JP3747327B2 - Allophane purification method - Google Patents

Allophane purification method Download PDF

Info

Publication number
JP3747327B2
JP3747327B2 JP08882594A JP8882594A JP3747327B2 JP 3747327 B2 JP3747327 B2 JP 3747327B2 JP 08882594 A JP08882594 A JP 08882594A JP 8882594 A JP8882594 A JP 8882594A JP 3747327 B2 JP3747327 B2 JP 3747327B2
Authority
JP
Japan
Prior art keywords
allophane
raw material
volcanic ash
dry air
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08882594A
Other languages
Japanese (ja)
Other versions
JPH07291617A (en
Inventor
信家 鮎沢
健彰 八城
寛治 平栗
和夫 坂本
哲朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanashi Prefecture
Original Assignee
Yamanashi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi Prefecture filed Critical Yamanashi Prefecture
Priority to JP08882594A priority Critical patent/JP3747327B2/en
Publication of JPH07291617A publication Critical patent/JPH07291617A/en
Application granted granted Critical
Publication of JP3747327B2 publication Critical patent/JP3747327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、工業排水中に含まれるホスフィン酸イオン、ホスホン酸イオン、テトラフルオロホウ酸イオン、重金属イオン(特に鉛イオン)等の有害イオンを吸着除去するために有効的に使用できるアロフェンを、アロフェン系火山灰土壌から分離精製する方法に関するものである。
【0002】
【従来の技術】
アロフェン系火山灰土壌は、非晶質ケイ酸塩であるアロフェンの他に石英、長石、雲母、角せん石、浮石等が含まれている。このために、この様なアロフェン系火山灰土壌を工業材料、特に吸着剤として使用することが望まれている。
【0003】
【発明が解決しようとする課題】
併し乍ら、この様なアロフェン系火山灰土壌を工業材料としての吸着剤として使用する場合には、アロフェン系火山灰土壌中に含まれるイオンを吸着しない石英や雲母等の不純物が、排水設備を大型にするなどの欠点を生じさせ、この様な排水処理上の問題のためにアロフェン系火山灰土壌を工業材料としての吸着剤として効率的に使用することが出来なかった。
【0004】
従って、この発明の目的は、工業材料として、特に、工業排水中の有害イオンの吸着用吸着剤として有効とされているアロフェンをアロフェン系火山灰土壌から高収率で精製する方法を提供することにある。
【0005】
【課題を解決するための手段】
上述の目的を達成するために、この発明のアロフェン精製方法は、組成式lAl23・mSiO2・nFe23(l:m:n=1:1.4〜2:0.05〜0.25)で表される化学組成比を有するアロフェン系火山灰土壌を水分7%以下に、好ましくは5%以下に調整した後に、圧縮空気により粉砕し、粒径20〜65μの範囲、好ましくは20〜40μの範囲に分級点を定めて、乾式気流中で粗粉と細粉に分級し、分級された粗粉を分離することにより、lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)の化学組成比を有するアロフェンを得ることを特徴としている。
【0006】
【作用】
この発明のアロフェンの精製においては、組成式lAl23・mSiO2・nFe23(l:m:n=1:1.4〜2:0.05〜0.25)で表される化学組成比を有する原料アロフェン系火山灰土壌を、水分7%以下に、好ましくは5%以下に乾燥調整した後に圧縮空気により粉砕し、粒径20〜65μの範囲、好ましくは20〜40μの範囲に分級点を定めて、乾式気流中で粗粉と細粉に分級し、分級された粗粉を分離することにより、lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)の化学組成比を有するアロフェンを得ることができるので、不純物は、圧縮空気による粉砕で壊れていないので、乾式気流分級器による分級の後、その分級器の下部から機外に確実に排出されて廃棄される。一方、分離された細粉は乾式気流分級器の上部のセンターフードから排気と一緒に排出されて、次のサイクロンで分離されて精製品として所要分級度のアロフェンが分離排出されると共に、細粉は更にサイクロンからバグフイルターに排気と一緒に送られてバグフイルターにおいて微粉として回収され、細粉と同様に利用される。
