JP3754530B2 - Rubber composition for seismic isolation laminate - Google Patents

Rubber composition for seismic isolation laminate Download PDF

Info

Publication number
JP3754530B2
JP3754530B2 JP12656597A JP12656597A JP3754530B2 JP 3754530 B2 JP3754530 B2 JP 3754530B2 JP 12656597 A JP12656597 A JP 12656597A JP 12656597 A JP12656597 A JP 12656597A JP 3754530 B2 JP3754530 B2 JP 3754530B2
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber composition
rubber
carbon black
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12656597A
Other languages
Japanese (ja)
Other versions
JPH10176083A (en
Inventor
英之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP12656597A priority Critical patent/JP3754530B2/en
Publication of JPH10176083A publication Critical patent/JPH10176083A/en
Application granted granted Critical
Publication of JP3754530B2 publication Critical patent/JP3754530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【0001】
【発明の属する技術分野】
本発明の目的は、高減衰特性を有し、クリープ性を保持したまま、弾性率を調整することが可能なゴム組成物に関するものである。
【0002】
【従来の技術】
近年、震動エネルギーの吸収装置、すなわち防震、除震、免震装置が急速に普及しつつある。例えば、橋梁の支承やビルの基礎免震等には、ゴム組成物と硬質板とを交互に積層した免震ゴム装置が用いられている。これはゴム組成物を硬質板との積層体とすることにより、上下方向には非常に硬く、横方向には柔らかく、すなわち剪断剛性を小さくして、建築物の固有震動周期を地震の震動周期からずらすように作用させ、地震により建物が受ける加速度を非常に小さくするものである。このような用途に用いるゴム組成物には、振動を熱に変換して振動エネルギーを減衰させるという高減衰性も求められる。
【0003】
また、橋梁などの免震には高減衰性であり、比較的弾性率も高いゴム組成物が求められ、一方、ビル免震、戸建免震用の免震積層体においては、高減衰性であることのみならず、弾性率が比較的低いことが求められている。これは、弾性率を下げることで、地震の際の揺れを長周期化、すなわち揺れをゆっくりさせることで、建物内の被害(例えば、人的被害、機械や機材等の損傷)を最小限にくい止めることができるためである。
弾性率を調節する手段としては、i)ゴム組成物中に配合するカーボンブラックを増減する、ii)ゴム組成物中に配合する加硫剤を増減する等が考えられる。弾性率を低下させるには、カーボンブラックや加硫剤を減量すればよいが、カーボンブラックを減量すると減衰性も低下してしまい、また加硫剤を減量すると破壊強度や、クリープ性が悪化してしまうという欠点がある。
このため、弾性率を用途に合わせて設定できることと高減衰性、高い破壊強度等をバランス良く発現することが可能なゴム組成物が求められている。
【0004】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みてなされたものであり、弾性率の調節が可能で、かつ、減衰性能、破壊特性、クリープ性等に優れたゴム組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、免震積層体ゴム組成物に配合するカーボンブラックの特性を限定することにより、減衰性能を低下させずに、要求される弾性率の調節が可能であることを知見し、本発明を完成するに到った。
【0006】
すなわち、本発明は、少なくとも以下に記載の成分を含有する免震積層体ゴム組成物を提供する。

