ給湯熱交換器に流入する水温が高温となるまで運転を継続できるようにする。
【0023】
(実施例4)
図8は本発明の実施例4のヒートポンプ給湯機の動作を表わす二酸化炭素冷媒の圧力と比エンタルピのグラフである。図9は放熱器で熱交換する際の冷媒温度と水温を表わし、実線が低温の給水温度を加熱する場合を表わし、破線が湯水混合層域に達した中温度の水を加熱する場合を表わす。
【0024】
以上の構成において、その動作、作用について説明する。
【0025】
冷媒回路に封入する冷媒を二酸化炭素とするヒートポンプ給湯機は図8で示す如く、高圧側は臨界圧力以上で動作する。そして、圧縮機1が吸入冷媒a点から吐出冷媒b点まで圧縮して高温高圧冷媒にして、放熱器2に流入する。ここで循環ポンプ6を介して貯湯槽5から送られてきた水を加熱する。その際、放熱器2を通過する冷媒は放熱しながらb点から、給水温度より高温のc点まで温度低下する。そして、減圧装置3でd点まで減圧されて臨界圧力以下となり蒸発器4に流入する。そして、大気熱を吸熱して蒸発ガス化し、圧縮機1のa点にもどる。一方、貯湯槽5の下部から流出した水は循環ポンプ6を介して給湯熱交換器7に流入し、放熱器2を介して加熱されて貯湯槽5の上部にたくわえられる。ここで、給湯熱交換器7の出口湯温を湯温検出手段10が検知し、水量制御手段11が設定温度Bとなるように湯温検出手段10の検出信号と比較しながら給湯回路の水循環流量を制御する。そして、この運転を継続しながら、貯湯槽5の上部から貯湯し、湯面がしだいに貯湯槽5の下部に下がってくる。この運転中に貯湯槽5内では、上部の湯と下部の低温水の境界で熱伝導による熱交換がおこなわれ、上部の湯温は下がり、下部の水温は上昇する湯水混合層を形成し、この混合層は時間経過とともに拡大する。そして、貯湯槽5内の湯水混合層の水が給湯熱交換器7に流入すると、放熱器2から流出する冷媒温度がc’点まで上昇する。c’点の冷媒温度は給湯熱交換器7に流入する水温より当然高い。そのため、放熱量が図8中のQcからQc’へ低下する。よって、図9のグラフに表わす如く、冷媒と水の平均温度差がΔt1からΔt2に小さくなるため、給湯熱交換器7出口の湯温を一定とする場合には、放熱器2に流入する冷媒温度が低下する。すなわち、圧縮機1の吐出冷媒温度が低くなっても設定温度Bの湯温が確保できる。例えば、放熱量が約60%に低下する場合、冷媒と水の温度差が20degから12degとなり、放熱器に流入する冷媒温度が8deg低下する。従って、給湯熱交換器に流入する水温が高温になるまで運転を継続できるため貯湯槽の容積全体に高温水を貯湯できる。
【0026】
そして、給湯熱交換器7入口の水温が設定温度Cに達したことを検出して、圧縮機1の吐出冷媒の設定温度Aの設定値を高温側に変更することによって、圧縮機1の冷媒吐出温度を上げて、さらに高温湯で貯湯槽の容積全体に高温水を貯湯する。
【0027】
(実施例5)
図10は本発明の実施例5の冷媒として二酸化炭素を用いたヒートポンプ給湯機の構成図である。図10において、17は駆動制御手段であり、圧縮機1の駆動周波数を可変する。18は圧縮機制御手段であり、給湯熱交換器7入口の水温が設定温度Cに達したことを検出して、圧縮機1の駆動周波数を大きくするように駆動制御手段17に指令する。
【0028】
以上の構成において、その動作、作用について説明する。給湯熱交換器7入口の水温が設定温度Cに達したことを検出して、圧縮機1の駆動周波数が大きくなる。そのため、圧縮機1の圧縮比が大きくなるため吐出冷媒温度が高くなり、給湯熱交換器7の出口水温を高めることができる。また、放熱量(給湯加熱能力)が増大する。従って、短時間で高温の湯を貯湯槽の容積全体に貯湯できるようになる。
【0029】
【発明の効果】
以上のように、発明によれば、フロン系の冷媒、あるいは高圧側が臨界圧力以上となる二酸化炭素の冷媒を用いたヒートポンプ給湯機において、沸き上げ完了直前の湯水混合層域の水が高温水になっても給湯運転できるようにして、貯湯槽の容積全体に高温水を貯湯するものである。
【図面の簡単な説明】
【図1】 本発明の実施例1のヒートポンプ給湯機の構成図
【図2】 本発明の実施例1の他のヒートポンプ給湯機の構成図
【図3】 本発明の実施例2のヒートポンプ給湯機の構成図
【図4】 本発明の実施例2のヒートポンプ給湯機運転中の貯湯槽内の湯温分布を表わす図
【図5】 本発明の実施例2のヒートポンプ給湯機の圧縮機の吐出冷媒温度変化を表わすグラフ
【図6】 本発明の実施例3のヒートポンプ給湯機の構成図
【図7】 本発明の実施例3のヒートポンプ給湯機の圧縮機の吐出冷媒温度変化を表わすグラフ
【図8】 本発明の実施例4のヒートポンプ給湯機の冷媒圧力と比エンタルピ線のグラフ
【図9】 本発明の実施例4のヒートポンプ給湯機の放熱器内の冷媒と水の温度変化のグラフ
【図10】 本発明の実施例5のヒートポンプ給湯機の構成図
【図11】 従来のヒートポンプ給湯機の構成図
【図12】 従来のヒートポンプ給湯機運転中の貯湯槽内の湯温分布を表わす図
【符号の説明】
1 圧縮機
2 放熱器
3 減圧装置
4 蒸発器
5 貯湯槽
6 循環ポンプ
7 給湯熱交換器
8 冷媒温度検出手段
9 冷媒制御手段
10 湯温検出手段
11 水量制御手段
12 水温検出手段
13、15、16 設定温度制御手段
14 流量制御弁
17 駆動制御手段
18 圧縮機制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump hot water supply apparatus.
[0002]
[Prior art]
Conventionally, as this type of heat pump hot water supply apparatus, there has been one as described in, for example, Japanese Patent Application Laid-Open No. 59-15778. FIG. 11 shows a conventional heat pump hot water supply apparatus described in the publication.
[0003]
In FIG. 11, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device, 4 is an evaporator, 5 is a hot water tank, 6 is a circulation pump, and the compressor 1, the condenser 2, the pressure reducing valve 3, and the evaporator. 4 to form a heat pump device.
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, as the boiling operation time elapses, a hot and cold mixed layer is formed at a portion where hot water in the hot water tank 5 is in contact with water, and the hot and cold mixed layer gradually expands. FIG. 12 shows the temperature distribution of the mixed layer of hot water and water in the hot water storage layer. This occurs due to heat conduction and convection in hot and cold water, and heat is transferred from the hot water to the low temperature water, and the temperature of the hot water drops at the boundary, and the temperature of the low temperature water rises. Therefore, the temperature of the water flowing into the hot water supply heat exchanger becomes higher when the boiling is near completion. Therefore, since the discharge refrigerant pressure and the discharge refrigerant temperature of the compressor become high and the durability of the compressor becomes a problem such as an increase in the winding temperature of the motor, the operation must be stopped. Therefore, since the lower part of the hot water storage tank is in a state of storing medium-low temperature water, the hot water storage tank capacity cannot be used effectively to store hot water.
[0005]
The present invention solves the above-mentioned conventional problems, and detects that the temperature of the water flowing into the hot water supply heat exchanger during operation is higher than the set temperature, and lowers the set temperature of the discharge refrigerant temperature of the compressor. Thus, the operation can be continued until the temperature of the water flowing into the hot water supply heat exchanger becomes high, and hot water is stored in the entire volume of the hot water storage tank.
[0006]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the heat pump water heater of the present invention includes a refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, and water in the lower part is heated by the refrigerant circuit to store hot water from the upper part. A hot water storage circuit that sequentially connects hot water storage tanks, circulation pumps, and heat exchangers that have a heat exchange relationship with a radiator, and the valve opening of the decompression device so that the refrigerant discharge refrigerant temperature becomes a set temperature A During the operation of boiling water supplied to the hot water storage tank, it has refrigerant control means and water amount control means for controlling the water circulation flow rate of the hot water supply circuit so that the hot water temperature at the outlet of the hot water supply heat exchanger becomes the set temperature B. When the water temperature at the inlet of the hot water supply heat exchanger rises and reaches the set temperature C near the completion of boiling, the set temperature A is changed to the low temperature side when the discharged refrigerant temperature of the compressor rises. .
[0007]
Thus, when in the hot and cold water mixing layer in OPERATION begins to flow into the low temperature water to the hot water supply heat exchanger, the refrigerant temperature, the refrigerant pressure rises as it. And since the temperature of the medium-low temperature water which flows into a hot water supply heat exchanger rises rapidly, the discharge refrigerant | coolant temperature of a compressor also rises rapidly. Therefore, when the hot water that starts to flow into the hot water supply heat exchanger reaches the set temperature C, the set temperature A of the refrigerant discharge refrigerant temperature is lowered, and the water temperature flowing into the hot water supply heat exchanger is increased until the temperature becomes high, Hot water is stored in the entire volume of the hot water tank.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, a hot water storage tank that heats water in the lower part by the refrigerant circuit, and stores hot water from the upper part, a circulation pump, and a radiator A hot water supply circuit sequentially connecting hot water supply heat exchangers having a heat exchange relationship with each other, a refrigerant control means for controlling the valve opening of the decompression device so that the refrigerant discharge temperature of the compressor becomes a set temperature A, and a hot water heat exchanger Water amount control means for controlling the water circulation flow rate of the hot water supply circuit so that the hot water temperature at the outlet becomes the set temperature B, and the hot water supply is near the completion of boiling during the operation of boiling the water supplied to the hot water tank When the coolant temperature of the compressor rises when the water temperature at the heat exchanger inlet rises and reaches the preset temperature C, the preset temperature A is changed to the low temperature side . Detects that the water temperature of the hot water supply heat exchanger inlet has reached the set temperature C during operation, the hot water of the hot and cold water mixing layer of the set temperature C during OPERATION begins to flow into the hot water supply heat exchanger, the compressor The set temperature A of the discharge refrigerant temperature is lowered so that the operation can be continued until the temperature of the water flowing into the hot water supply heat exchanger becomes high, and hot water is stored in the entire volume of the hot water tank.
[0009]
In addition to the above-described configuration, the invention according to claim 2 shortens the time interval for gradually changing the set temperature A to the low temperature side after the water temperature at the hot water supply heat exchanger inlet reaches the set temperature C. However, when the boiling operation time is short such as in summer, the hot water mixing layer region is small because the heat exchange time of the hot water in the hot water tank is short. Therefore, although the temperature of the water flowing into the hot water supply heat exchanger rises rapidly, the time interval for changing the setting temperature A of the compressor discharge refrigerant temperature to the low temperature side is shortened to suppress the rise in the compressor discharge refrigerant temperature. The hot water is stored in the entire volume of the hot water storage tank so that the operation can be continued until the temperature of the water flowing into the hot water heat exchanger becomes high.
[0010]
In addition to the above-described configuration, the invention described in claim 3 is such that after the water temperature at the hot water supply heat exchanger inlet reaches the set temperature C, the set temperature A is lowered stepwise to increase the temperature drop. The temperature difference between the water temperature supplied to the lower part of the hot water storage tank and the boiling water temperature becomes large, such as when a small amount of hot water is discharged immediately after the completion of boiling and the boiling operation is performed again. It changes rapidly and discontinuously. In response to such a sudden change in water temperature, the set temperature A of the refrigerant discharged from the compressor is lowered and the range of the temperature drop is increased to prevent an abnormal rise in the refrigerant discharged from the compressor, and hot water supply heat exchange The operation can be continued until the temperature of the water flowing into the vessel becomes high.
[0011]
The invention according to claim 4 is a refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, a hot water tank that heats water in the lower part by the refrigerant circuit, and stores hot water from the upper part, a circulation pump, A hot water supply circuit that sequentially connects hot water supply heat exchangers that have a heat exchange relationship with a radiator, and refrigerant control means that controls the valve opening of the decompression device so that the refrigerant discharge temperature of the compressor becomes a set temperature A; Boiling during operation of boiling water supplied to the hot water storage tank, having water amount control means for controlling the water circulation flow rate of the hot water supply circuit so that the hot water temperature at the outlet of the hot water supply heat exchanger becomes a set temperature B Near the completion, when the water temperature at the inlet of the hot water supply heat exchanger rises and reaches a set temperature C, the set temperature A is changed to a high temperature side when the discharged refrigerant temperature of the compressor decreases. In this case , High-pressure side operating in a critical pressure or higher, in order to perform a highly efficient operation hot boiling is to operate the discharged refrigerant temperature and the refrigerant discharge pressure of the compressor significantly at elevated temperature and pressure reduction. And when the hot water of a hot-water mixed layer flows in into a hot-water supply heat exchanger, the refrigerant | coolant temperature which flows out out of a radiator will become high and the thermal radiation amount of a refrigerant | coolant will fall. Therefore, since the average temperature difference between the refrigerant and the water becomes small, the temperature of the refrigerant flowing into the radiator decreases when the hot water temperature at the hot water supply heat exchanger outlet is kept constant. Accordingly, the operation can be continued until the temperature of the water flowing into the hot water supply heat exchanger becomes high, and hot water can be stored in the entire volume of the hot water storage tank.
[0012]
The invention described in claim 5, in addition to the before mentioned construction, a drive control means for varying the driving frequency of the compressor, it is detected that the temperature of the hot water supply heat exchanger inlet has reached the set temperature C, compression Compressor control means for performing control to increase the drive frequency of the compressor, detecting that the water temperature at the inlet of the hot water supply heat exchanger has reached the set temperature C, increasing the drive frequency of the compressor, and discharging refrigerant temperature The hot water is stored in the entire volume of the hot water tank by increasing the efficiency of the hot water supply and increasing the hot water heating capacity.
[0013]
When the refrigerant to be sealed in the refrigerant circuit is carbon dioxide, the invention described in claim 6 detects that the water temperature at the inlet of the hot water supply heat exchanger has reached the set temperature C in addition to the above-described configuration, The set temperature A of the refrigerant discharge temperature is changed to the high temperature side, and the entire volume of the hot water storage tank is stored with hot water.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In addition, in a prior art example and each Example, the same code | symbol is attached | subjected about what has the same structure and the same operation | movement, and description is partially abbreviate | omitted.
[0015]
Example 1
FIG. 1 shows a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. In FIG. 1, 1 is a compressor, 2 is a radiator, 3 is a decompression device, 4 is an evaporator, and collects atmospheric heat or solar heat. The compressor 1, the radiator 2, the decompressor 3, and the evaporator 4 are sequentially connected to form a refrigerant circuit that encloses the chlorofluorocarbon HFC refrigerant. 5 is a hot water storage tank, 6 is a circulation pump, 7 is a hot water supply heat exchanger, and has a heat exchange relationship with the radiator 2. And the hot water supply circuit which connected the circulation pump 6, the hot water supply heat exchanger 7, and the upper part of the hot water storage tank 5 in order from the lower part of the hot water storage 5 is comprised. Reference numeral 8 denotes a refrigerant temperature detecting means for detecting the refrigerant temperature discharged from the compressor 1. Reference numeral 9 denotes refrigerant control means, which controls the valve opening degree of the decompression device 3 so that the discharge refrigerant temperature of the compressor 1 becomes a preset set temperature A from the detection signal of the refrigerant temperature detection means 8. Reference numeral 10 denotes hot water temperature detection means for detecting the hot water temperature at the outlet of the hot water supply heat exchanger 7. 11 is a water amount control means for controlling the water circulation flow rate of the hot water supply circuit while comparing it with the detection signal of the hot water temperature detection means 10 so that the hot water temperature at the outlet of the hot water supply heat exchanger 7 becomes the set temperature B. For example, the water circulation flow rate is controlled by changing the rotation speed of the circulation pump 6. A water temperature detecting means 12 detects the temperature of the water flowing into the hot water heat exchanger 7 and is provided near the inlet of the hot water heat exchanger 7 or the lower outlet of the hot water tank 5 flowing out of the hot water heat exchanger 7. It has been. Reference numeral 13 denotes a set temperature control means that changes the set temperature A after the water temperature at the inlet of the hot water supply heat exchanger 7 reaches the set temperature C during operation.
[0016]
About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 1, first, an operation for boiling water supplied to the hot water tank 5 will be described. In this case, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the radiator 2 and heats the water sent from the circulation pump 6 here. Then, the pressure is reduced by the pressure reducing device 3 and flows into the evaporator 4. Then, it absorbs atmospheric heat to evaporate and returns to the compressor 1. In this cycle, the refrigerant control means 9 opens the valve of the decompression device 3 so that the discharge refrigerant temperature of the compressor 1 becomes a preset temperature A with respect to the outside air temperature condition, the solar radiation amount, the feed water temperature, or the like. Control the degree. In the present invention, the set temperature A is about 100 ° C. On the other hand, the water flowing out from the lower part of the hot water tank 5 flows into the hot water supply heat exchanger 7 through the circulation pump 6, rises in temperature to the set temperature B through the radiator 2, and enters the upper part of the hot water tank 5. Can be saved. Here, the hot water temperature detecting means 10 detects the hot water temperature at the outlet of the hot water heat exchanger 7, and the water circulation of the hot water supply circuit is compared with the detection signal of the hot water temperature detecting means 10 so that the water amount control means 11 becomes the set temperature B. Control the flow rate. And while continuing this driving | operation, hot water is stored from the upper part of the hot water tank 5, and the hot water surface gradually falls to the lower part of the hot water tank 5. During this operation, in the hot water storage tank 5, heat exchange is carried out at the boundary between the upper hot water and the lower low temperature water, forming a hot water mixing layer in which the upper hot water temperature falls and the lower water temperature rises, This mixed layer expands over time. And when it is near the completion of boiling, the water of the hot water mixed layer in the hot water storage tank 5 begins to flow into the hot water supply heat exchanger 7, and the discharge refrigerant temperature of the compressor 1 rises. Then, it is recognized from the detection signal of the water temperature detection means 12 that the inflow temperature has reached the set temperature C, and the set temperature control means 13 decreases the set temperature A of the discharge refrigerant temperature of the compressor 1. And the refrigerant | coolant control means 9 controls the pressure reduction means 3 so that the discharge refrigerant | coolant temperature of the compressor 1 may become set temperature changed. Therefore, since it operates by lowering the refrigerant discharge refrigerant temperature, it can be operated until the temperature of the water flowing into the hot water supply heat exchanger becomes high. Therefore, hot water can be stored in the entire volume of the hot water tank while ensuring the durability of the compressor.
[0017]
In addition, as shown in FIG. 2, the water amount control means 11 includes a flow rate control valve 14 in the hot water supply circuit to vary the valve opening, and can store hot water at the set temperature B even if the water circulation flow rate is controlled. The effect is obtained. However, in this case, there is an advantage that the flow rate change width increases from the rated circulation flow rate of the circulation pump to the minimum valve throttle. However, since the rated power consumption is consumed even at a low flow rate, there is a problem that the power consumption becomes large.
[0018]
(Example 2)
FIG. 3 is a configuration diagram of a heat pump water heater according to a second embodiment of the present invention. FIG. 4 shows the hot water temperature distribution in the hot water storage tank during operation of the heat pump water heater of the second embodiment. FIG. 5 shows changes over time in the refrigerant discharge refrigerant temperature and the hot water supply heat exchanger outlet water temperature when reaching the hot water / mixing layer region, the solid line shows the temperature change of the present invention, and the broken line shows the temperature change of the conventional control. It is a graph. In FIG. 3, 15 is a set temperature control means, and shortens the time interval for changing the set temperature A to the low temperature stepwise after the water temperature at the inlet of the hot water supply heat exchanger 7 reaches the set temperature C.
[0019]
The operation and action of the above configuration will be described. When the boiling operation time is short in summer and the like, as shown in FIG. Therefore, the temperature of the water flowing into the hot water supply heat exchanger 7 rises rapidly. Then, it is recognized from the detection signal of the water temperature detection means 12 that the inflow temperature to the hot water supply heat exchanger 7 has reached the set temperature C, and the set temperature control means 15 sets the set temperature A of the discharge refrigerant temperature of the compressor 1. Lower. Then, as shown in FIG. 5, the time interval for changing the setting of the set temperature A that lowers the set value of the discharge refrigerant temperature of the compressor 1 is gradually shortened, so that it becomes possible to follow a sudden rise in water temperature. The abnormal rise of the does not occur. Therefore, the operation can be continued until the temperature of the water flowing into the hot water supply heat exchanger becomes high while ensuring the durability of the compressor, and hot water is stored in the entire volume of the hot water tank.
[0020]
Example 3
FIG. 6 is a configuration diagram of a heat pump water heater according to a third embodiment of the present invention. FIG. 7 shows the change over time in the refrigerant discharge refrigerant temperature and the hot water supply heat exchanger outlet water temperature when reaching the hot water / mixing layer region, the solid line shows the temperature change of the present invention, and the broken line shows the temperature change of the conventional control. It is a graph. In FIG. 6, reference numeral 16 denotes a set temperature control means, which lowers the set temperature A step by step after the water temperature at the inlet of the hot water supply heat exchanger 7 reaches the set temperature C, thereby increasing the width of the temperature drop.
[0021]
The operation and action of the above configuration will be described.
[0022]
A case will be described in which a small amount of hot water is discharged immediately after the completion of boiling and the boiling operation is performed again. In this case, when a small amount of hot water is discharged, the same amount of hot water as the amount of hot water is supplied to the lower part of the hot water tank by the pressure of the water supply. When the boiling operation is performed again, the temperature difference between the supplied water temperature and the hot water temperature immediately after the boiling is large, so that the water temperature flowing into the hot water supply heat exchanger changes rapidly and discontinuously. Therefore, it is recognized from the detection signal of the water temperature detection means 12 that the inflow temperature to the hot water supply heat exchanger 7 has reached the set temperature C, and the set temperature control means 16 sets the set temperature A of the discharge refrigerant temperature of the compressor 1. Lower. Then, the change range for lowering the set temperature A of the compressor discharge refrigerant temperature is increased to prevent an abnormal increase in the compressor discharge refrigerant temperature even for a sudden water temperature change. Therefore, the operation can be continued until the temperature of the water flowing into the hot water supply heat exchanger becomes high while ensuring the durability of the compressor.
[0023]
(Example 4)
FIG. 8 is a graph of carbon dioxide refrigerant pressure and specific enthalpy representing the operation of the heat pump water heater of Example 4 of the present invention. FIG. 9 shows the refrigerant temperature and the water temperature when heat is exchanged with a radiator, the solid line represents the case where the low-temperature feed water temperature is heated, and the broken line represents the case where the medium-temperature water reaching the hot and cold mixed layer region is heated. .
[0024]
The operation and action of the above configuration will be described.
[0025]
As shown in FIG. 8, the heat pump water heater using carbon dioxide as the refrigerant sealed in the refrigerant circuit operates on the high pressure side above the critical pressure. Then, the compressor 1 compresses from the suction refrigerant a point to the discharge refrigerant b point to form a high-temperature and high-pressure refrigerant and flows into the radiator 2. Here, the water sent from the hot water tank 5 through the circulation pump 6 is heated. At that time, the temperature of the refrigerant passing through the radiator 2 decreases from the point b to the point c higher than the feed water temperature while radiating heat. Then, the pressure is reduced to point d by the pressure reducing device 3, becomes a critical pressure or less, and flows into the evaporator 4. Then, it absorbs atmospheric heat to evaporate and returns to point a of the compressor 1. On the other hand, the water flowing out from the lower part of the hot water tank 5 flows into the hot water supply heat exchanger 7 through the circulation pump 6, is heated through the radiator 2, and is stored in the upper part of the hot water tank 5. Here, the hot water temperature detecting means 10 detects the hot water temperature at the outlet of the hot water heat exchanger 7, and the water circulation of the hot water supply circuit is compared with the detection signal of the hot water temperature detecting means 10 so that the water amount control means 11 becomes the set temperature B. Control the flow rate. And while continuing this driving | operation, hot water is stored from the upper part of the hot water tank 5, and the hot water surface gradually falls to the lower part of the hot water tank 5. During this operation, in the hot water storage tank 5, heat exchange is carried out at the boundary between the upper hot water and the lower low temperature water, forming a hot water mixing layer in which the upper hot water temperature falls and the lower water temperature rises, This mixed layer expands over time. And if the water of the hot-water mixed layer in the hot water storage tank 5 flows into the hot water supply heat exchanger 7, the refrigerant temperature flowing out from the radiator 2 rises to the point c '. The refrigerant temperature at the point c ′ is naturally higher than the water temperature flowing into the hot water supply heat exchanger 7. Therefore, the amount of heat radiation decreases from Qc in FIG. 8 to Qc ′. Therefore, as shown in the graph of FIG. 9, the average temperature difference between the refrigerant and water decreases from Δt1 to Δt2, so that when the hot water temperature at the outlet of the hot water supply heat exchanger 7 is constant, the refrigerant flowing into the radiator 2 The temperature drops. That is, the hot water temperature of the set temperature B can be secured even when the discharge refrigerant temperature of the compressor 1 is lowered. For example, when the heat dissipation amount is reduced to about 60%, the temperature difference between the refrigerant and water is changed from 20 deg to 12 deg, and the refrigerant temperature flowing into the radiator is reduced by 8 deg. Therefore, since the operation can be continued until the temperature of the water flowing into the hot water heat exchanger becomes high, hot water can be stored in the entire volume of the hot water tank.
[0026]
Then, by detecting that the water temperature at the inlet of the hot water supply heat exchanger 7 has reached the set temperature C, and changing the set value of the set temperature A of the refrigerant discharged from the compressor 1 to the high temperature side, the refrigerant of the compressor 1 Raise the discharge temperature and store hot water in the entire volume of the hot water tank with hot water.
[0027]
(Example 5)
FIG. 10 is a configuration diagram of a heat pump water heater using carbon dioxide as a refrigerant in Example 5 of the present invention. In FIG. 10, reference numeral 17 denotes drive control means, which varies the drive frequency of the compressor 1. Reference numeral 18 denotes compressor control means that detects that the water temperature at the inlet of the hot water supply heat exchanger 7 has reached the set temperature C and instructs the drive control means 17 to increase the drive frequency of the compressor 1.
[0028]
The operation and action of the above configuration will be described. By detecting that the water temperature at the inlet of the hot water supply heat exchanger 7 has reached the set temperature C, the drive frequency of the compressor 1 increases. Therefore, since the compression ratio of the compressor 1 is increased, the discharge refrigerant temperature is increased, and the outlet water temperature of the hot water supply heat exchanger 7 can be increased. Moreover, the amount of heat release (hot water supply heating capacity) increases. Therefore, hot water can be stored in the entire volume of the hot water tank in a short time.
[0029]
【The invention's effect】
As described above, according to the present invention, in a heat pump water heater using a CFC-based refrigerant or a carbon dioxide refrigerant whose high pressure side is equal to or higher than the critical pressure, the water in the hot water / mixed layer area immediately before the completion of boiling is high-temperature water. The hot water supply operation can be performed even if it becomes, and hot water is stored in the entire volume of the hot water tank.
[Brief description of the drawings]
1 is a configuration diagram of a heat pump water heater according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of another heat pump water heater according to the first embodiment of the present invention. FIG. 3 is a heat pump water heater according to a second embodiment of the present invention. FIG. 4 is a view showing a hot water temperature distribution in a hot water storage tank during operation of the heat pump water heater of Embodiment 2 of the present invention. FIG. 5 is a refrigerant discharged from a compressor of the heat pump water heater of Embodiment 2 of the present invention. FIG. 6 is a configuration diagram of a heat pump water heater according to a third embodiment of the present invention. FIG. 7 is a graph illustrating a change in refrigerant temperature discharged from the compressor of the heat pump water heater according to the third embodiment of the present invention. FIG. 9 is a graph of refrigerant pressure and specific enthalpy line of the heat pump water heater of Example 4 of the present invention. FIG. 9 is a graph of temperature change of refrigerant and water in the radiator of the heat pump water heater of Example 4 of the present invention. A heat pump according to a fifth embodiment of the present invention Fig. 11 is a block diagram of a conventional heat pump water heater. Fig. 12 is a diagram showing the temperature distribution in a hot water tank during operation of a conventional heat pump water heater.
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing device 4 Evaporator 5 Hot water storage tank 6 Circulation pump 7 Hot water supply heat exchanger 8 Refrigerant temperature detection means 9 Refrigerant control means 10 Hot water temperature detection means 11 Water quantity control means 12 Water temperature detection means 13, 15, 16 Setting temperature control means 14 Flow rate control valve 17 Drive control means 18 Compressor control means

Claims (6)

圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷媒回路と、下部の水を前記冷媒回路で加熱して上部から貯湯する貯湯槽、循環ポンプ、前記放熱器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、前記圧縮機の吐出冷媒温度が設定温度Aとなるように前記減圧装置の弁開度を制御する冷媒制御手段と、前記給湯熱交換器出口の湯温が設定温度Bとなるように前記給湯回路の水循環流量を制御する水量制御手段とを有し、前記貯湯槽に給水された水を沸き上げる運転中の沸き上げ完了近くにおいて、前記給湯熱交換器入口の水温が上昇して設定温度Cに達すると前記圧縮機の吐出冷媒温度が上昇する場合は、設定温度Aを低温側へ変更することを特徴とするヒートポンプ給湯機。A refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, a hot water storage tank that heats water in the lower part by the refrigerant circuit and stores hot water from the upper part, a circulation pump, and a hot water supply having a heat exchange relationship with the radiator A hot water supply circuit in which heat exchangers are sequentially connected, a refrigerant control means for controlling the valve opening of the decompression device so that the discharge refrigerant temperature of the compressor becomes a set temperature A, and the hot water temperature at the outlet of the hot water supply heat exchanger Water amount control means for controlling the water circulation flow rate of the hot water supply circuit so that the water temperature becomes a set temperature B, and the hot water supply heat exchanger is near the completion of boiling during the operation of boiling the water supplied to the hot water storage tank A heat pump water heater characterized by changing the set temperature A to a low temperature side when the discharge refrigerant temperature of the compressor rises when the water temperature at the inlet rises and reaches a set temperature C. 設定温度制御手段は給湯熱交換器入口の水温が設定温度Cに達してから設定温度Aを段階的に低温側へ変更する時間の間隔を短くする請求項1記載のヒートポンプ給湯機。  The heat pump water heater according to claim 1, wherein the set temperature control means shortens the time interval for changing the set temperature A to the low temperature stepwise after the water temperature at the inlet of the hot water supply heat exchanger reaches the set temperature C. 設定温度制御手段は給湯熱交換器入口の水温が設定温度Cに達してから設定温度Aを段階的に下げ、温度低下の幅を大きくする請求項1または2記載のヒートポンプ給湯機。  The heat pump water heater according to claim 1 or 2, wherein the set temperature control means lowers the set temperature A stepwise after the water temperature at the inlet of the hot water supply heat exchanger reaches the set temperature C to increase the width of the temperature drop. 圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷媒回路と、下部の水を前記冷媒回路で加熱して上部から貯湯する貯湯槽、循環ポンプ、前記放熱器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、前記圧縮機の吐出冷媒温度が設定温度Aとなるように前記減圧装置の弁開度を制御する冷媒制御手段と、前記給湯熱交換器出口の湯温が設定温度Bとなるように前記給湯回路の水循環流量を制御する水量制御手段とを有し、前記貯湯槽に給水された水を沸き上げる運転中の沸き上げ完了近くにおいて、前記給湯熱交換器入口の水温が上昇して設定温度Cに達すると前記圧縮機の吐出冷媒温度が低くなる場合は、設定温度Aを高温側へ変更することを特徴とするヒートポンプ給湯機。A refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, a hot water storage tank that heats water in the lower part by the refrigerant circuit and stores hot water from the upper part, a circulation pump, and a hot water supply having a heat exchange relationship with the radiator A hot water supply circuit in which heat exchangers are sequentially connected, a refrigerant control means for controlling the valve opening of the decompression device so that the discharge refrigerant temperature of the compressor becomes a set temperature A, and the hot water temperature at the outlet of the hot water supply heat exchanger Water amount control means for controlling the water circulation flow rate of the hot water supply circuit so that the water temperature becomes a set temperature B, and the hot water supply heat exchanger is near the completion of boiling during the operation of boiling the water supplied to the hot water storage tank A heat pump water heater characterized by changing the set temperature A to a high temperature side when the discharge refrigerant temperature of the compressor decreases when the water temperature at the inlet rises and reaches a set temperature C. 圧縮機の駆動周波数を可変する駆動制御手段と、給湯熱交換器入口の水温が設定温度Cに達したことを検出して、前記圧縮機の駆動周波数を大きくする制御をおこなう圧縮機制御手段を備えた請求項1または4記載のヒートポンプ給湯機。  Drive control means for varying the drive frequency of the compressor, and compressor control means for performing control to increase the drive frequency of the compressor by detecting that the water temperature at the inlet of the hot water supply heat exchanger has reached the set temperature C The heat pump water heater of Claim 1 or 4 provided. 冷媒回路に封入する冷媒を二酸化炭素とする請求項1〜5いずれか1項に記載のヒートポンプ給湯機。  The heat pump water heater according to any one of claims 1 to 5, wherein the refrigerant sealed in the refrigerant circuit is carbon dioxide.
JP2001149076A 2001-05-18 2001-05-18 Heat pump water heater Expired - Fee Related JP3755422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149076A JP3755422B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149076A JP3755422B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2002340400A JP2002340400A (en) 2002-11-27
JP3755422B2 true JP3755422B2 (en) 2006-03-15

Family

ID=18994292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149076A Expired - Fee Related JP3755422B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3755422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016448A (en) * 2016-06-14 2016-10-12 珠海格力电器股份有限公司 Control method and device for heating equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907923B2 (en) 2003-01-13 2005-06-21 Carrier Corporation Storage tank for hot water systems
KR100661676B1 (en) 2004-09-20 2006-12-26 (주)델타씨앤씨 Heat recycling system using heatpump
KR100770375B1 (en) 2005-04-21 2007-10-25 주식회사 누리앤텍 Chiller
JP4533393B2 (en) * 2007-03-06 2010-09-01 三菱電機株式会社 Water heater
JP5536013B2 (en) 2011-11-11 2014-07-02 三菱重工業株式会社 Hot water heating system, control device and control method
JP2013242055A (en) * 2012-05-18 2013-12-05 Panasonic Corp Water heater
CN110887103B (en) * 2018-09-07 2021-02-26 宁波方太厨具有限公司 Heating loop fault judgment method
CN114754464B (en) * 2022-04-18 2023-11-24 青岛海尔空调电子有限公司 Air conditioner control method, system, device, medium and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016448A (en) * 2016-06-14 2016-10-12 珠海格力电器股份有限公司 Control method and device for heating equipment
CN106016448B (en) * 2016-06-14 2019-03-08 珠海格力电器股份有限公司 Control method and device for heating equipment

Also Published As

Publication number Publication date
JP2002340400A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3856024B2 (en) Heat pump bath water supply system
JP3755422B2 (en) Heat pump water heater
JP5034367B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP3855795B2 (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP2010085004A (en) Heat pump water heater and method for defrosting the heat pump water heater
JP2002188860A5 (en)
JP3912035B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP5194492B2 (en) Heat pump water heater
JP2005308344A (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP3719155B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP4049090B2 (en) Heat pump water heater
JP3800721B2 (en) Heat pump type water heater
JP5478403B2 (en) Heat pump water heater
JP2004340419A (en) Heat pump type water-heater
JP2002340440A (en) Heat pump hot-water supplier
JP4867517B2 (en) Heat pump water heater
JP3856025B2 (en) Heat pump water heater
JP3633500B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees