JP3753287B2 - Airflow classification method - Google Patents

Airflow classification method Download PDF

Info

Publication number
JP3753287B2
JP3753287B2 JP22946898A JP22946898A JP3753287B2 JP 3753287 B2 JP3753287 B2 JP 3753287B2 JP 22946898 A JP22946898 A JP 22946898A JP 22946898 A JP22946898 A JP 22946898A JP 3753287 B2 JP3753287 B2 JP 3753287B2
Authority
JP
Japan
Prior art keywords
classification
powder
airflow
raw material
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22946898A
Other languages
Japanese (ja)
Other versions
JP2000042494A (en
Inventor
智行 佐藤
信康 牧野
賢一 上原
宏 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22946898A priority Critical patent/JP3753287B2/en
Publication of JP2000042494A publication Critical patent/JP2000042494A/en
Application granted granted Critical
Publication of JP3753287B2 publication Critical patent/JP3753287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はトナー分級装置に関するもので、このトナー分級装置は微粒子の分級等にも応用することができる。
【0002】
【従来の技術】
従来、気流式分級装置及び方法において、分級域に供給する前に粉体を分散させる方法としては、切頭円錐筒状の分散ノズルとこの中に配置される円錐状の案内部材による実開平5−74680号公報記載の技術、粉体搬送用管路に対面する壁面に対をなす気体導入用細孔を30度以内の鋭角で下流れ側の一点を焦点として指向するように貫設した特開平5−38484号公報記載の技術、原料供給管の流路に絞り部を複数設けることにより、流路を球状に連結した特開平7−80415号公報記載の技術、原料供給管の流路に分配板を設けた特開平7−60195号公報記載のもの、ラバール管式の加速管部に原料供給口を開口させた特開平7−60194号公報記載のもの、旋回部の内周に複数の分散気流導入口を対象となるように接線方向に設けた特公平7−85773号公報等記載のもの等が挙げられる。
また、特開平8−248678号公報には、気流式分級方法において、分級域に流入する粉体に分散剤を混合させて分散することが開示されている。
また、振動流動層関連文献としては、化学工学論文集第15巻第5号「微粒子の振動流動化」、化学工学講演Vol.15「振動流動装置」等に各種の開示がなされている。
【0003】
ところで、電子写真法、静電気写真法等の画像形成方法では、静電潜像を現像するために微細粒子からなるトナーが使用されている。微細粒子であることが要求される静電荷像現像用トナーの製造過程では、原料の固体粒子を粉砕及び分級して最終製品を得るには、結着剤樹脂、着色剤(染料、顔料、磁性体等)の所定材料を溶融混練し、冷却して固化させた後、粉砕し分級する。粉体の分級については各種の気流式分級機及び方法が提案されているが、この中で、慣性力を利用した分級機について例えば図1に示されるようなエルボージェット(日鉄鉱業製)が使用される。
【0004】
以下に、本発明の基礎としての慣性力を利用した従来の分級方法並びに装置の詳細を図1に基づいて説明する。
図1において、側壁は(8)、(12)で示される形状を有し、分級エッジ(10)、(11)により分級ゾーンは3分割されている。側壁(8)の下の部分に分級域に開口する原料供給ノズル(13)を設け、該供給ノズルの底部接線に対して下方に折り曲げて弧を描いたコアンダブロック(9)を設ける。更に、分級域上部には分級域に開口する入気管(5)、(6)を設けてある。また、入気管(5)、(6)にはそれぞれバルブ手段の如き開閉手段(14)、(15)を設けてある。また、分級域底面にはそれぞれの分割域に対応させて、域内に開口する排出口(2)、(3)、(4)を設けてある。排出口(2)、(3)、(4)にはそれぞれバルブ手段の如き開閉手段を設けてもよい。
【0005】
上記装置の状態としては、分級域内へ開口する原料供給ノズル(13)から高速で気流とともに粉体を分級域内へ噴出し、分級域内にはコアンダブロック(9)を有して、噴出する気流と角度の交わる気流を導入し、コアンダブロックに沿って流れる噴流は慣性力により粗粉と微粉に分離し、分級エッジ(10)、(11)により粗粉と微粉、若しくは粗粉と細粉と微粉の如き多分割などの分級を行なっている。
【0006】
粉体材料はフィードエアーフィーダー(22)から噴出されるフィードエアーにより瞬時に原料供給ノズル(13)から分級域内に導入され、分級されて分級機系外は排出されるため、分級機へ導入される粉体は原料供給ノズル(13)及び分級機内の入口近傍までに十分に個々の粒子に分散されていることが重要である。特に原料供給ノズル内ないし、その以前での分散が重要である。
また、一般にトナーの分級工程においては、分級された粒子が粗粒子のない、微粉の少ないシャープな粒度分布を有することが要求される。更には、複写機やプリンターにおける画質向上のために、トナー粒子が微細化の方向に移ってきている。一般に、物質は細かくなるに従い、粒子間力の働きが大きくなっていくが、樹脂やトナーも粒子が小さくなると粒子同士の凝集性が大きくなっていく。
しかしながら、従来の気流式分級方法では供給する粉体材料をエジェクターの分級効果で一次粒子に近い状態にして分級域に導入するのは難しい。その結果、分級精度が低下し、分級後の産物は超微粒子までもが粗粒子(細粉)側に混入してしまい、製品は高精度な粒度分布を得ることができず、電子写真で画像を形成する際の画像品質を低下させてしまう。
【0007】
【発明が解決しようとする課題】
上記従来技術の問題に対し、本発明の目的は、より高精度の分級を可能にし、精微な粒度分布を有する粉体を効率よく生成する気流式分級方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、本発明の(1)「分級域に開口部を有する原料供給ノズルを有し、該原料供給ノズル内を流動するフィードエアーによって該原料供給ノズル内の粉体原料を分級域に噴出させ、噴出された気流中の粉体材料の粒子の慣性力及びコアンダ効果によって、少なくとも粗粉領域及び微粉領域に分級する気流式分級装置において、フィードエアーを大気圧露点で−20〜−70℃に調湿する調湿手段を有することを特徴とする気流式分級装置」、(2)「周辺部から吸入されるエアーを調湿する調湿手段を更に具備することを特徴とする前記第(1)項に記載の気流式分級装置」、(3)「分級域に導入される粉体材料をあらかじめ流動化させるための流動化装置を有することを特徴とする前記第(1)項に記載の気流式分級装置」、(4)「流動化に用いる圧縮エアーが大気圧露点で−20〜−80℃に調湿されることを特徴とする前記第(3)項に記載の気流式分級装置」、(5)「分級域に導入される粉体材料に分散剤が添加されることを特徴とする前記第(1)項乃至第(4)項のうち何れか1に記載の気流式分級装置」により達成される。
【0009】
また上記目的は、本発明の(6)「分級域に開口部を有する原料供給ノズルを有し、該原料供給ノズル内を流動する気流によって該原料供給ノズル内の粉体原料を分級域に噴出させ、噴出された気流中の粉体材料の粒子の慣性力及びコアンダ効果によって、少なくとも粗粉領域及び微粉領域に分級する気流式分級方法であって、粉体材料を分級域内に搬送するフィードエアーを大気圧露点で−20〜−70℃に調湿することを特徴とする気流式分級方法」、(7)「更に周辺部から吸入されるエアーを調湿することを特徴とする前記第(6)項に記載の気流式分級方法」、(8)「分級域に導入される粉体材料をあらかじめ流動化させることを特徴とする前記第(6)項に記載の気流式分級方法」、(9)「流動化に用いる圧縮エアーを大気圧露点で−20〜−80℃に調湿することを特徴とする前記第(8)項に記載の気流式分級方法」、(10)「分級域に導入される粉体材料に分散剤を添加することを特徴とする前記第(6)項乃至第(9)項のうち何れか1に記載の気流式分級方法」により達成される。
【0010】
【発明の実施の形態】
以下、図面を基いて本発明を詳細に説明する。
初めに図2の原料供給装置(28)を有する気流式分級装置を参照しつつ、本発明の第1の基本態様として前記第(1)項記載の気流式分級装置及び前記第(6)項記載の気流式分級方法について、その概要を説明する。前記第(1)項記載の気流式分級装置及び前記第(6)項記載の気流式分級方法では図1に示される慣性力を利用した分級装置において、粉体材料を搬送するフィードエアーに調湿機能、調湿手段(26)を設け、その調整が大気圧露点−20〜−70℃以内で制御できる機能を有することを特徴とする分級技術である。調湿効果により気流中の含水量が低下すると粉体材料は液架橋力が低下するため、粒子の凝集が防止された状態で分級機の分級域に供給される。
【0011】
この分級装置においても図1に示される装置と同様、側壁は(8)、(12)で示される形状を有し、分級エッジ(10)、(11)により分級ゾーンは3分割されている。側壁(8)の下の部分に分級域に開口する原料供給ノズル(13)を設け、該供給ノズルの底部接線に対して下方に折り曲げて弧を描いたコアンダブロック(9)を設け、更に、分級域上部には分級域に開口する入気管(5)、(6)を設けてある。また、入気管(5)、(6)にはそれぞれバルブ手段の如き開閉手段(14)、(15)を設けてある。また、分級域底面にはそれぞれの分割域に対応させて、域内に開口する排出口(2)、(3)、(4)を設けてある。排出口(2)、(3)、(4)にはそれぞれバルブ手段の如き開閉手段を設けてもよい。フィーダー(20)からの粉体材料は流入口(16)においてコンプレッサー(24)によりフィードエアーフィーダー(22)から噴出されるフィードエアーによって瞬時に原料供給ノズル(13)から分級域内に導入され、分級されて排出口(2)、(3)、(4)から分級機系外に排出される。
【0012】
図3の流動層装置(原料供給装置)(29)を有する気流式分級装置を参照しながら、第2の基本態様として前記第(2)項記載の気流式分級装置及び前記第(7)項記載の気流式分級方法ついて、その概要を説明すると、第2の基本態様は第1の基本態様と同様な気流式分級装置および分級方法において、入気管(5)、(6)から吸入されるエアーを調湿する機能を有することを特徴とする分級技術である。第1の基本態様と同様に調湿効果により気流中の含水量が低下すると粉体材料は液架橋力が低下するため、第1の基本態様よりも更に粒子の再凝集が防止された状態であるため、精度の高い分級が行なわれる。
【0013】
つぎに図4、図5の流動層装置(原料供給装置)(30)を有する気流式分級装置を参照しながら、第3の基本態様としての前記第(3)項記載の気流式分級装置及び前記第(8)項記載の気流式分級方法ついて、その代表的な流動層の構成を説明する。図4において、流動層装置(30)は、スプリング(31)で支持された架台(32)と、この架台(32)の中に配置された振動モータ(33)とを有し、振動モータ(33)は垂直軸に対して45度傾斜した状態で搭載されている。架台(32)の上には容器(34)が設置され、容器(34)の下部には、空気供給口に通じるエアー導入管(35)とその上方に配置されたメッシュ(36)とが設けられ、このメッシュ(36)によって後述する粉体材料の下方への落下を防止するようになっている。
容器(34)の上端部には、フィルタ(37)で包囲された排気管(38)が取り付けされ、また、粉体材料投入管(39)が取り付けられている。また、容器(34)の上下方向中央部分には粉体材料の取出管(40)が取り付けられている。この種の流動層装置の代表例としては、中央加工機(株)が製造販売する装置がある。
【0014】
図5は、第3の基本態様の分級装置、分級方法のための流動層装置(原料供給装置)(30)の構成を示したもので、分級手段(45)は、流動層装置(30)の取出管(40)を、先に説明した気流式分級装置、分級方法(1)の流入口(16)に連結した構成を有する。トナー微粉砕及び分級前の材料は、まず、流動層装置(30)の粉体材料投入管(39)を通じて、容器(34)の中に投入され、この粉体材料は容器(34)の中で垂直軸に対して傾斜したツイスト状の振動を受けながらエアー導入管(35)を通じて導入される圧縮エアーによって浮遊懸濁して流動化され、粒子同士の付着や二次凝集の発生が抑えられながら取出管(40)を通じて分級手段(1)の分級域に送り込まれる。
【0015】
つぎに図6の流動層装置(原料供給装置)(30)を有する気流式分級装置を参照しながら、第4の基本態様としての前記第(4)項記載の気流式分級装置及び前記第(9)項記載の気流式分級方法ついて、その分級手段の構成を説明する。これは、第4の基本態様と同様な気流式分級装置、及び分級方法において流動化に用いる圧縮エアーに調湿機能(26)を設け、その調整が大気圧露点−20〜−80℃で制御できる機能を有することを特徴とする分級手段であり、調湿効果により気流中の含水量が低下すると粉体材料は液架橋力が低下するため、粒子の再凝集が防止された状態で分級機の分級域に供給される。図7の流動層装置(原料供給装置)(30)を有する気流式分級装置は、更に周辺部から吸入されるエアーを調湿する調湿手段(26)を有するものである。
【0016】
本発明の第5の基本態様としての前記第(5)項記載の気流式分級装置及び前記第(10)項記載の気流式分級方法は、前記第1〜4の基本態様と同様な気流式分級装置、分級方法において、流動層に投入する粉体材料の表面にシリカ或いは酸化チタン等のナノミクロン微粒子を0.05〜0.3重量%添加混合したものを用いることを特徴とする気流式分級技術である。
【0017】
【実施例】
以下、本発明を実施例にて更に具体的に説明する。
実施例1(第1の基本態様に対応)
スチレンアクリル共重合樹脂75重量%と、ポリエステル樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。次に、この粗粉砕物をターボミルにて粉砕し、重量平均粒子径7.0μmに微粉砕して微粉砕物を得た。この微粉砕物を図2に示した分級機で分級を行なった。その際、条件としてフィードエアーを大気圧露点−20℃としたところ、重量平均粒子径7.35μm、4μm以下の極微粒子で個数含有率10%を得た。
【0018】
比較例1
図1に示す現行の分級手段にて実施例1と同様の条件、また、フィードエアーを大気圧露点を−5℃にして分級を行なったところ、重量平均粒子径7.35μm、4μm以下の極微粒子で個数含有率12%を得た。
【0019】
実施例2(第2の基本態様に対応)
スチレンアクリル共重合樹脂75重量%と、ポリエステル樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。次に、この粗粉砕物をターボミルにて粉砕し、重量平均粒子径7.0μmに微粉砕して微粉砕物を得た。この微粉砕物を図3に示した分級機で分級を行なった。その際、条件としてフィードエアーを大気圧露点−20℃、また、入気管から吸入されるエアーの温湿度を15℃/20%としたところ、重量平均粒子径7.30μm、4μm以下の極微粒子で個数含有率9%を得た。
【0020】
実施例3(第3の基本態様に対応)
スチレンアクリル共重合樹脂75重量%と、ポリエステル樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。次に、この粗粉砕物をターボミルにて粉砕し、重量平均粒子径7.0μmに微粉砕して微粉砕物を得た。この微粉砕物を図5に示した流動層を経由し、分級機で分級を行なった。その際、条件として流動化に使用したエアーの大気圧露点を−10℃、分級機においてフィードエアーを大気圧露点−20℃、入気管から吸入されるエアーの温湿度を15℃/20%としたところ、重量平均粒子径7.40μm、4μm以下の極微粒子で個数含有率8%を得た。
【0021】
実施例4(第4の基本態様に対応)
スチレンアクリル共重合樹脂75重量%と、ポリエステル樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。次に、この粗粉砕物をターボミルにて粉砕し、重量平均粒子径7.0μmに微粉砕して微粉砕物を得た。この微粉砕物を図6に示した流動層を経由し、分級機で分級を行なった。その際、条件として流動化に使用したエアーの大気圧露点−70℃、分級機においてフィードエアーを大気圧露点−20℃、入気管から吸入されるエアーの温湿度を15℃/20%としたところ、重量平均粒子径7.35μm、4μm以下の極微粒子で個数含有率7%を得た。
【0022】
実施例5(第5の基本態様に対応)
スチレンアクリル共重合樹脂75重量%と、ポリエステル樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。次に、この粗粉砕物をターボミルにて粉砕し、重量平均粒子径7.0μmに微粉砕して微粉砕物を得た。この微粉砕物を図7に示した流動層を経由し、分級機で分級を行なった。その際、条件としてフィードエアーを大気圧露点−20℃、また、入気管から吸入されるエアーの温湿度を15℃/20%とし、流動化に使用したエアーを大気圧露点−70℃、投入する粉体材料の表面にシリカ微粒子を0.1重量%添加混合し、分級を行なったところ、重量平均粒子径7.35μm、4μm以下の極微粒子で個数含有率6%を得た。
【0023】
【発明の効果】
以上、詳細且つ具体的な説明より明らかなように、第1の基本態様に関する作用効果により、フィードエアーの調湿効果により粉体の凝集の一因である液架橋力が改善されるため粉体材料の凝集或いは二次凝集が改善されるため粉体特性が改良され、分級効率化が図られる。また、第2の基本態様に関する作用効果により、前記の効果に加えて、入気管から吸入するエアーの調湿効果により粉体の凝集の一因である液架橋力が改善されるため粉体材料の凝集或いは二次凝集が改善されるため粉体特性が改良され、分級効率化が図られる。また、第3の基本態様に関する作用効果により、前記の効果に加えて、流動化によって分級機に流入する粉体材料の分散が促進され既存の分級機条件を変更することなく、粉体材料の凝集あるいは二次凝集が改善されるため粉体特性が改良され、分級効率化が図られる。また、第4の基本態様に関する作用効果により、前記の効果に加えて、調湿効果により粉体の凝集の一因である液架橋力が改善されるため粉体材料の凝集或いは二次凝集が改善されるため粉体特性が改良され、分級効率化が図られる。また、第5の基本態様に関する作用効果により、前記の効果に加えて、粉体材料に添加剤を用いることで粉体の凝集の一因であるファンデルワールス力が改善されるため粉体材料の凝集或いは二次凝集が改善されるため粉体特性が改良され、分級効率化が図られるという極めて優れた効果を奏する。
【図面の簡単な説明】
【図1】従来の気流式分級装置の例を示したものである。
【図2】本発明の気流式分級装置の一例を示したものである。
【図3】本発明の気流式分級装置の他の一例を示したものである。
【図4】本発明の気流式分級装置の更に他の一例を示したものである。
【図5】本発明の気流式分級装置の更に他の一例を示したものである。
【図6】本発明の気流式分級装置の更に他の一例を示したものである。
【図7】本発明の気流式分級装置の更に他の一例を示したものである。
【符号の説明】
1 気流式分級装置
2 粗粉排出口
3 細粉排出口
4 微粉排出口
5 入気管
6 入気管
7 上エッジ
8 側壁
9 コアンダブロック
10 分級エッジ
11 分級エッジ
12 側壁
13 原料供給ノズル
14 開閉手段
15 開閉手段
16 流入口
20 フィーダー
22 フィードエアーフィーダー
24 コンプレッサー
26 調湿装置
28 実施例1で使用の原料供給装置を有する気流式分級装置
29 実施例2で使用の原料供給装置を有する気流式分級装置
30 流動層装置
31 スプリング
32 架台
33 振動モータ
34 容器
35 エアー導入管
36 メッシュ
37 フィルタ
38 排気管
39 粉体材料投入管
40 取出管
45 実施例3使用の気流式分級装置
50 実施例4使用の気流式分級装置
55 実施例5使用の気流式分級装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a toner classification device, and the toner classification device can be applied to fine particle classification and the like.
[0002]
[Prior art]
Conventionally, in the airflow classifying apparatus and method, as a method of dispersing the powder before being supplied to the classification area, an actual flat 5 using a truncated conical cylindrical dispersion nozzle and a conical guide member disposed therein is used. The technology described in Japanese Patent No. -74680, a gas introduction pore that is paired with a wall surface facing a powder conveyance pipe is formed so as to be oriented with an acute angle of 30 degrees or less and a point on the downstream side as a focal point. The technology described in Japanese Patent Laid-Open No. 5-38484, the technology described in Japanese Patent Application Laid-Open No. 7-80415, in which the flow paths are connected in a spherical shape by providing a plurality of throttle portions in the flow path of the raw material supply pipe, Japanese Patent Application Laid-Open No. 7-60195 provided with a distribution plate, Japanese Patent Application Laid-Open No. 7-60194 in which a raw material supply port is opened in a Laval tube type acceleration pipe part, Tangent line so that the dispersed air flow inlet is targeted Those such as the KOKOKU 7-85773 Patent Publication wherein provided in the direction thereof.
Japanese Patent Application Laid-Open No. 8-248678 discloses that a dispersing agent is mixed and dispersed in powder flowing into a classification region in an airflow classification method.
In addition, as literatures related to the vibrating fluidized bed, Chemical Engineering Papers Vol.15 No.5 “Vibrating Fluidization of Fine Particles”, Chemical Engineering Lecture Vol. Various disclosures are made in 15 “vibration flow device” and the like.
[0003]
By the way, in image forming methods such as electrophotography and electrostatic photography, toner composed of fine particles is used to develop an electrostatic latent image. In the production process of electrostatic charge image developing toner, which is required to be fine particles, the solid particles of the raw material are pulverized and classified to obtain the final product. Binder resin, colorant (dye, pigment, magnetic A predetermined material such as a body is melt-kneaded, cooled and solidified, and then pulverized and classified. Various air classifiers and methods have been proposed for powder classification. Among them, for example, an elbow jet (manufactured by Nippon Steel Mining) as shown in FIG. 1 is used for a classifier using inertial force. used.
[0004]
The details of a conventional classification method and apparatus using inertial force as the basis of the present invention will be described below with reference to FIG.
In FIG. 1, the side walls have the shapes shown by (8) and (12), and the classification zone is divided into three by the classification edges (10) and (11). A raw material supply nozzle (13) that opens to the classification area is provided in a lower portion of the side wall (8), and a Coanda block (9) that is bent downward with respect to the bottom tangent line of the supply nozzle to draw an arc is provided. Furthermore, inlet pipes (5) and (6) that open to the classification area are provided at the upper part of the classification area. The intake pipes (5) and (6) are provided with opening and closing means (14) and (15) such as valve means, respectively. In addition, discharge ports (2), (3), and (4) that open in the areas are provided on the bottom surface of the classification area so as to correspond to the respective divided areas. The discharge ports (2), (3), (4) may be provided with opening / closing means such as valve means.
[0005]
As the state of the above apparatus, the raw material supply nozzle (13) that opens into the classification area ejects the powder together with the air current at high speed into the classification area, and the classification area has a Coanda block (9), A jet flowing along the Coanda block is separated into coarse powder and fine powder by inertial force, and coarse and fine powder, or coarse and fine powder and fine powder and fine powder by classification edges (10) and (11). Classification such as multi-division is performed.
[0006]
The powder material is instantaneously introduced into the classification area from the raw material supply nozzle (13) by the feed air ejected from the feed air feeder (22), classified and discharged outside the classifier system, and is therefore introduced into the classifier. It is important that the powder to be dispersed is sufficiently dispersed into individual particles up to the vicinity of the inlet in the raw material supply nozzle (13) and the classifier. In particular, dispersion in or before the raw material supply nozzle is important.
In general, in the toner classification step, the classified particles are required to have a sharp particle size distribution with no coarse particles and few fine powders. Furthermore, in order to improve image quality in copying machines and printers, toner particles are moving in the direction of miniaturization. In general, as the substance becomes finer, the action of the interparticle force increases, but as the particles of resin and toner also become smaller, the cohesiveness between the particles increases.
However, in the conventional airflow classification method, it is difficult to introduce the powder material to be supplied into a classification region in a state close to primary particles by the classification effect of the ejector. As a result, the classification accuracy is reduced, and even after ultra-fine particles are mixed into the coarse particle (fine powder) side of the classified product, the product cannot obtain a highly accurate particle size distribution, and the image is obtained by electrophotography. The image quality at the time of forming is reduced.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to provide an airflow classification method that enables more accurate classification and efficiently generates a powder having a fine particle size distribution.
[0008]
[Means for Solving the Problems]
The object is (1) of the present invention, “having a raw material supply nozzle having an opening in the classification area, and jetting the powder raw material in the raw material supply nozzle to the classification area by feed air flowing in the raw material supply nozzle. are allowed, by the inertial force and the Coanda effect of the particles of the powder material jetted air stream in the air classifier for classifying the at least coarse powder region and fine regions, -20-70 the feed air at atmospheric pressure dew point An airflow classifying device characterized by having humidity adjusting means for adjusting the humidity to 0 ° C. ”, (2)“ humidity adjusting means for adjusting the air sucked from the peripheral portion ”. (1) Item (1) characterized in that it has a fluidizing device for fluidizing the powder material introduced into the classification region in advance. `` Airflow classifier '', 4) “The airflow classifier according to the above item (3), wherein the compressed air used for fluidization is conditioned at −20 to −80 ° C. at an atmospheric dew point”, (5) “Classification” It is achieved by the airflow classifier according to any one of the items (1) to (4), wherein a dispersant is added to the powder material introduced into the region.
[0009]
In addition, the above object is (6) “having a raw material supply nozzle having an opening in the classification area, and jetting the powder raw material in the raw material supply nozzle to the classification area by an air flow flowing in the raw material supply nozzle. An airflow classification method that classifies the powder material into at least the coarse powder region and the fine powder region by the inertial force of the particles of the powder material in the jetted air current and the Coanda effect, and feed air that conveys the powder material into the classification region The air flow type classification method characterized in that the humidity is adjusted to −20 to −70 ° C. at an atmospheric pressure dew point ”, (7)“ The air that is sucked from the peripheral portion is further conditioned. 6) The airflow classification method according to item 6), (8) “The airflow classification method according to item (6), wherein the powder material introduced into the classification region is fluidized in advance”, (9) “Compressed air used for fluidization into the atmosphere (10) “Adding a dispersant to the powder material to be introduced into the classification region, characterized in that the humidity is adjusted to −20 to −80 ° C. at the dew point”, (10) This is achieved by the airflow classification method according to any one of the items (6) to (9).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
First, referring to the airflow classifier having the raw material supply device (28) of FIG. 2, the airflow classifier described in the above (1) and the above (6) as the first basic aspect of the present invention. An outline of the airflow classification method described will be described. In the airflow classifier described in the above item (1) and the airflow classifier described in the above (6), in the classifier using the inertial force shown in FIG. This is a classification technique characterized in that a humidity function and humidity control means (26) are provided, and the adjustment thereof has a function that can be controlled within the atmospheric pressure dew point of -20 to -70 ° C. When the water content in the airflow decreases due to the humidity control effect, the powder material has a reduced liquid crosslinking power, and is supplied to the classifying region of the classifier in a state where aggregation of particles is prevented.
[0011]
In this classifier, as in the apparatus shown in FIG. 1, the side walls have the shapes shown in (8) and (12), and the classifying zone is divided into three by the classifying edges (10) and (11). A raw material supply nozzle (13) that opens to a classification region is provided in a lower part of the side wall (8), a Coanda block (9) that is bent downward with respect to the bottom tangent of the supply nozzle and has an arc is provided, and In the upper part of the classification area, intake pipes (5) and (6) that open to the classification area are provided. The intake pipes (5) and (6) are provided with opening and closing means (14) and (15) such as valve means, respectively. In addition, discharge ports (2), (3), and (4) that open in the areas are provided on the bottom surface of the classification area so as to correspond to the respective divided areas. The discharge ports (2), (3), (4) may be provided with opening / closing means such as valve means. The powder material from the feeder (20) is instantaneously introduced into the classification region from the raw material supply nozzle (13) by the feed air ejected from the feed air feeder (22) by the compressor (24) at the inlet (16), and classified. Then, it is discharged out of the classifier system from the discharge ports (2), (3), (4).
[0012]
While referring to the airflow classifier having the fluidized bed device (raw material supply device) (29) in FIG. 3, the airflow type classifier as described in the above item (2) and the item (7) as the second basic mode. An outline of the airflow type classification method described will be described. The second basic mode is inhaled from the intake pipes (5) and (6) in the same airflow type classification device and classification method as the first basic mode. It is a classification technique characterized by having a function of conditioning air. As in the first basic mode, when the water content in the airflow is reduced due to the humidity control effect, the powder material has a reduced liquid cross-linking power. Therefore, in a state in which reaggregation of particles is further prevented than in the first basic mode. Therefore, highly accurate classification is performed.
[0013]
Next, referring to the airflow classifier having the fluidized bed device (raw material supply device) (30) of FIGS. 4 and 5, the airflow classifier as described in the above item (3) as the third basic mode, and The structure of a typical fluidized bed will be described with respect to the airflow classification method described in item (8). In FIG. 4, the fluidized bed apparatus (30) includes a gantry (32) supported by a spring (31) and a vibration motor (33) disposed in the gantry (32). 33) is mounted with an inclination of 45 degrees with respect to the vertical axis. A container (34) is installed on the gantry (32), and an air introduction pipe (35) leading to an air supply port and a mesh (36) disposed above the container (34) are provided at the lower part of the container (34). The mesh (36) prevents the powder material described later from falling downward.
An exhaust pipe (38) surrounded by a filter (37) is attached to the upper end of the container (34), and a powder material input pipe (39) is attached. In addition, a powder material take-out pipe (40) is attached to the central portion of the container (34) in the vertical direction. As a typical example of this type of fluidized bed apparatus, there is an apparatus manufactured and sold by Central Processing Machine Co., Ltd.
[0014]
FIG. 5 shows the configuration of a classification apparatus and a fluidized bed apparatus (raw material supply apparatus) (30) for the classification method of the third basic mode. The classification means (45) is a fluidized bed apparatus (30). The take-out pipe (40) is connected to the airflow classifier and the inlet (16) of the classification method (1) described above. The material before toner fine pulverization and classification is first charged into the container (34) through the powder material input pipe (39) of the fluidized bed apparatus (30), and this powder material is stored in the container (34). While being suspended and fluidized by compressed air introduced through the air introduction pipe (35) while receiving twist-like vibration inclined with respect to the vertical axis, adhesion of particles and generation of secondary aggregation are suppressed. It is sent to the classification area of the classification means (1) through the take-out pipe (40).
[0015]
Next, referring to the airflow classifier having the fluidized bed device (raw material supply device) (30) in FIG. 6, the airflow classifier as described in the item (4) as the fourth basic mode and the ( The structure of the classifying means will be described with respect to the airflow classifying method described in item 9). This is the same as in the fourth basic mode, and a humidity control function (26) is provided for compressed air used for fluidization in the classification method, and the adjustment is controlled at an atmospheric pressure dew point of -20 to -80 ° C. A classifying device characterized by having a function capable of being performed. When the water content in the airflow is reduced due to the humidity control effect, the powder material has a reduced liquid cross-linking force, and thus the classifier is in a state in which reaggregation of particles is prevented. Supplied to the classification area. The airflow classifier having the fluidized bed apparatus (raw material supply apparatus) (30) in FIG. 7 further has humidity adjusting means (26) for adjusting the humidity of air sucked from the peripheral portion.
[0016]
The airflow type classification apparatus described in the above item (5) and the airflow type classification method described in the above item (10) as the fifth basic aspect of the present invention are the same as those in the first to fourth basic aspects. In the classifying apparatus and classification method, an air flow type characterized by using 0.05 to 0.3 wt% of nano-micron fine particles such as silica or titanium oxide added to the surface of the powder material to be introduced into the fluidized bed is used. Classification technology.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1 (corresponding to the first basic mode)
A mixture of 75% by weight of styrene acrylic copolymer resin, 10% by weight of polyester resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. Next, this coarsely pulverized product was pulverized by a turbo mill and pulverized to a weight average particle size of 7.0 μm to obtain a finely pulverized product. The finely pulverized product was classified with a classifier shown in FIG. At that time, when the feed air was set to atmospheric dew point of −20 ° C. as a condition, a number content of 10% was obtained with ultrafine particles having a weight average particle diameter of 7.35 μm and 4 μm or less.
[0018]
Comparative Example 1
When classification was performed using the current classification means shown in FIG. 1 under the same conditions as in Example 1 and the feed air at an atmospheric pressure dew point of −5 ° C., an electrode having a weight average particle size of 7.35 μm and 4 μm or less was obtained. A fine particle content of 12% was obtained.
[0019]
Example 2 (corresponding to the second basic mode)
A mixture of 75% by weight of styrene acrylic copolymer resin, 10% by weight of polyester resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. Next, this coarsely pulverized product was pulverized by a turbo mill and pulverized to a weight average particle size of 7.0 μm to obtain a finely pulverized product. The finely pulverized product was classified with a classifier shown in FIG. At that time, the feed air is set to atmospheric pressure dew point -20 ° C, and the temperature and humidity of the air sucked from the intake pipe is set to 15 ° C / 20%. The ultrafine particles having a weight average particle size of 7.30 µm and 4 µm or less. A number content of 9% was obtained.
[0020]
Example 3 (corresponding to the third basic mode)
A mixture of 75% by weight of styrene acrylic copolymer resin, 10% by weight of polyester resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. Next, this coarsely pulverized product was pulverized by a turbo mill and pulverized to a weight average particle size of 7.0 μm to obtain a finely pulverized product. This finely pulverized product was classified by a classifier through the fluidized bed shown in FIG. At that time, the atmospheric dew point of the air used for fluidization is −10 ° C., the feed air is the atmospheric dew point −20 ° C. in the classifier, and the temperature and humidity of the air sucked from the inlet pipe is 15 ° C./20%. As a result, a number content of 8% was obtained with ultrafine particles having a weight average particle diameter of 7.40 μm and 4 μm or less.
[0021]
Example 4 (corresponding to the fourth basic mode)
A mixture of 75% by weight of styrene acrylic copolymer resin, 10% by weight of polyester resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. Next, this coarsely pulverized product was pulverized by a turbo mill and pulverized to a weight average particle size of 7.0 μm to obtain a finely pulverized product. This finely pulverized product was classified by a classifier through the fluidized bed shown in FIG. At that time, the atmospheric pressure dew point of the air used for fluidization was −70 ° C., the feed air in the classifier was the atmospheric pressure dew point of −20 ° C., and the temperature and humidity of the air sucked from the inlet pipe was 15 ° C./20%. However, a number content of 7% was obtained with ultrafine particles having a weight average particle diameter of 7.35 μm and 4 μm or less.
[0022]
Example 5 (corresponding to the fifth basic mode)
A mixture of 75% by weight of styrene acrylic copolymer resin, 10% by weight of polyester resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. Next, this coarsely pulverized product was pulverized by a turbo mill and pulverized to a weight average particle size of 7.0 μm to obtain a finely pulverized product. This finely pulverized product was classified by a classifier through the fluidized bed shown in FIG. At that time, the feed air is set to atmospheric dew point of -20 ° C, the temperature and humidity of the air sucked from the intake pipe is set to 15 ° C / 20%, and the air used for fluidization is input at the atmospheric pressure dew point of -70 ° C. When 0.1% by weight of silica fine particles was added to the surface of the powder material to be mixed and classified, a number content of 6% was obtained with ultrafine particles having a weight average particle diameter of 7.35 μm and 4 μm or less.
[0023]
【The invention's effect】
As described above, as is clear from the detailed and specific description, the liquid bridge force that contributes to the agglomeration of the powder due to the humidity adjustment effect of the feed air is improved due to the effect of the first basic aspect. Since the aggregation or secondary aggregation of the material is improved, the powder characteristics are improved and the classification efficiency is improved. In addition to the above-described effects, the liquid bridge force that contributes to the aggregation of the powder is improved by the effect of adjusting the air sucked from the intake pipe in addition to the above-described effects. Therefore, the powder properties are improved and the classification efficiency is improved. In addition to the above-described effects, the action and effect relating to the third basic mode facilitates the dispersion of the powder material flowing into the classifier by fluidization, and without changing the existing classifier conditions, Since aggregation or secondary aggregation is improved, the powder characteristics are improved, and the classification efficiency is improved. In addition to the above-described effects, the liquid bridge force that contributes to the powder aggregation is improved by the effect of humidity control in addition to the above-described effects. Therefore, the powder characteristics are improved and the classification efficiency is improved. In addition to the above-described effects, the effect of the fifth basic embodiment improves the van der Waals force, which is a cause of powder aggregation, by using an additive in the powder material. As a result, the powder characteristics are improved and the classification efficiency is improved.
[Brief description of the drawings]
FIG. 1 shows an example of a conventional airflow classifier.
FIG. 2 shows an example of an airflow classifier according to the present invention.
FIG. 3 shows another example of the airflow classifier of the present invention.
FIG. 4 shows still another example of the airflow classifier of the present invention.
FIG. 5 shows still another example of the airflow classifier of the present invention.
FIG. 6 shows still another example of the airflow classifier of the present invention.
FIG. 7 shows still another example of the airflow classifier of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Airflow classifier 2 Coarse powder discharge port 3 Fine powder discharge port 4 Fine powder discharge port 5 Intake pipe 6 Intake pipe 7 Upper edge 8 Side wall 9 Coanda block 10 Classification edge 11 Classification edge 12 Side wall 13 Raw material supply nozzle 14 Opening and closing means 15 Opening and closing Means 16 Inlet 20 Feeder 22 Feed air feeder 24 Compressor 26 Humidity adjustment device 28 Airflow type classification device 29 having the raw material supply device used in Example 1 Airflow type classification device 30 having the raw material supply device used in Example 2 Flow Layer device 31 Spring 32 Mounting base 33 Vibration motor 34 Container 35 Air introduction pipe 36 Mesh 37 Filter 38 Exhaust pipe 39 Powder material input pipe 40 Extraction pipe 45 Airflow type classification apparatus 50 used in Example 3 Airflow type classification used in Example 4 Device 55 Airflow classifier used in Example 5

Claims (5)

分級域に開口部を有する原料供給ノズルを有し、該原料供給ノズル内を流動するフィードエアーによって該原料供給ノズル内の粉体原料を分級域に噴出させ、噴出された気流中の粉体材料の粒子の慣性力及びコアンダ効果によって、少なくとも粗粉領域及び微粉領域に分級する気流式分級装置において、フィードエアーを大気圧露点で−20〜−70℃に調湿する調湿手段を有することを特徴とする気流式分級装置。A powder material in an air stream which has a raw material supply nozzle having an opening in a classification area, and causes the powder raw material in the raw material supply nozzle to be ejected to the classification area by feed air flowing in the raw material supply nozzle of the inertia force and the Coanda effect of the particles, the air classifier for classifying the at least coarse powder region and fine regions, have a humidity means for humidity control the feed air to -20 to-70 ° C. at atmospheric pressure dew point An airflow classifier characterized by. 周辺部から吸入されるエアーを調湿する調湿手段を更に具備することを特徴とする請求項1に記載の気流式分級装置。2. The airflow classifier according to claim 1, further comprising humidity adjusting means for adjusting the air sucked from the peripheral portion. 分級域に導入される粉体材料をあらかじめ流動化させるための流動化装置を有することを特徴とする請求項1に記載の気流式分級装置。The airflow classifier according to claim 1, further comprising a fluidizing device for fluidizing the powder material introduced into the classification region in advance. 流動化に用いる圧縮エアーが大気圧露点で−20〜−80℃に調湿されることを特徴とする請求項3に記載の気流式分級装置。The airflow classifier according to claim 3, wherein the compressed air used for fluidization is conditioned to -20 to -80 ° C at an atmospheric pressure dew point. 分級域に導入される粉体材料に分散剤が添加されることを特徴とする請求項1乃至4のうち何れか1に記載の気流式分級装置。The airflow classifier according to any one of claims 1 to 4, wherein a dispersant is added to the powder material introduced into the classification region.
JP22946898A 1998-07-31 1998-07-31 Airflow classification method Expired - Lifetime JP3753287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22946898A JP3753287B2 (en) 1998-07-31 1998-07-31 Airflow classification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22946898A JP3753287B2 (en) 1998-07-31 1998-07-31 Airflow classification method

Publications (2)

Publication Number Publication Date
JP2000042494A JP2000042494A (en) 2000-02-15
JP3753287B2 true JP3753287B2 (en) 2006-03-08

Family

ID=16892677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22946898A Expired - Lifetime JP3753287B2 (en) 1998-07-31 1998-07-31 Airflow classification method

Country Status (1)

Country Link
JP (1) JP3753287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102825009A (en) * 2012-07-27 2012-12-19 安徽理工大学 360-degree airflow air and material distributing mechanism for dry classification

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198640A (en) 2002-12-17 2004-07-15 Nippon Zeon Co Ltd Toner and method for manufacturing the same
WO2014190321A1 (en) * 2013-05-23 2014-11-27 Battelle Memorial Institute Falling bed reactor
CN104607388A (en) * 2013-11-04 2015-05-13 上海世邦机器有限公司 Automatic manufactured sand gradation fine controller
JP5837107B2 (en) * 2014-01-17 2015-12-24 シャープ株式会社 Particle measuring instrument
CN105880161B (en) * 2016-04-07 2017-10-31 湘潭大学 A kind of superfine powder jet classifying method of purification and device
CN109941756B (en) * 2019-03-01 2024-04-19 成都瑞柯林工程技术有限公司 Particle screening method and powder fluidization device
US11545343B2 (en) 2019-04-22 2023-01-03 Board Of Trustees Of Michigan State University Rotary plasma reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102825009A (en) * 2012-07-27 2012-12-19 安徽理工大学 360-degree airflow air and material distributing mechanism for dry classification
CN102825009B (en) * 2012-07-27 2014-07-16 安徽理工大学 360-degree airflow air and material distributing mechanism for dry classification

Also Published As

Publication number Publication date
JP2000042494A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
US4802977A (en) Process for size separating toner particles
EP0264761A1 (en) Process for producing toner for developing electrostatic images and apparatus therefor
US5316222A (en) Collision type gas current pulverizer and method for pulverizing powders
JP3753287B2 (en) Airflow classification method
JP3176779B2 (en) Airflow classifier and airflow classification method
JP3493489B2 (en) Airflow classification system
JP3647644B2 (en) Powder classifier
JP3502215B2 (en) Airflow classifier
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP3606710B2 (en) Airflow type DS classifier
JP3278326B2 (en) Airflow classifier and toner manufacturing method
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH09187733A (en) Air current-utilizing type classifying apparatus
JP3278325B2 (en) Airflow classifier and toner manufacturing method
JPS63101860A (en) Method and device for manufacturing electrostatically charged image developing toner
JPH078916A (en) Air classifier
JPH0780415A (en) Air classifier and air classification
JP2001246327A (en) Pneumatic classifying device and method for manufacturing toner
JPH09290218A (en) Dispersion mixing and air flow type classifying device
JPH0975852A (en) Pneumatic sorting machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

EXPY Cancellation because of completion of term