【0007】
特に、含水率を7%以下に調整した原料アロフェン系火山灰土壌を、圧縮空気により不純物を粉砕しない程度に粉砕して、粒径20〜65μの範囲に分級点を定めて分級するので、効率的なイオン吸着能力を有する、lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)の化学組成比を有するアロフェンを細粉として高収率で精製することが出来る。
【0008】
この発明の他の目的と特長および利点等は以下の詳細な説明から明らかになろう。
【0009】
【実施例】
図1は、この発明のアロフェンの精製方法の工程図である。原料アロフェン系火山灰土壌として、例えば山梨県八ヶ岳山麓の地表面下1.5〜2.5mから採鉱した黄褐色土壌(組成式lAl23・mSiO2・nFe23(l:m:n=1:1.4〜2:0.05〜0.25)で表される)が原料Aとして用いられ、風乾または強制乾燥によって水分を7%以下に、好ましくは5%以下に乾燥調整される。水分が7%以上になると原料間に付着が発生し、不純物の分離が悪くなる。所要の水分に乾燥された原料Aは、原料ホッパー1に入れられ、スクリューフィーダー2によってホッパー3に送られて石英や雲母等の不純物が粉砕されない程度に圧縮空気により粉砕される。圧縮空気により粉砕された原料は、分散器4に送られて圧縮空気により石英や雲母等の不純物が粉砕されない程度に均一に分散されて乾式気流分級器5内に吹き込まれ、この乾式気流分級器5で粒径範囲20〜65μ、好ましくは粒径範囲20〜40μにおいて定められた分級点で粗粉と細粉粉とに分級される。この乾式気流分級器5は通常の乾式気流分級器を使用することが出来、分級度すなわち分級点を任意に調節出来るものが好適である。なお、原料ホツパー1には必要に応じて回転羽根を設けて、原料の塊をほぐす程度に回転羽根を回転させても良い。
【0010】
乾式気流分級器5内で行われるアロフェン系火山灰土壌の原料の分級点は20〜65μ、好ましくは20〜40μの範囲内に維持される。この分級点は乾式気流分級器5内のコーン高さを調節することによって所要の分級点を決めることが出来る。この乾式気流分級器5内で原料を乾式気流分級することによって不純物を粗粉の形で分離することが出来、分級された粗粉は乾式気流分級器5の下部からロータリーバルブ6を介して機外に排出される。他方、乾式気流分級器5内で分級された細粉は組成式lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)の化学組成比を有するアロフェンで、細粉として乾式気流分級器5の上部のセンターフードから空気と一緒に排出され、サイクロン7に送り込まれて、こゝで細粉がサイクロン7の下部のロータリーバルブ8を介して排出されて回収される。この回収された細粉が所要の成分のアロフェンである。アロフェンが細粉として分級された残りの微粉と空気はサイクロン7の上部からバグフィルター9に送り込まれ、微粉がロータリーバルブ10を介して回収され、残った排気はブロワー11によって外部に排出される。
【0011】
この様に、この発明においては、原料アロフェン系火山灰土壌は、ホッパー3に送られた石英や雲母等の不純物が粉砕されない程度に圧縮空気により粉砕され、さらに、分散器4内で不純物を粉砕しない程度にほぐすように気流中に均一に分散された後、粒径20〜65μ、好ましくは20〜40μの範囲内に分級点を定め、この分級点を維持しながら乾式気流分級することによって不純物を粗粉の形で分離することが出来る。一方、組成式lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)で表される化学組成比を有するアロフェンを細粉として高効率で分離精製することが出来る。乾式気流分級器5内で不純物が粉砕されてしまうと、アロフェン中に不純物が混入する原因になる。また、分級点が粒径20〜65μの範囲を超えると不純物がアロフェンに混入したり、得られるアロフェンのイオン吸着効率が低下する原因になる。
【0012】
上述のこの発明のアロフェンの精製方法に従ってアロフェンを分離精製した実施例を表1に示す。
【0013】
これら実施例において、使用される原料のアロフェン系火山灰土壌は、例えば山梨県八ヶ岳山麓の地表面下1.5〜2.5mから採鉱した黄褐色土壌(組成式lAl23・mSiO2・nFe23(l:m:n=1:1.4〜2:0.05〜0.25)で表される)が用いられ、風乾または強制乾燥によって水分が5%以下に乾燥調整された。原料およびアロフェンの化学組成比は日本電子株式会社製の蛍光X線分析装置を用いて算出した。精製方法は工程図に示される通りである。処理品物性の最大粒径は島津製作所製のレーザー回析式粒度分布測定装置によって求めた。異物の混入は目開き45μのメッシュで篩分けしてメッシュ上の残留物を観察した。いずれの実施例においても分離精製されたアロフェンの化学組成比は組成式lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)で表される範囲内にある。
【0014】
【表1】

Figure 0003747327
【0015】
また、これら実施例における吸着性能は次の表2の通りである。
【0016】
【表2】
Figure 0003747327
【0017】
上記の表2において、*1の吸着量は、H3PO3およびH3PO2を用いてリンとして100mg/リットルの試験液を調整し、乾燥した各処理品3gを共栓付三角フラスコにとり、試験液を加えて撹拌し乍ら36時間処理した。次に、上澄みを濾過して高周波プラズマ発光分光分析装置により分析してリンの吸着量を求めた。*2の吸着量は、H3PO3およびH3PO2を用いてリンとして500mg/リットルの試験液を調整し、乾燥した各処理品5gを共栓付三角フラスコにとり、試験液を加えて撹拌し乍ら36時間処理した。次に、上澄みを濾過して高周波プラズマ発光分光分析装置により分析してリンの吸着量を求めた。*3の比較例の原料はらいかい機で2時間粉砕したものを試料として用いた。
【0018】
表2から明らかな様に、この発明のアロフェンの精製方法に従って精製した実施例3、4、5、6の処理品を試料として用いたものにおいては、比較例のものと比べていずれも吸着量が43〜55mg/gと良好である。
【0019】
【発明の効果】
上述した様に、この発明のアロフェンの精製方法に依れば、アロフェン系火山灰土壌を原料として用い、水分7%以下に調整した後に圧縮空気により粉砕し、粒径20〜65μの範囲に分級点を定めて乾式気流中で粗粉と細粉に分級し、分級された粗粉を分離することにより、組成式lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)で表される化学組成比を有するアロフェンを高収率で分離精製することが出来、このアロフェンは排水中の有害イオンの効率的な吸着剤として使用することが出来る。
【図面の簡単な説明】
【図1】この発明のアロフェンの精製方法の工程図である。
【符号の説明】
1 原料ホッパー
2 スクリューフィーダー
3 ホッパー
4 分散器
5 乾式気流分級器
6 ロータリーバルブ
7 サイクロン
8 ロータリーバルブ
9 バグフィルター
10 ロータリーバルブ
11 ブロア[0001]
[Industrial application fields]
The present invention relates to an allophane that can be effectively used for adsorbing and removing harmful ions such as phosphinate ions, phosphonate ions, tetrafluoroborate ions, heavy metal ions (particularly lead ions) contained in industrial wastewater. The present invention relates to a method of separating and refining from the volcanic ash soil.
[0002]
[Prior art]
Allophane volcanic ash soil contains quartz, feldspar, mica, hornblende, pumice, etc. in addition to amorphous silicate allophane. For this reason, it is desired to use such allophane-based volcanic ash soil as an industrial material, particularly as an adsorbent.
[0003]
[Problems to be solved by the invention]
At the same time, when such allophane volcanic ash soil is used as an adsorbent as an industrial material, impurities such as quartz and mica, which do not adsorb ions contained in allophane volcanic ash soil, increase the size of drainage facilities. The allophane volcanic ash soil could not be efficiently used as an adsorbent as an industrial material due to such problems in wastewater treatment.
[0004]
Accordingly, an object of the present invention is to provide a method for refining allophane, which is effective as an adsorbent for adsorbing harmful ions in industrial wastewater, from industrial allophane volcanic ash soil in high yield. is there.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the allophane purification method of the present invention has a composition formula of lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.4 to 2: 0.05). The allophane-based volcanic ash soil having a chemical composition ratio represented by 0.25) is adjusted to a moisture content of 7% or less, preferably 5% or less, and then pulverized with compressed air to give a particle size in the range of 20 to 65 μm, preferably By setting a classification point in a range of 20 to 40 μm, classification into coarse powder and fine powder in a dry air flow, and separating the classified coarse powder, lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l : M: n = 1: 1.1 to 1.4: 0.05 to 0.15). Allophane having a chemical composition ratio is obtained.
[0006]
[Action]
In the purification of allophane of the present invention, it is represented by the composition formula lAl 2 O 3 · mSiO 2 · nFe 2 O 3 (l: m: n = 1: 1.4 to 2: 0.05 to 0.25). The raw material allophane-based volcanic ash soil having a chemical composition ratio is dried and adjusted to a moisture content of 7% or less, preferably 5% or less, and then pulverized with compressed air to a particle size range of 20 to 65μ, preferably 20 to 40μ. By setting a classification point, the powder is classified into a coarse powder and a fine powder in a dry air stream, and the classified coarse powder is separated to obtain lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1 Since allophane having a chemical composition ratio of 1.1 to 1.4: 0.05 to 0.15) can be obtained, the impurities are not broken by pulverization with compressed air, so classification by a dry air classifier After that, it is reliably discharged from the lower part of the classifier and discarded. On the other hand, the separated fine powder is discharged together with the exhaust from the center hood at the top of the dry air classifier, separated by the next cyclone, and allophane of the required classification degree is separated and discharged as a refined product. Is further sent from the cyclone to the bag filter together with the exhaust gas and collected as fine powder in the bag filter and used in the same manner as the fine powder.
[0007]
In particular, the raw material allophane-based volcanic ash soil whose water content is adjusted to 7% or less is pulverized with compressed air to such an extent that impurities are not pulverized, and classification is performed by setting a classification point within a particle size range of 20 to 65 μm. Having a chemical composition ratio of lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.1-1.4: 0.05-0.15) Allophane can be refined as a fine powder with high yield.
[0008]
Other objects, features and advantages of the present invention will become apparent from the following detailed description.
[0009]
【Example】
FIG. 1 is a process diagram of the allophane purification method of the present invention. As raw material allophane-based volcanic ash soil, for example, yellow brown soil (compositional formula lAl 2 O 3 · mSiO 2 · nFe 2 O 3 (l: m: n) mined from 1.5 to 2.5 m below the surface of Yatsugatake, Yamanashi Prefecture = 1: 1.4-2: 0.05-0.25) is used as the raw material A, and the moisture is reduced to 7% or less, preferably 5% or less by air drying or forced drying. The When the water content is 7% or more, adhesion occurs between the raw materials, and the separation of impurities becomes worse. The raw material A dried to the required moisture is put into the raw material hopper 1, sent to the hopper 3 by the screw feeder 2, and crushed with compressed air to such an extent that impurities such as quartz and mica are not crushed. The raw material pulverized with compressed air is sent to the disperser 4 and uniformly dispersed to such an extent that impurities such as quartz and mica are not pulverized by the compressed air, and blown into the dry air classifier 5, and this dry air classifier 5 is classified into coarse powder and fine powder at a classification point determined in a particle size range of 20 to 65 μm, preferably in a particle size range of 20 to 40 μm. As the dry air classifier 5, a normal dry air classifier can be used, and one that can arbitrarily adjust the degree of classification, that is, the classification point is preferable. The raw material hopper 1 may be provided with rotating blades as necessary, and the rotating blades may be rotated to such an extent that the raw material lump is loosened.
[0010]
The classification point of the raw material of the allophane-based volcanic ash soil performed in the dry air classifier 5 is maintained in the range of 20 to 65 μ, preferably 20 to 40 μ. This classification point can be determined by adjusting the cone height in the dry air classifier 5. Impurities can be separated in the form of coarse powder by subjecting the raw material to dry air classification in the dry air classifier 5, and the classified coarse powder is passed through a rotary valve 6 from the bottom of the dry air classifier 5. Discharged outside. On the other hand, the fine powder classified in the dry air classifier 5 has a composition formula lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.1-1.4: 0.05). 0.15) is an allophane having a chemical composition ratio, and is discharged as fine powder together with air from the center hood at the top of the dry air classifier 5 and sent to the cyclone 7, where the fine powder is made up of the cyclone 7 It is discharged and collected via the lower rotary valve 8. The collected fine powder is allophane as a required component. The remaining fine powder and air obtained by classifying allophane as fine powder are sent to the bag filter 9 from the upper part of the cyclone 7, the fine powder is collected through the rotary valve 10, and the remaining exhaust gas is discharged to the outside by the blower 11.
[0011]
Thus, in this invention, the raw material allophane-based volcanic ash soil is crushed with compressed air to such an extent that impurities such as quartz and mica sent to the hopper 3 are not crushed, and further, the impurities are not crushed in the disperser 4. After being uniformly dispersed in the air flow so as to loosen to the extent, a classification point is set within the range of 20 to 65 μ, preferably 20 to 40 μ, and impurities are classified by dry air classification while maintaining this classification point. It can be separated in the form of coarse powder. On the other hand, it has a chemical composition ratio represented by the composition formula lAl 2 O 3 · mSiO 2 · nFe 2 O 3 (l: m: n = 1: 1.1-1.4: 0.05-0.15). Allophane can be separated and purified with high efficiency as fine powder. If impurities are pulverized in the dry air classifier 5, the impurities are mixed into the allophane. Moreover, when a classification point exceeds the range of a particle size of 20-65 micrometers, an impurity will mix in allophane and will cause the ion adsorption efficiency of the allophane obtained to fall.
[0012]
Table 1 shows examples in which allophane was separated and purified according to the above-described allophane purification method of the present invention.
[0013]
In these examples, the raw material allophane-based volcanic ash soil used is, for example, a tan soil (compositional formula lAl 2 O 3 · mSiO 2 · nFe) mined from 1.5 to 2.5 m below the surface of Yatsugatake, Yamanashi Prefecture. 2 O 3 (represented by l: m: n = 1: 1.4 to 2: 0.05 to 0.25) was used, and the water content was adjusted to 5% or less by air drying or forced drying. . The chemical composition ratio of the raw material and allophane was calculated using a fluorescent X-ray analyzer manufactured by JEOL Ltd. The purification method is as shown in the process diagram. The maximum particle size of the physical properties of the processed product was obtained by a laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation. Foreign matters were screened with a mesh having an opening of 45 μm, and the residue on the mesh was observed. In any of the examples, the chemical composition ratio of allophane separated and refined is the composition formula lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.1-1.4: 0.05). ˜0.15).
[0014]
[Table 1]
Figure 0003747327
[0015]
The adsorption performance in these examples is as shown in Table 2 below.
[0016]
[Table 2]
Figure 0003747327
[0017]
In Table 2 above, the adsorption amount of * 1 is as follows: 100 mg / liter test solution is prepared as phosphorus using H 3 PO 3 and H 3 PO 2 , and 3 g of each treated product is placed in an Erlenmeyer flask with a stopper. The test solution was added and stirred for 36 hours. Next, the supernatant was filtered and analyzed with a high-frequency plasma emission spectroscopic analyzer to determine the amount of phosphorus adsorbed. * 2 Adsorption amount is adjusted to 500 mg / liter of test solution as phosphorus using H 3 PO 3 and H 3 PO 2, and 5 g of each treated product is put into a conical flask with a stopper, and the test solution is added. Treated for 36 hours with stirring. Next, the supernatant was filtered and analyzed with a high-frequency plasma emission spectroscopic analyzer to determine the amount of phosphorus adsorbed. The raw material of the comparative example of * 3 was used as a sample after pulverizing for 2 hours with a rough machine.
[0018]
As is apparent from Table 2, in the samples using the processed products of Examples 3, 4, 5, and 6 purified according to the method for purifying allophane of the present invention, the amount of adsorption was higher than that of the comparative example. Is as good as 43 to 55 mg / g.
[0019]
【The invention's effect】
As described above, according to the allophane purification method of the present invention, allophane-based volcanic ash soil is used as a raw material, adjusted to a moisture content of 7% or less, pulverized with compressed air, and classified into a particle size range of 20 to 65 μm. Is classified into coarse powder and fine powder in a dry air flow, and the classified coarse powder is separated, whereby the composition formula lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.1 to 1.4: 0.05 to 0.15) can be separated and purified at a high yield, and this allophane can efficiently remove harmful ions in waste water. It can be used as an adsorbent.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for purifying allophane according to the present invention.
[Explanation of symbols]
1 Raw material hopper 2 Screw feeder 3 Hopper 4 Disperser 5 Dry air classifier 6 Rotary valve 7 Cyclone 8 Rotary valve 9 Bag filter 10 Rotary valve 11 Blower

Claims (3)

組成式lAl23・mSiO2・nFe23(l:m:n=1:1.4〜2:0.05〜0.25)で表される化学組成比を有する原料アロフェン系火山灰土壌を、水分7%以下に調整した後に圧縮空気により粉砕し、粒径20〜65μの範囲に分級点を定めて乾式気流中で粗粉と細粉に分級し、分級された粗粉を分離することにより、lAl23・mSiO2・nFe23(l:m:n=1:1.1〜1.4:0.05〜0.15)の化学組成比を有するアロフェンを得ることを特徴とするアロフェンの精製方法。Raw material allophane-based volcanic ash having a chemical composition ratio represented by the composition formula lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.4 to 2: 0.05 to 0.25) The soil is adjusted to a moisture content of 7% or less and then pulverized with compressed air. A classification point is set in the range of 20 to 65 μm and classified into coarse powder and fine powder in a dry air stream. By separating, allophane having a chemical composition ratio of lAl 2 O 3 .mSiO 2 .nFe 2 O 3 (l: m: n = 1: 1.1-1.4: 0.05-0.15) is obtained. A method for purifying allophane. 上記原料アロフェン系火山灰土壌を、水分5%以下に調整した後に圧縮空気により粉砕することを特徴とする請求項1記載のアロフェンの精製方法。 2. The method for purifying allophane according to claim 1, wherein the raw material allophane-based volcanic ash soil is pulverized with compressed air after adjusting the moisture to 5% or less . 上記圧縮空気により粉砕された原料アロフェン系火山灰土壌を、粒径20〜40μの範囲に分級点を定めて乾式気流中で粗粉と細粉に分級することを特徴とする請求項1記載のアロフェンの精製方法。2. The allophane according to claim 1, wherein the raw material allophane-based volcanic ash soil pulverized with compressed air is classified into coarse powder and fine powder in a dry air stream with a classification point in a particle size range of 20 to 40 [mu]. Purification method.
JP08882594A 1994-04-26 1994-04-26 Allophane purification method Expired - Fee Related JP3747327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08882594A JP3747327B2 (en) 1994-04-26 1994-04-26 Allophane purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08882594A JP3747327B2 (en) 1994-04-26 1994-04-26 Allophane purification method

Publications (2)

Publication Number Publication Date
JPH07291617A JPH07291617A (en) 1995-11-07
JP3747327B2 true JP3747327B2 (en) 2006-02-22

Family

ID=13953717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08882594A Expired - Fee Related JP3747327B2 (en) 1994-04-26 1994-04-26 Allophane purification method

Country Status (1)

Country Link
JP (1) JP3747327B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388575B1 (en) * 2000-10-19 2003-06-25 한국지질자원연구원 A manufacture carefully of phosphoric acid gypsum
JP2002263640A (en) * 2001-03-08 2002-09-17 Yamanashi Prefecture Method of removing boron in water
JP4846939B2 (en) * 2001-08-21 2011-12-28 電源開発株式会社 Exhaust gas treatment equipment
JP5186666B2 (en) * 2007-01-10 2013-04-17 中国電力株式会社 Method and apparatus for purifying natural allophane
CN110694903B (en) * 2018-07-09 2024-03-01 福建南方路面机械股份有限公司 Fine stone powder separating equipment and using method thereof

Also Published As

Publication number Publication date
JPH07291617A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
JP5923039B2 (en) Soil purification method
KR100546094B1 (en) Refined Attapulgite Clay
AU2000278745A1 (en) Purified attapulgite clay
US3769054A (en) Process for the treatment of fly ash
JP3747327B2 (en) Allophane purification method
WO2018061545A1 (en) Incinerated-ash treatment device and treatment method
US1934410A (en) Method of fractionally separating pulverulent materials
US3533819A (en) Process for the treatment of fly ash and product
KR102641812B1 (en) Briquettes and method for manufacturing the same
US4854946A (en) Method for treating blast furnace gas and apparatus for carrying out that method
KR20120064917A (en) Refining method of natural silica sand
JP2003103232A (en) Method for treating incineration ash
CN111252761A (en) Purification method of graphite negative electrode material
CA2392399A1 (en) Method for separating a machining suspension into fractions
EP3315202A1 (en) Method for processing fly ash
CN108579670A (en) A method of utilizing clay dephosphorization
RU1776202C (en) Method for mechanical separation of metals from metallurgical furnace slag
RU2003120771A (en) METHOD FOR PRODUCING DIATOMITE FILTERING MATERIALS
KR100230598B1 (en) Manufacturing method of particle-size aluminium silicate from kaolinite by high-temperature sintering method
JP4852717B2 (en) Purification method for contaminated soil
KR100230597B1 (en) Manufacturing method of particle-size high grade aluminium silicate from kaolinite by reduction sintering method
JP4633604B2 (en) Adsorbent production method, adsorbent, adsorbent granule, and adsorbent granule production method
JPH08109015A (en) Method for improving purification whiteness of natural zeolite
TWI554339B (en) Soil purification method
JP2009050777A (en) Treatment method of gypsum board waste and cement

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees