JP3749079B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP3749079B2
JP3749079B2 JP2000107788A JP2000107788A JP3749079B2 JP 3749079 B2 JP3749079 B2 JP 3749079B2 JP 2000107788 A JP2000107788 A JP 2000107788A JP 2000107788 A JP2000107788 A JP 2000107788A JP 3749079 B2 JP3749079 B2 JP 3749079B2
Authority
JP
Japan
Prior art keywords
electrode
solder
thick
semiconductor substrate
thick line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000107788A
Other languages
Japanese (ja)
Other versions
JP2001291879A (en
Inventor
彰 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000107788A priority Critical patent/JP3749079B2/en
Publication of JP2001291879A publication Critical patent/JP2001291879A/en
Application granted granted Critical
Publication of JP3749079B2 publication Critical patent/JP3749079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池セルに関し、特に太陽電池セルの電極パターンの改良に関する。
【0002】
【従来の技術】
従来から、太陽の光エネルギーを電気エネルギーに変換する太陽電池セルがある。この太陽電池セルの断面図を図10に示す。従来の太陽電池セル1は、例えばシリコン等を材質としたp型半導体基板2に、n型となるドパーントが拡散されてn+層3としてpn接合が形成される。そして、スクリーン印刷法、蒸着法、スパッタ法等を用いて半導体基板の表面9に電極5、裏面10に電極7を形成して構成されていた。太陽電池セル1の変換効率を高めるために、受光面側である表面9に凹凸を形成したり、図10に示したように反射防止膜4を形成する場合もある。
【0003】
この太陽電池セル1を複数個接続するためには、リード線等の配線材料を用いて、表裏両電極5,7に半田付けをする。配線時に半田付けを容易に行うためには、予め太陽電池セル1の表面電極5及び裏面電極7の表面に、それぞれ半田層6,8を形成しておくと容易に半田付けを行うことができる。このような半田層を太陽電池セルの表裏両電極に形成する方法としては、電極が形成された半導体基板を半田槽に浸漬して引き上げる半田ディップ法が最も容易であり、一般的にこの方法が採用されている。
【0004】
図7は、従来の太陽電池セルの表面を示す図である。図8は、従来の太陽電池セルの裏面を示す図である。従来の太陽電池セルには、図7に示すように、複数の太陽電池セルを接続するための配線部である太線電極部11と、太線電極部11と交差する複数の細線電極部12と、からなる短冊状の電極が、表面電極として受光面側に設けられる場合が多い。細線電極部12は、太線電極部11に電流を集めるためのものである。各電極部は、入射光を多く取り込むために、出来るだけ電極面積を小さくして、電極によって半導体基板の入射光を遮らないように設計されている。
【0005】
裏面電極は、表面電極と同様に太線電極部13と、太線電極部13と交差する複数の細線電極部14と、からなる短冊状の電極であるが、電極が入射光を遮ることを考慮する必要が無い。そのため、発生した電気を効率よく集めるために、出来るだけ抵抗を低減できるように構成されている。すなわち、図8(A)に示すように、太線電極部13に電流を集めるための細線電極部14は、表面電極と比較して、ピッチが狭く本数が多くなるように設計されている。
【0006】
また、裏面電極は、電気抵抗をさらに低減して太陽電池セルの出力を向上するために、図8(B)に示した細線電極部14bのように、格子状に形成して使用することもある。
【0007】
さらに、表面電極の太線電極部11及び裏面電極の太線電極部13は、次工程での配線を容易にするために、表面側と裏面側で対称的(上下逆方向)に形成されている。つまり、太陽電池セルの透視図である図11(A)に示すように、太線電極部11と太線電極部13とは、それぞれ設けられた面の端部近傍に位置するので、矢印A方向からの正面図である図11(B)に示すように、面21において対角線の端部近傍に位置することとなる。よって、図11(C)に示すように、配線時に接続するリード線の長さが短くできる利点がある。また、太陽電池セルの表面電極11と、別の太陽電池セルの裏面電極13とを、直接半田付けする方法にも都合がよい。なお、図11において、理解しやすいように太線電極部11,13と細線電極部12,14との厚みを変えて図示しているが、実際は、同じ厚みである。以降の説明に用いる図面においても同様である。
【0008】
【発明が解決しようとする課題】
図12は、半田槽に浸漬した太陽電池セルを引き上げる様子を示す正面図及び側面図である。図12に示すように、裏面電極の太線電極部13が上になるように、太陽電池セルを半田槽18に浸漬し、引上げて半田ディップすると、従来の太陽電池セルでは、図9(A)に示すように裏面電極の細線電極部14に半田玉15が発生したり、太線電極部13に半田溜り16による凹凸が発生する。そして、太陽電池セルをガラス基板等に接着するラミネート工程で、基板の割れ等による太陽電池セルが破損するという問題があった。
【0009】
また、作製した太陽電池セルの必要な面積のみを残して不要な部分をカットするダイシング工程においても、裏面の半田玉等による突起が原因で基板がステージにうまく吸着固定できなかった。そのため、ダイシングがうまく出来ない、または太陽電池セルの割れ等による破損が発生するという問題があった。
【0010】
この原因は、太線電極部に溜まった溶融半田が重力により太線電極部と交差する細線電極部に流れ出し徐々に冷却されるためである。このため、細線電極部に流れ出した半田が途中で半田玉になる。また、太線電極部で半田が流れるのを妨害され、細線電極部に流れなかった溶融半田は太線電極部で固まるため、凹凸の大きな半田溜りとなる。
【0011】
裏面10側の太線電極部13が下方向になるようにして、半田槽に浸漬した太陽電池セルを引き上げると、太線電極部13が下側になるため、細線電極部14に半田が流れだすことがなくなり、上記のような問題は発生しない。しかしながら、図11に示したように、表面電極と裏面電極とは、半導体基板の表面9と裏面10とに対称的に形成されている。そのため、裏面10側の太線電極部13が下方向になるようにして、半田槽に浸漬した太陽電池セルを引き上げると、表面9側の太線電極部11が上方向になるため、表面電極において、同様の問題が発生する。
【0012】
また、裏面電極における電気抵抗を低減するために、格子状に裏面電極を形成した場合は、図9(B)に示すように太線部と平行になっている電極部で、半田が流れるのが妨害されるため、その部分で不要な凹凸である半田溜り17が発生する。
【0013】
半田玉や半田溜りを低減するために、半田ディップ時に太陽電池セルを半田槽から引上げる際の方法を工夫して、例えば太陽電池セルを傾けて引き上げるようにすることも出来る。半田ディップ工程は、装置を用いて自動的に行うが、上記のように太陽電池セルを半田槽に浸漬・引き上げするように装置を構成すると、装置の構造が複雑になる。また、上記のように太陽電池セルを半田槽に浸漬・引き上げすると、太陽電池セルの表面側の電極に、次工程での配線時に必要なだけの厚みの半田層が形成出来ないという問題点があった。
【0014】
この問題に対して、特許第2792640号公報には、バスバー部(太線電極部)とフィンガー部(細線電極部)との交差部分を幅狭に形成し、バスバー部の上辺から下辺に向かって屈曲して形成された構成、及び、バスバー部とフィンガー部との交差部分に除去部分を設けた構成が開示されている。この構成によって、バスバー部に付着した半田がフィンガー部に流れることが少なくなるため、フィンガー部に半田玉が形成されることが防止される。
【0015】
しかしながら、特許第2792640号公報に開示された構成を実施するためには、バスバー部とフィンガー部との交差部において、微細な加工を施す必要があり、製造コストが上昇する。
【0016】
本発明は上記の問題に鑑みて成されたものであり、その目的は、太陽電池セルの電極の半田層を形成する時に基板の割れ等破損の原因となる半田玉等の突起が発生しない太陽電池セルを低コストで提供することである。
【0017】
【課題を解決するための手段】
この発明は、上記の課題を解決するための手段として、以下の構成を備えている。
【0018】
(1) pn接合部を有する半導体基板の表面及び裏面に表面電極及び裏面電極を備えた太陽電池セルにおいて、
前記表面電極は、前記半導体基板の特定の辺近傍に、この特定の辺と平行に直線状の表面側太線電極が形成されるとともに、この表面側太線電極に対して直角に延出する複数の表面側細線電極が形成され、
前記裏面電極は前記半導体基板の特定の辺の対辺近傍に、前記表面側太線電極と平行に直線状の裏面側太線電極が形成されるとともに、この裏面側太線電極に対して鋭角または鈍角をなす方向に延出する複数の裏面側細線電極が形成されたことを特徴とする。
【0019】
この構成においては、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、この半導体基板を半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、表面電極には配線時に信頼性が高く、十分な強度の得られる半田層が形成でき、裏面電極には半田玉や溜り等の半田突起が発生せずに、均一な半田層を形成することができる。よって、ダイシング工程やラミネート工程時に太陽電池セルの割れ等の破損を防ぐことができる。
【0020】
(2) 前記裏面側細線電極の少なくともいずれかから延出する複数の裏面側細線電極が形成されたことを特徴とする。
【0021】
この構成においては、裏面側太線電極に対して鋭角または鈍角をなす方向に延出する複数の裏面側細線電極には、少なくともいずれかから延出する複数の裏面側細線電極が形成されている。したがって、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、表面電極には配線時に信頼性が高く、十分な強度の得られる半田層が形成でき、裏面電極では、太線電極から流れ出す半田が、斜めに形成された細線電極に保持されつつ、電極に沿って遅い速度で半田が流れて、急冷されないので裏面電極上に均一に半田層が形成されるので、半田玉や溜り等の半田突起が発生せずに、均一な半田層を形成することができる。
【0022】
(3) 前記裏面側細線極は、格子状または六角形状に形成されたことを特徴とする。
【0023】
この構成においては、太陽電池セルを構成する半導体基板の裏面側細線電極は、格子状または六角形状に形成されている。したがって、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、裏面細線電極が半田の流れを妨害することがなく、溶融半田が分散して流れるので、半田玉や半田溜まりが発生しない。
【0024】
(4) 前記裏面側細線極は前記裏面側太線電極の延出部が三角形状に形成されたことを特徴とする。
【0025】
この構成においては、太陽電池セルを構成する半導体基板の裏面側細線電極は、その延出部が三角形状に形成されている。したがって、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、このような形状であるため、太線電極の半田が細線電極部に容易に流れるので、太線電極に半田が溜まるのを抑制する効果があり、また、太線電極から流れ出す半田の量が多いため、細線電極部の途中で冷却されて半田玉になることを防止できる。
【0026】
(5) (1) 乃至 (4) のいずれかに記載の太陽電池セルの表面電極及び裏面電極に半田を被覆する太陽電池セルの製造方法であって、
前記表面電極の表面側太線電極を下側にし、前記裏面電極の裏面側電極を上側にして、前記半導体基板を半田に浸漬し、前記両太線電極に対して略垂直方向に引上げることにより半田被覆を施すことを特徴とする。
【0027】
この構成においては、太陽電池セルを製造するために、半導体基板に形成された少なくとも直線状の太線電極部によって構成された表面電極及び裏面電極に半田を被覆する半田被覆工程では、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、この半導体基板を半田槽に浸漬して、両太線電極に対して略垂直方向に引上げることにより半田被覆を施す。したがって、半田の被覆後に、表面電極及び裏面電極に半田玉や半田溜まり等の突起が発生することなく、均一な半田層を形成することができる。また、ダイシング工程やラミネート工程時に太陽電池セルの割れ等の破損を防ぐことができる。
【0028】
(6) (4) において、裏面電極は、複数種類の多角形状によって形成されたとすることができる。
【0029】
この構成においては、太陽電池セルは、少なくとも一部が複数種類の多角形状に形成された裏面電極を備えている。したがって、太陽電池セルを半田ディップを行った際に、裏面電極を流れ出した半田の分散、結合が繰り返され、半田の流れをよりスムーズにすることができ、半田玉や半田溜まり等の不具合の発生を防止することができる。
【発明の実施の形態】
本発明の実施形態について、以下に説明する。図1は、本発明の実施形態に係る太陽電池セルの表面電極の形状を示す図である。図2は、太陽電池セルの裏面電極の形状を示す図である。
【0030】
本発明の実施形態に係る太陽電池セルの断面形状は、従来の太陽電池セルの断面形状と同様である。ここで、図10を用いて、本発明の太陽電池セルの製造方法の概略を説明する。p型シリコン基板2に、n型となるリン等のドパーントを含んだ溶液を塗布後、約900℃で熱処理することにより拡散し、n+層3が形成される。n+層3は、POCl3 等による気相拡散法を用いてもよい。
【0031】
次に、太陽電池セルの表面の反射を低減するために、常圧CVD法またはプラズマCVD法によりSiO2 ,TiO2 ,SiN等からなる反射防止膜4を形成する。なお、n+層3と反射防止膜4を同時に形成してもよい。
【0032】
そして、スクリーン印刷法により銀ペーストを半導体基板上に印刷して、この銀ペーストを焼成することにより、マイナス電極である表面電極5、プラス電極である裏面電極7を形成する。電極の形成では、上記銀ペーストに限るものではなく、他の導電性ペーストを用いても良いし、蒸着やメッキ等によって電極を形成しても良い。
【0033】
また、従来技術で説明したのと同様に、半導体基板を半田槽に浸漬・引き上げする半田ディップ法により、複数の太陽電池セル1を接続するための半田層6,8を表面電極5及び裏面電極7の表面に形成する。さらに、半導体基板の不要な部分をカットすることにより所望の太陽電池セルが完成する。
【0034】
図1に示したように、本発明の太陽電池セルの表面電極は、従来の太陽電池セルの表面電極の形状と同様である。すなわち、複数の太陽電池セルを接続するための配線部である直線状の太線電極部11と、太線電極部11と交差する複数の細線電極部12とからなる短冊状の電極が表面の受光面側に設けられている。細線電極部12は、太線電極部11に電流を集めるため使用される。また、入射光を多く取り込むために、出来るだけ電極面積を小さくして、電極によって半導体基板の入射光を遮らないようにされている。
【0035】
陽電池セルにおける裏面電極の形状は、表面電極の太線電極部11に対して所定の角度を有して形成することが可能である。つまり、図2(A)に示すように、半導体基板の裏面中心線に対称に、表面側の太線電極部11に対して所定の角度に傾斜して設けられた複数の細線電極部14cが、所定のピッチで半導体基板の表面に形成されている。また、細線電極部14cと交差して、細線電極部14cから延出して、且つ太線電極部11に対して傾斜して設けられた複数の細線電極部14dが所定のピッチで半導体基板の表面に形成されている。
【0036】
このような形状に裏面電極を形成することにより、太線電極部11を下側にして半田ディップした際に、表面電極の太線電極部11には半田付けを容易にするのに必要な半田層が形成できる。また、裏面電極には半田玉等の突起が発生しなくなる。これは電極が垂直方向に形成された場合より遅い速度で、電極に沿って半田が流れるため、半田が急冷されずに電極上に均一に半田層が形成されるためである。
【0037】
このように半田玉等の突起が形成されないため、作製した太陽電池セルの必要な面積のみを残して不要な部分をカットするダイシング工程において、半導体基板のステージへの吸着不良や割れ等が発生しなくなる。また、それだけでなく、太陽電池セルをガラス基板等に接着するラミネート工程においての割れ等も発生しなくなる。
【0038】
なお、図2に示した形態では、太線電極部を設けていないが、この場合複数の太陽電池セルは、表面電極の太線電極部11と細線電極部14とをリード線などを用いて接続する。
【0039】
図2(B)は、図2(A)とは異なる形状の裏面電極である。すなわち、太陽電池セルの表面9側の直線状の太線電極部11に対して、所定の角度に傾斜して設けられた複数の細線電極部14eが、所定のピッチで半導体基板の表面に形成されている。また、細線電極部14eと交差して、細線電極部14eから延出し、且つ太線電極部11に対して傾斜して設けられた複数の細線電極部14fが、所定のピッチで半導体基板の表面に形成されている。このような形状の裏面電極においても、図2(A)に示した形状の裏面電極と同様な効果が得られる。
【0040】
図3は、太陽電池セルの裏面電極における別の形状を示す図である。図3(A)に示した裏面電極は、表面電極の直線状の太線電極部11に対して、45度に傾斜して形成された複数の細線電極部14gと、135度に傾斜して形成された複数の細線電極部14hとが、交差して格子状に形成されている。そのため、太陽電池セルの半田ディップを行った際に、各細線電極部14g,14hが半田の流れを妨害することがない。また、溶融半田が分散して流れるので、半田玉や半田溜まりが発生しない。なお、格子状に形成した裏面電極の交差角度は、45度、135度に限るものではなく、太線電極部11と水平に形成されなければ良い。
【0041】
図3(B)に示した裏面電極は、六角形が複数個連なって形成された細線電極部14iによって構成される。つまり、細線電極部14iは、直線状の太線電極部11に対して略垂直に形成され部分と、太線電極部11に対して所定の角度で傾斜して形成された部分とからなる。そのため、太陽電池セルの半田ディップを行った際に、流れ出した半田の分散、結合が繰り返され、半田の流れをよりスムーズにすることができ、半田玉や半田溜まり等の突起が発生しない。
【0042】
次に、細線電極部と太線電極部とを設けた、本願発明実施形態に係る裏面電極について説明する。図4は、図2に示した裏面電極に直線状の太線電極部を設けた形状を示す図である。図4(A)に示すように、半導体基板2の裏面側において長手方向の端部近傍に太線電極部13を設け、細線電極部14c,14dの端部と太線電極部13とを接続している。なお、細線電極部14c,14dの形状は、図2(A)に基づいて説明した通りである。このように、半導体基板2の裏面10に直線状の太線電極部13を形成することにより、次工程での配線を容易に行うことができる。また、太線電極部13を上側にして太陽電池セルの半田ディップを行った際に、太線電極部13に付着した溶融半田が流れ出すにも係わらず半田玉が発生しない。これは、裏面電極の太線電極部13から流れ出す半田が、斜めに形成された細線電極部14c,14dに保持されつつ、電極に沿って遅い速度で半田が流れるため、急冷されないので裏面電極上に均一に半田層が形成されるためである。
【0043】
図4(B)は、図2(B)に示した裏面電極に太線電極部を設けた形状を示す図である。細線電極部14e,14fの形状は、図2(B)に基づいて説明した通りである。図4(A)と同様に、半導体基板の裏面10側において長手方向の端部近傍に直線状の太線電極部13を設け、細線電極部14e,14fの端部と太線電極部13とを接続している。このような形状の裏面電極においても、図4(A)に示した形状の裏面電極と同様の効果が得られる。
【0044】
次に、さらに異なる形状の裏面電極を説明する。図5は、太線電極部に対して所定の角度で傾斜した細線電極部と、太線電極部に対して略垂直に形成された細線電極部と、を備えた裏面電極の形状を示す図である。図5(A)に示した裏面電極においては、直線状の太線電極部13の長手方向の辺と、太線電極部13に対して所定の角度で傾斜した細線電極部14jと、によって、三角形状部14mが形成されている。また、三角形状部14mの頂点から細線電極部14kが太線電極部13と略垂直方向に延出している。このような形状であるため、半導体基板2を太線電極部13を上にして半田ディップした際に、太線電極部13の半田が細線電極部14j,14kに容易に流れることができ、太線電極部13に半田が溜まるのを抑制する効果がある。また、太線電極部13から流れ出す半田の量が多いため、細線電極部14j,14kの途中で冷却されて半田玉になることがない。
【0045】
図5(B)に示した裏面電極においては、図5(A)に示した裏面電極において形成した三角形状部14mの内部にも電極を形成して、略直線状の太線電極部13bとする。このような形状にすることで、細線電極部14kにおいて、半田玉は発生しない。
【0046】
次に、さらに異なる形状の裏面電極を説明する。図6は、図3に示した裏面電極に太線電極部を設けた形状を示す図である。図6(A)に示すように半導体基板の裏面側において長手方向の端部近傍に直線状の太線電極部13を設け、細線電極部14g,14hの端部と太線電極部13とを接続している。なお、細線電極部14g,14hの形状は、図3(A)に基づいて説明した通りである。このように半導体基板2の裏面10に太線電極部13を形成することにより、次工程での配線を容易に行うことができる。また、半導体基板2を太線電極部13を上にして半田ディップを行った際に、表面電極の太線電極部13に付着した溶融半田が流れ出すにも係わらず半田玉が発生しない。さらに、太線電極部13に対して、格子状のパターンが45度に傾けて形成されているので、半田の流れを妨害することがなく、且つ、流れた半田が分散されるので半田玉が発生しない。
【0047】
図6(B)は、図3(B)に示した裏面電極に太線電極部を設けた形状を示す図である。細線電極部14iの形状は、図3(B)に基づいて説明した通りである。図6(A)と同様に、半導体基板2の裏面10側において長手方向の端部近傍に直線状の太線電極部13を設け、六角形状の細線電極部14iの端部と太線電極部13とを接続した形状である。このような形状の裏面電極においても、流れ出した半田の分散、結合が繰り返され、半田の流れをよりスムーズにすることができ、図6(A)に示した形状の裏面電極と同様な効果が得られる。
【0048】
ここで、表面電極の細線電極部12を直線状の太線電極部11に対して所定の角度に傾斜して形成した場合には、表面電極上に半田が滑らかに流れる効果がある。上記のように表面電極の細線電極部12を形成すると、電流の流れる経路が長くなるため、電流経路において若干抵抗が増加し、光電変換効率のロスが生じる。しかし、表面電極上を半田が滑らかに流れるため、表面電極上に半田による凹凸等の無い見栄えの良い太陽電池セルを作製することができる。
【0049】
なお、本実施例では代表的な裏面電極の形状について図面に基づいて説明を行ったが、裏面電極の形状は図示したものに限定されるものではない。例えば、他の多角形形状や、複数種類の多角形状を組み合わせて細線電極部のパターンが形成されていてもよい。
【0050】
また、太陽電池セルに使用する基板は、シリコン基板だけでなく、GaAs等の化合物半導体基板等を用いてもよい。
【0051】
さらに、太陽電池セルの表面電極は太線電極部を有する構成を説明したが、表面電極は図2及び図3に示した形状のように太線電極部を有さない構成であってもよい。
【0052】
【発明の効果】
本発明によれば、以下の効果が得られる。
【0053】
(1) 太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、この半導体基板を半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、表面電極には配線時に信頼性が高く、十分な強度の得られる半田層が形成でき、裏面電極には半田玉や溜り等の半田突起が発生せずに、均一な半田層を形成することができる。よって、ダイシング工程やラミネート工程時に太陽電池セルの割れ等の破損を防ぐことができる。
【0054】
(2) 裏面側太線電極に対して鋭角または鈍角をなす方向に延出する複数の裏面側細線電極には、少なくともいずれかから延出する複数の裏面側細線電極が形成されているので、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、表面電極には配線時に信頼性が高く、十分な強度の得られる半田層が形成でき、裏面電極では、太線電極から流れ出す半田が、斜めに形成された細線電極に保持されつつ、電極に沿って遅い速度で半田が流れて、急冷されないので裏面電極上に均一に半田層が形成されて、半田玉や溜り等の半田突起が発生せずに、均一な半田層を形成することができる。
【0055】
(3) 太陽電池セルを構成する半導体基板の裏面側細線電極は、格子状または六角形状に形成されているので、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、裏面細線電極が半田の流れを妨害することがなく、溶融半田が分散して流れるので、半田玉や半田溜まりの発生を防止できる。
【0056】
(4) 太陽電池セルを構成する半導体基板の裏面側細線電極は、その延出部が三角形状に形成されているので、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、半田槽に浸漬して、両太線電極に対して略垂直方向に引上げると、このような形状であるため、太線電極の半田が細線電極部に容易に流れるので、太線電極に半田が溜まるのを抑制する効果があり、また、太線電極から流れ出す半田の量が多いため、細線電極部の途中で冷却されて半田玉になることを防止できる。
【0057】
(5) 太陽電池セルを製造するために、半導体基板に形成された少なくとも直線状の太線電極部によって構成された表面電極及び裏面電極に半田を被覆する半田被覆工程では、太陽電池セルを構成する半導体基板の表面に設けた表面電極の太線電極を下側にし、裏面電極の太線電極を上にして、この半導体基板を半田槽に浸漬して、両太線電極に対して略垂直方向に引上げることにより半田被覆を施すので、半田の被覆後に、表面電極及び裏面電極に半田玉や半田溜まり等の突起が発生することなく、均一な半田層を形成することができる。また、ダイシング工程やラミネート工程時に太陽電池セルの割れ等の破損を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る太陽電池セルの表面電極の形状を示す図である。
【図2】陽電池セルの裏面電極の形状を示す図である。
【図3】陽電池セルの裏面電極における別の形状を示す図である。
【図4】図2に示した裏面電極に直線状の太線電極部を設けた形状を示す図である。
【図5】太線電極部に対して所定の角度で傾斜した細線電極部と、太線電極部に対して略垂直に形成された細線電極部と、を備えた裏面電極の形状を示す図である。
【図6】図3に示した裏面電極に太線電極部を設けた形状を示す図である。
【図7】従来の太陽電池セルの表面を示す図である。
【図8】従来の太陽電池セルの裏面を示す図である。
【図9】従来の太陽電池セルの半田デップ後の裏面を示す図である。
【図10】太陽電池セルの断面図を示す図である。
【図11】太陽電池セルの構成及び接続方法を示す図である。
【図12】半田槽に浸漬した太陽電池セルを引き上げる様子を示す正面図及び側面図である。
【符号の説明】
1−太陽電池セル
2−p型シリコン基板
3−n+層
4−反射防止膜
5−表面電極
6,8−半田層
7−裏面電極
11,13−太線電極部
12,14−細線電極部
15−半田玉
16,17−半田溜り
18−半田槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar battery cell, and more particularly to improvement of an electrode pattern of a solar battery cell.
[0002]
[Prior art]
Conventionally, there is a solar battery cell that converts solar light energy into electric energy. A cross-sectional view of this solar cell is shown in FIG. In the conventional solar cell 1, an n-type dopant is diffused in a p-type semiconductor substrate 2 made of, for example, silicon, and a pn junction is formed as an n + layer 3. Then, the electrode 5 is formed on the front surface 9 of the semiconductor substrate and the electrode 7 is formed on the back surface 10 by using a screen printing method, a vapor deposition method, a sputtering method or the like. In order to increase the conversion efficiency of the solar battery cell 1, irregularities may be formed on the surface 9 on the light receiving surface side, or the antireflection film 4 may be formed as shown in FIG.
[0003]
In order to connect a plurality of solar cells 1, soldering is performed on the front and back electrodes 5 and 7 using a wiring material such as a lead wire. In order to easily perform soldering at the time of wiring, soldering can be easily performed by previously forming the solder layers 6 and 8 respectively on the surface of the front surface electrode 5 and the back surface electrode 7 of the solar battery cell 1. . As a method for forming such a solder layer on both the front and back electrodes of the solar battery cell, the solder dipping method in which the semiconductor substrate on which the electrode is formed is dipped in a solder bath and pulled up is the easiest. It has been adopted.
[0004]
FIG. 7 is a view showing the surface of a conventional solar battery cell. FIG. 8 is a view showing the back surface of a conventional solar battery cell. As shown in FIG. 7, the conventional solar battery cell includes a thick line electrode part 11 that is a wiring part for connecting a plurality of solar battery cells, a plurality of thin line electrode parts 12 that intersect with the thick line electrode part 11, and In many cases, a strip-shaped electrode made of is provided on the light-receiving surface side as a surface electrode. The thin wire electrode portion 12 is for collecting current in the thick wire electrode portion 11. Each electrode portion is designed so that the electrode area is made as small as possible in order to capture a large amount of incident light so that the electrode does not block the incident light on the semiconductor substrate.
[0005]
The back electrode is a strip-shaped electrode composed of a thick line electrode part 13 and a plurality of thin line electrode parts 14 intersecting the thick line electrode part 13 in the same manner as the front surface electrode, but it is considered that the electrode blocks incident light. There is no need. Therefore, in order to efficiently collect the generated electricity, the resistance can be reduced as much as possible. That is, as shown in FIG. 8A, the fine wire electrode portion 14 for collecting current in the thick wire electrode portion 13 is designed to have a narrower pitch and a larger number than the surface electrode.
[0006]
Further, the back electrode may be used in the form of a lattice like the thin wire electrode portion 14b shown in FIG. 8B in order to further reduce the electrical resistance and improve the output of the solar battery cell. is there.
[0007]
Further, the thick electrode portion 11 of the front electrode and the thick electrode portion 13 of the back electrode are formed symmetrically (upside down) on the front side and the back side in order to facilitate wiring in the next process. That is, as shown in FIG. 11 (A) which is a perspective view of the solar battery cell, the thick line electrode part 11 and the thick line electrode part 13 are located in the vicinity of the end portions of the provided surfaces. As shown in FIG. 11B, which is a front view of FIG. 11, the surface 21 is positioned near the end of the diagonal line. Therefore, as shown in FIG. 11C, there is an advantage that the length of the lead wire connected at the time of wiring can be shortened. Moreover, it is convenient also for the method of directly soldering the surface electrode 11 of a photovoltaic cell, and the back surface electrode 13 of another photovoltaic cell. In FIG. 11, for the sake of easy understanding, the thick wire electrode portions 11 and 13 and the thin wire electrode portions 12 and 14 are shown with different thicknesses. The same applies to the drawings used for the following description.
[0008]
[Problems to be solved by the invention]
FIG. 12 is a front view and a side view showing a state in which a solar battery cell immersed in a solder bath is pulled up. As shown in FIG. 12, when the solar battery cell is immersed in the solder bath 18 so that the thick-line electrode portion 13 of the back electrode is on the upper side and pulled up and soldered, the conventional solar battery cell has the structure shown in FIG. As shown, the solder balls 15 are generated in the thin wire electrode portion 14 of the back electrode, and the unevenness due to the solder pool 16 is generated in the thick wire electrode portion 13. And in the laminating process which adhere | attaches a photovoltaic cell on a glass substrate etc., there existed a problem that a photovoltaic cell was damaged by the crack etc. of a board | substrate.
[0009]
Further, even in the dicing process in which only the necessary area of the manufactured solar cell was left and the unnecessary portion was cut, the substrate could not be satisfactorily fixed to the stage due to protrusions by solder balls on the back surface. Therefore, there is a problem that dicing cannot be performed well or damage due to cracking of the solar battery cell occurs.
[0010]
This is because the molten solder accumulated in the thick wire electrode portion flows out to the thin wire electrode portion intersecting with the thick wire electrode portion due to gravity and is gradually cooled. For this reason, the solder which has flowed out to the thin wire electrode portion becomes a solder ball on the way. Further, the molten solder that has been prevented from flowing through the thick wire electrode portion and did not flow into the thin wire electrode portion is solidified at the thick wire electrode portion, and therefore, a large amount of uneven solder pool is formed.
[0011]
When the solar cell immersed in the solder tank is pulled up so that the thick line electrode part 13 on the back surface 10 side is downward, the thick line electrode part 13 is on the lower side, so that solder flows out to the thin line electrode part 14. The above problem does not occur. However, as shown in FIG. 11, the front surface electrode and the back surface electrode are formed symmetrically on the front surface 9 and the back surface 10 of the semiconductor substrate. Therefore, when the solar cell immersed in the solder tank is pulled up so that the thick line electrode part 13 on the back surface 10 side is in the downward direction, the thick line electrode part 11 on the surface 9 side is in the upward direction. A similar problem occurs.
[0012]
In addition, when the back electrode is formed in a lattice shape in order to reduce the electrical resistance of the back electrode, the solder flows in the electrode part parallel to the thick line part as shown in FIG. 9B. Since it is obstructed, the solder pool 17 which is an unnecessary unevenness | corrugation generate | occur | produces in the part.
[0013]
In order to reduce solder balls and solder pools, it is possible to devise a method for pulling up the solar battery cell from the solder tank at the time of solder dipping so that, for example, the solar battery cell is tilted up. The solder dipping process is automatically performed using the apparatus. However, when the apparatus is configured so that the solar cells are immersed and pulled up in the solder bath as described above, the structure of the apparatus becomes complicated. In addition, when the solar cell is dipped and pulled up in the solder bath as described above, there is a problem that a solder layer having a thickness necessary for wiring in the next process cannot be formed on the electrode on the surface side of the solar cell. there were.
[0014]
In order to solve this problem, Japanese Patent No. 2794640 discloses that a crossing portion of a bus bar portion (thick wire electrode portion) and a finger portion (thin wire electrode portion) is formed narrow and bent from the upper side to the lower side of the bus bar portion. The structure formed in this way, and the structure which provided the removal part in the intersection part of a bus-bar part and a finger part are disclosed. With this configuration, solder that adheres to the bus bar portion is less likely to flow to the finger portion, thereby preventing solder balls from being formed on the finger portion.
[0015]
However, in order to implement the configuration disclosed in Japanese Patent No. 2794640, it is necessary to perform fine processing at the intersection between the bus bar portion and the finger portion, which increases the manufacturing cost.
[0016]
The present invention has been made in view of the above-described problems, and the object of the present invention is to prevent the occurrence of protrusions such as solder balls that cause breakage such as cracks in the substrate when forming the solder layer of the electrode of the solar battery cell. It is to provide a battery cell at a low cost.
[0017]
[Means for Solving the Problems]
The present invention has the following configuration as means for solving the above problems.
[0018]
  (1) Provided with front and back electrodes on the front and back surfaces of a semiconductor substrate having a pn junctionThickIn the positive battery cell,
  The surface electrode has a plurality of linear surface-side thick line electrodes formed in parallel to the specific side in the vicinity of the specific side of the semiconductor substrate and extending at right angles to the surface-side thick line electrode. A surface side thin wire electrode is formed,
  SaidReverse powerThe pole,In the vicinity of the opposite side of the specific side of the semiconductor substrate, a straight back side thick line electrode is formed in parallel with the front side thick line electrode, and this back sideIn a direction that forms an acute angle or an obtuse angle with respect to the thick wire electrodeMultiple backside thin wire electrodes that extendIt is formed.
[0019]
  In this configuration, the surface of the semiconductor substrate constituting the solar battery cellWith the thick electrode of the front electrode provided on the lower side and the thick electrode of the back electrode on the upper side, this semiconductor substrate is immersed in a solder bath and pulled up in a direction substantially perpendicular to both thick line electrodes,It is possible to form a solder layer with high reliability and sufficient strength on the front electrode, and a uniform solder layer on the back electrode without the occurrence of solder projections such as solder balls and pools. it can. Therefore, damage such as cracking of the solar battery cell can be prevented during the dicing process and the laminating process.
[0020]
  (2) The back sideSide fine wireAt least of the electrodesA plurality of backside thin wire electrodes extending from eitherIt is formed.
[0021]
  In this configuration,A plurality of backside thin wire electrodes extending from at least one of the plurality of backside thin wire electrodes extending in a direction that forms an acute angle or an obtuse angle with respect to the backside thick wire electrode are formed. Therefore, the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar battery cell is on the lower side, the thick electrode on the back electrode is on the upper side, and immersed in a solder bath, and substantially perpendicular to both thick line electrodes. When pulled up in the direction, the front electrode can form a solder layer with high reliability and sufficient strength at the time of wiring, and on the back electrode, the solder flowing out from the thick wire electrode is held by the obliquely formed fine wire electrode However, since the solder flows along the electrode at a slow speed and is not rapidly cooled, a uniform solder layer is formed on the back electrode, so that no solder protrusion such as a solder ball or a reservoir is generated, and the uniform solder layer is formed. Can be formed.
[0022]
  (3) The back sideSide fine wireElectricThe poleIt is characterized by being formed in a lattice shape or a hexagonal shape.
[0023]
  In this configuration, solar cellsThe fine electrodes on the back side of the semiconductor substrateFormed into a child or hexagonal shapePleaseYes. Therefore,Dipped in a solder bath with the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar cell facing down and the thick electrode of the back electrode facing up, in a direction substantially perpendicular to both thick electrode When pulled up, the backside thin wire electrodeHowever, since the molten solder flows in a dispersed manner without disturbing the flow of solder, solder balls and solder pools do not occur.
[0024]
  (4) The back sideSide fine wireElectricThe pole,The extension part of the back side thick wire electrode isIt is formed in a triangular shape.
[0025]
  In this configuration, solar cellsThe thin wire electrode on the back side of the semiconductor substrate that constitutes theing. Therefore,Dipped in a solder bath with the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar cell facing down and the thick electrode of the back electrode facing up, in a direction substantially perpendicular to both thick electrode When pulled up,Because of this shape, the thick-line electrode solder easily flows to the thin-line electrode portion, so that there is an effect of suppressing the accumulation of solder on the thick-line electrode, and the amount of solder flowing out from the thick-line electrode is large, It is possible to prevent the solder ball from being cooled in the middle of the electrode part.
[0026]
  (Five) (1) Thru (Four) Of the solar cell according to any one ofCover the front and back electrodes with solderRutaA method for producing a positive battery cell, comprising:
  The surface side thick line electrode of the surface electrode is on the lower side, the back surface side electrode of the back electrode is on the upper side,The semiconductor substrate is dipped in solder, and the solder coating is applied by pulling up the both thick wire electrodes in a substantially vertical direction.
[0027]
  In this configuration, in order to manufacture a solar battery cell, in the solder coating step of coating the surface electrode and the back electrode formed by at least the linear thick line electrode portion formed on the semiconductor substrate,With the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar battery cell facing down and the thick electrode of the back electrode facing up, the semiconductor substrate is immersed in a solder bath, Pull up almost verticallyApply the solder coating. Therefore,After solder coating,Front and back electrodesHalfA uniform solder layer can be formed without the occurrence of protrusions such as tabads and solder pools.In addition, damage such as cracking of the solar battery cell can be prevented during the dicing process and the laminating process.
[0028]
(6) In (4), the back electrode can be formed by a plurality of types of polygonal shapes.
[0029]
  In this configuration, the solar battery cell includes a back electrode at least part of which is formed in a plurality of types of polygonal shapes. Therefore, when the solar battery cells are soldered, the dispersion and bonding of the solder that has flowed out of the back electrode is repeated, and the flow of solder can be made smoother, resulting in problems such as solder balls and solder pools. Can be prevented.
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a shape of a surface electrode of a solar battery cell according to an embodiment of the present invention. Figure 2, ThickIt is a figure which shows the shape of the back surface electrode of a positive battery cell.
[0030]
The cross-sectional shape of the solar cell according to the embodiment of the present invention is the same as the cross-sectional shape of the conventional solar cell. Here, the outline of the manufacturing method of the photovoltaic cell of this invention is demonstrated using FIG. After applying a solution containing a dopant such as phosphorus that becomes n-type to the p-type silicon substrate 2, the n + layer 3 is formed by diffusion at a temperature of about 900 ° C. n + layer 3 is POClThree For example, a vapor phase diffusion method may be used.
[0031]
Next, in order to reduce the reflection on the surface of the solar battery cell, the atmospheric pressure CVD method or the plasma CVD method is used to reduce the SiO.2 , TiO2 Then, an antireflection film 4 made of SiN or the like is formed. The n + layer 3 and the antireflection film 4 may be formed at the same time.
[0032]
Then, a silver paste is printed on a semiconductor substrate by a screen printing method, and the silver paste is baked to form a front electrode 5 that is a negative electrode and a back electrode 7 that is a positive electrode. The formation of the electrode is not limited to the above silver paste, and other conductive paste may be used, or the electrode may be formed by vapor deposition, plating, or the like.
[0033]
Further, as described in the prior art, the solder layers 6 and 8 for connecting the plurality of solar cells 1 are formed by the front surface electrode 5 and the rear surface electrode by the solder dipping method in which the semiconductor substrate is immersed in and pulled up from the solder bath. 7 is formed on the surface. Furthermore, a desired solar cell is completed by cutting unnecessary portions of the semiconductor substrate.
[0034]
As shown in FIG. 1, the surface electrode of the solar cell of the present invention has the same shape as the surface electrode of the conventional solar cell. That is, a strip-shaped electrode composed of a linear thick wire electrode portion 11 which is a wiring portion for connecting a plurality of solar cells and a plurality of thin wire electrode portions 12 intersecting the thick wire electrode portion 11 is a light receiving surface on the surface. On the side. The thin wire electrode portion 12 is used for collecting current in the thick wire electrode portion 11. Further, in order to capture a large amount of incident light, the electrode area is made as small as possible so that the incident light on the semiconductor substrate is not blocked by the electrode.
[0035]
  ThickThe shape of the back electrode in the positive battery cell is formed with a predetermined angle with respect to the thick electrode portion 11 of the front electrode.Is possibleThe That is, as shown in FIG. 2 (A), a plurality of fine wire electrode portions 14c provided at a predetermined angle with respect to the thick wire electrode portion 11 on the front surface side symmetrically with respect to the back surface center line of the semiconductor substrate, It is formed on the surface of the semiconductor substrate at a predetermined pitch. Also, a plurality of fine line electrode portions 14d that intersect with the fine line electrode portions 14c, extend from the fine line electrode portions 14c, and are inclined with respect to the thick line electrode portions 11 are formed on the surface of the semiconductor substrate at a predetermined pitch. Is formed.
[0036]
By forming the back electrode in such a shape, a solder layer necessary for facilitating soldering is provided on the thick electrode portion 11 of the front electrode when the solder dip is performed with the thick electrode portion 11 facing down. Can be formed. Further, no protrusion such as a solder ball is generated on the back electrode. This is because the solder flows along the electrode at a slower speed than when the electrode is formed in the vertical direction, so that the solder layer is uniformly formed on the electrode without being rapidly cooled.
[0037]
Since protrusions such as solder balls are not formed in this way, poor adsorption to the semiconductor substrate stage, cracks, etc. occur in the dicing process that cuts unnecessary parts while leaving only the necessary area of the produced solar cell. Disappear. In addition, cracks and the like are not generated in the laminating process in which the solar battery cell is bonded to a glass substrate or the like.
[0038]
  As shown in FIG.ShapeIn the state, the thick line electrode part is not provided, but in this case, the plurality of solar cells connect the thick line electrode part 11 and the thin line electrode part 14 of the surface electrode using a lead wire or the like.
[0039]
FIG. 2B illustrates a back electrode having a shape different from that in FIG. That is, a plurality of thin wire electrode portions 14e provided at a predetermined angle with respect to the linear thick wire electrode portion 11 on the surface 9 side of the solar battery cell are formed on the surface of the semiconductor substrate at a predetermined pitch. ing. Further, a plurality of fine wire electrode portions 14f extending from the fine wire electrode portion 14e and inclined with respect to the thick wire electrode portion 11 intersecting with the fine wire electrode portion 14e are formed on the surface of the semiconductor substrate at a predetermined pitch. Is formed. Even in the back electrode having such a shape, the same effect as that of the back electrode having the shape shown in FIG.
[0040]
  Figure 3, ThickIt is a figure which shows another shape in the back surface electrode of a positive battery cell. The back electrode shown in FIG. 3A is formed with a plurality of thin wire electrode portions 14g inclined at 45 degrees with respect to the linear thick wire electrode portion 11 of the front electrode, and inclined at 135 degrees. The plurality of thin wire electrode portions 14h are crossed and formed in a lattice shape. Therefore, when the solar battery cell is subjected to solder dipping, the thin wire electrode portions 14g and 14h do not interfere with the flow of solder. Further, since the molten solder flows in a dispersed manner, solder balls and solder pools do not occur. In addition, the crossing angle of the back surface electrodes formed in a lattice shape is not limited to 45 degrees and 135 degrees, and may not be formed horizontally with the thick line electrode portion 11.
[0041]
The back electrode shown in FIG. 3B is configured by a thin wire electrode portion 14i formed by connecting a plurality of hexagons. In other words, the thin wire electrode portion 14i includes a portion formed substantially perpendicular to the linear thick wire electrode portion 11 and a portion formed inclined with a predetermined angle with respect to the thick wire electrode portion 11. Therefore, when the solar battery cell is subjected to solder dipping, the flowing out solder is repeatedly dispersed and combined, so that the flow of solder can be made smoother, and protrusions such as solder balls and solder pools do not occur.
[0042]
  Next, a thin wire electrode portion and a thick wire electrode portion were provided., According to the present invention embodimentThe back electrode will be described. FIG. 4 is a diagram showing a shape in which a straight thick line electrode portion is provided on the back electrode shown in FIG. As shown in FIG. 4A, a thick line electrode portion 13 is provided in the vicinity of the end portion in the longitudinal direction on the back surface side of the semiconductor substrate 2, and the end portions of the thin line electrode portions 14c and 14d and the thick line electrode portion 13 are connected. Yes. The shapes of the thin wire electrode portions 14c and 14d are as described based on FIG. In this manner, by forming the linear thick line electrode portion 13 on the back surface 10 of the semiconductor substrate 2, wiring in the next process can be easily performed. Further, when the solar battery cell is dipped with the thick electrode portion 13 facing upward, no solder balls are generated even though the molten solder attached to the thick wire electrode portion 13 flows out. This is because the solder flowing out from the thick line electrode part 13 of the back electrode is held at the slanted thin line electrode parts 14c and 14d, and the solder flows at a low speed along the electrode, so it is not rapidly cooled, so This is because the solder layer is uniformly formed.
[0043]
FIG. 4B is a diagram showing a shape in which a thick line electrode portion is provided on the back electrode shown in FIG. The shapes of the thin wire electrode portions 14e and 14f are as described with reference to FIG. As in FIG. 4A, a linear thick line electrode portion 13 is provided in the vicinity of the end portion in the longitudinal direction on the back surface 10 side of the semiconductor substrate, and the ends of the thin line electrode portions 14e and 14f are connected to the thick line electrode portion 13. is doing. Even in the back electrode having such a shape, the same effect as that of the back electrode having the shape shown in FIG.
[0044]
Next, back electrodes having different shapes will be described. FIG. 5 is a diagram showing the shape of a back electrode provided with a fine line electrode part inclined at a predetermined angle with respect to the thick line electrode part, and a fine line electrode part formed substantially perpendicular to the thick line electrode part. . In the back surface electrode shown in FIG. 5A, a triangular shape is formed by a longitudinal side of the straight thick line electrode portion 13 and a thin line electrode portion 14j inclined at a predetermined angle with respect to the thick line electrode portion 13. A portion 14m is formed. Further, the thin line electrode part 14k extends in a direction substantially perpendicular to the thick line electrode part 13 from the apex of the triangular part 14m. Due to such a shape, when the semiconductor substrate 2 is solder dipped with the thick electrode portion 13 facing upward, the solder of the thick electrode portion 13 can easily flow to the thin wire electrode portions 14j and 14k, and the thick wire electrode portion. 13 has an effect of suppressing the accumulation of solder. Further, since the amount of solder flowing out from the thick wire electrode portion 13 is large, the solder wire is not cooled down in the middle of the thin wire electrode portions 14j and 14k.
[0045]
In the back electrode shown in FIG. 5B, an electrode is also formed inside the triangular portion 14m formed in the back electrode shown in FIG. 5A to form a substantially linear thick line electrode portion 13b. . By adopting such a shape, solder balls are not generated in the thin wire electrode portion 14k.
[0046]
Next, back electrodes having different shapes will be described. FIG. 6 is a diagram showing a shape in which a thick line electrode portion is provided on the back electrode shown in FIG. As shown in FIG. 6A, a linear thick line electrode portion 13 is provided near the end portion in the longitudinal direction on the back surface side of the semiconductor substrate, and the end portions of the thin line electrode portions 14g and 14h are connected to the thick line electrode portion 13. ing. The shapes of the thin wire electrode portions 14g and 14h are as described based on FIG. By forming the thick line electrode portion 13 on the back surface 10 of the semiconductor substrate 2 in this way, wiring in the next process can be easily performed. Further, when solder dipping is performed on the semiconductor substrate 2 with the thick electrode portion 13 facing upward, no solder balls are generated even though the molten solder attached to the thick electrode portion 13 of the surface electrode flows out. Furthermore, since the lattice pattern is formed at an angle of 45 degrees with respect to the thick electrode portion 13, the solder flow is not disturbed and the solder balls are generated. do not do.
[0047]
FIG. 6B is a diagram illustrating a shape in which a thick line electrode portion is provided on the back electrode illustrated in FIG. The shape of the thin wire electrode portion 14i is as described based on FIG. Similarly to FIG. 6A, a linear thick line electrode portion 13 is provided near the end portion in the longitudinal direction on the back surface 10 side of the semiconductor substrate 2, and the end of the hexagonal thin line electrode portion 14 i and the thick line electrode portion 13 are provided. It is the shape which connected. Also in the back electrode having such a shape, the flowing out solder is repeatedly dispersed and combined, so that the flow of solder can be made smoother, and the same effect as that of the back electrode having the shape shown in FIG. can get.
[0048]
Here, when the thin-line electrode part 12 of the surface electrode is formed to be inclined at a predetermined angle with respect to the linear thick-line electrode part 11, there is an effect that the solder flows smoothly on the surface electrode. When the thin-line electrode portion 12 of the surface electrode is formed as described above, the path through which the current flows becomes long, so that the resistance increases slightly in the current path, resulting in a loss of photoelectric conversion efficiency. However, since the solder flows smoothly on the surface electrode, it is possible to manufacture a good-looking solar battery cell without unevenness due to the solder on the surface electrode.
[0049]
In addition, although the present Example demonstrated the shape of the typical back electrode based on drawing, the shape of a back electrode is not limited to what was illustrated. For example, the pattern of the thin wire electrode part may be formed by combining other polygonal shapes or a plurality of types of polygonal shapes.
[0050]
The substrate used for the solar battery cell may be not only a silicon substrate but also a compound semiconductor substrate such as GaAs.
[0051]
Furthermore, although the structure which has the thick line electrode part demonstrated the surface electrode of the photovoltaic cell, the structure which does not have a thick line electrode part like the shape shown in FIG.2 and FIG.3 may be sufficient as a surface electrode.
[0052]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0053]
  (1) Surface of the semiconductor substrate constituting the solar cellWith the thick electrode of the front electrode provided on the lower side and the thick electrode of the back electrode on the upper side, this semiconductor substrate is immersed in a solder bath and pulled up in a direction substantially perpendicular to both thick line electrodes,It is possible to form a solder layer with high reliability and sufficient strength on the front electrode, and a uniform solder layer on the back electrode without the occurrence of solder projections such as solder balls and pools. it can. Therefore, damage such as cracking of the solar battery cell can be prevented during the dicing process and the laminating process.
[0054]
  (2)Since the plurality of back surface side thin wire electrodes extending in at least one of the plurality of back surface side thin wire electrodes extending in a direction forming an acute angle or an obtuse angle with respect to the back surface side thick wire electrode, a solar battery cell is formed. When the thick electrode of the surface electrode provided on the surface of the semiconductor substrate to be configured is on the lower side, the thick electrode of the back electrode is on the upper side, immersed in a solder bath, and pulled up in a substantially vertical direction with respect to both thick line electrodes, The front electrode can form a solder layer with high reliability and sufficient strength at the time of wiring, and in the back electrode, the solder flowing out from the thick line electrode is held by the thin line electrode formed obliquely along the electrode. Since the solder flows at a low speed and is not rapidly cooled, a uniform solder layer is formed on the back electrode, and a uniform solder layer can be formed without generating solder protrusions such as solder balls and pools.
[0055]
  (3) Solar cellThe fine electrodes on the back side of the semiconductor substrateFormed into a child or hexagonal shapePleaseBecauseDipped in a solder bath with the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar cell facing down and the thick electrode of the back electrode facing up, in a direction substantially perpendicular to both thick electrode When pulled up, the backside thin wire electrodeHowever, since the molten solder flows in a dispersed manner without obstructing the flow of solder, it is possible to prevent the occurrence of solder balls and solder pools.
[0056]
  (4) Solar cellThe thin wire electrode on the back side of the semiconductor substrate that constitutes theBecauseDipped in a solder bath with the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar cell facing down and the thick electrode of the back electrode facing up, in a direction substantially perpendicular to both thick electrode When it is pulled up, it has such a shape, so that the solder of the thick wire electrode flows easily to the thin wire electrode portion, so that there is an effect of suppressing the accumulation of solder on the thick wire electrode, and the amount of solder flowing out from the thick wire electrode is reduced. Because there are many, it prevents being cooled in the middle of the thin wire electrode part and becoming solder ballsit can.
[0057]
  (5) In the solder coating step of coating the surface electrode and the back electrode formed by at least the linear thick line electrode portion formed on the semiconductor substrate in order to manufacture the solar battery cell,With the thick electrode of the front electrode provided on the surface of the semiconductor substrate constituting the solar battery cell facing down and the thick electrode of the back electrode facing up, the semiconductor substrate is immersed in a solder bath, Pull up almost verticallyApply solder coatingSo after solder coating,Front and back electrodesHalfA uniform solder layer can be formed without the occurrence of protrusions such as tabads and solder pools.In addition, damage such as cracking of the solar battery cell can be prevented during the dicing process and the laminating process.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shape of a surface electrode of a solar battery cell according to an embodiment of the present invention.
[Figure 2]ThickIt is a figure which shows the shape of the back surface electrode of a positive battery cell.
[Fig. 3]ThickIt is a figure which shows another shape in the back surface electrode of a positive battery cell.
4 is a view showing a shape in which a straight thick line electrode portion is provided on the back electrode shown in FIG. 2; FIG.
FIG. 5 is a diagram showing the shape of a back surface electrode including a fine line electrode portion inclined at a predetermined angle with respect to a thick line electrode portion and a fine line electrode portion formed substantially perpendicular to the thick line electrode portion. .
6 is a view showing a shape in which a thick line electrode portion is provided on the back electrode shown in FIG. 3. FIG.
FIG. 7 is a view showing the surface of a conventional solar battery cell.
FIG. 8 is a view showing a back surface of a conventional solar battery cell.
FIG. 9 is a diagram showing a back surface after solder dipping of a conventional solar battery cell.
FIG. 10 is a cross-sectional view of a solar battery cell.
FIG. 11 is a diagram showing a configuration and connection method of solar cells.
FIGS. 12A and 12B are a front view and a side view showing a state in which a solar battery cell immersed in a solder bath is pulled up.
[Explanation of symbols]
1-solar cells
2-p type silicon substrate
3-n + layer
4-Antireflection film
5-surface electrode
6,8-solder layer
7-Back electrode
11, 13-thick electrode section
12, 14-Fine wire electrode
15-solder balls
16, 17-Solder pool
18-Solder bath

Claims (5)

pn接合部を有する半導体基板の表面及び裏面に表面電極及び裏面電極を備えた太陽電池セルにおいて、
前記表面電極は、前記半導体基板の特定の辺近傍に、この特定の辺と平行に直線状の表面側太線電極が形成されるとともに、この表面側太線電極に対して直角に延出する複数の表面側細線電極が形成され、
前記裏面電極は前記半導体基板の特定の辺の対辺近傍に、前記表面側太線電極と平行に直線状の裏面側太線電極が形成されるとともに、この裏面側太線電極に対して鋭角または鈍角をなす方向に延出する複数の裏面側細線電極が形成されたことを特徴とする太陽電池セル。
In solar battery cell having a surface electrode and a back electrode on the surface and the back surface of the semiconductor substrate having a pn junction,
The surface electrode has a plurality of linear surface-side thick line electrodes formed in parallel to the specific side in the vicinity of the specific side of the semiconductor substrate and extending at right angles to the surface-side thick line electrode. A surface side thin wire electrode is formed,
The back electrodes is a very near a particular side of the semiconductor substrate, together with the surface-side thick line electrode and linearly parallel to the back side thick line electrodes are formed, acute or obtuse angle with respect to the rear surface side thick line electrode A solar battery cell, wherein a plurality of back-side thin wire electrodes extending in a direction of forming are formed.
前記裏面側細線電極の少なくともいずれかから延出する複数の裏面側細線電極が形成されたことを特徴とする請求項1に記載の太陽電池セル。Solar cell according to claim 1, wherein a plurality of rear-surface-side thin wire electrodes extending from at least one of the rear-surface-side thin wire electrodes are formed. 前記裏面側細線極は、格子状または六角形状に形成されたことを特徴とする請求項1に記載の太陽電池セル。The back side thin wire electrodes is provided with a solar cell according to claim 1, characterized in that it is formed in a grid pattern or hexagonal. 前記裏面側細線極は前記裏面側太線電極の延出部が三角形状に形成されたことを特徴とする請求項1に記載の太陽電池セル。The back side thin wire electrodes is provided with a solar cell according to claim 1, characterized in that extending portions of the back-side thick line electrodes are formed in a triangular shape. 請求項1乃至4のいずれかに記載の太陽電池セルの表面電極及び裏面電極に半田を被覆する太陽電池セルの製造方法であって、
前記表面電極の表面側太線電極を下側にし、前記裏面電極の裏面側電極を上側にして、前記半導体基板を半田に浸漬し、前記両太線電極に対して略垂直方向に引上げることにより半田被覆を施すことを特徴とする太陽電池セルの製造方法。
A method according to claim 1 to the surface electrode and the solar cell you coat the solder on the back surface electrode of a solar cell according to any one of 4,
The surface side thick wire electrode of the front surface electrode is on the lower side, the back surface side electrode of the back surface electrode is on the upper side, the semiconductor substrate is immersed in solder, and the solder is pulled up in a direction substantially perpendicular to the both thick line electrodes. The manufacturing method of the photovoltaic cell characterized by providing a coating | cover.
JP2000107788A 2000-04-10 2000-04-10 Solar cell and manufacturing method thereof Expired - Fee Related JP3749079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107788A JP3749079B2 (en) 2000-04-10 2000-04-10 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107788A JP3749079B2 (en) 2000-04-10 2000-04-10 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001291879A JP2001291879A (en) 2001-10-19
JP3749079B2 true JP3749079B2 (en) 2006-02-22

Family

ID=18620734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107788A Expired - Fee Related JP3749079B2 (en) 2000-04-10 2000-04-10 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3749079B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100044B2 (en) * 2002-05-22 2008-06-11 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP4232597B2 (en) * 2003-10-10 2009-03-04 株式会社日立製作所 Silicon solar cell and manufacturing method thereof
JP4688509B2 (en) * 2005-01-28 2011-05-25 京セラ株式会社 Solar cell element and solar cell module using the same
GB2436893A (en) * 2006-03-31 2007-10-10 Seiko Epson Corp Inkjet printing of cross point passive matrix devices
JP4818094B2 (en) * 2006-12-22 2011-11-16 三洋電機株式会社 Solar cell collector forming apparatus and solar cell collector forming method
JP4429306B2 (en) 2006-12-25 2010-03-10 三洋電機株式会社 Solar cell and solar cell module
JP4174545B1 (en) * 2007-05-10 2008-11-05 シャープ株式会社 SOLAR CELL, SOLAR CELL MANUFACTURING METHOD, SOLAR CELL STRING AND SOLAR CELL MODULE
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor
WO2011052465A1 (en) * 2009-10-28 2011-05-05 日立化成工業株式会社 Method for producing solar cell
US20120211076A1 (en) * 2009-10-28 2012-08-23 Kaoru Okaniwa Solar cell
JP2011134805A (en) * 2009-12-22 2011-07-07 Sharp Corp Solar cell, and solar cell module equipped with the same
JP5382150B2 (en) * 2012-01-16 2014-01-08 三洋電機株式会社 Solar cell module
KR101479861B1 (en) 2013-10-17 2015-01-13 중앙대학교 산학협력단 Solar Cell including grid finger pattern and Solar Cell module including Solar Cell
JP2015230985A (en) * 2014-06-05 2015-12-21 三菱電機株式会社 Solar battery cell, manufacturing method for the same and solar battery panel
KR101919024B1 (en) 2017-08-18 2018-11-15 한국과학기술연구원 A structure of front grid in solar cell

Also Published As

Publication number Publication date
JP2001291879A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3749079B2 (en) Solar cell and manufacturing method thereof
JP5989243B2 (en) SOLAR BATTERY CELL, ITS MANUFACTURING METHOD, AND SOLAR BATTERY MODULE
JP5806304B2 (en) Solar cell and method for manufacturing the same
JP5726303B2 (en) Solar cell and method for manufacturing the same
US8859322B2 (en) Cell and module processing of semiconductor wafers for back-contacted solar photovoltaic module
JP5869608B2 (en) Solar cell module
JP5289625B1 (en) Solar cell module
US9461189B2 (en) Photovoltaic devices with electroplated metal grids
US20100000602A1 (en) Photovoltaic Cell with Efficient Finger and Tab Layout
US20090159114A1 (en) Photovoltaic Panel and Cell with Fine Fingers and Method of Manufacture of the Same
US20110124145A1 (en) Template for three-dimensional thin-film solar cell manufacturing and methods of use
KR20110053465A (en) Solar cell and solar cell module with one-sided connections
JP2016512394A (en) Self-supporting metal articles for semiconductors
JPH0415962A (en) Solar cell and manufacture thereof
JP2016122749A (en) Solar battery element and solar battery module
JP2017120906A (en) Solar battery module
JP5203732B2 (en) Manufacturing method of solar cell
WO2017170529A1 (en) Solar cell element and solar cell module
TWI692113B (en) Solar battery unit and solar battery module
JP3906385B2 (en) Solar cell
JP5944081B1 (en) Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
WO2018207312A1 (en) Solar cell and method for manufacturing solar cell
JP6455099B2 (en) Solar cell unit and method for manufacturing solar cell unit
JP2014027133A (en) Solar cell, solar cell with interconnector and solar cell module
TWI680586B (en) Solar battery module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees