JP3751894B2 - 高周波電力増幅器及びその制御回路 - Google Patents

高周波電力増幅器及びその制御回路 Download PDF

Info

Publication number
JP3751894B2
JP3751894B2 JP2002057761A JP2002057761A JP3751894B2 JP 3751894 B2 JP3751894 B2 JP 3751894B2 JP 2002057761 A JP2002057761 A JP 2002057761A JP 2002057761 A JP2002057761 A JP 2002057761A JP 3751894 B2 JP3751894 B2 JP 3751894B2
Authority
JP
Japan
Prior art keywords
transistor
current
amplifier
current amplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002057761A
Other languages
English (en)
Other versions
JP2002335135A (ja
Inventor
宏平 森塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002057761A priority Critical patent/JP3751894B2/ja
Publication of JP2002335135A publication Critical patent/JP2002335135A/ja
Application granted granted Critical
Publication of JP3751894B2 publication Critical patent/JP3751894B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はバイポーラトランジスタを用いた高周波電力増幅器及びその制御回路に関する。より具体的には、本発明はこの種の高周波電力増幅器のバイアス回路の改良に関する。
【0002】
【従来の技術】
近年の携帯電話や携帯情報端末には、1GHz以上の周波数領域で高効率な電力増幅を行うトランジスタが不可欠になっている。このような、トランジスタのうち、特にGaAs基板上に形成したヘテロ接合バイポーラトランジスタ(HBT)は、高周波特性が優れ、低電圧でも高効率に動作する。このため、このタイプのバイポーラトランジスタは、携帯電話等における電池個数を減らし端末を軽量化するという要求に合致していることから特に注目を集めている。また、ヘテロ接合バイポーラトランジスタは、3次歪が小さく、高線形動作が要求されるデジタル変調に適している。
【0003】
【発明が解決しようとする課題】
本発明者は、本発明の開発の過程において、携帯電話や携帯情報端末における要求に鑑み、バイポーラトランジスタを用いた高周波電力増幅器について研究を行い、以下のような知見を得た。
【0004】
図2(b)はバイポーラトランジスタを用いた従来の高周波電力増幅器を示す回路構成図である。この増幅器の高周波回路50は、高周波を増幅するためのnpnトランジスタ1を有し、そのコレクタ端子に電池9が接続される。トランジスタ1の入力及び出力側には入力整合回路2及び出力整合回路3が夫々接続される。トランジスタ1のベース端子4には、高周波を遮断するチョークコイル5を介してベースバイアス回路6が接続され、ここから直流電流IBが供給される。携帯電話等では、高周波増幅器の利得を制御する機能が要求される。通常この機能は、ベースのバイアス電位を変化させて行う。このため、ベースバイアス回路6には、バイアスレベルを調整する制御端子7が設けられ、増幅器の外部にバイアス制御回路8が設けられる。本発明においては、制御端子7の電圧と電流に注目するので、特にこの値をVconとIconと記す。
【0005】
電力増幅器の利得制御には、閉ループ制御によるものと開ループ制御によるものとの二種類がある。GMSK(Gaussian filtered Minimum Shift Keying)変調方式等のように高周波電力の大きさが変化しない方式の携帯電話では、高周波出力レベルを検知して、所望の出力が得られるように閉ループ制御によってバイアス制御回路より制御信号が出力される。一方、CDMA(Code Division Multiple Access)方式等のように高周波電力の大きさが時間に応じて変化する方式の携帯電話では、電力増幅器に非線形歪があると所望の周波数帯域外に不要な電波を放射してしまうので、トランジスタは、良好な線形性が保たれるような条件にバイアスされなければならない。従って、電力増幅器は、温度変化等の環境条件の変化に関わりなく電力利得や線形性が一定に保たれるように、開ループ制御によってバイアス制御回路より制御信号を出力する必要がある。
【0006】
携帯電話に用いられる電力増幅器の高周波トランジスタのコレクタ電流は、典型的には1〜2Aのオーダーで、電流利得は50程度である。従って、ベースバイアス回路6は、およそ20〜40mAという比較的大きなベース電流IBを供給しなければならない。また、携帯電話の電力増幅器では、電力効率を改善するために、AB級やB級のバイアス条件が選択される。このため、出力電力が大きくなると、ベース電流の大きさが変化する。ベース電流の大きさが変化してもバイアス点が変化しないようにするため、ベースバイアス回路6の出力インピーダンスは、小さくしておく必要がある。
【0007】
図3は閉ループ制御において図2(b)図示のベースバイアス回路6として使用される従来のバイアス回路を示す回路構成図である。図3図示の如く、このバイアス回路はエミッタフォロワ回路を基本として構成される。エミッタフォロワ回路によって、電流増幅及びインピーダンス変換が行われる。例えば、高周波トランジスタに供給するベース電流IBを40mAとし、エミッタフォロワトランジスタ10の電流利得を50とすると、制御端子7に供給する電流Iconは、0.8mAとなる。また、高周波トランジスタ及びバイアス回路をGaAs−HBTで構成する場合は、GaAs−HBTのベース・エミッタ間のオン電圧が通常1.25Vであるので、制御端子7には、2.5V以上の電圧を供給する必要がある。
【0008】
図3の回路は閉ループ制御によって増幅器の利得を制御する方式にのみ専ら用いられている。開ループ制御によって増幅器の利得を制御する方式には、図3の回路は不適である。これは、トランジスタのベース・エミッタ間のオン電圧が温度によって変化してしまうためである。即ち、GaAs−HBTにおいては、ベース・エミッタ間のオン電圧は、−30℃で1.30V、+100℃で1.16Vと0.14Vも変化する。従って、制御端子電圧Vconは、−30℃で2.6V程度、+100℃で2.32V程度と変化させる必要がある。このため、所望の利得や線形性を維持するために一定電圧を与える開ループ制御は適用できない。
【0009】
図4は閉ループ制御において図2(b)図示のベースバイアス回路6として使用される従来の別のバイアス回路を示す回路構成図である。図4図示の如く、この回路では、エミッタフォロワトランジスタ10のベース電位を、2個直列に接続したダイオード11、12によって決定している。この回路では、エミッタフォロワトランジスタ10のベースに流れる電流IB2よりも充分大きな電流Iconを制御端子7より供給する。ダイオード11、12に流れる電流はIconとほぼ等しくなる。ダイオード11、12、エミッタフォロワトランジスタ10、及び高周波トランジスタ1において、ベース・エミッタ間電圧のオン電圧の温度係数が等しければ、温度が変化しても、高周波トランジスタ1のエミッタ電流は、Iconに比例するように決定される。高周波トランジスタの電力利得は、主にエミッタ電流で決定されるので、Iconが所望の値になるように制御すればよい。
【0010】
Iconは、制御端子電圧Vconと2個の直列ダイオードのアノード端13との電位差に比例する。GaAs−HBTでは、−30℃から+100℃の温度範囲で、2個の直列ダイオードのアノード端13の電位は、0.29V変化する。従って、例えば、−30℃から+100℃の温度範囲でバイアス電流の変化を2倍以下に抑えようとすれば、最もバイアス電流が小さくなる−30℃の時に、抵抗14における電位降下を0.29Vに設定しなければならない。−30℃の時に、2個の直列ダイオードのアノード端13の電位は、およそ2.6Vであるので、制御電圧Vconは、およそ2.9V必要となる。更に、制御電流Iconは、エミッタフォロワトランジスタのベース電流IB2の5倍程度以上は通常必要である。従って、制御電流Iconは4mA程度以上となる。
【0011】
一方、バイアス制御回路8は演算増幅器やDAC(デジタル・アナログ変換器)によって構成される。近年の携帯電話では、小型軽量化が求められており、電源はリチウムイオン電池を1セルのみ使用する。リチウムイオン電池の出力電圧は、4.3V程度から3.0V程度まで変動するので、携帯電話中の安定化電源は、2.7V以下の電圧しか通常供給できない。従って、演算増幅器によって制御電圧Vconを生成する場合でも2.6V程度が上限であり、DACによって制御電圧Vconを生成する場合は2.4V程度が上限となる。このため、2.6V以上の制御電圧Vconを必要とする図3の従来の回路や、2.9V以上の制御電圧Vconを必要とする図4の従来の回路は、携帯電話への適用が極めて困難になるという状況が生じている。
【0012】
更に、DAC等は、供給電流の上限が通常1mA以下であり、制御電流Iconも好ましくは0.1mA以下にすることが求められている。このような観点からも、1mA程度以上の電流を必要とする図3や図4の従来のバイアス回路は、携帯電話への適用が極めて困難になるという状況が生じている。
【0013】
本発明はかかる観点に鑑みてなされたものであり、低制御電流及び低制御電圧で高精度な利得制御が可能な高周波電力増幅器及びその制御回路を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の第1の視点は高周波電力増幅器であって、
エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
を具備し、前記第1電流増幅器への入力電流に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする。
【0015】
本発明の第2の視点は高周波電力増幅器であって、
エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
前記第1電流増幅器への入力電圧と前記第1電流増幅器の出力電流との間に線形な関係を保持する保持手段と、
を具備し、前記第1電流増幅器への入力電圧に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする。
【0016】
本発明の第3の視点は、
エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
を具備する高周波電力増幅器のための制御回路であって、
前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
を具備し、前記第1電流増幅器への入力電流に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする。
【0017】
前記第1乃至第3の視点において、望ましくは、前記第2電流増幅器はエミッタ接地のpnpトランジスタからなる第3トランジスタを具備し、前記第1電流増幅器はエミッタ接地のnpnトランジスタからなる第4トランジスタを具備する。
【0018】
更に、本発明の実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施の形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態について図面を参照して説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
【0020】
図2(a)は携帯電話や携帯情報端末に適用される本発明の実施の形態に係る高周波電力増幅器を示す回路構成図である。この増幅器の高周波回路50は、高周波を増幅するためのnpnトランジスタ1を有し、そのコレクタ端子にリチウムイオン電池9が接続される。トランジスタ1の入力及び出力側には入力整合回路2及び出力整合回路3が夫々接続される。トランジスタ1のベース端子4には、高周波を遮断するチョークコイル5を介してベースバイアス回路60が接続され、ここから直流電流IBが供給される。ベースバイアス回路60には、バイアスレベルを調整する制御端子7が設けられ、増幅器の外部にバイアス制御回路8が設けられる。バイアス制御回路8は演算増幅器やDAC(デジタル・アナログ変換器)によって構成される。
【0021】
[第1の実施の形態]
図1は図2(a)図示のベースバイアス回路60として使用される本発明の第1の実施の形態に係るバイアス回路を示す回路構成図である。図1図示の如く、このバイアス回路は、高周波回路50のトランジスタ1のベース端子4にベース電流IBを供給するnpnエミッタフォロワトランジスタ10を有する。エミッタフォロワトランジスタ10のベース電位を決定するため、2つのpnダイオード11、12が直列接続される。2つのpnダイオード11、12の電流を供給するようにエミッタ接地のpnpトランジスタ15が配設される。pnpトランジスタ15のベース電位を決定するようにpnダイオード16が配設される。pnダイオード16の電流を供給するようにエミッタ接地のnpnトランジスタ17が配設される。npnトランジスタ17のベース電位を決定するようにpnダイオード18が配設される。
【0022】
pnダイオード18のアノードに抵抗19が接続され、抵抗19の一端が制御端子7となる。npnエミッタフォロワトランジスタ10のコレクタ、pnpトランジスタ15のエミッタ及びpnダイオード16のアノードは、リチウムイオン電池9の正電極に接続される。図1においては、pnダイオード11、12、16、18は、トランジスタのベースとコレクタを短絡して構成されたベース・エミッタ間接合を用いて形成される。
【0023】
後述するように、エミッタフォロワトランジスタ10と直列接続された2つのpnダイオード11、12とは、高周波トランジスタ1と共にGaAs−HBTチップ上にモノリシックに集積化されていることが好ましい。その他の回路要素は、GaAs−HBTチップで構成してもよいしSiチップで構成してもよい。
【0024】
即ち、pnpトランジスタ15、pnダイオード16、npnトランジスタ17及びpnダイオード18の全てを前記GaAs−HBTチップにモノリシックに集積化することが可能である。また、npnトランジスタ17とpnダイオード18とを前記GaAs−HBTチップにモノリシックに集積化し、pnpトランジスタ15とpnダイオード16とをSiチップで構成することも可能である。以降の実施の形態の説明では、pnpトランジスタ15、pnダイオード16、npnトランジスタ17及びpnダイオード18をSiチップで構成する場合について述べる。
【0025】
図1図示のバイアス回路においては、先ず、制御端子7からpnダイオード18に電流Iconが供給される。pnダイオード18の飽和電流とnpnトランジスタ17の飽和電流との比をn1とすると、npnトランジスタ17のコレクタ電流I1は、I1=n1×Iconとなる。即ち、ダイオード18とトランジスタ17とは利得がn1の第1電流増幅器を構成する。
【0026】
同様に、pnダイオード16とpnpトランジスタ15の飽和電流の比をn2とすると、pnpトランジスタ15のコレクタ電流I2は、I2=n2×I1となる。即ち、pnダイオード16とpnpトランジスタ15とは、利得がn2の第2電流増幅器を構成する。pnpトランジスタ15のエミッタ電位は、リチウムイオン電池の正電源に直結しており、4.3Vから3.0V程度の間で変動する。これに対して、コレクタ電位は、エミッタフォロワトランジスタ10のベース電位であるので、最大2.6V程度である。即ち、pnpトランジスタ15のコレクタ・エミッタ間電圧は最大でも−0.4V程度でトランジスタは飽和せず定電流源として動作する。
【0027】
ここで、n1を10、n2を10となるように選ぶとI2=n2×n1×IconであるからI2=100×Iconとなる。よって、I2=4mAの時に、制御端子の電流Iconは、0.04mAとなる。抵抗19を30kΩとすると、抵抗19の両端の電位差は、1.2Vである。Siのpnダイオードのオン電圧は約0.6Vなので、制御電圧は1.8V程度になる。また、Siのpnダイオードのオン電圧の温度係数はおよそ−2mV/℃なので、−30℃から+100℃までの環境温度の変化があっても、制御電流の変動は高々±10%程度に抑制できる。
【0028】
高周波増幅を行うGaAs−HBT1の消費電力は大きく発熱も著しい。しかし、エミッタフォロワトランジスタ10と2つのpnダイオード11、12とは、GaAs−HBT1とモノリシックに集積し接合温度をそろえておくことができる。この場合、高周波増幅を行うGaAs−HBT1のエミッタ電流を、第2電流増幅器の出力電流I2に比例するように制御することができる。
【0029】
図1図示のバイアス回路によれば、制御電流を0.1mA以下に、制御電圧を2V以下にすることが可能で、DAC等による高精度な電力増幅器の利得制御が行えるようになる。また、温度変化に対しても安定なエミッタ電流の設定が可能で、CDMA方式等のように開ループ制御で高精度に利得設定を行う方式にも適用可能となる。
【0030】
[第2の実施の形態]
図5は図2(a)図示のベースバイアス回路60として使用される本発明の第2の実施の形態に係るバイアス回路を示す回路構成図である。図5図示の如く、このバイアス回路においては、図1図示の回路の2つのpnダイオード11、12に代え、npnトランジスタ20で構成されるカレントミラー回路が配設される。即ち、高周波回路50のトランジスタ1のベース端子4にベース電流IBを供給するnpnエミッタフォロワトランジスタ10のベース電位は、このカレントミラー回路によって実現される。その他は、第1の実施の形態に係る図1図示の構成と同様となっている。
【0031】
図5図示のバイアス回路においては、エミッタフォロワトランジスタ10のエミッタ電位がエミッタ電流によらず、pnpトランジスタ15とpnダイオード16とで構成される電流増幅器の出力電流I2が流れるnpnトランジスタ20のベース電位に等しくなるように制御される。その他は、第1の実施の形態と同様の動作となる。
【0032】
図5図示のバイアス回路によれば、カレントミラー回路による負帰還作用があるので、図1図示のバイアス回路に比べて高周波トランジスタへのベース電流の供給が低インピーダンスで行える。その他は、第1の実施の形態と同様な効果をもたらす。
【0033】
[第3の実施の形態]
図6は図2(a)図示のベースバイアス回路60として使用される本発明の第3の実施の形態に係るバイアス回路を示す回路構成図である。図6図示の如く、このバイアス回路においては、図1図示の回路のpnダイオード18が省略される。その他は、第1の実施の形態に係る図1図示の構成と同様となっている。
【0034】
図6図示のバイアス回路においては、先ず、制御端子7からnpnトランジスタ17のベースに制御電流Iconが供給される。npnトランジスタ17の電流利得をβ1とすると、npnトランジスタ17のコレクタ電流I1は、I1=β1×Iconとなる。即ち、第1電流増幅器がトランジスタ17よりなり、その利得がβ1である点が第1の実施の形態と異なる。その他は、第1の実施の形態と同様の動作となる。
【0035】
図6図示のバイアス回路によれば、npnトランジスタの電流利得β1は、通常100程度と大きい。このため、第1の実施の形態に係る図1図示の構成に比べて、制御電流を非常に小さくできる。例えば、I2を4mA、第2電流増幅器の電流利得を10とすれば、制御電流は、4μAまで削減される。一方、制御電流の温度依存性には電流利得β1の温度変動が乗ってくるので、第1の実施の形態に比べ変動が大きくなる場合がある。従って、第3の実施の形態は閉ループ制御を行う場合に特に有効である。npnトランジスタ17に電流利得の温度依存性が小さいInGaP/GaAs−HBTのような素子を用いると閉ループ制御への適用も可能である。
【0036】
[第4の実施の形態]
図7は図2(a)図示のベースバイアス回路60として使用される本発明の第4の実施の形態に係るバイアス回路を示す回路構成図である。図7図示の如く、このバイアス回路においては、図6図示の回路のpnダイオード16が省略される。その他は、第3の実施の形態に係る図6図示の構成と同様となっている。
【0037】
図7図示のバイアス回路においては、先ず、制御端子7からnpnトランジスタ17のベースに制御電流Iconが供給される。npnトランジスタ17の電流利得をβ1とすると、npnトランジスタ17のコレクタ電流I1は、I1=β1×Iconとなる。即ち、第1電流増幅器がトランジスタ17よりなり、その利得はβ1である。電流I1は、pnpトランジスタ15で増幅される。pnpトランジスタ15の電流利得をβ2とすれば、pnpトランジスタ15のコレクタ電流I2は、I2=β2×I1=β1×β2×Iconとなる。即ち、第2電流増幅器がトランジスタ15よりなり、その利得は、β2である点が第3の実施の形態とは異なる。その他は、第3の実施の形態と同様の動作となる。
【0038】
図7図示のバイアス回路によれば、npnトランジスタの電流利得β1は、通常100程度と大きい。更に、pnpトランジスタの電流利得も100程度の大きな値が得られる。このため、第3の実施の形態に比べて、更に制御電流を小さくできる。例えば、I2を4mAとすれば、制御電流は0.4μAまで削減される。一方、制御電流の温度依存性には電流利得β1及び電流利得β2の温度変動が乗ってくるので、開ループ制御へ適用するときにはβ1及びβ2の温度変動が小さいトランジスタを選ぶ必要がある。この実施の形態は閉ループ制御を行う場合には非常に有効である。
【0039】
[第5の実施の形態]
図8は図2(a)図示のベースバイアス回路60として使用される本発明の第5の実施の形態に係るバイアス回路を示す回路構成図である。図8図示の如く、このバイアス回路は2つの制御端子7a、7bを有する。各制御端子7a、7bに対応して、電流制御抵抗19a、19b、pnダイオード18a、18b、npnトランジスタ17a、17bが夫々配設される。その他は、第1の実施の形態に係る図1図示の構成と同様となっている。
【0040】
図8図示のバイアス回路においては、抵抗19bの値を抵抗19aの値の数倍程度にする。一例として、抵抗19aを30kΩ、抵抗19bを100kΩとする。pnダイオード18aのオン電圧を0.6Vとすると、制御端子7aに1.8Vの電圧を与えた時、制御電流は40μAとなる。従って、pnダイオード11、12のバイアス電流は4mAとなる。
【0041】
この制御電圧を下げていくとpnダイオード11、12のバイアス電流を小さくできる。しかし、pnダイオード18a、18bのオン電圧は−30℃から+100℃の温度範囲で0.2V程度変動する。このため、抵抗19aの両端の電位差を0.4V程度以下にすると温度変動の影響が高周波トランジスタのバイアス電流に現れてしまう。従って、開ループ制御では、抵抗19aの電位差の下限を0.4Vとすると、pnダイオード11、12のバイアス電流は、1.3mAまでしか絞れない。
【0042】
更に電流を絞るために第2制御端子7bを使用する。即ち、第1制御端子7aを開放または接地し、第2制御端子7bに2.0Vの電位を与えると、pnダイオード11、12のバイアス電流は、1.4mAとなる。抵抗19bの電位差の下限を0.4Vとすると、pnダイオード11、12のバイアス電流は、0.4mAまで絞れる。
【0043】
図8図示のバイアス回路によれば、電力増幅トランジスタのエミッタ電流の制御範囲が第1の実施の形態に比べて拡大する。
【0044】
[第6の実施の形態]
図9は図2(a)図示のベースバイアス回路60として使用される本発明の第6の実施の形態に係るバイアス回路を示す回路構成図である。図9図示の如く、このバイアス回路は8つの制御端子7a〜7hを有する。各制御端子7a〜7hに対応して、電流制御抵抗Ra〜Rh、pnダイオード18a〜18h、npnトランジスタ17a〜17hが夫々配設される。その他は、第1の実施の形態に係る図1図示の構成と同様となっている。
【0045】
図9図示のバイアス回路においては、抵抗Rbの値を抵抗Raの値の2倍にする。同様に抵抗Rcの値を抵抗Rbの値の2倍にする。以下、同様の設定を繰り返し、Ra=Rb/2=Rc/4=Rd/8=Re/16=Rf/32=Rg/64=Rh/128となるように設定する。制御端子7a〜7hには8ビットのデジタル信号を与え、デジタル信号の高レベル電圧は2V程度とし、低レベル電圧は0.3V以下とする。この場合、pnダイオード16に流れる電流I1は、デジタル信号をD/A変換した値にほぼ比例するので、デジタル信号によって直接、高周波HBTのバイアス電流を制御することができる。
【0046】
第5の実施の形態で述べたように、制御電圧を連続的に可変にする方式では、高周波トランジスタのバイアス電流の制御範囲はそれほど大きくできない。一方、この実施の形態に係る図9図示のバイアス回路によれば、制御信号は2Vと充分大きく且つ8ビットの分解能で制御電流を可変とすることができる。このため、高周波回路50のトランジスタ1(図2(a)参照)のバイアス電流の制御範囲を大きく取ることができる。更に、この実施の形態によれば、高価なDA変換器が省略可能となる。
【0047】
[第7の実施の形態]
上述の第1乃至第6の実施の形態においては、理解を容易にするため、高周波電力増幅器が一段の増幅段のみを有するものとして説明を行っている。しかし、携帯電話で使用される高周波電力増幅器は、通常複数の増幅段を有する。図10はかかる観点に基づく本発明の第7の実施の形態に係る高周波回路及びバイアス回路を示す回路構成図である。即ち、図10図示の如く、この実施の形態に係る高周波回路52は、高周波を増幅するための2段のnpnトランジスタ1a、1bを有する。トランジスタ1a、1b間に段間整合回路21が配設されると共に、入力及び出力側に入力整合回路2及び出力整合回路3が夫々接続される。
【0048】
一方、この実施の形態に係るバイアス回路は2つのnpnエミッタフォロワトランジスタ10a、10bを有する。各トランジスタ10a、10bに対応して、ダイオード11a、12a;11b、12b、pnpトランジスタ15a、15b及びダイオード16a、16bが夫々配設される。これにより、トランジスタ10a側の一段目のベース電流IB1とトランジスタ10b側の二段目のベース電流IB2とが独立に制御可能となる。一段目のベース電流IB1はトランジスタ1aのベース端子に供給され、二段目のベース電流IB2はトランジスタ1bのベース端子に供給される。
【0049】
また、このバイアス回路は、第6の実施の形態に係る図9図示の回路と同様、8つの制御端子7a〜7hを有する。各制御端子7a〜7hに対応して、電流制御抵抗Ra〜Rh、pnダイオード18a〜18h、npnトランジスタ17a〜17hが夫々配設される。制御信号として、第6の実施の形態と同様に直接デジタル信号が入力される。制御端子7a〜7dまでの4ビットの信号が一段目のコントロールに使用され、制御端子7e〜7hまでの4ビットの信号が二段目のコントロールに使用される。
【0050】
[第8の実施の形態]
マルチバンド対応の携帯電話では2つ以上の電力増幅部が周波数バンドに応じて切り替えて使用される。図11はかかる観点に基づく本発明の第8の実施の形態に係るバイアス回路を示す回路構成図である。即ち、図11図示の如く、この実施の形態に係る高周波電力増幅器は、図2(a)図示の高周波回路50と同様な構成の2つの高周波回路50a、50bを有する。高周波回路50a、50bに夫々接続されるように、2つのnpnエミッタフォロワトランジスタ10c、10dがバイアス回路に配設される。各トランジスタ10c、10dに対応して、ダイオード11c、12c;11d、12d、pnpトランジスタ15c、15d及びダイオード16c、16dが夫々配設される。
【0051】
また、このバイアス回路においては、第1の実施の形態に係る図1図示の回路と同様、制御端子7を有する第1電流増幅器が、npnトランジスタ17、pnダイオード18、抵抗19によって構成される。第1電流増幅器の出力電流I1は、npnトランジスタ22c、22dで構成される差動切替えスイッチによって、2つの第2電流増幅器56c(トランジスタ15c及びダイオード16cで構成される)及び56d(トランジスタ15d及びダイオード16dで構成される)のどちらかに入力される。一方の第2電流増幅器56cの出力電流I2c及び他方の第2電流増幅器56dの出力電流I2dは、第1バイアス回路部(トランジスタ10c及びダイオード11c、12cで構成される)及び第2バイアス回路部(トランジスタ10d及びダイオード11d、12dで構成される)に夫々供給される。各バイアス回路部からのバイアス電流IBc、IBdは高周波回路50a、50bに夫々供給される。
【0052】
更に、このバイアス回路においては、トランジスタ22c、22dで構成される差動切替えスイッチに、インバータ23、24を介して入力端子25が接続される。インバータ23、24を介して差動切替えスイッチに供給する切替え信号を生成するため、入力端子25には周波数バンドの切替え信号が入力される。
【0053】
図11図示のバイアス回路によれば、第1電流増幅器(トランジスタ17等で構成される)の出力端子を、差動スイッチ22c、22dを介して、複数の第2電流増幅器56c、56dに選択的に接続することができる。差動スイッチは、バイポーラトランジスタで構成できるため、バイポーラトランジスタプロセスのみで容易にバンド切替え機能を内蔵した高周波電力増幅器のバイアス回路が提供可能となる。
【0054】
[第9の実施の形態]
上述の第1及至第8の実施の形態においては、高周波電力増幅器のバイアス電流が第1電流増幅器の入力端子に印加される制御電流及び制御電圧によって可変となる。しかし、携帯電話では、高周波電力増幅器の電力利得が一定となるようにシステムを設計する場合も多い。このような場合は、温度変化等によらずに高周波電力増幅器のバイアス電流が一定に保たれることが望まれる。図12はかかる観点に基づく本発明の第9の実施の形態に係るバイアス回路を示す回路構成図である。即ち、図12図示の如く、このバイアス回路においては、図1図示の回路のnpnトランジスタ17、pnダイオード18及び抵抗19で構成された第1電流増幅器に代え、npnトランジスタ26、npnトランジスタ27、抵抗28及び抵抗29からなる回路が配設される。
【0055】
図12図示の回路において、制御端子7の電圧を増してnpnトランジスタ26、27が活性状態になると、npnトランジスタ26のコレクタ電流はおよそVbe/R28となる。ここで、Vbeはnpnトランジスタ27のベース・エミッタ間電圧で、R28は抵抗28の抵抗値である。Vbeは通常0.6V程度で、制御端子電流Iconに対してVbe=kT/q×ln(Icon/Isat)となる関係がある。ここで、Isatはnpnトランジスタ27の飽和コレクタ電流である。この関係より、例えば、Iconが2倍変化してもVbeの変化は18mV程度で、npnトランジスタ26の出力電流は一定になると見なせる。例えば、R28を1.5kΩとすれば、npnトランジスタ26のコレクタ電流I1は0.4mAと一定である。
【0056】
npnトランジスタ26のコレクタ電流I1は、第1の実施の形態と同様にpnダイオード16及びpnpトランジスタ15からなる第2電流増幅器によって増幅される。この増幅された電流I2は、高周波回路50のトランジスタ1のベース端子4にベース電流IBを供給するエミッタフォロワトランジスタ10のベース電位を決定する2つのpnダイオード11、12に流れる。従って、高周波トランジスタ1のバイアス電流は常に一定となり、電力利得の変動も生じなくなる。
【0057】
図12の回路において、抵抗29の値を10kΩ、制御端子7の電圧Vconを2Vとすれば、npnトランジスタ27のコレクタ端子電圧はおよそ1.2Vとなるので、制御端子7に供給される制御電流Iconは80μAである。従って、トランジスタ26、27及び抵抗28、29からなる回路は、第1の実施の形態と同様に電流増幅作用を有する一方、その出力電流が一定になる定電流源としての作用も有する。Vconを0VまたはIconを0Aにすると、トランジスタ26、27及び抵抗28、29からなる回路の出力電流I1はゼロとなるので、制御端子7に印加する電圧または電流によって高周波トランジスタ1のON/OFFが制御される。
【0058】
[第10の実施の形態]
図13は図2(a)図示のベースバイアス回路60として使用される本発明の第10の実施の形態に係るバイアス回路を示す回路構成図である。図13図示の如く、このバイアス回路は、高周波回路50のトランジスタ1のベース端子4にベース電流IBを供給するnpnエミッタフォロワトランジスタ10を有する。エミッタフォロワトランジスタ10のベース電位を決定するため、2つのpnダイオード11、12が直列接続される。2つのpnダイオード11、12の電流を供給するようにエミッタ接地のpnpトランジスタ15が配設される。pnpトランジスタ15のベース電位を決定するようにpnダイオード16が配設される。pnダイオード16の電流を供給するようにエミッタ接地のnpnトランジスタ17が配設される。
【0059】
npnトランジスタ17のエミッタは、抵抗38を介して接地され、npnトランジスタ17のベースが制御端子7となる。抵抗38は、負帰還抵抗として配設され、制御電圧がnpnトランジスタ17のオン電圧を上回ると、npnトランジスタ17を中心とする第1電流増幅器の出力電流が、制御電圧に対して線形に変化する。
【0060】
npnエミッタフォロワトランジスタ10のコレクタ、pnpトランジスタ15のエミッタ及びpnダイオード16のアノードは、リチウムイオン電池9の正電極に接続される。図13においては、pnダイオード11、12、16は、トランジスタのベースとコレクタを短絡して構成されたベース・エミッタ間接合を用いて形成される。
【0061】
後述するように、エミッタフォロワトランジスタ10と直列接続された2つのpnダイオード11、12とは、高周波トランジスタ1と共にGaAs−HBTチップ上にモノリシックに集積化されていることが好ましい。その他の回路要素は、GaAs−HBTチップで構成してもよいしSiチップで構成してもよい。
【0062】
即ち、pnpトランジスタ15、pnダイオード16及びnpnトランジスタ17の全てを前記GaAs−HBTチップにモノリシックに集積化することが可能である。また、npnトランジスタ17を前記GaAs−HBTチップにモノリシックに集積化し、pnpトランジスタ15とpnダイオード16とをSiチップで構成することも可能である。第10及び第11の実施の形態の説明では、pnpトランジスタ15、pnダイオード16及びnpnトランジスタ17をSiチップで構成する場合について述べる。
【0063】
図13図示のバイアス回路においては、先ず、制御端子7からpnダイオード18に電流Iconが供給される。npnトランジスタ17の電流利得をβnとすると、npnトランジスタ17のコレクタ電流I1は、I1=βn×Iconとなる。即ち、npnトランジスタ17は利得がβnの第1電流増幅器を構成する。
【0064】
同様に、pnダイオード16とpnpトランジスタ15の飽和電流の比をn2とすると、pnpトランジスタ15のコレクタ電流I2は、I2=n2×I1となる。即ち、pnダイオード16とpnpトランジスタ15とは、利得がn2の第2電流増幅器を構成する。pnpトランジスタ15のエミッタ電位は、リチウムイオン電池の正電源に直結しており、4.3Vから3.0V程度の間で変動する。これに対して、コレクタ電位は、エミッタフォロワトランジスタ10のベース電位であるので、最大2.6V程度である。即ち、pnpトランジスタ15のコレクタ・エミッタ間電圧は最大でも−0.4V程度でトランジスタは飽和せず定電流源として動作する。
【0065】
ここで、βnを100、n2を10となるように選ぶとI2=n2×βn×IconであるからI2=1000×Iconとなる。よって、I2=4mAの時に、制御端子の電流Iconは、4μAとなる。抵抗38を300Ωとすると、抵抗38の両端の電位差は、1.2Vである。Siのpnダイオードのオン電圧は約0.6Vなので、制御電圧は1.8V程度になる。また、Siのpnダイオードのオン電圧の温度係数はおよそ−2mV/℃なので、−30℃から+100℃までの環境温度の変化があっても、制御電流の変動は高々±10%程度に抑制できる。
【0066】
図14は図13図示のバイアス回路における、制御電圧Vconと電流I2との関係を示すグラフである。図14図示の如く、制御電圧Vconがpnダイオードのオン電圧よりも大きくなると、GaAs−HBTのバイアス回路へ供給される電流I2は、抵抗38の値に逆比例した傾きを持って線形に増加する。従って、パワーアンプのバイアス点を精度よく決定できる。−30℃から+100℃までの温度変化を想定すると、1.8Vの制御電圧では、電流I2の変化は、3.6mAから4.5mAになる。
【0067】
このような特性は、制御端子7の制御電圧Vconと第1電流増幅器となるnpnトランジスタ17の出力電流との間に線形な関係を保持する手段を配設することにより得られる。このため、第10の実施の形態においては、この手段として、負帰還抵抗38の抵抗値を、所定の電位降下を得るため、100Ω〜10KΩに設定する。
【0068】
高周波増幅を行うGaAs−HBT1の消費電力は大きく発熱も著しい。しかし、エミッタフォロワトランジスタ10と2つのpnダイオード11、12とは、GaAs−HBT1とモノリシックに集積し接合温度をそろえておくことができる。この場合、高周波増幅を行うGaAs−HBT1のエミッタ電流を、第2電流増幅器の出力電流I2に比例するように制御することができる。
【0069】
図13図示のバイアス回路によれば、制御電流を10μA以下に、制御電圧を2V以下にすることが可能で、DAC等による高精度な電力増幅器の利得制御が行えるようになる。また、温度変化に対しても安定なエミッタ電流の設定が可能で、CDMA方式等のように開ループ制御で高精度に利得設定を行う方式にも適用可能となる。
【0070】
[第11の実施の形態]
図15は図2(a)図示のベースバイアス回路60として使用される本発明の第11の実施の形態に係るバイアス回路を示す回路構成図である。図15図示の如く、このバイアス回路は、図13図示の回路の構成に加えて、第1電流増幅器と入力端子7との間に演算増幅器39が配設される。演算増幅器39の正入力及び負入力には、制御端子7とnpnトランジスタ17のエミッタとが夫々接続される。演算増幅器39の出力はnpnトランジスタ17のベースに接続される。
【0071】
図15図示の回路においては、npnトランジスタ17のエミッタ電位と制御Vconとの差がゼロとなるように、演算増幅器39によりnpnトランジスタ17のベース電位が調整される。この結果、抵抗38の値をREEとすると、電流I2は温度に関係なく常にI2=Vcon/REEの関係を満たすようになる。
【0072】
図16は図15図示のバイアス回路における、制御電圧Vconと電流I2との関係を示すグラフである。図16図示の如く、温度を−30℃から+100℃に変化させても、制御電圧VconとGaAs−HBTのバイアス回路へ供給する電流I2との関係は一定に維持される。
【0073】
上述の図13図示の図示のバイアス回路(第10の実施の形態)によれば、制御電圧及び制御電流を従来に比べ著しく低減できるが、反面、図14に示すような広範囲の温度変化に対し、完全に、電流I2と制御電圧Vconとの関係を一定にすることができない可能性がある。このため、広帯域CDMAに適用する場合等のように、バイアス点を非常に高精度に制御する用途には改良の余地がある。図15図示のバイアス回路は、このようにバイアス点を非常に高精度に制御する場合に好適となる。
【0074】
上述の第1乃至第11の実施の形態の他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
【0075】
【発明の効果】
以上説明したように、本発明によれば、低制御電流及び低制御電圧で高精度な利得制御が可能な高周波電力増幅器及びその制御回路を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るバイアス回路を示す回路構成図。
【図2】(a)、(b)は本発明の実施の形態に係る高周波電力増幅器及び従来の高周波電力増幅器を夫々示す回路構成図。
【図3】閉ループ制御において使用される従来のバイアス回路を示す回路構成図。
【図4】閉ループ制御において使用される従来の別のバイアス回路を示す回路構成図。
【図5】本発明の第2の実施の形態に係るバイアス回路を示す回路構成図。
【図6】本発明の第3の実施の形態に係るバイアス回路を示す回路構成図。
【図7】本発明の第4の実施の形態に係るバイアス回路を示す回路構成図。
【図8】本発明の第5の実施の形態に係るバイアス回路を示す回路構成図。
【図9】本発明の第6の実施の形態に係るバイアス回路を示す回路構成図。
【図10】本発明の第7の実施の形態に係る高周波回路及びバイアス回路を示す回路構成図。
【図11】本発明の第8の実施の形態に係るバイアス回路を示す回路構成図。
【図12】本発明の第9の実施の形態に係るバイアス回路を示す回路構成図。
【図13】本発明の第10の実施の形態に係るバイアス回路を示す回路構成図。
【図14】図13図示のバイアス回路における制御電圧Vconと電流I2との関係を示すグラフ。
【図15】本発明の第11の実施の形態に係るバイアス回路を示す回路構成図。
【図16】図15図示のバイアス回路における制御電圧Vconと電流I2との関係を示すグラフ。
【符号の説明】
1、1a、1b…npnトランジスタ
2…入力整合回路
3…出力整合回路
4…ベース端子
5…高周波遮断チョークコイル
6、60…バイアス回路
7、7a〜7h…制御端子
8…制御回路
9…リチウムイオン電池
50、50a、50b、52…高周波回路
10、10a〜10d…npnエミッタフォロワトランジスタ
15、15a〜15d…第2電流増幅器用pnpトランジスタ
17、17a〜17h、26…第1電流増幅器用npnトランジスタ
20…カレントミラー回路用npnトランジスタ
21…段間整合回路
22c、22d…差動切替えスイッチ用npnトランジスタ
25…切替え信号用入力端子
38…抵抗
39…演算増幅器

Claims (18)

  1. エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
    npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
    前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
    前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
    を具備し、前記第1電流増幅器への入力電流に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする高周波電力増幅器。
  2. 前記第2電流増幅器はエミッタ接地のpnpトランジスタからなる第3トランジスタを具備し、前記第1電流増幅器はエミッタ接地のnpnトランジスタからなる第4トランジスタを具備することを特徴とする請求項1に記載の高周波電力増幅器。
  3. 前記第2電流増幅器は前記第3トランジスタのベース電位を決定するように前記第2及び第1電流増幅器間に配設されたダイオードを具備し、前記第1電流増幅器は前記第4トランジスタのベース電位を決定するように前記第1電流増幅器の入力端子に接続されたダイオードを具備することを特徴とする請求項2に記載の高周波電力増幅器。
  4. 前記第1及び第2トランジスタは、GaAsヘテロ接合バイポーラトランジスタからなることを特徴とする請求項1乃至3のいずれかに記載の高周波電力増幅器。
  5. 前記第1電流増幅器の入力電流を制御する電圧は、前記第2トランジスタのベース電圧よりも低いことを特徴とする請求項1乃至4のいずれかに記載の高周波電力増幅器。
  6. 前記第1電流増幅器の入力電流を制御する電圧は、2.5V以下であることを特徴とする請求項4に記載の高周波電力増幅器。
  7. 前記第1電流増幅器は複数の入力端子と単一の出力端子とを有し、前記単一の出力端子からの出力電流は、前記複数の入力端子からの複数の入力電流の和に比例することを特徴とする請求項1乃至6のいずれかに記載の高周波電力増幅器。
  8. 前記第1電流増幅器は所望のビット数に対応する複数の入力端子を有すると共に、前記複数の入力端子にパラレルに入力したデジタル信号をアナログ信号に変換した電流を出力する機能を有し、前記デジタル信号によって前記第1ランジスタのベースにおけるバイアスレベルが制御されることを特徴とする請求項7に記載の高周波電力増幅器。
  9. 前記高周波回路と前記エミッタフォロワ回路と前記第2電流増幅器とを具備する回路部が周波数バンドに応じて複数配設される一方、前記複数の回路部に対して単一の前記第1電流増幅器が配設され、前記周波数バンドに応じて前記第1電流増幅器を前記複数の回路部の1つに選択的に接続するため、前記第1電流増幅器と前記複数の回路部との間にスイッチが配設されることを特徴とする請求項1乃至8のいずれかに記載の高周波電力増幅器。
  10. 前記第1電流増幅器は、前記第1電流増幅器への入力電流または入力電圧に基づいて一定電流を出力する機能を有することを特徴とする請求項1乃至9のいずれかに記載の高周波電力増幅器。
  11. エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
    npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
    前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
    前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
    前記第1電流増幅器への入力電圧と前記第1電流増幅器の出力電流との間に線形な関係を保持する保持手段と、
    を具備し、前記第1電流増幅器への入力電圧に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする高周波電力増幅器。
  12. 前記第2電流増幅器はエミッタ接地のpnpトランジスタからなる第3トランジスタを具備し、前記第1電流増幅器はエミッタに負帰還抵抗が接続されたnpnトランジスタからなる第4トランジスタを具備することを特徴とする請求項11に記載の高周波電力増幅器。
  13. 前記第1電流増幅器は、前記第4トランジスタのエミッタ電位が前記第1電流増幅器への前記入力電圧と等しくなるように負帰還ループを有することを特徴とする請求項12に記載の高周波電力増幅器。
  14. 前記第4トランジスタのベースは前記第1電流増幅器への前記入力電圧を制御電圧として印加する制御端子に接続されることを特徴とする請求項12に記載の高周波電力増幅器。
  15. 前記制御端子と前記第4トランジスタとの間に配設された演算増幅器を更に具備し、前記演算増幅器の正入力及び負入力には、前記制御端子と前記第4トランジスタのエミッタとが夫々接続され、前記演算増幅器の出力は前記第4トランジスタのベースに接続されることを特徴とする請求項14に記載の高周波電力増幅器。
  16. 前記第4トランジスタのエミッタは前記負帰還抵抗を介して接地され、前記負帰還抵抗は100Ω〜10KΩの抵抗値を有することを特徴とする請求項11乃至15のいずれかに記載の高周波電力増幅器。
  17. 前記第1及び第2トランジスタは、GaAsヘテロ接合バイポーラトランジスタからなることを特徴とする請求項11乃至16のいずれかに記載の高周波電力増幅器。
  18. エミッタ接地のnpnバイポーラトランジスタからなる高周波の増幅を行うための第1トランジスタを具備する高周波回路と、
    npnバイポーラトランジスタからなる第2トランジスタを具備すると共に、前記第1トランジスタのベース端子に直流電流を出力するための出力端子を具備するエミッタフォロワ回路と、
    を具備する高周波電力増幅器のための制御回路であって、
    前記第2トランジスタのベース端子に接続された出力端子を具備する第2電流増幅器と、
    前記第2電流増幅器の入力端子に接続された出力端子を具備する第1電流増幅器と、
    を具備し、前記第1電流増幅器への入力電流に基づいて、前記第2電流増幅器及び前記エミッタフォロワ回路を介して前記第1トランジスタのベースにおけるバイアスレベルが制御されることを特徴とする高周波電力増幅器の制御回路。
JP2002057761A 2001-03-05 2002-03-04 高周波電力増幅器及びその制御回路 Expired - Fee Related JP3751894B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057761A JP3751894B2 (ja) 2001-03-05 2002-03-04 高周波電力増幅器及びその制御回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-60423 2001-03-05
JP2001060423 2001-03-05
JP2002057761A JP3751894B2 (ja) 2001-03-05 2002-03-04 高周波電力増幅器及びその制御回路

Publications (2)

Publication Number Publication Date
JP2002335135A JP2002335135A (ja) 2002-11-22
JP3751894B2 true JP3751894B2 (ja) 2006-03-01

Family

ID=26610640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057761A Expired - Fee Related JP3751894B2 (ja) 2001-03-05 2002-03-04 高周波電力増幅器及びその制御回路

Country Status (1)

Country Link
JP (1) JP3751894B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331639B2 (en) 2012-11-30 2016-05-03 Murata Manufacturing Co., Ltd. Power amplification circuit and power amplification module

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100477499C (zh) * 2002-12-19 2009-04-08 Nxp股份有限公司 具有偏压控制的功率放大器
US6956437B2 (en) * 2003-12-23 2005-10-18 Agere Systems Inc. Metal-oxide-semiconductor device having integrated bias circuit
JP4672320B2 (ja) * 2004-09-24 2011-04-20 三菱電機株式会社 高周波増幅装置
DE102005008372B4 (de) * 2005-02-23 2016-08-18 Intel Deutschland Gmbh Steuerbarer Verstärker und dessen Verwendung
DE102005035150B4 (de) * 2005-07-27 2010-07-08 Infineon Technologies Ag Verstärkerschaltung und Verfahren zum Verstärken eines zu verstärkenden Signals
JP2007142514A (ja) * 2005-11-15 2007-06-07 Nec Electronics Corp 可変利得電力増幅器
JP5694035B2 (ja) * 2011-03-31 2015-04-01 富士通株式会社 電力増幅器および通信装置
JP5958774B2 (ja) * 2014-02-04 2016-08-02 株式会社村田製作所 電力増幅モジュール
WO2020080332A1 (ja) 2018-10-17 2020-04-23 株式会社村田製作所 電力増幅回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331639B2 (en) 2012-11-30 2016-05-03 Murata Manufacturing Co., Ltd. Power amplification circuit and power amplification module

Also Published As

Publication number Publication date
JP2002335135A (ja) 2002-11-22

Similar Documents

Publication Publication Date Title
US6753734B2 (en) Multi-mode amplifier bias circuit
KR101451455B1 (ko) 선형 및 포화 모드에서의 동작을 위한 멀티모드 증폭기
JP4330549B2 (ja) 高周波電力増幅装置
US6236266B1 (en) Bias circuit and bias supply method for a multistage power amplifier
US6559717B1 (en) Method and/or architecture for implementing a variable gain amplifier control
US9344044B2 (en) High-frequency power amplifier
JP2007116694A (ja) 高効率混合モード電力増幅器
JP3631060B2 (ja) 線形増幅器及びこれを用いた無線通信装置
US5844443A (en) Linear high-frequency amplifier with high input impedance and high power efficiency
US7038546B2 (en) High-power amplification circuit for amplifying a high frequency signal
US5889434A (en) Microwave power amplifier
JP3751894B2 (ja) 高周波電力増幅器及びその制御回路
US6897732B2 (en) Amplifier
JP2007067820A (ja) 高周波電力増幅器
US6529065B2 (en) Circuit configuration for controlling the operating point of a power amplifier
JPH05308233A (ja) 高周波増幅装置
US5973543A (en) Bias circuit for bipolar transistor
CN214380828U (zh) 功率放大***
EP0156411A1 (en) Darlington transistor arrangement
JP2004080356A (ja) バイアス回路およびそれを用いた電力増幅装置
JP2002330030A (ja) 高周波集積回路
JP2006067379A (ja) 高周波電力増幅器
US6265908B1 (en) Low voltage balun circuit
JP2002271146A (ja) 高周波電力増幅器、高周波電力出力方法
US6369638B2 (en) Power drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees