JP3747830B2 - Airborne particle detector - Google Patents

Airborne particle detector Download PDF

Info

Publication number
JP3747830B2
JP3747830B2 JP2001292603A JP2001292603A JP3747830B2 JP 3747830 B2 JP3747830 B2 JP 3747830B2 JP 2001292603 A JP2001292603 A JP 2001292603A JP 2001292603 A JP2001292603 A JP 2001292603A JP 3747830 B2 JP3747830 B2 JP 3747830B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
optical axis
suspended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001292603A
Other languages
Japanese (ja)
Other versions
JP2003098083A (en
Inventor
昭一 岡
尚之 西川
浩司 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001292603A priority Critical patent/JP3747830B2/en
Publication of JP2003098083A publication Critical patent/JP2003098083A/en
Application granted granted Critical
Publication of JP3747830B2 publication Critical patent/JP3747830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、検知空間に光を照射させる発光素子と、発光素子から出射された光のうち浮遊微粒子による散乱光を受光する受光素子とを備えた光電式の浮遊微粒子検知装置に関するものである。
【0002】
【従来の技術】
上記のような浮遊微粒子検知装置として、例えば図7に示すような、特開平9−010175として開示された光電式煙感知器がある。この光電式煙感知器は、ビル、住宅などの自動火災報知システムに用いられるもので、内部に浮遊微粒子を検知する検知空間を有するケース100の周囲には、ラビリンスとよばれる、浮遊微粒子を導入し且つ外光を遮断する迷路構造101が設けられている。
【0003】
この場合、LED素子にて形成された検知空間に光を照射させる発光素子102と、この発光素子102から出射された光のうち浮遊微粒子による散乱光を受光する、ホトダイオード素子にて形成された受光素子103とは、発光素子102と受光素子103の各光軸A2,A3が交差するよう、ホルダ部となるケース100内の凹所104,105に収容され、また、この凹所104,105には、発光素子102の光を受光素子103が直接受光することが無いように横向きの開口104a、105aが形成されている。
【0004】
ところで、本出願人においても、図8に示すような、特開平9−231485として開示されている、光電式煙感知器としてより薄型化を実現可能な構成を提案している。この場合、発光素子102と受光素子103とは、その各光軸(図示せず)が検知空間内に回路基板106と平行な平行光軸として形成されるよう前述のようなケース内に配設されている。したがって、回路基板106の発光素子102と受光素子103の実装面側となるケース内に、比較的薄い検知空間を形成することができ、より薄型の光電式煙感知器を形成することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の技術においては、発光素子102を、レンズ形状を一体に有する砲弾型の一般部品としており、また、リード部102aを曲げて上記ホルダ部に収容され回路基板106に実装させている。すなわち、このLED素子は、所定長さの真っ直ぐなリード部にエポキシ樹脂によるLEDチップの封止体を兼ねたレンズ状の外郭を有しており、光を横向きに出射させるために、このリード部を曲げ加工し回路基板106に半田付けする必要があった。
【0006】
したがって、上記構成においては、加工上リード部102aの曲げ加工に手間がかかるとともに、その加工に際して外郭樹脂の封止状態を損ねることも懸念された。また、さらに薄型化を実現するためには、検知空間内の浮遊微粒子の検知領域をより縮小させるため、例えば上記ホルダ部の横向きの開口を小さく形成する必要があった。しかし、この方法によると、発光素子102からの光の照射量が少なくなり、浮遊微粒子による受光素子103への散乱光量が低下して受光電流が小さくなる。その結果、その受光電流と、発光素子102からの照射光による迷光に基づく迷光電流、あるいは受光電流を増幅する受光回路部を構成する部品自らの内部ノイズ電流とのSN比が小さくなることが想定される。
【0007】
本発明は、上記事由に鑑みてなしたもので、より小型及び薄型化を達成して発光素子からの照射光による迷光を低減可能な浮遊微粒子検知装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の浮遊微粒子検知装置にあっては、検知空間に光を照射させる発光素子と、発光素子から出射された光のうち浮遊微粒子による散乱光を受光する受光素子と、少なくとも発光素子を駆動する回路部を発光素子とともに実装する回路基板と、浮遊微粒子を導入する検知空間を内部に形成させるケースとを備え、検知空間内に発光素子と受光素子の各光軸を所定の角度をもって回路基板と平行な平行光軸として配設させて浮遊微粒子の検知領域が形成されてなる浮遊微粒子検知装置において、前記発光素子を、その光軸が略垂直となるよう前記回路基板に実装し、発光素子の上部に、照射領域周縁の光を遮るアパーチャーを介在させて、その垂直光軸が前記平行光軸となるよう屈曲させる光軸屈曲手段を設け、前記発光素子をレンズを一体にもった部品とし、前記光軸屈曲手段をプリズム体とし、前記プリズム体を、その光の出射面に集光レンズを一体に有するものとしたことを特徴としている。
【0009】
この構成にて、発光素子の光は、上部のアパーチャーを経てその照射領域周縁部分が遮断され、ケース内の検知空間内おいて、その光軸が発光素子を駆動する回路部を発光素子とともに実装する回路基板と平行となるように光軸屈曲手段にて屈曲されて受光素子の光軸と所定の角度をもって交差され、浮遊微粒子の検知領域が形成される。
【0010】
また、上記発光素子をレンズを一体にもった部品とし、前記光軸屈曲手段をプリズム体としているので、レンズを一体にもった発光素子の部品上部に設けられるプリズム体にてその垂直光軸が屈曲され、回路基板と平行な平行光軸とされる。
【0011】
また、上記プリズム体を、その光の出射面に集光レンズを一体に有するので、レンズを一体にもった発光素子部品の上部に設けられる、光の出射面に集光レンズをもったプリズム体にてその出射光が屈曲且つ集光される。
【0012】
そして、上記前記アパーチャーを、前記発光素子による照射領域全周縁にわたって配設させることが好ましい。この場合、発光素子からの光が、その上部のアパーチャーを経て照射領域全周縁部分にわたって一部が遮断されて浮遊微粒子の検知領域が形成される。
【0013】
また、上記アパーチャーを、前記照射領域周縁の前記受光素子に近い側に配設させるのも好ましい。この場合、発光素子からの光が、その上部のアパーチャーを経て照射領域周縁の受光素子に近い側の一部の光が遮断されて浮遊微粒子の検知領域が形成される。
【0014】
【発明の実施の形態】
図1乃至図6は、請求項1乃至5全ての発明に対応する一実施の形態を示し、図1は、本発明の第1実施例の浮遊微粒子検知装置における発光素子周囲を示す概略構成図、図2は、同浮遊微粒子検知装置における検知空間の説明図、図3は、発光素子からの不要光の説明図、図4は、同浮遊微粒子検知装置におけるアパーチャーの作用の説明図、図5は、本発明の第2実施例の浮遊微粒子検知装置におけるアパーチャーの作用の説明図、図6は、本発明の他の実施例による浮遊微粒子検知装置におけるアパーチャーの作用の説明図である。
【0015】
この実施形態の浮遊微粒子検知装置1は、検知空間に光を照射させる発光素子2と、発光素子2から出射された光のうち浮遊微粒子による散乱光を受光する受光素子3と、少なくとも発光素子2を駆動する回路部を発光素子2とともに実装する回路基板4と、浮遊微粒子を導入する検知空間を内部に形成させるケース5とを備え、検知空間内に発光素子2と受光素子3の各光軸A2,A3を所定の角度をもって回路基板4と平行な平行光軸として配設させて浮遊微粒子の検知領域が形成されてなる浮遊微粒子検知装置において、前記発光素子2を、その光軸A2が略垂直となるよう前記回路基板4に実装し、発光素子2の上部に、照射領域周縁の光を遮るアパーチャー6を介在させて、その垂直光軸A2’が前記平行光軸となるよう屈曲させる光軸屈曲手段(7)を設けている。
【0016】
また、該実施形態の浮遊微粒子検知装置1においては、前記アパーチャー6を、前記発光素子2による照射領域全周縁にわたって配設させてもいる。また、該実施形態の浮遊微粒子検知装置1においては、発光素子2をレンズを一体にもった部品とし、前記光軸屈曲手段をプリズム体7としてもいる。
【0017】
詳しくは、この浮遊微粒子検知装置1は、従来の技術の項にて述べた光電式煙感知器で、従来の光電式煙感知器と略同一の構成であり、検知空間を内部に形成させる、煙検知室となるケース5と、例えば感知した煙の濃度に応じて火災出力をおこなう信号出力手段をもった本体(図示せず)とによって形成される。
【0018】
発光素子2は、この場合、レンズを一体にもったリード部22を下向きに有するラジアル型部品のLED素子で、図1に示すように、砲弾型のエポキシ樹脂によるLEDチップ21の封止体を兼ねたレンズ状の外郭23を有している。この発光素子2は、真っ直ぐなリード部22を介して回路基板4に立設され、この発光素子2上部に設けられる後述するプリズム体7にてその垂直光軸A2’が屈曲され、回路基板4と平行な平行光軸A2を構成する。この平行光軸A2と後述する受光素子3の平行光軸A3との交差する箇所が煙を感知する感煙領域となる。(図2(a)参照)
【0019】
受光素子3は、この場合、レンズを一体にもったリード部を下向きに有するラジアル型部品のホトダイオード素子(PD素子)で、図2(b)に示すように、略角状の封止体を兼ねた樹脂製外郭の側面に凸レンズ31を一体に有している。この凸レンズ31上方には、この場合、受光素子3への平行光軸A3を垂直に屈曲させる光軸屈曲手段を兼ねたアクリル樹脂製の集光用プリズム体8が設けられている。
【0020】
ケース5は、図2(a),(b)に示すような略円筒状体で、その合成樹脂製の器体内部に、発光素子2に相当する赤外LED素子と受光素子3に相当するホトダイオード素子とを収容する。そして、上板51の周囲に、煙が流入し且つ外光の入射しないよう複数の略く字状の縦リブの突設されたラビリンス部52を有し、その上板51の対向する下面側には、化粧キャップを兼ねた下板54が設けられて形成される。(ただし、図2(b)は取付状態の上下位置を反転させている)すなわち、このケース5は、同図において煙が横方向に通過し検知空間内部へ流入可能なように形成されている。
【0021】
このケース5は、図2(a)に示すように、発光素子2と受光素子3の平行光軸A2,A3との成す平面視角度が100度程度となり、煙を感知する感煙領域が検知空間の略中央付近で、また、その平行光軸A2,A3が前記検知空間の略中間位置に形成されるように、ラビリンス部52の適宜位置に発光素子2及び受光素子3が配設スペースが形成されている。また、このケース5の発光素子2の平行光軸A2と交差する箇所には、複数の縦長の略く字状の縦リブが設けられた光トラップ53が設けられており、発光素子2上部に設けられるプリズム体7にて屈曲されて回路基板と平行となった、発光素子から出射された光がこの光トラップ53の縦リブ間の傾斜面にて収れん吸収され、ケース5内部にて迷光が少なくなるようになっている。なお、上板51の上記感煙領域以外の箇所には、同図に示したように、発光素子から出射された光が光トラップ53以外のラビリンス部52へ到達するのを防止する、適宜形状をもった遮光リブ54,54を配設し、当該ラビリンス部52を経て受光素子3側へ拡散反射するのを防止している。
【0022】
上記の発光素子2の収容部の上部には、その中央に円状の貫通孔61の穿設された略四角状の樹脂板製のアパーチャー6が、当該貫通孔61から発光素子2の外郭23の天面となるレンズ状部分が露出するように嵌着されている。このアパーチャー6によって、発光素子2の略紡錘状となる照射領域の周縁が遮られて、図4(a),(b)に示す如く、発光素子2のLEDチップ21から出射された光の内、上記ラビリンス部52へ向かう不要光B,Bが大幅に減少されてプリズム体7を介して光軸A2が屈曲される。
【0023】
プリズム体7は、発光素子2の垂直光軸A2’を屈曲させる光軸屈曲手段で、図1に示すように、発光素子2上部のアパーチャー6上方に配設されている。なお、この発明の光軸屈曲手段は、このプリズム体7以外に、上記ケース5の一部に大略45度の反射面となるミラー面を形成させ、このミラー面にアルミ蒸着処理を施して形成した反射ミラーや、別体のミラー体を用いる等各種構成とすることもできる。このプリズム体7の光の出射面には、前述した感煙領域を形成する発光素子2による投光ビームを絞り込みをおこなう集光レンズ71が一体形成され、このプリズム体7にて発光素子2の出射光が屈曲且つ集光されるようになっており、少ない部品点数にて感煙領域をより小さく形成することができるようになっている。
【0024】
このプリズム体7による場合、その光を全反射させる光屈曲面の角度設定を適切におこなうことにて、上記の反射ミラー等より、光軸屈曲に際しての光のロスを殆ど無くすることができという利点がある。また、図4に示すように、発光素子2から出射された光のうち、上記アパーチャー6にて遮られる不要光B以外は、光屈曲面72にて全反射されることとなる。したがって、発光素子2から出射されて感煙領域を形成する投光ビームの絞り込みがより確実になされ、浮遊微粒子検知装置1をより小型にできるという効果を奏する。
【0025】
上記の浮遊微粒子検知装置1においては、発光素子2の光が、上部のアパーチャー6を経てその照射領域周縁部分が遮断されて円柱状の平行光とされる。そして、ケース5内の検知空間内おいて、当該平行光の光軸A2が発光素子2を駆動する回路部を発光素子2とともに実装する回路基板4と平行となるようにプリズム体7にて屈曲されて受光素子3の光軸A3と、この場合100度程度の角度をもって交差されることによって浮遊微粒子の検知領域が形成されることとなる。すなわち、発光素子2のLEDチップ21から出射された光の内、浮遊微粒子の検知に寄与することの無い不要光Bが大幅に減少されてケース5のラビリンス部52へ向かうのである。
【0026】
このとき、発光素子2からの光が、その上部のアパーチャー6を経て照射領域全周縁部分にわたって一部が遮断されて浮遊微粒子の検知領域が形成されることとなり、ケース5内部が付着した埃などにて汚れが著しくなっても迷光量の増加が殆ど無いこととなる。また、レンズを一体にもった発光素子2の部品上部に設けられるプリズム体7にてその垂直光軸A2’が屈曲され、回路基板4と平行な平行光軸A2となって、発光素子2から出射される光の絞り込みがより確実に成されて感煙領域が形成され、さらに、レンズを一体にもった発光素子部品の上部に設けられる、光の出射面に集光レンズ71をもったプリズム体7にてその出射光が屈曲且つ集光され少ない部品点数にて感煙領域Sがより小さく形成されるのである。
【0027】
したがって、以上説明した浮遊微粒子検知装置1(光電式煙感知器)によると、発光素子2の光は、上部のアパーチャー6を経てその照射領域周縁部分が遮断され、ケース5内の検知空間内おいて、その光軸A2が発光素子2を駆動する回路部を発光素子とともに実装する回路基板4と平行となるようにプリズム体7にて屈曲されて受光素子3の光軸A3と所定の角度をもって交差され、浮遊微粒子の検知領域が形成されるので、より小型及び薄型化を達成して発光素子2からの照射光による迷光を低減させることができる。
【0028】
そして、発光素子2からの光が、その上部のアパーチャー6を経て照射領域全周縁部分にわたって一部が遮断されて浮遊微粒子の検知領域が形成されるので、ケース5内部の汚れなどによる迷光量の増加を防止させる事ができる。また、レンズを一体にもった発光素子2の部品上部に設けられるプリズム体7にてその垂直光軸A2’が屈曲され、回路基板4と平行な平行光軸A2とされるので、発光素子2から出射される光の絞り込みがより確実に成され、さらに、レンズを一体にもった発光素子部品の上部に設けられる、光の出射面に集光レンズ71をもったプリズム体7にてその出射光が屈曲且つ集光されるので、少ない部品点数にて感煙領域をより小さく形成することができ、以て、より小型化できる。
【0029】
また、本発明は、図5に示すように、前記アパーチャーを、前記照射領域周縁の前記受光素子3に近い側に配設させた細長板状のアパーチャー9として形成することも好ましい。この場合、発光素子2からの光が、その上部のアパーチャー9を経て照射領域周縁の受光素子3に近い側の一部の光が遮断されて浮遊微粒子の検知領域が形成されることとなって、同図に示すように、受光素子3の対面するラビリンス部52に向かう不要光Bのみをなくして浮遊微粒子を検出するための発光素子からの絶対光量の減少を最小限にでき、以て、感煙感度を前述の構成より大きくできるといった効果を奏する。
【0030】
なお、本発明は、上記に示されたもの以外に、図6に示すように、アパーチャーを、発光素子2の照射領域周縁において受光素子3に遠い側に配設させたり、あるいは前述の貫通孔61を角状として穿設させたり、また、光軸屈曲手段を反射ミラーとしたり、また、勿論、浮遊微粒子検知装置としては、上記の光電式煙感知器以外に空気中の浮遊粉塵を検出する埃センサ等、各種実施形態のものも含むことは言うまでもない。
【0031】
【発明の効果】
本発明は、上述の如く実施されて、請求項1記載の浮遊微粒子検知装置にあっては、発光素子の光は、上部のアパーチャーを経てその照射領域周縁部分が遮断され、ケース内の検知空間内おいて、その光軸が発光素子を駆動する回路部を発光素子とともに実装する回路基板と平行となるように光軸屈曲手段にて屈曲されて受光素子の光軸と所定の角度をもって交差され、浮遊微粒子の検知領域が形成されるので、より小型及び薄型化を達成して発光素子からの照射光による迷光を低減させることができる。
【0032】
また、請求項記載の浮遊微粒子検知装置にあっては、レンズを一体にもった発光素子の部品上部に設けられるプリズム体にてその垂直光軸が屈曲され、回路基板と平行な平行光軸とされるので、発光素子から出射される光の絞り込みがより確実に成される。
【0033】
また、請求項記載の浮遊微粒子検知装置にあっては、レンズを一体にもった発光素子部品の上部に設けられる、光の出射面に集光レンズをもったプリズム体にてその出射光が屈曲且つ集光されるので、少ない部品点数にて浮遊微粒子の検知領域をより小さく形成することができ、以て、より小型化できる。
【0034】
また、請求項記載の浮遊微粒子検知装置にあっては、発光素子からの光が、その上部のアパーチャーを経て照射領域全周縁部分にわたって一部が遮断されて浮遊微粒子の検知領域が形成されるので、ケース内部の汚れなどによる迷光量の増加を防止させる事ができる。
【0035】
また、請求項記載の浮遊微粒子検知装置にあっては、発光素子からの光が、その上部のアパーチャーを経て照射領域周縁の受光素子に近い側の一部の光が遮断されて浮遊微粒子の検知領域が形成されるので、受光素子の対面する箇所に向かう不要光のみをなくして浮遊微粒子を検出するための発光素子からの絶対光量の減少を最小限にでき、以て、浮遊微粒子の検知感度をより大きくできるといった効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施例の浮遊微粒子検知装置における発光素子周囲を示す概略構成図である。
【図2】同浮遊微粒子検知装置における検知空間の説明図である。
【図3】発光素子からの不要光の説明図である。
【図4】同浮遊微粒子検知装置におけるアパーチャーの作用の説明図である。
【図5】本発明の第2実施例の浮遊微粒子検知装置におけるアパーチャーの作用の説明図である。
【図6】本発明の他の実施例による浮遊微粒子検知装置におけるアパーチャーの作用の説明図である。
【図7】本発明の従来例である浮遊微粒子検知装置の検知空間の説明図である。
【図8】本発明の他従来例による浮遊微粒子検知装置の検知空間の説明図である。
【符号の説明】
1 浮遊微粒子検知装置
2 発光素子
21 レンズ
3 受光素子
4 回路基板
5 ケース
6 アパーチャー
7 プリズム体(光軸屈曲手段)
A2,A3 光軸
A2’ 垂直光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric floating particle detection apparatus including a light emitting element that irradiates light to a detection space and a light receiving element that receives scattered light from floating particles among light emitted from the light emitting element.
[0002]
[Prior art]
An example of such a suspended particulate detector is the photoelectric smoke detector disclosed in Japanese Patent Laid-Open No. 9-010175 as shown in FIG. This photoelectric smoke detector is used in automatic fire alarm systems for buildings, houses, etc., and floating particles called labyrinth are introduced around the case 100 having a detection space for detecting suspended particles inside. In addition, a maze structure 101 that blocks outside light is provided.
[0003]
In this case, the light emitting element 102 that irradiates light to the detection space formed by the LED element, and the light reception formed by the photodiode element that receives the scattered light due to the floating fine particles out of the light emitted from the light emitting element 102. The element 103 is accommodated in the recesses 104 and 105 in the case 100 serving as the holder portion so that the optical axes A2 and A3 of the light emitting element 102 and the light receiving element 103 intersect with each other. The lateral openings 104a and 105a are formed so that the light receiving element 103 does not directly receive the light of the light emitting element 102.
[0004]
By the way, the present applicant has also proposed a configuration that can be made thinner as a photoelectric smoke detector disclosed in JP-A-9-231485 as shown in FIG. In this case, the light emitting element 102 and the light receiving element 103 are arranged in the case as described above so that their optical axes (not shown) are formed as parallel optical axes parallel to the circuit board 106 in the detection space. Has been. Therefore, a relatively thin detection space can be formed in the case on the mounting surface side of the light emitting element 102 and the light receiving element 103 of the circuit board 106, and a thinner photoelectric smoke detector can be formed.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional technology, the light emitting element 102 is a bullet-type general part integrally having a lens shape, and the lead portion 102a is bent and accommodated in the holder portion and mounted on the circuit board 106. . That is, this LED element has a lens-shaped outer shell that also serves as an LED chip sealing body made of epoxy resin on a straight lead portion of a predetermined length, and this lead portion is used to emit light sideways. Must be bent and soldered to the circuit board 106.
[0006]
Therefore, in the above configuration, it takes time to bend the lead portion 102a for processing, and there is a concern that the sealing state of the outer resin may be impaired during the processing. Further, in order to further reduce the thickness, in order to further reduce the detection area of the suspended fine particles in the detection space, for example, the lateral opening of the holder portion needs to be formed small. However, according to this method, the amount of light emitted from the light emitting element 102 is reduced, the amount of light scattered by the suspended fine particles to the light receiving element 103 is reduced, and the light receiving current is reduced. As a result, it is assumed that the S / N ratio between the received light current and the stray light current based on the stray light caused by the light emitted from the light emitting element 102 or the internal noise current of the components constituting the light receiving circuit unit that amplifies the received light current is reduced. Is done.
[0007]
The present invention has been made in view of the above-described reasons, and it is an object of the present invention to provide a suspended particulate detection device that can achieve further miniaturization and thickness reduction and reduce stray light due to light emitted from a light emitting element.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the suspended particulate detector according to the present invention, a light emitting element for irradiating the detection space with light, and a light receiving element for receiving scattered light from the suspended particulate among the light emitted from the light emitting element And a circuit board on which at least a circuit unit for driving the light emitting element is mounted together with the light emitting element, and a case for forming a detection space for introducing suspended fine particles therein, each optical axis of the light emitting element and the light receiving element in the detection space Is arranged as a parallel optical axis parallel to the circuit board at a predetermined angle, and in the suspended particulate detection device, the light emitting element is arranged so that the optical axis thereof is substantially vertical. mounted on the board, on top of the light emitting element, by interposing an aperture to block light of the irradiation area perimeter, provided the optical axis bending unit which bends to the vertical optical axis is the parallel optical axis, The serial light emitting element and component having a lens integrally with the optical axis bending device with a prism member, said prism body, is characterized in that it has to have integrated the condenser lens on the exit surface of the light.
[0009]
With this configuration, the light emitted from the light-emitting element passes through the upper aperture, and the periphery of the irradiated area is blocked. In the detection space inside the case, a circuit unit whose optical axis drives the light-emitting element is mounted together with the light-emitting element. It is bent by the optical axis bending means so as to be parallel to the circuit board to be crossed and intersects with the optical axis of the light receiving element at a predetermined angle, thereby forming a floating particulate detection region.
[0010]
Also, since the light emitting element is a component with a lens integrated and the optical axis bending means is a prism body, the vertical optical axis of the prism body provided on the component of the light emitting element with the lens integrated is It is bent to be a parallel optical axis parallel to the circuit board.
[0011]
Further, since the prism body is integrally provided with a condensing lens on the light exit surface thereof, the prism body is provided on the light emitting element part having the lens integrally and has a condensing lens on the light exit surface. The emitted light is bent and collected at.
[0012]
And it is preferable to arrange | position the said aperture over the whole periphery of the irradiation area | region by the said light emitting element. In this case, the light from the light emitting element is partially blocked over the entire periphery of the irradiation region via the upper aperture, thereby forming a floating particulate detection region.
[0013]
It is also preferable that the aperture is disposed on the side near the light receiving element at the periphery of the irradiation region. In this case, the light from the light emitting element passes through the upper aperture, and part of the light near the light receiving element on the periphery of the irradiation area is blocked to form a floating particulate detection area.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1 to 6 show an embodiment corresponding to all the inventions of claims 1 to 5, and FIG. 1 is a schematic configuration diagram showing the periphery of a light emitting element in the suspended particulate detector according to the first embodiment of the present invention. 2 is an explanatory diagram of a detection space in the floating particle detector, FIG. 3 is an explanatory diagram of unnecessary light from the light emitting element, and FIG. 4 is an explanatory diagram of the action of the aperture in the floating particle detector, FIG. FIG. 6 is an explanatory view of the action of the aperture in the suspended particle detector of the second embodiment of the present invention, and FIG. 6 is an explanatory view of the action of the aperture in the suspended particle detector of another embodiment of the present invention.
[0015]
The floating particle detection apparatus 1 of this embodiment includes a light emitting element 2 that irradiates light to a detection space, a light receiving element 3 that receives scattered light from floating particles out of the light emitted from the light emitting element 2, and at least the light emitting element 2. A circuit board 4 for mounting a circuit unit for driving the light emitting element 2 together with a case 5 for forming therein a detection space for introducing suspended particles, and the optical axes of the light emitting element 2 and the light receiving element 3 in the detection space. In the suspended particle detection apparatus in which A2 and A3 are arranged as parallel optical axes parallel to the circuit board 4 at a predetermined angle to form a suspended particle detection region, the light emitting element 2 has an optical axis A2 of approximately. It is mounted on the circuit board 4 so as to be vertical, and an aperture 6 that blocks light at the periphery of the irradiation region is interposed above the light emitting element 2 and bent so that its vertical optical axis A2 ′ becomes the parallel optical axis. Optical axis bending means (7) is provided.
[0016]
Moreover, in the suspended particle detector 1 of this embodiment, the aperture 6 may be disposed over the entire periphery of the irradiation region by the light emitting element 2. Further, in the suspended particle detection device 1 of this embodiment, the light emitting element 2 is a component with an integrated lens, and the optical axis bending means is also a prism body 7.
[0017]
Specifically, this suspended particulate detector 1 is the photoelectric smoke detector described in the section of the prior art, has substantially the same configuration as the conventional photoelectric smoke detector, and forms a detection space inside. It is formed by a case 5 serving as a smoke detection chamber and a main body (not shown) having a signal output means for outputting a fire according to, for example, the detected smoke concentration.
[0018]
In this case, the light emitting element 2 is an LED element of a radial type part having a lead portion 22 with an integrated lens facing downward. As shown in FIG. 1, a sealing body of the LED chip 21 made of a bullet type epoxy resin is used. It also has a lens-shaped outer shell 23 that also serves as a lens. The light emitting element 2 is erected on the circuit board 4 through a straight lead portion 22, and its vertical optical axis A 2 ′ is bent by a prism body 7, which will be described later, provided on the light emitting element 2. A parallel optical axis A2 is formed in parallel. A location where the parallel optical axis A2 intersects a parallel optical axis A3 of the light receiving element 3 described later is a smoke-sensitive area where smoke is sensed. (See Fig. 2 (a))
[0019]
In this case, the light receiving element 3 is a photodiode element (PD element) of a radial type part having a lead portion with an integrated lens facing downward. As shown in FIG. The convex lens 31 is integrally provided on the side surface of the resin outer shell that also serves as the resin. Above this convex lens 31, in this case, a condensing prism body 8 made of acrylic resin that also serves as an optical axis bending means for vertically bending the parallel optical axis A 3 to the light receiving element 3 is provided.
[0020]
The case 5 is a substantially cylindrical body as shown in FIGS. 2A and 2B, and corresponds to an infrared LED element corresponding to the light emitting element 2 and a light receiving element 3 inside the synthetic resin container. A photodiode element is accommodated. The upper plate 51 has a labyrinth portion 52 provided with a plurality of substantially rib-shaped vertical ribs so that smoke does not enter and external light does not enter, and the lower surface side of the upper plate 51 facing the upper plate 51. Is formed with a lower plate 54 that also serves as a decorative cap. (However, in FIG. 2B, the up and down position of the attached state is reversed.) That is, the case 5 is formed so that smoke can pass in the lateral direction and flow into the detection space. .
[0021]
In this case 5, as shown in FIG. 2A, the plane view angle formed by the light-emitting element 2 and the parallel optical axes A2 and A3 of the light-receiving element 3 is about 100 degrees, and a smoke-sensitive area for detecting smoke is detected. There is a space in which the light emitting element 2 and the light receiving element 3 are disposed at an appropriate position of the labyrinth 52 so that the parallel optical axes A2 and A3 are formed at substantially the middle position of the detection space in the vicinity of the center of the space. Is formed. In addition, a light trap 53 provided with a plurality of vertically long substantially-shaped vertical ribs is provided at a location intersecting the parallel optical axis A <b> 2 of the light emitting element 2 of the case 5. The light emitted from the light emitting element, which is bent by the provided prism body 7 and parallel to the circuit board, is converged and absorbed by the inclined surface between the vertical ribs of the optical trap 53, and stray light is generated inside the case 5. It is becoming less. In addition, as shown in the figure, the portion of the upper plate 51 other than the above-described smoke-sensitive region has an appropriate shape that prevents the light emitted from the light emitting element from reaching the labyrinth portion 52 other than the light trap 53. The light-shielding ribs 54 and 54 having the above are disposed to prevent the light from being diffusely reflected toward the light receiving element 3 through the labyrinth portion 52.
[0022]
An aperture 6 made of a substantially square resin plate having a circular through hole 61 formed in the center thereof is provided on the upper portion of the housing portion of the light emitting element 2, and the outer shell 23 of the light emitting element 2 extends from the through hole 61. The lens-shaped part which becomes the top surface of the lens is fitted so as to be exposed. The aperture 6 blocks the peripheral edge of the light-emitting element 2 in the substantially spindle-shaped irradiation area, and the light emitted from the LED chip 21 of the light-emitting element 2 as shown in FIGS. 4 (a) and 4 (b). Unnecessary light B, B traveling toward the labyrinth 52 is greatly reduced, and the optical axis A2 is bent via the prism body 7.
[0023]
The prism body 7 is an optical axis bending means for bending the vertical optical axis A2 ′ of the light emitting element 2, and is disposed above the aperture 6 above the light emitting element 2 as shown in FIG. In addition to the prism body 7, the optical axis bending means of the present invention is formed by forming a mirror surface as a reflection surface of approximately 45 degrees on a part of the case 5 and subjecting the mirror surface to an aluminum vapor deposition process. Various configurations such as using a reflecting mirror or a separate mirror body can be used. The light emitting surface of the prism body 7 is integrally formed with a condensing lens 71 for narrowing the projection beam by the light emitting element 2 that forms the above-described smoke sensitive region. The emitted light is bent and condensed, and the smoke sensitive area can be formed smaller with a small number of parts.
[0024]
In the case of this prism body 7, by appropriately setting the angle of the light bending surface that totally reflects the light, it is possible to eliminate almost no light loss when the optical axis is bent by the reflection mirror or the like. There are advantages. As shown in FIG. 4, the light emitted from the light emitting element 2 other than the unnecessary light B blocked by the aperture 6 is totally reflected by the light bending surface 72. Therefore, the projection beam that is emitted from the light emitting element 2 to form the smoke sensitive region is more reliably narrowed down, and there is an effect that the suspended particulate detector 1 can be made smaller.
[0025]
In the above-described suspended particle detection apparatus 1, the light emitted from the light emitting element 2 passes through the upper aperture 6 and is cut off at the periphery of the irradiated area to be a columnar parallel light. Then, in the detection space in the case 5, the parallel light is bent by the prism body 7 so that the optical axis A <b> 2 of the parallel light is parallel to the circuit board 4 mounted together with the light emitting element 2. Then, the detection region of the suspended fine particles is formed by intersecting the optical axis A3 of the light receiving element 3 with an angle of about 100 degrees in this case. That is, of the light emitted from the LED chip 21 of the light emitting element 2, the unnecessary light B that does not contribute to the detection of the suspended fine particles is greatly reduced and goes to the labyrinth portion 52 of the case 5.
[0026]
At this time, the light from the light-emitting element 2 passes through the upper aperture 6 and is partially blocked over the entire periphery of the irradiation region to form a floating particulate detection region. As a result, the amount of stray light is hardly increased even if the contamination becomes remarkable. Further, the vertical optical axis A 2 ′ is bent by the prism body 7 provided on the upper part of the light emitting element 2 with the lens integrated, and becomes a parallel optical axis A 2 parallel to the circuit board 4. A prism having a condensing lens 71 on a light exit surface provided on the upper part of a light emitting element part having a lens integrated with a more reliable narrowing of the emitted light. The emitted light is bent and condensed by the body 7, so that the smoke sensitive region S is formed smaller with a small number of parts.
[0027]
Therefore, according to the above-described suspended particulate detector 1 (photoelectric smoke detector), the light emitted from the light emitting element 2 is blocked at the periphery of the irradiation region through the upper aperture 6, so that the inside of the detection space inside the case 5 is blocked. The optical axis A2 is bent by the prism body 7 so that the circuit unit for driving the light emitting element 2 is parallel to the circuit board 4 mounted with the light emitting element, and has a predetermined angle with the optical axis A3 of the light receiving element 3. Crossing to form a detection region of suspended fine particles, it is possible to achieve further miniaturization and thickness reduction and reduce stray light due to light irradiated from the light emitting element 2.
[0028]
Then, the light from the light emitting element 2 passes through the upper aperture 6 and is partially blocked over the entire periphery of the irradiation region to form a floating particulate detection region. The increase can be prevented. Further, since the vertical optical axis A2 ′ is bent by the prism body 7 provided on the upper part of the light emitting element 2 with the lens integrated, and the parallel optical axis A2 parallel to the circuit board 4 is formed, the light emitting element 2 The light emitted from the light is more reliably narrowed down, and the light is emitted by a prism body 7 having a condensing lens 71 on the light emitting surface provided on the upper part of the light-emitting element part having the lens integrated therewith. Since the incident light is bent and condensed, the smoke-sensitive region can be formed smaller with a small number of parts, and thus the size can be further reduced.
[0029]
Further, in the present invention, as shown in FIG. 5, it is also preferable that the aperture is formed as an elongated plate-like aperture 9 disposed on the side near the light receiving element 3 at the periphery of the irradiation region. In this case, the light from the light emitting element 2 passes through the upper aperture 9 and a part of the light near the light receiving element 3 on the periphery of the irradiation area is blocked to form a floating particulate detection area. As shown in the figure, it is possible to minimize the decrease in the absolute light amount from the light emitting element for detecting the suspended fine particles by eliminating only the unnecessary light B directed to the labyrinth portion 52 facing the light receiving element 3, There is an effect that the smoke sensitivity can be made larger than the above-described configuration.
[0030]
In the present invention, in addition to the above-described ones, as shown in FIG. 6, the aperture may be disposed on the side far from the light receiving element 3 at the periphery of the irradiation region of the light emitting element 2, or 61 is formed in a square shape, the optical axis bending means is a reflecting mirror, and, of course, the suspended particulate detector detects suspended dust in the air in addition to the photoelectric smoke detector described above. It goes without saying that various embodiments such as a dust sensor are also included.
[0031]
【The invention's effect】
The present invention is carried out as described above, and in the suspended particulate detection device according to claim 1, the light from the light emitting element is blocked at the periphery of the irradiation region through the upper aperture, and the detection space in the case Inside, the optical axis is bent by the optical axis bending means so that the circuit unit for driving the light emitting element is parallel to the circuit board mounted with the light emitting element, and intersects the optical axis of the light receiving element at a predetermined angle. In addition, since the detection region of the suspended fine particles is formed, it is possible to achieve further miniaturization and thickness reduction and reduce stray light due to the irradiation light from the light emitting element.
[0032]
Further, in the suspended particle detection apparatus according to claim 1, the vertical optical axis is bent by a prism body provided on the upper part of the light emitting element having an integrated lens, and the parallel optical axis is parallel to the circuit board. Therefore, it is possible to more reliably narrow down the light emitted from the light emitting element.
[0033]
Further, in the airborne particulates detecting apparatus according to claim 1, wherein the lens is provided on the upper portion of the light emitting element part having integrally, the emitted light by a prism body having a condensing lens on the exit surface of the light Since it is bent and condensed, the detection area of the suspended fine particles can be formed smaller with a small number of parts, and thus the size can be further reduced.
[0034]
Further, in the suspended particulate detector according to claim 2 , a part of the light from the light emitting element is blocked over the entire periphery of the irradiation region through the upper aperture to form a suspended particulate detection region. Therefore, it is possible to prevent an increase in the amount of stray light due to dirt inside the case.
[0035]
Further, in the suspended particulate detector according to claim 3 , the light from the light emitting element passes through the upper aperture, and a part of the light on the side near the light receiving element at the periphery of the irradiation region is blocked. Since the detection area is formed, it is possible to minimize the decrease in the absolute light quantity from the light emitting element for detecting the suspended fine particles by eliminating only unnecessary light directed to the facing part of the light receiving element, and thus detecting the suspended fine particles. There is an effect that sensitivity can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a periphery of a light emitting element in a suspended particulate detector according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a detection space in the airborne particle detector.
FIG. 3 is an explanatory diagram of unnecessary light from a light emitting element.
FIG. 4 is an explanatory diagram of the action of an aperture in the airborne particle detector.
FIG. 5 is an explanatory diagram of the action of the aperture in the suspended particulate detector according to the second embodiment of the present invention.
FIG. 6 is an explanatory view of the action of an aperture in a suspended particulate detector according to another embodiment of the present invention.
FIG. 7 is an explanatory diagram of a detection space of a suspended particle detection apparatus which is a conventional example of the present invention.
FIG. 8 is an explanatory diagram of a detection space of an airborne particle detector according to another conventional example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Airborne particle | grain detection apparatus 2 Light emitting element 21 Lens 3 Light receiving element 4 Circuit board 5 Case 6 Aperture 7 Prism body (optical axis bending means)
A2, A3 Optical axis A2 'Vertical optical axis

Claims (3)

検知空間に光を照射させる発光素子と、発光素子から出射された光のうち浮遊微粒子による散乱光を受光する受光素子と、少なくとも発光素子を駆動する回路部を発光素子とともに実装する回路基板と、浮遊微粒子を導入する検知空間を内部に形成させるケースとを備え、検知空間内に発光素子と受光素子の各光軸を所定の角度をもって回路基板と平行な平行光軸として配設させて浮遊微粒子の検知領域が形成されてなる浮遊微粒子検知装置において、
前記発光素子を、その光軸が略垂直となるよう前記回路基板に実装し、発光素子の上部に、照射領域周縁の光を遮るアパーチャーを介在させて、その垂直光軸が前記平行光軸となるよう屈曲させる光軸屈曲手段を設け、前記発光素子をレンズを一体にもった部品とし、前記光軸屈曲手段をプリズム体とし、前記プリズム体を、その光の出射面に集光レンズを一体に有するものとしたことを特徴とする浮遊微粒子検知装置。
A light-emitting element that irradiates light to the detection space; a light-receiving element that receives scattered light from floating fine particles out of the light emitted from the light-emitting element; a circuit board that mounts at least a circuit unit that drives the light-emitting element together with the light-emitting element; And a case in which a detection space for introducing suspended particulates is formed therein, and the suspended particulates are arranged in the sensing space with the optical axes of the light emitting element and the light receiving element as parallel optical axes parallel to the circuit board at a predetermined angle. In the suspended particulate detection device in which the detection region is formed,
The light emitting element is mounted on the circuit board so that its optical axis is substantially vertical, and an aperture that blocks light at the periphery of the irradiation region is interposed above the light emitting element so that the vertical optical axis is parallel to the parallel optical axis. An optical axis bending means for bending is provided , the light emitting element is a component with an integrated lens, the optical axis bending means is a prism body, and the prism body is integrated with a condensing lens on its light exit surface. airborne particulates detecting device according to claim and was able to have a.
前記アパーチャーを、前記発光素子による照射領域全周縁にわたって配設させた請求項1記載の浮遊微粒子検知装置。  The suspended particle detection apparatus according to claim 1, wherein the aperture is disposed over the entire periphery of the irradiation region of the light emitting element. 前記アパーチャーを、前記照射領域周縁の前記受光素子に近い側に配設させた請求項1記載の浮遊微粒子検知装置。  The suspended particle detection apparatus according to claim 1, wherein the aperture is disposed on a side closer to the light receiving element at the periphery of the irradiation region.
JP2001292603A 2001-09-25 2001-09-25 Airborne particle detector Expired - Lifetime JP3747830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292603A JP3747830B2 (en) 2001-09-25 2001-09-25 Airborne particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292603A JP3747830B2 (en) 2001-09-25 2001-09-25 Airborne particle detector

Publications (2)

Publication Number Publication Date
JP2003098083A JP2003098083A (en) 2003-04-03
JP3747830B2 true JP3747830B2 (en) 2006-02-22

Family

ID=19114533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292603A Expired - Lifetime JP3747830B2 (en) 2001-09-25 2001-09-25 Airborne particle detector

Country Status (1)

Country Link
JP (1) JP3747830B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110433A (en) * 2007-10-31 2009-05-21 New Cosmos Electric Corp Photoelectric smoke sensor
CN109696385A (en) * 2018-12-19 2019-04-30 骆杨斌 The design method of sensor and sensor
WO2021038090A1 (en) * 2019-08-30 2021-03-04 Computionics Ltd Improvements to smoke detectors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404731B (en) * 2003-07-31 2006-08-09 Apollo Fire Detectors Ltd Smoke detector with compact light source
DE102007045018B4 (en) * 2007-09-20 2011-02-17 Perkinelmer Optoelectronics Gmbh & Co.Kg Radiation guide device for a detector, scattered radiation detector
JP2010271894A (en) * 2009-05-21 2010-12-02 Panasonic Electric Works Co Ltd Smoke detecting alarm
JP2011102710A (en) * 2009-11-10 2011-05-26 Sharp Corp Light scattering particle detector and fire alarm
WO2015146429A1 (en) * 2014-03-25 2015-10-01 株式会社島津製作所 Particle counting device
CN106574889B (en) * 2014-10-31 2019-06-04 松下知识产权经营株式会社 Particle detection sensor, dust sensor, smoke detector, air cleaner, ventilation fan and air-conditioning
WO2017090134A1 (en) * 2015-11-25 2017-06-01 神栄テクノロジー株式会社 Particle sensor
CN117309709A (en) * 2023-11-23 2023-12-29 之江实验室 Exhaled gas marker detection method and device based on suspended particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110433A (en) * 2007-10-31 2009-05-21 New Cosmos Electric Corp Photoelectric smoke sensor
CN109696385A (en) * 2018-12-19 2019-04-30 骆杨斌 The design method of sensor and sensor
WO2021038090A1 (en) * 2019-08-30 2021-03-04 Computionics Ltd Improvements to smoke detectors

Also Published As

Publication number Publication date
JP2003098083A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US7248173B2 (en) Smoke detector
US9739701B2 (en) Particle sensor
JP3747830B2 (en) Airborne particle detector
KR20080082455A (en) Smoke sensor
US20170268994A1 (en) Particle sensor, and electronic device provided with same
JP2787001B2 (en) Photoelectric smoke detector
JP2691951B2 (en) Photoelectric smoke detector
JPH11248629A (en) Light scattering type particle detecting sensor
CA2946921C (en) Assembly for attenuating impinging light of a beam of radiation
WO2012140482A1 (en) Gas component detection device
JP7440390B2 (en) Particle detection sensor and particle detection device
JP2002323434A (en) Device for sensing floating fine particles
JP2533687B2 (en) Light scattering particle detection sensor
JP2581838B2 (en) Light scattering particle detection sensor
JP2545772Y2 (en) Smoke detector
JPH10253533A (en) Photo detector with film reflector
JPH03296897A (en) Scattered light type smoke sensor
JPH11213263A (en) Light scattering type particle detecting sensor
JPH08136456A (en) Photoelectric smoke detector
JP2000065741A (en) Photoelectric detector
JPH0676970B2 (en) Optical inspection device
JP3747763B2 (en) Photoelectric smoke detector
JPH10241073A (en) Photoelectric type smoke detector
JPH04160696A (en) Photoelectric smoke sensor
KR20000064239A (en) Smoke alarm

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R151 Written notification of patent or utility model registration

Ref document number: 3747830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8