Figure 0003754530
また、前記超微粒子カーボンブラックのN2 SA/IA比が0.95以下である免震積層体ゴム組成物を提供する。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明のゴム組成物は、ゴムをマトリックスとしてその中に所定量の石油樹脂、超微粒子カーボンブラックが均一に分散している。
この様なゴム組成物は、未加硫ゴムへ石油樹脂、超微粒子カーボンブラック、加硫剤及びその他の副資材を配合し、未加硫の配合物を一度調製後、所望の形状に成形し、加熱・加硫することにより製造される。
【0009】
以下、各成分について説明する。
ジエン系ゴム
本発明の組成物の調製に用いられる未加硫のジエン系ゴムとしては天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエン共重合ゴム(SBR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR)、クロロプレンゴム(CR)等の種々の未加硫ジエン系ゴムが挙げられる。なかでも、減衰性、加工性等のバランスが良いため、NR、IRが好適に用いられる。また、2種以上のジエン系ゴムを併用してもよい。
【0010】
石油樹脂
本発明で用いられる石油樹脂は、ソルベントナフサ中に含まれているクマロン、インデン、スチレンなどを共重合させたクマロンプラスチック、石油類のスチームクラッキングにより、エチレン、プロピレンなどを製造するエチレンプラントから副生する分解油留分に含まれるジオレフィンおよびモノオレフィン類を単離せずに重合した樹脂等が挙げられ、このうち、エスクロン(新日鉄化学(株)製)、ハイレジン(東邦化学工業(株)製)、FTR(三井石油化学工業(株)製)などとして市販されているものが好適に用いられる。
【0011】
本発明のゴム組成物には、石油樹脂はゴム総量100重量部に対して15〜60重量部、好ましくは25〜55重量部配合される。15重量部未満では、減衰性が不足し、60重量部超では、クリープ性が大きくなり、好ましくない。
【0012】
超微粒子カーボンブラック
本発明のゴム組成物には、特定の性質を有する超微粒子カーボンブラックを配合する。
本発明のゴム組成物に用いる超微粒子カーボンブラックは、窒素吸着比表面積(N2 SA)が160〜230m2 /gであり、よう素吸着量(IA)が200〜260mg/gで、DBP吸油量が90〜160cm3 /100gである。
なお、窒素吸着比表面積はASTM D3037−89により、よう素吸着量、及びDBP吸油量はJIS K−6221により測定したものである。
これらのパラメーターはカーボンブラック粒子のコロイダル特性を示すものであり、窒素吸着比表面積、および、よう素吸着量はカーボンブラックの比表面積の尺度を示し、DBP吸油量はカーボンブラックのストラクチャーを示すものであり、これらの条件の全てに当てはまるカーボンブラックを用いることが本発明の特徴である。
とくに低い弾性率を必要とする用途に対しては、上記N2 SA/IA比が0.95以下、好ましくはN2 SA/IA比が0.60〜0.95である超微粒子カーボンブラックを用いるのが好ましい。ビルや戸建のような建造物に用いる場合は、弾性率を低くすることによって、地震の際の建造物内の被害(人的被害、器物や機械等の損傷)を最小限にくい止めることが出来るためである。
比較的高い弾性率が適した用途に対しては、N2 SA/IA比が0.95超、好ましくは1.00〜1.10の超微粒子カーボンブラックを用いる。
【0013】
このような超微粒子カーボンブラックの配合量は未加硫ジエン系ゴム100重量部に対して50〜90重量部であり、好ましくは65〜90重量部である。超微粒子カーボンブラックは本発明のゴム組成物が震動エネルギーの吸収能を発現する上において不可欠なものである。50重量部未満では吸収能に劣り、90重量部超では、本発明のゴム組成物の製造の際に加工性が低下し製造上好ましくなく、強度も低下する。
【0014】
任意成分
本発明の加硫ゴム組成物を製造するに際して、未加硫ゴムに上記必須成分の他に硫黄などの加硫剤および亜鉛華、ステアリン酸などの加硫助剤、老化防止剤などを適宜配合することができる。
【0015】
これらの配合剤が配合された未加硫ゴム組成物は適宜成形されてそれ自体公知の方法、装置を用いることにより130〜170℃で加硫されて、加硫ゴム組成物が得られる。
【0016】
図1に、本発明のゴム組成物を免震積層体に適用した場合の一例を示す。本発明のゴム組成物2と例えば一般構造用鋼板、冷間圧延鋼板などからなる硬質板3とが交互に積層されて免震積層体が構成される。この積層体を製造するには、成形・加硫して、シート状のゴム組成物を得た後、接着剤により硬質板と接着してもよいし、また、あらかじめ未加硫のゴム配合物をシート状に成形し、硬質板と積層した後に加熱して加硫・接着を同時に行って製造することもできる。
このような免震積層体は例えば道路橋の支承や、ビルの基礎免震の用途に好適に用いることができる。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明する。
(実施例1〜4、比較例1〜2)
表2に示す割合で天然ゴムあるいはイソプレンゴム、ブタジエンゴム、カーボンブラックおよびクマロン樹脂を、更にゴム100重量部に対して亜鉛華5.0重量部、ステアリン酸1.0重量部、老化防止剤3.0重量部、硫黄2.1重量部、加硫促進剤としてCZ1.2重量部を配合して未加硫のゴム配合物を調製し、148℃で45分間プレス加硫して、本発明の免震積層体ゴムとしての加硫ゴムを得た。
【0018】
ここで、カーボンブラックとしては、実施例にはニテロン#410(新日鉄化学社製)を、比較例にはシースト9(東海カーボン社製)を用いた。両者の特性は以下に記載する表1のとおりである。
【0019】
Figure 0003754530
【0020】
(加硫ゴムの物性の測定方法)
得られた加硫ゴムについて、以下に示される物性の評価を行った。結果を表2に示す。
(a)引張強さ(TB
JIS K 6301に準拠して測定した。数値の大きい方が破断しにくい。
(b)伸び(EB
JIS K 6301に準拠して測定した。数値の大きい方が伸びが大きい。
(c)JIS A 硬度(Hs)
JIS K 6301に準拠して測定した。数値の大きい方が硬い。
(d)剪断弾性係数(G)
2軸剪断試験基により0.5Hz、150%歪時の剪断弾性係数(G)を測定した。
(e)振動吸収特性(heq
2軸剪断試験機による0.5Hz、150%歪時の等価粘性減衰定数で評価し、その値を示した。ビル用、戸建用免震に要求される値である”15%以上”が、目標値である。
(f)クリープ性(%)
温度+20℃で、設計支圧応力度(60kgf/cm2 )に相当する鉛直荷重を1000時間作用された場合に免震装置に生じる鉛直変位をもとに、式(1)から橋の設計供用年数に相当するクリープを求めた。
δCR=atb (1)
ここに、
δCR:免震装置のクリープ変形量(mm)
t:橋の設計供用年数(時間)
a,b:クリープ定数で、式(2)および式(3)より算出する。
a=(δ100 2 /(δ10002 (2)
b=log(δ1000/δ100 ) (3)
δ100 :100時間後に生じる免震装置の鉛直変位(mm)
δ1000:1000時間後に生じる免震装置の鉛直変位(mm)
なお、式(1)で算出した橋の設計供用年数に相当するクリープ量は、ゴム総厚の5%以下でなければならない。
【0021】
(d)〜(f)に関しては、ゴムと鉄板を交互に積層した免震積層体(サイズ135mm×135mm×74mm)を作製し、それぞれの評価を行った。
【0022】
【表1】
Figure 0003754530
【0023】
また、本発明のゴム組成物のクリープ性は、いずれもゴム総厚の5%以下という良好な結果を得た。
【0024】
【発明の効果】
本発明の免震積層体ゴム組成物は、通常のカーボンブラックを配合するだけでは得られない高減衰性能を発現することが可能でありながら、弾性率を低く調整することもでき、破壊特性等にも優れる。従って、各種の免震、除震、防震等の振動エネルギーの吸収装置(橋梁、ビル免震、戸建免震用途等)に好適である。
【図面の簡単な説明】
【図1】 本発明の免震積層体ゴム組成物を免震積層体に適用した例を示す図面である。
【符号の説明】
1 免震積層体
2 ゴム組成物
3 硬質板[0001]
BACKGROUND OF THE INVENTION
An object of the present invention relates to a rubber composition having high damping characteristics and capable of adjusting an elastic modulus while maintaining creep properties.
[0002]
[Prior art]
In recent years, seismic energy absorption devices, that is, seismic isolation, seismic isolation, and seismic isolation devices, are rapidly spreading. For example, seismic isolation rubber devices in which rubber compositions and hard plates are alternately laminated are used for bridge support and building base isolation. This is because the rubber composition is made into a laminate with a hard plate, so that it is very hard in the vertical direction and soft in the horizontal direction, that is, the shear rigidity is reduced, and the natural vibration period of the building is changed to the earthquake vibration period. It works to deviate from, and makes the acceleration which a building receives by an earthquake very small. The rubber composition used for such applications is also required to have a high damping property of damping vibration energy by converting vibration into heat.
[0003]
In addition, a rubber composition that is highly damped and has a relatively high modulus of elasticity is required for seismic isolation such as bridges. On the other hand, seismic isolation laminates for building seismic isolation and detached base seismic isolation are highly damped. Not only that, but also a relatively low elastic modulus is required. This is by reducing the elastic modulus and extending the period of shaking during an earthquake, that is, slowing the shaking to minimize damage in the building (eg, human damage, damage to machinery, equipment, etc.). This is because it can be stopped.
As means for adjusting the elastic modulus, i) increase / decrease the carbon black blended in the rubber composition, ii) increase / decrease the vulcanizing agent blended in the rubber composition, and the like. In order to lower the elastic modulus, it is sufficient to reduce the amount of carbon black and vulcanizing agent. However, if the amount of carbon black is decreased, the damping property also decreases, and if the amount of vulcanizing agent is decreased, the fracture strength and creep properties deteriorate. There is a disadvantage that it ends up.
For this reason, there is a demand for a rubber composition capable of setting the elastic modulus according to the application, and exhibiting high damping properties, high breaking strength, and the like in a balanced manner.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rubber composition capable of adjusting an elastic modulus and excellent in damping performance, fracture characteristics, creep properties, and the like.
[0005]
[Means for Solving the Problems]
The present inventors have found that by limiting the characteristics of carbon black to be blended in the seismic isolation laminate rubber composition, it is possible to adjust the required elastic modulus without reducing the damping performance, The present invention has been completed.
[0006]
That is, this invention provides the seismic isolation laminated rubber composition containing the component as described below at least.
Figure 0003754530
The present invention also provides a base-isolated laminate rubber composition in which the ultrafine carbon black has a N 2 SA / IA ratio of 0.95 or less.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
In the rubber composition of the present invention, a predetermined amount of petroleum resin and ultrafine carbon black are uniformly dispersed in a rubber matrix.
Such a rubber composition is obtained by blending petroleum resin, ultrafine carbon black, vulcanizing agent and other auxiliary materials into unvulcanized rubber, and once preparing an unvulcanized compound, it is molded into a desired shape. It is manufactured by heating and vulcanizing.
[0009]
Hereinafter, each component will be described.
Diene rubber The unvulcanized diene rubber used in the preparation of the composition of the present invention includes natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), and styrene / butadiene copolymer rubber. Various unvulcanized diene rubbers such as (SBR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR), etc. . Of these, NR and IR are preferably used because of a good balance between attenuation and workability. Two or more diene rubbers may be used in combination.
[0010]
Petroleum resin The petroleum resin used in the present invention is made of coumarone plastic, copolymerized with coumarone, indene, styrene, etc. contained in solvent naphtha, and ethylene, propylene, etc. by steam cracking of petroleum. Examples include resins polymerized without isolating diolefins and monoolefins contained in cracked oil fractions by-produced from the ethylene plant to be produced. Among them, Escron (manufactured by Nippon Steel Chemical Co., Ltd.), High Resin (Toho) Those commercially available as Chemical Industry Co., Ltd., FTR (Mitsui Petrochemical Industry Co., Ltd.) and the like are preferably used.
[0011]
In the rubber composition of the present invention, the petroleum resin is blended in an amount of 15 to 60 parts by weight, preferably 25 to 55 parts by weight, based on 100 parts by weight of the rubber. If it is less than 15 parts by weight, the damping property is insufficient, and if it exceeds 60 parts by weight, the creep property is increased, which is not preferable.
[0012]
Ultrafine carbon black Ultrafine carbon black having specific properties is blended with the rubber composition of the present invention.
The ultrafine carbon black used in the rubber composition of the present invention has a nitrogen adsorption specific surface area (N 2 SA) of 160 to 230 m 2 / g, an iodine adsorption amount (IA) of 200 to 260 mg / g, and a DBP oil absorption the amount is 90~160cm 3 / 100g.
The nitrogen adsorption specific surface area was measured according to ASTM D3037-89, and the iodine adsorption amount and DBP oil absorption amount were measured according to JIS K-6221.
These parameters indicate the colloidal characteristics of the carbon black particles, the nitrogen adsorption specific surface area and iodine adsorption amount indicate a measure of the specific surface area of carbon black, and the DBP oil absorption amount indicates the structure of carbon black. It is a feature of the present invention to use carbon black that meets all these conditions.
For applications that require a particularly low elastic modulus, an ultrafine carbon black having an N 2 SA / IA ratio of 0.95 or less, preferably an N 2 SA / IA ratio of 0.60 to 0.95 is used. It is preferable to use it. When used for buildings such as buildings and detached houses, by reducing the elastic modulus, it is possible to minimize damage in the building (human damage, damage to equipment, machinery, etc.) during an earthquake. This is because it can be done.
For applications where a relatively high elastic modulus is suitable, ultrafine carbon black having an N 2 SA / IA ratio of greater than 0.95, preferably 1.00 to 1.10.
[0013]
The amount of such ultrafine carbon black is 50 to 90 parts by weight, preferably 65 to 90 parts by weight, based on 100 parts by weight of the unvulcanized diene rubber. Ultrafine carbon black is indispensable for the rubber composition of the present invention to exhibit the ability to absorb vibration energy. If it is less than 50 parts by weight, the absorbability is inferior, and if it exceeds 90 parts by weight, the processability is lowered during the production of the rubber composition of the present invention, which is undesirable in production and the strength is also lowered.
[0014]
Optional components In producing the vulcanized rubber composition of the present invention, in addition to the above essential components, a vulcanizing agent such as sulfur and a vulcanizing aid such as zinc white and stearic acid, and aging are added to the unvulcanized rubber. An inhibitor or the like can be appropriately blended.
[0015]
The unvulcanized rubber composition containing these compounding agents is appropriately molded and vulcanized at 130 to 170 ° C. using a method and apparatus known per se to obtain a vulcanized rubber composition.
[0016]
In FIG. 1, an example at the time of applying the rubber composition of this invention to a seismic isolation laminated body is shown. The seismic isolation laminate is constituted by alternately laminating the rubber composition 2 of the present invention and the hard plate 3 made of, for example, a general structural steel plate or a cold rolled steel plate. In order to produce this laminate, after molding and vulcanizing to obtain a sheet-like rubber composition, it may be bonded to a hard plate with an adhesive, or an unvulcanized rubber compound in advance. It can also be manufactured by forming a sheet into a sheet, laminating it with a hard plate, and heating to vulcanize and bond at the same time.
Such a seismic isolation laminate can be suitably used for, for example, support of road bridges and basic seismic isolation of buildings.
[0017]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
(Examples 1-4, Comparative Examples 1-2)
Natural rubber or isoprene rubber, butadiene rubber, carbon black and coumarone resin in the proportions shown in Table 2, and 5.0 parts by weight of zinc white, 1.0 part by weight of stearic acid, anti-aging agent 3 with respect to 100 parts by weight of rubber 0.0 parts by weight, 2.1 parts by weight of sulfur, and 1.2 parts by weight of CZ as a vulcanization accelerator were blended to prepare an unvulcanized rubber compound, which was then press vulcanized at 148 ° C. for 45 minutes. A vulcanized rubber was obtained as a base-isolated laminated rubber.
[0018]
Here, as the carbon black, Niteron # 410 (manufactured by Nippon Steel Chemical Co., Ltd.) was used in the examples, and Seast 9 (manufactured by Tokai Carbon Co., Ltd.) was used as the comparative example. The characteristics of both are as shown in Table 1 described below.
[0019]
Figure 0003754530
[0020]
(Measurement method of physical properties of vulcanized rubber)
About the obtained vulcanized rubber, the physical property shown below was evaluated. The results are shown in Table 2.
(A) Tensile strength (T B )
Measurement was performed in accordance with JIS K 6301. Larger numbers are less likely to break.
(B) Elongation (E B )
Measurement was performed in accordance with JIS K 6301. The larger the value, the greater the growth.
(C) JIS A hardness (Hs)
Measurement was performed in accordance with JIS K 6301. Larger numbers are harder.
(D) Shear elastic modulus (G)
The shear elastic modulus (G) at a strain of 0.5 Hz and 150% strain was measured using a biaxial shear test group.
(E) Vibration absorption characteristics (h eq )
Evaluation was performed by an equivalent viscous damping constant at 0.5 Hz and 150% strain by a biaxial shear tester, and the value was shown. The target value is “15% or more”, which is a value required for seismic isolation for buildings.
(F) Creep property (%)
Based on the vertical displacement that occurs in the seismic isolation device when a vertical load corresponding to the design bearing stress (60 kgf / cm 2 ) is applied for 1000 hours at a temperature of + 20 ° C, the bridge is used for design from Equation (1) Creep equivalent to years was sought.
δ CR = at b (1)
here,
δ CR : Creep deformation of seismic isolation device (mm)
t: Design life of bridge (hours)
a, b: Creep constants, calculated from equations (2) and (3).
a = (δ 100 ) 2 / (δ 1000 ) 2 (2)
b = log (δ 1000 / δ 100 ) (3)
δ 100 : Vertical displacement of the seismic isolation device after 100 hours (mm)
δ 1000 : Vertical displacement of the seismic isolation device after 1000 hours (mm)
Note that the creep amount corresponding to the design service life of the bridge calculated by Equation (1) must be 5% or less of the total rubber thickness.
[0021]
Regarding (d) to (f), seismic isolation laminates (size 135 mm × 135 mm × 74 mm) in which rubbers and iron plates were alternately laminated were prepared and evaluated.
[0022]
[Table 1]
Figure 0003754530
[0023]
Further, the creep properties of the rubber composition of the present invention all obtained good results of 5% or less of the total rubber thickness.
[0024]
【The invention's effect】
The seismic isolation laminate rubber composition of the present invention can exhibit high damping performance that cannot be obtained only by blending ordinary carbon black, and can also be adjusted to have a low elastic modulus, such as fracture characteristics. Also excellent. Therefore, it is suitable for a vibration energy absorbing device (bridge, building seismic isolation, detached base seismic use, etc.) such as various types of seismic isolation, seismic isolation and seismic isolation.
[Brief description of the drawings]
FIG. 1 is a drawing showing an example in which the seismic isolation laminate rubber composition of the present invention is applied to a seismic isolation laminate.
[Explanation of symbols]
1 Seismic isolation layer 2 Rubber composition 3 Hard plate

Claims (2)

少なくとも、以下に記載の成分を含有する免震積層体ゴム組成物。
Figure 0003754530
A base-isolated laminate rubber composition containing at least the components described below.
Figure 0003754530
前記超微粒子カーボンブラックのN2 SA/IA比が0.95以下である請求項1に記載の免震積層体ゴム組成物。The seismic isolation laminate rubber composition according to claim 1, wherein the ultrafine particle carbon black has an N 2 SA / IA ratio of 0.95 or less.
JP12656597A 1996-10-15 1997-05-16 Rubber composition for seismic isolation laminate Expired - Fee Related JP3754530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12656597A JP3754530B2 (en) 1996-10-15 1997-05-16 Rubber composition for seismic isolation laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27217296 1996-10-15
JP8-272172 1996-10-15
JP12656597A JP3754530B2 (en) 1996-10-15 1997-05-16 Rubber composition for seismic isolation laminate

Publications (2)

Publication Number Publication Date
JPH10176083A JPH10176083A (en) 1998-06-30
JP3754530B2 true JP3754530B2 (en) 2006-03-15

Family

ID=26462733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12656597A Expired - Fee Related JP3754530B2 (en) 1996-10-15 1997-05-16 Rubber composition for seismic isolation laminate

Country Status (1)

Country Link
JP (1) JP3754530B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572746B2 (en) * 2005-06-06 2010-11-04 東海ゴム工業株式会社 Seismic isolation rubber laminate
JP4595788B2 (en) * 2005-11-14 2010-12-08 東海ゴム工業株式会社 Seismic isolation rubber laminate
JP2007263258A (en) * 2006-03-29 2007-10-11 Tokai Rubber Ind Ltd Base isolation rubber laminate
JP5977959B2 (en) * 2012-03-05 2016-08-24 日東電工株式会社 Vibration control sheet

Also Published As

Publication number Publication date
JPH10176083A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
KR101186117B1 (en) Rubber composition, cross-linked rubber composition and high-performance damping laminate
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP3125103B2 (en) Rubber composition for seismic isolation laminate
JP3754530B2 (en) Rubber composition for seismic isolation laminate
WO1998016580A1 (en) Highly damping rubber composition
JP6136106B2 (en) Rubber composition for high damping rubber bearing and high damping rubber bearing
JP5714828B2 (en) Rubber composition for high damping bearing and high damping bearing
JP4595171B2 (en) Rubber composition for high damping bearing
JP4010680B2 (en) Brace damper
EP0481810A2 (en) Rubber composition for laminated vibrationproofing structure
JP3845499B2 (en) Rubber composition for seismic isolation laminate
JP3845500B2 (en) Rubber composition for seismic isolation laminate
JP2949671B2 (en) High damping rubber composition
JP3806492B2 (en) Rubber composition for seismic isolation laminate
JPH04212844A (en) Rubber composition for earthquakeproof laminate
JP2001200103A (en) Vibration damping vtscoelastic material for building
JP2004307594A (en) Highly attenuating rubber composition and quake-free structure using the same
JP4331003B2 (en) Rubber composition for high damping bearing and high damping bearing
JP4101363B2 (en) Rubber laminate using rubber composition for high damping laminate
JP5038608B2 (en) High damping rubber composition
JP3124097B2 (en) Seismic isolation device
JPH10110062A (en) Rubber composition for earthquake-proof laminate
JP2005200609A (en) Highly damping rubber
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same
JPH05239267A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees