WO2018061545A1 - Incinerated-ash treatment device and treatment method - Google Patents

Incinerated-ash treatment device and treatment method Download PDF

Info

Publication number
WO2018061545A1
WO2018061545A1 PCT/JP2017/030284 JP2017030284W WO2018061545A1 WO 2018061545 A1 WO2018061545 A1 WO 2018061545A1 JP 2017030284 W JP2017030284 W JP 2017030284W WO 2018061545 A1 WO2018061545 A1 WO 2018061545A1
Authority
WO
WIPO (PCT)
Prior art keywords
ash
incineration ash
less
specific gravity
sorting
Prior art date
Application number
PCT/JP2017/030284
Other languages
French (fr)
Japanese (ja)
Inventor
洸 瀧澤
智典 竹本
隆 花田
泰之 石田
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017044525A external-priority patent/JP7017855B2/en
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to EP17855503.3A priority Critical patent/EP3498387B1/en
Priority to CN201780060055.3A priority patent/CN109789452A/en
Priority to US16/333,753 priority patent/US11014092B2/en
Publication of WO2018061545A1 publication Critical patent/WO2018061545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/01Selective separation of solid materials carried by, or dispersed in, gas currents using gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to an apparatus and a method for recovering precious metal from incinerated ash and for effectively using the ash after precious metal recovery.
  • Patent Document 1 discloses that incinerated ash is crushed with a dry ball mill and then classified with a sieve, the metal is recovered on the coarse particle side obtained by classification, and fine particles from which metal has been removed from the ash to some extent are used as a cement raw material. It is described that it is used effectively.
  • incineration ash contains precious metals such as gold, silver and copper in addition to common metals.
  • the ash content is recovered after the precious metal is efficiently recovered from the incineration ash. It is desirable to use
  • the present invention has been made in view of the above problems in the prior art, and aims to efficiently recover precious metal from incinerated ash and effectively use the ash content after the precious metal is recovered.
  • the present invention is an incineration ash treatment apparatus, comprising a crushing apparatus and / or a classification apparatus for crushing and / or classifying incinerated ash to a maximum particle size of 5 mm or less, and the crushing apparatus.
  • a crushing apparatus and / or a classification apparatus for crushing and / or classifying incinerated ash to a maximum particle size of 5 mm or less
  • the crushing apparatus Or / and an eddy current separator for separating incinerated ash having a maximum particle size of 5 mm or less discharged from the classifier into a conductor and a nonconductor, and a conductor discharged from the eddy current separator as a high specific gravity object and a low specific gravity object.
  • a specific gravity difference sorting device that separates into two.
  • the eddy current sorting device can efficiently collect the noble metal and metal aluminum content on the conductor side, and the specific gravity difference sorting device can also collect the noble metal and the precious metal.
  • the precious metal and the metal aluminum content can be efficiently and separately recovered from the incinerated ash.
  • the remaining ash can be effectively used as a cement raw material.
  • the aluminum content is reduced as compared with the incinerated ash before the sorting process, the amount that can be used to produce 1 ton of cement can be increased.
  • the specific gravity difference sorting device can be an air table, and the drum rotation speed of the eddy current sorting device can be 4000 rpm or more.
  • the incineration ash can further include a mixing device for mixing a modifier for preventing agglomeration, and by mixing the modifier with the incineration ash, Aggregation of incinerated ash can be prevented.
  • the incineration ash treatment apparatus may further include a wind power sorting device that separates the conductor discharged from the eddy current sorting device into heavy and light materials by wind power. By providing the wind sorting device, it is possible to recover the precious metal more efficiently.
  • the present invention is a method for treating incineration ash, wherein the incineration ash is crushed or / and classified to a maximum particle size of 5 mm or less, and the incinerated ash having a maximum particle size of 5 mm or less obtained by the crushing or / and classification is obtained.
  • the conductor is separated into a conductor and a non-conductor by eddy current sorting, and the conductor obtained by the eddy current sorting is separated into a high specific gravity material and a low specific gravity material by specific gravity difference sorting.
  • precious metals and metallic aluminum can be efficiently and separately recovered from incineration ash.
  • the non-conductor can be used as a raw material for cement.
  • the incineration ash before the incineration ash is crushed or / and classified, the incineration ash can be mixed with a modifier for preventing agglomeration. Thereby, agglomeration of incinerated ash can be prevented.
  • the conductor obtained by the eddy current sorting can be separated into heavy and light by wind sorting before sorting by specific gravity difference. Thereby, a noble metal can be recovered more efficiently.
  • the modifying material may be at least one selected from incineration fly ash, coal fly ash, limestone powder, and sand pulverized material of municipal waste.
  • incineration fly ash coal fly ash
  • limestone powder limestone powder
  • sand pulverized material of municipal waste By using these components as a modifier, a mixture with incinerated ash can be used as a cement raw material after recovery of the precious metal.
  • the reforming material can be a lightweight material selected by the wind sorting. By using a light-weight material with a small amount of coarse particles and moisture, a good anti-aggregation effect can be achieved.
  • the modifying material can be added in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the incineration ash. Thereby, agglomeration can be effectively prevented.
  • the particle size of the modifying material can be 0.1 mm or less. Thereby, agglomeration can be effectively prevented.
  • precious metals and the like can be efficiently recovered from incinerated ash, and the remaining ash can be used effectively.
  • Incineration ash is the ash generated when combustibles such as municipal waste are incinerated in a stoker type or fluidized bed type incinerator, and the main ash (bottom ash) remaining at the bottom of the incinerator And fly ash contained in the exhaust gas of the incinerator.
  • FIG. 1 shows a first embodiment of a processing apparatus for incineration ash according to the present invention.
  • This processing apparatus 1 has a drying apparatus 2 for drying received incineration ash A1, and a dry ash A2 discharged from the drying apparatus 2.
  • the drying device 2 is provided for drying the incineration ash A1.
  • the drying device 2 it is preferable to use a rotary kiln type hot air drying device capable of continuously treating the incineration ash A1.
  • produces with a cement baking apparatus can be used, for example, waste heat of cement kilns, such as cement kiln exhaust gas, can be used.
  • the first magnetic separation device 3 is provided to remove the magnetic body M1 containing iron from the dry ash A2.
  • a drum type magnetic separator or a suspended magnetic separator can be used as the first magnetic separator 3.
  • the crushing device 4 is provided for crushing the nonmagnetic material N1 from the first magnetic sorting device 3 to an arbitrary particle size of 5 mm or less.
  • the noble metal-enriched particles can be scraped off from the surface of the noble metal-adhered particles in the non-magnetic material N1.
  • the “particle size of Amm or less” is the amount of passage when a sieve having an aperture of Amm is used if it is a sieve. This refers to the case where the weight of particles remaining on the sieve is 10% or less.
  • the cyclone 5 is provided to collect dust from the exhaust gas G1 containing dust generated when the nonmagnetic material N1 is crushed by the crushing device 4, and collects the dust as dust D1.
  • the bag filter 6 is provided to collect dust from the exhaust gas G2 of the cyclone 5 and collects the dust D2 that could not be collected by the cyclone 5.
  • the second magnetic separator 7 is provided for removing the magnetic body M2 containing iron from the crushed material C.
  • a drum type magnetic separator or a suspended magnetic separator can be used as the second magnetic separator 7.
  • the eddy current sorting device 8 is provided for causing electromagnetic induction in the nonmagnetic material N2 from the second magnetic force sorting device 7 and separating the nonmagnetic material N2 into the conductor E and the nonconductor I.
  • a rotary magnet type can be used as the eddy current sorting device 8.
  • the eddy current sorting device 8 is formed in a cylindrical shape, and an N pole and an S pole are alternately provided in the circumferential direction of the side surface of the cylinder.
  • separated into I can be used.
  • the rotational speed of the drum 8b of the eddy current sorting device 8 is preferably 4000 rpm or more.
  • a noble metal and a metal aluminum part can be efficiently collect
  • the recovery rate is greatly improved by setting the rotation speed of the drum 8b to 4000 rpm or more as compared with the case where the rotation speed of the drum 8b is less than 4000 rpm. be able to.
  • the wind power sorting device 9 is provided for separating the conductor E discharged from the eddy current sorting device 8 into a heavy material H1 and a light material L1 by wind power.
  • the wind sorting apparatus 9 can be omitted, the provision of the wind sorting apparatus 9 makes it possible to more efficiently separate and recover the noble metal.
  • the air table 10 is provided to separate the heavy object H1 discharged from the wind sorting apparatus 9 into a high specific gravity object H2 and a low specific gravity object L2 by specific gravity difference sorting. As shown in FIG. 3, the air table 10 is inclined at a predetermined angle and has a vibration table 10a having a plurality of small vents through which air flow passes, and by rotating, the vibration table 10a is moved from the lower surface to the upper surface. A blower blower 10b for supplying air is provided.
  • the heavy object H1 supplied to the upper surface of the vibration table 10a is floated from the upper surface of the vibration table 10a by the air flow passing through the vibration table 10a, and is caused by the vibration applied in the inclination direction of the vibration table 10a.
  • the high specific gravity H2 having a large specific gravity moves to the lower layer
  • the low specific gravity L2 having a small specific gravity moves to the upper layer.
  • the lower specific gravity object H2 receives the frictional force and vibrational force from the upper surface of the vibration table 10a and moves obliquely upward
  • the lower specific gravity object L2 receives the frictional force and vibrational force from the upper surface of the vibration table 10a.
  • the incinerated ash A1 received is supplied to the drying device 2 and dried until the moisture content of the incinerated ash A1 is about 20% or less.
  • the dry ash A2 discharged from the drying device 2 is magnetically sorted by the first magnetic sorting device 3 and separated into the magnetic body M1 and the non-magnetic body N1. Further, the nonmagnetic material N1 discharged from the first magnetic sorting device 3 is crushed by the crushing device 4. Further, the cyclone 5 collects dust from the exhaust gas G1 of the crushing device 4, and the bag filter 6 collects dust from the exhaust gas G2 of the cyclone 5, and the cyclone 5 and the bag filter 6 collect the dusts D1 and D2, respectively.
  • the crushed material C discharged from the crushing device 4 is magnetically sorted by the second magnetic sorting device 7 to be separated into the magnetic material M2 and the nonmagnetic material N2, and the nonmagnetic material N2 discharged from the second magnetic sorting device 7 is separated.
  • the eddy current sorter 8 separates the eddy current into a conductor E and a nonconductor I containing a large amount of noble metal and metal aluminum.
  • the heavy object H1 discharged from the wind power sorter 9 is supplied to the air table 10 and separated into a high specific gravity object H2 containing a high-purity precious metal and a low specific gravity object L2 containing a high-purity aluminum component.
  • the eddy current sorting device 8 can collect the ash from which the noble metal or metal aluminum content has been removed from the nonmagnetic material N2 as the non-conductor I, and the air table 10 can increase the purity of the noble metal with high purity. It can be recovered as the specific gravity H2.
  • each thing collected by the processing apparatus 1 is used effectively.
  • the magnetic substance M1 and the magnetic substance M2 removed by the first magnetic sorting apparatus 3 and the second magnetic sorting apparatus 7 contain a large amount of iron, it can be used as iron for raw materials for iron making or cement. it can.
  • the dusts D1 and D2 collected by the cyclone 5 and the bag filter 6 can also be used as a cement raw material.
  • non-conductor I discharged from the eddy current sorter 8 and the light weight L1 discharged from the wind sorter 9 contain almost no precious metal or metal aluminum, they are used as cement raw materials.
  • the dusts D3 and D4 collected by the cyclone 11 and the bag filter 12 contain a large amount of metal aluminum
  • the dusts D3 and D4 can be used as a metal aluminum recycling material or a cement material depending on the composition. it can.
  • the crushed material C of the crushing device 4 is supplied to the second magnetic sorting device 7, but a classifying device such as a sieve is provided instead of the crushing device 4, and the particle size is 5 mm or less. It is also possible to supply each of the particles within the predetermined range to the second magnetic separation device 7. In this case, particles larger than a predetermined particle size may be discharged out of the system as a cement raw material or may be crushed to a particle size within a predetermined range.
  • the crushed material C of the crushing apparatus 4 was supplied to the 2nd magnetic sorting apparatus 7, classification devices, such as a sieve which classifies the crushed material C, are provided, and the crushed material C is classified with this classification device. Then, the particle size may be adjusted within a predetermined range of 5 mm or less.
  • the collection accuracy can be further improved by further subdividing the particle group within a predetermined range of 5 mm or less into each particle group and supplying each of these particle groups to the second magnetic separation device 7.
  • the crushed material C discharged from the crushing device 4 is supplied to the first sieve and separated into a particle group having a particle diameter of 5 mm or more and a particle group having a particle diameter of less than 5 mm.
  • the particle group having a particle diameter of less than 5 mm obtained by the first sieve is supplied to the second sieve, and separated into a particle group having a particle diameter of 3 mm or more and less than 5 mm and a particle group having a particle diameter of less than 3 mm.
  • the particle group having a particle size of less than 3 mm obtained by the second sieve is supplied to the third sieve and separated into a particle group having a particle size of 2 mm or more and less than 3 mm and a particle group having a particle size of less than 2 mm. Further, the particle group having a particle diameter of less than 2 mm obtained by the third sieve is supplied to the fourth sieve, and separated into a particle group having a particle diameter of 1 mm or more and less than 2 mm and a particle group having a particle diameter of less than 1 mm.
  • a particle group having a particle size of 5 mm or more, a particle group having a particle size of 3 mm or more and less than 5 mm, a particle group having a particle size of 2 mm or more and less than 3 mm, a particle group having a particle size of 1 mm or more and less than 2 mm, and a particle group having a particle size of less than 1 mm are separately provided. May be supplied to the second magnetic separator 7 and processed for each particle size range.
  • the eddy current sorting device 8 can more efficiently recover the noble metal or metal aluminum component from the nonmagnetic material N2 to the conductor E side.
  • the noble metal contained in the heavy object H1 can be more efficiently recovered to the high specific gravity object H2 side by the air table 10.
  • the classification point can be appropriately adjusted as long as it is 5 mm or less.
  • the wind power sorting device 9 is provided between the eddy current sorting device 8 and the air table 10, but the wind sorting device 9 is not necessarily provided, and the conductor E discharged from the eddy current sorting device 8 is directly connected to the air table. 10 can also be introduced. Furthermore, depending on the moisture content of the received incineration ash A1 and other physical properties, devices other than the eddy current sorting device 8 and the specific gravity difference sorting device such as the air table 10 illustrated can be omitted as appropriate.
  • FIG. 4 shows an apparatus used in the test example.
  • This processing apparatus 21 magnetically sorts the drying apparatus 22 for drying the received incineration ash (city waste incineration ash) A1 and the dry ash A2 discharged from the drying apparatus 22.
  • a first magnetic separator 23 that performs classification
  • a sieve 24 that classifies the non-magnetic material N1 discharged from the first magnetic separator 23, and a second magnetic separator 25 that magnetically selects fine particles P discharged from the sieve 24.
  • An eddy current sorting device 26 that sorts the non-magnetic material N2 separated by the second magnetic sorting device 25, an air table 27 that sorts the conductor E discharged from the eddy current sorting device 26 by a specific gravity difference, and the like.
  • the incinerated ash A1 was supplied to a drying device 22 having an internal temperature of 105 ° C. and dried until the moisture content became 0% (absolutely dry state). Next, the dried incineration ash A1 is supplied to a suspended first magnetic separation device 23 to remove the magnetic material M1, and the obtained nonmagnetic material N1 is supplied to the sieve 24 and classified. Fine particles P having a diameter of 5 mm or less that passed through were collected. Further, the fine particles P were passed through the second magnetic separator 25 to remove the magnetic material M2 and collect the nonmagnetic material N2.
  • the non-magnetic material N2 was supplied to an eddy current sorter (Eddy current sorter manufactured by SGM, model TVIS) 26 having a drum rotation speed of 6000 rpm, and separated into a conductor E and a nonconductor I. Further, the conductor E was separated into a high specific gravity material H and a low specific gravity material L by selecting a specific gravity difference with an air table (TRIPLE / S DYNAMICS, made by INC. (USA)) 27.
  • Eddy current sorter manufactured by SGM, model TVIS
  • the components contained in the fine particles P, conductor E, nonconductor I, high specific gravity H and low specific gravity L obtained as described above were analyzed.
  • gold and silver were analyzed by ICP mass spectrometry, and other components were analyzed by fluorescent X-ray analysis.
  • ICP mass spectrometry an object to be analyzed was ground to 100 ⁇ m or less, acid-decomposed, and quantitatively analyzed with a lower limit of quantification of 0.1 g / l.
  • fluorescent X-ray analysis an object to be analyzed was pulverized to 100 ⁇ m or less, and semiquantitative analysis was performed by a fundamental parameter method.
  • the content of each component of the high specific gravity H with respect to the conductor E increased to about 100 times for gold, about 2.1 times for silver, and about 2.5 times for copper. From these results, it was found that the high specific gravity H containing a large amount of noble metal can be efficiently recovered from the conductor E by sorting the conductor E obtained by sorting the incinerated ash by eddy current.
  • the content rate of iron was substantially the same density
  • the drum rotation speed was 3500 rpm, the conductor E was not recovered at all. Therefore, it is preferable to set the rotation speed of the drum of the eddy current sorting device to about 4000 rpm or more.
  • an incineration ash treatment apparatus in order to prevent the incineration ash from agglomerating due to moisture contained in the incineration ash, a modifier is mixed with the incineration ash.
  • municipal waste incineration ash is wet ash containing moisture, and may contain 15 to 35% high moisture.
  • Such wet ash may be agglomerated and coarsened due to vibration in the incinerator ash processing apparatus, dropping when moving between the apparatuses constituting the processing apparatus, or the like.
  • the coarse incinerated ash is clogged in the incinerator ash processing apparatus, and it becomes difficult to sort the incinerated ash with a predetermined particle size or specific gravity difference, which may cause a reduction in sorting efficiency.
  • the incineration ash processing apparatus 1 is dried using the drying apparatus 2 to prevent the occurrence of these problems. If generation
  • the drying apparatus 2 is removed, and instead, each component for mixing modifiers that prevent incineration ash from agglomerating is added.
  • FIG. 5 is an overall configuration diagram showing a second embodiment of the incineration ash treatment apparatus according to the present invention.
  • the incineration ash processing device 31 according to the second embodiment includes a first sieve sorting device 32, a first crushing device 33, a first magnetic sorting device 34, a second sieve sorting device 35, a mixing device 36, and a second magnetic sorting device. 37, a second crushing device 38, a cyclone 39, a bag filter 40, a third magnetic force sorting device 41, an eddy current sorting device 42, a wind power sorting device 43, an air table 44, a cyclone 45 and a bag filter 46.
  • these apparatuses can be appropriately omitted depending on the properties of the incineration ash A, the amount and properties of the modifier to be mixed, and the like.
  • 43, the air table 44, the cyclone 45, and the bag filter 46 are the first magnetic sorting device 3, the crushing device 4, the cyclone 5, the bag filter 6, the second of the incineration ash treatment device 1 according to the first embodiment described above, respectively. Since it has the same configuration as the magnetic sorting device 7, the eddy current sorting device 8, the wind force sorting device 9, the air table 10, the cyclone 11 and the bag filter 12, detailed description of these configurations will be omitted.
  • the first sieve sorting device 32 is a sorting device that sorts particles using a sieve that passes particles P1 having a particle size of less than X mm (a predetermined particle size selected from a range of 15 mm or more and less than 40 mm, the same shall apply hereinafter).
  • X mm a predetermined particle size selected from a range of 15 mm or more and less than 40 mm, the same shall apply hereinafter.
  • the particles P1 that have passed through the first sieve sorting device 32 are supplied to the mixing device 36 described later.
  • the particles P ⁇ b> 2 having a particle size of X mm or more that have not passed through the first sieve sorting device 32 are supplied to the first crushing device 33.
  • the particle size Xmm was selected from 15 to 40 mm because, when the particle size Xmm is set to less than 15 mm, in the case of the incinerated ash A having a high water content, the first sieve sorting device 32 tends to block the sieve mesh, When the particle size Xmm is 40 mm or more, the lump is mixed by the mixing device 36, the load on the mixing device 36 is increased, and there are not many particles having a particle size of 40 mm or more. This is because the amount of the incinerated ash A processed by the second sieve sorting device 35 is reduced, resulting in inefficiency.
  • the first crushing device 33 is provided to crush the particles P2 having a particle size of X mm or more supplied from the first sieve sorting device 32 into an arbitrary particle size of less than the particle size X mm.
  • the crushed material C ⁇ b> 1 by the first crushing device 33 is supplied to the first magnetic sorting device 34.
  • the first magnetic separator 34 is provided to remove the magnetic body M1 containing iron or the like contained in the crushed material C1.
  • a drum type magnetic separator or a suspended magnetic separator can be used as the first magnetic separator 34.
  • the non-magnetic material N1 sorted by the first magnetic sorting device 34 is supplied to the second sieve sorting device 35.
  • the second sieve sorting device 35 is a sorting device that sorts particles using a sieve that allows the passage of particles P3 having a particle size of less than X mm, as with the first sieve sorting device 32.
  • the particles P3 having a particle size of less than X mm that have passed through the second sieve sorting device 35 are supplied to the mixing device 36.
  • the particles P4 having a particle size of X mm or more that have not passed through the second sieve sorting device 35 are discharged out of the system.
  • the particles P4 may be supplied to the first crushing device 33 without being discharged out of the system.
  • the mixing device 36 is supplied with the particles P1 and P3 having a particle diameter of less than X mm and the modifier RA supplied from the first sieve sorting device 32 and the second sieve sorting device 35, and these are mixed. It is a mixer.
  • the modifier RA is mixed with the incineration ash to prevent the incineration ash from aggregating the municipal waste that is wet ash, and the particles of the incineration ash are aggregated by entering between the incineration ash particles. To prevent. Further, in order to effectively use the remaining ash after the precious metal or the like is recovered as a cement raw material or the like, it is necessary that the modifier RA be a material that can be used as a cement raw material or the like. In order to use ash as a cement raw material, incineration fly ash of municipal waste, coal fly ash, limestone powder, pulverized sand, and the like are used as the modifying material RA.
  • the lightweight material L1 has a small amount of coarse particles and moisture, and can exhibit a good anti-aggregation effect.
  • These modifiers RA may be used alone, or two or more modifiers may be mixed and used.
  • the particle size of the reforming material RA is 0.1 mm or less.
  • the particle size of the modifying material RA exceeds 0.1 mm, it is not possible to obtain a sufficient aggregation preventing effect.
  • the mixing ratio of the reforming material RA is 15 parts by mass or more and 50 parts by mass or less, preferably 25 parts by mass or more and 45 parts by mass or less with respect to 100 parts by mass of the incineration ash A.
  • the mixing ratio of the modifying material RA is less than 25 parts by mass, the effect of preventing agglomeration is insufficient.
  • it exceeds 45 parts by mass the effect of preventing aggregation is moderated, and when it exceeds 50 parts by mass, the effect of preventing aggregation is saturated and the metal quality of the recovered product is also lowered.
  • the mixture MA produced by mixing the particles P1 and P3 and the reforming material RA by the mixing device 36 is supplied to the second magnetic force sorting device 37.
  • the processing after the second magnetic separator 37 is the same as that of the incineration ash processing apparatus 1 according to the first embodiment described above, and the precious metal and the like are collected.
  • the incineration ash processing apparatus 31 having the above-described configuration, it is possible to efficiently recover precious metals and the like from the incineration ash and to effectively use the remaining ash. Moreover, the agglomeration of the incineration ash can be prevented, and the blockage of the incineration ash in the processing device 31 and the reduction of the sorting efficiency can be effectively prevented.
  • the first sieve sorting device 32, the first crushing device 33, the first magnetic sorting device 34, and the second sieve sorting device 35 are configured to improve the reforming efficiency by the modifier.
  • this is not an essential configuration. Therefore, for example, when the particle size of the incineration ash A charged into the incineration ash processing device 31 is less than X mm from the beginning, or when the amount of addition of the modifier RA is increased, these configurations are configured depending on the situation. Can be omitted.
  • Table 1 shows the experimental results on the relationship between the moisture content and the operating condition when the treatment with the air table 44 is performed from the first sieve sorting device 32 shown in FIG. 5 for the three types of incinerated ash A to C.
  • Each incineration ash A to C is the main ash of municipal waste incineration ash generated from the stoker furnace, and has passed through a 25 mm sieve.
  • the incineration ash A As for the incineration ash A, when the water content was 24% or more, the second crushing device 38 was clogged, and the operation became impossible. When the incineration ash A moisture was 20% and the incineration ash B moisture was 22%, the operation was possible, but the agglomeration occurred slightly, and the metal quality of the recovered material was lowered. Aggregation did not occur when the incineration ash A moisture was 11% or less, the incineration ash B moisture was 17%, and the incineration ash C moisture was 18%. From this, it was found that as the water content of the incinerated ash increases, the agglomeration tends to occur, and when the water content exceeds approximately 20%, the operation may not be possible.
  • the incineration ash A has a moisture content of 29%
  • the incineration ash B has a moisture content of 22%
  • the incineration ash C has a moisture content of 18%.
  • the mixture was stirred with a mixer.
  • a RYOBI power mixer (model number PM-311) was rotated at 300 rpm, and the mixture was mixed for 1 minute.
  • the incineration ash A to C was sieved using a 1 mm, 2 mm, 5 mm, and 10 mm eye sieve.
  • the sieving was performed by manually moving the sample by vertically and horizontally moving the sieve in accordance with ⁇ ⁇ JIS A 1102.
  • the mass ratio was measured about the particle
  • the measurement results are shown in Table 2.
  • Table 3 shows the particle diameter and components of the modifier used in the experiment.
  • Sand that is sand and has a particle size of less than 2 mm, and crushed sand that has been pulverized from the standard sand and has a particle size of less than 0.1 mm were used.
  • incineration ash A 15% or more of fly ash A, 15% or more of fly ash B, 20% or more of fly ash C, 20% or more of limestone powder About what mixed and the thing which mixed 20% or more of crushed sand products, it was determined that the operation was possible.
  • the water content in the mixture at this time was 12% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To efficiently recover, from incinerated ash, precious metals such as gold, silver and copper, and aluminum contained therein and to effectively utilize ash after recovering the precious metals and the like. [Solution] An incinerated-ash treatment device 1 is provided with: a crusher or/and a classifier that crushes, classifies, or performs both such that the maximum grain size of incinerated ash A1 becomes 5 mm or less; an overcurrent sorter 8 that separates the incinerated ash having a maximum grain size of 5 mm or less, which has been discharged from the crusher or/and the classifier, into conductors E and non-conductors I; and a specific gravity sorter that separates the conductors E discharged from the overcurrent sorter 8 into high-specific-gravity substances H2 and low-specific-gravity substances L2. An air table 10 can be employed as the specific gravity sorter. It is possible to provide a classifier that classifies crushed substances C and has a classification point of 5 mm or less, and to supply fine grains P that are discharged from the classifier and have grain sizes of 5 mm or less to the overcurrent sorter 8. The drum rotational speed of the overcurrent sorter 8 can be set to 4000 rpm or higher.

Description

焼却灰の処理装置及び処理方法Incineration ash processing apparatus and processing method
 本発明は、焼却灰から貴金属を回収すると共に、貴金属回収後の灰分を有効利用するための装置及び方法に関する。 The present invention relates to an apparatus and a method for recovering precious metal from incinerated ash and for effectively using the ash after precious metal recovery.
 都市ごみなどの廃棄物は焼却処理されており、焼却によって生ずる焼却灰は、従来埋立処分場に埋立処分されている。しかし、近年では、埋立処分場が枯渇する虞があることに鑑み、焼却灰を有効利用する試みがなされている。特に、焼却灰から金属を回収した後灰分を有効利用する試みが積極的になされている。 Waste such as municipal waste is incinerated, and incineration ash generated by incineration has been landfilled in landfills. However, in recent years, attempts have been made to effectively use incinerated ash in view of the possibility that the landfill site will be depleted. In particular, attempts have been made to make effective use of ash after recovering metal from incinerated ash.
 例えば、特許文献1には、焼却灰を乾式ボールミルで破砕してから篩で分級し、分級により得られた粗粒子側に金属を回収し、灰分から金属がある程度まで除去された微粒子をセメント原料として有効利用することが記載されている。 For example, Patent Document 1 discloses that incinerated ash is crushed with a dry ball mill and then classified with a sieve, the metal is recovered on the coarse particle side obtained by classification, and fine particles from which metal has been removed from the ash to some extent are used as a cement raw material. It is described that it is used effectively.
日本特開2009-56362号公報Japanese Unexamined Patent Publication No. 2009-56362
 しかし、焼却灰には一般的な金属の他に金、銀及び銅等の貴金属も含まれており、焼却灰をより有効に利用するためには、焼却灰から貴金属を効率よく回収した後に灰分を利用することが望ましい。 However, incineration ash contains precious metals such as gold, silver and copper in addition to common metals. In order to use the incineration ash more effectively, the ash content is recovered after the precious metal is efficiently recovered from the incineration ash. It is desirable to use
 そこで、本発明は、上記従来技術における問題点に鑑みてなされたものであって、焼却灰から貴金属を効率よく回収すると共に、貴金属回収後の灰分を有効利用することを目的とする。 Therefore, the present invention has been made in view of the above problems in the prior art, and aims to efficiently recover precious metal from incinerated ash and effectively use the ash content after the precious metal is recovered.
 上記目的を達成するため、本発明は、焼却灰の処理装置であって、焼却灰を最大粒径5mm以下に破砕又は分級あるいはこれらの両方を行う破砕装置又は/及び分級装置と、該破砕装置又は/及び分級装置から排出された最大粒径5mm以下の焼却灰を導体と不導体とに分離する渦電流選別装置と、該渦電流選別装置から排出された導体を高比重物と低比重物とに分離する比重差選別装置とを備えることを特徴とする。 In order to achieve the above-mentioned object, the present invention is an incineration ash treatment apparatus, comprising a crushing apparatus and / or a classification apparatus for crushing and / or classifying incinerated ash to a maximum particle size of 5 mm or less, and the crushing apparatus. Or / and an eddy current separator for separating incinerated ash having a maximum particle size of 5 mm or less discharged from the classifier into a conductor and a nonconductor, and a conductor discharged from the eddy current separator as a high specific gravity object and a low specific gravity object. And a specific gravity difference sorting device that separates into two.
 本発明によれば、焼却灰の最大粒径を5mm以下に調整した後、渦電流選別装置によって導体側に貴金属及び金属アルミニウム分を効率よく回収することができ、さらに比重差選別装置によって貴金属と金属アルミニウム分とを分離することで焼却灰から貴金属や金属アルミニウム分を別々に効率よく回収することができる。残りの灰分は、セメント原料等に有効利用することができる。特に、選別処理前の焼却灰に比べてアルミニウム分を低減しているため、セメント1トンを製造するために使用できる量を増やすことができる。 According to the present invention, after adjusting the maximum particle size of the incinerated ash to 5 mm or less, the eddy current sorting device can efficiently collect the noble metal and metal aluminum content on the conductor side, and the specific gravity difference sorting device can also collect the noble metal and the precious metal. By separating the metal aluminum content, the precious metal and the metal aluminum content can be efficiently and separately recovered from the incinerated ash. The remaining ash can be effectively used as a cement raw material. In particular, since the aluminum content is reduced as compared with the incinerated ash before the sorting process, the amount that can be used to produce 1 ton of cement can be increased.
 また、上記焼却灰の処理装置において、前記比重差選別装置をエアテーブルとすることができ、前記渦電流選別装置のドラムの回転数を4000rpm以上とすることができる。 In the incineration ash treatment apparatus, the specific gravity difference sorting device can be an air table, and the drum rotation speed of the eddy current sorting device can be 4000 rpm or more.
 また、上記焼却灰の処理装置において、前記焼却灰に、団粒化を防止するための改質材を混合する混合装置をさらに備えることができ、焼却灰に改質材を混合することにより、焼却灰の団粒化を防止することができる。 Further, in the incineration ash treatment apparatus, the incineration ash can further include a mixing device for mixing a modifier for preventing agglomeration, and by mixing the modifier with the incineration ash, Aggregation of incinerated ash can be prevented.
 また、上記焼却灰の処理装置において、前記渦電流選別装置から排出された導体を風力により重量物と軽量物とに分離する風力選別装置をさらに備えることができる。風力選別装置を備えることにより、さらに効率的に貴金属の回収を行うことができる。 Further, the incineration ash treatment apparatus may further include a wind power sorting device that separates the conductor discharged from the eddy current sorting device into heavy and light materials by wind power. By providing the wind sorting device, it is possible to recover the precious metal more efficiently.
 さらに、本発明は、焼却灰の処理方法であって、焼却灰を最大粒径5mm以下に破砕又は/及び分級し、該破砕又は/及び分級で得られた最大粒径5mm以下の焼却灰を渦電流選別により導体と不導体とに分離し、該渦電流選別で得られた導体を比重差選別により高比重物と低比重物とに分離することを特徴とする。 Furthermore, the present invention is a method for treating incineration ash, wherein the incineration ash is crushed or / and classified to a maximum particle size of 5 mm or less, and the incinerated ash having a maximum particle size of 5 mm or less obtained by the crushing or / and classification is obtained. The conductor is separated into a conductor and a non-conductor by eddy current sorting, and the conductor obtained by the eddy current sorting is separated into a high specific gravity material and a low specific gravity material by specific gravity difference sorting.
 本発明によれば、焼却灰から貴金属や金属アルミニウム分を効率よく別々に回収することができる。 According to the present invention, precious metals and metallic aluminum can be efficiently and separately recovered from incineration ash.
 また、上記焼却灰の処理方法において、前記不導体をセメント用原料とすることができる。 In the above incineration ash treatment method, the non-conductor can be used as a raw material for cement.
 また、上記焼却灰の処理方法において、前記焼却灰の破砕又は/及び分級の前に、前記焼却灰に、団粒化を防止する改質材を混合することができる。これにより、焼却灰の団粒化を防止することができる。 Further, in the incineration ash treatment method, before the incineration ash is crushed or / and classified, the incineration ash can be mixed with a modifier for preventing agglomeration. Thereby, agglomeration of incinerated ash can be prevented.
 また、上記焼却灰の処理方法において、前記渦電流選別で得られた導体を、比重差選別する前に、風力選別により重量物と軽量物とに分離することができる。これにより、さらに効率的に貴金属の回収を行うことができる。 Also, in the above incineration ash treatment method, the conductor obtained by the eddy current sorting can be separated into heavy and light by wind sorting before sorting by specific gravity difference. Thereby, a noble metal can be recovered more efficiently.
 また、上記焼却灰の処理方法において、前記改質材は、都市ごみの焼却飛灰、石炭飛灰、石灰石粉及び砂粉砕物から選択される少なくとも1つからなるものとすることができる。改質材としてこれらの成分を用いることにより、貴金属回収後に焼却灰との混合物をセメント原料として利用することができる。 In the above incineration ash treatment method, the modifying material may be at least one selected from incineration fly ash, coal fly ash, limestone powder, and sand pulverized material of municipal waste. By using these components as a modifier, a mixture with incinerated ash can be used as a cement raw material after recovery of the precious metal.
 また、上記焼却灰の処理方法において、前記改質材は、前記風力選別により選別された軽量物とすることができる。粗粒分及び水分が少ない軽量物を使用することにより、良好な団粒化防止効果を奏することができる。 In the above incineration ash treatment method, the reforming material can be a lightweight material selected by the wind sorting. By using a light-weight material with a small amount of coarse particles and moisture, a good anti-aggregation effect can be achieved.
 また、上記焼却灰の処理方法において、前記改質材を、前記焼却灰100質量部に対して15質量部以上50質量部以下加えることができる。これにより団粒化を効果的に防止することができる。 In the incineration ash treatment method, the modifying material can be added in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the incineration ash. Thereby, agglomeration can be effectively prevented.
 また、上記焼却灰の処理方法において、前記改質材の粒径を0.1mm以下とすることができる。これにより団粒化を効果的に防止することができる。 Further, in the incineration ash treatment method, the particle size of the modifying material can be 0.1 mm or less. Thereby, agglomeration can be effectively prevented.
 以上のように、本発明によれば、焼却灰から貴金属等を効率よく回収すると共に、残りの灰分を有効利用することができる。 As described above, according to the present invention, precious metals and the like can be efficiently recovered from incinerated ash, and the remaining ash can be used effectively.
本発明に係る焼却灰の処理装置の第1実施形態を示す全体構成図である。It is a whole lineblock diagram showing a 1st embodiment of a processing device of incineration ash concerning the present invention. 図1に示す処理装置に用いられる渦電流選別装置を示す概略図である。It is the schematic which shows the eddy current selection apparatus used for the processing apparatus shown in FIG. 図1に示す処理装置に用いられるエアテーブルを示す概略図である。It is the schematic which shows the air table used for the processing apparatus shown in FIG. 本発明に係る焼却灰の処理装置の試験例で用いた装置を示す全体構成図である。It is a whole block diagram which shows the apparatus used in the test example of the processing apparatus of the incineration ash which concerns on this invention. 本発明に係る焼却灰の処理装置の第2実施形態を示す全体構成図である。It is a whole block diagram which shows 2nd Embodiment of the processing apparatus of the incineration ash which concerns on this invention.
 次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。尚、焼却灰とは、都市ごみなどの可燃物をストーカ式や流動床式等の焼却炉で焼却した際に発生する灰であって、焼却炉の底に残留する主灰(ボトムアッシュ)と、焼却炉の排ガスに含まれる飛灰(フライアッシュ)とがある。
図1は、本発明に係る焼却灰の処理装置の第1実施形態を示し、この処理装置1は、受け入れた焼却灰A1を乾燥させる乾燥装置2と、乾燥装置2から排出された乾燥灰A2を磁力選別する第1磁力選別装置3と、第1磁力選別装置3から排出された非磁性体N1を破砕する破砕装置4と、破砕装置4から排出された破砕物Cを磁力選別する第2磁力選別装置7と、第2磁力選別装置7から排出された非磁性体N2を渦電流選別する渦電流選別装置8と、渦電流選別装置8から排出された導体Eを風力選別する風力選別装置9と、風力選別装置9から排出された重量物H1を比重差選別するエアテーブル10等を備える。
Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings. Incineration ash is the ash generated when combustibles such as municipal waste are incinerated in a stoker type or fluidized bed type incinerator, and the main ash (bottom ash) remaining at the bottom of the incinerator And fly ash contained in the exhaust gas of the incinerator.
FIG. 1 shows a first embodiment of a processing apparatus for incineration ash according to the present invention. This processing apparatus 1 has a drying apparatus 2 for drying received incineration ash A1, and a dry ash A2 discharged from the drying apparatus 2. A first magnetic separator 3 for magnetically sorting, a crusher 4 for crushing the nonmagnetic material N1 discharged from the first magnetic separator 3, and a second for magnetically sorting the crushed material C discharged from the crusher 4. Magnetic sorting device 7, eddy current sorting device 8 for sorting eddy currents of non-magnetic material N2 discharged from second magnetic sorting device 7, and wind sorting device for sorting wind conductors E discharged from eddy current sorting device 8 9 and an air table 10 or the like for sorting the heavy objects H1 discharged from the wind power sorter 9 by specific gravity difference.
 乾燥装置2は、焼却灰A1を乾燥させるために備えられる。乾燥装置2には、焼却灰A1を連続的に処理できるロータリーキルン式の熱風乾燥装置を用いるのが好ましい。また、乾燥装置2で焼却灰A1の乾燥に用いる熱源としては、セメント焼成装置で発生する熱を用いることができ、例えば、セメントキルン排ガス等のセメントキルンの排熱を用いることができる。焼却灰A1を好ましくは水分20%以下まで乾燥させることで、乾燥装置2の後段の工程において処理対象物が団粒化するのを防止することができ、各工程において効率的な処理が可能となる。 The drying device 2 is provided for drying the incineration ash A1. As the drying device 2, it is preferable to use a rotary kiln type hot air drying device capable of continuously treating the incineration ash A1. Moreover, as a heat source used for drying incineration ash A1 with the drying apparatus 2, the heat | fever which generate | occur | produces with a cement baking apparatus can be used, for example, waste heat of cement kilns, such as cement kiln exhaust gas, can be used. By drying the incineration ash A1 to a water content of preferably 20% or less, it is possible to prevent the processing object from agglomerating in the subsequent process of the drying device 2, and efficient processing is possible in each process. Become.
  第1磁力選別装置3は、乾燥灰A2から鉄分等を含む磁性体M1を除去するために備えられる。第1磁力選別装置3としては、例えば、ドラム式磁選機や吊下式磁選機等を用いることができる。 The first magnetic separation device 3 is provided to remove the magnetic body M1 containing iron from the dry ash A2. For example, a drum type magnetic separator or a suspended magnetic separator can be used as the first magnetic separator 3.
 破砕装置4は、第1磁力選別装置3からの非磁性体N1を5mm以下の任意の粒径に破砕するために備えられる。非磁性体N1を破砕することで、非磁性体N1中の貴金属付着粒子の表面から貴金属濃縮粒子を削り取ることができる。尚、本発明において、「Amm以下の粒径」とは、篩であれば目開きAmmの篩を用いた場合の通過分であるが、厳密に粒度分離をできない装置の場合は目開きAmmの篩上に残る粒子の重量が10%以下である場合を指す。 The crushing device 4 is provided for crushing the nonmagnetic material N1 from the first magnetic sorting device 3 to an arbitrary particle size of 5 mm or less. By crushing the non-magnetic material N1, the noble metal-enriched particles can be scraped off from the surface of the noble metal-adhered particles in the non-magnetic material N1. In the present invention, the “particle size of Amm or less” is the amount of passage when a sieve having an aperture of Amm is used if it is a sieve. This refers to the case where the weight of particles remaining on the sieve is 10% or less.
 サイクロン5は、破砕装置4によって非磁性体N1が破砕される際に発生する粉塵を含む排ガスG1から集塵するために備えられ、この粉塵をダストD1として回収する。また、バグフィルタ6は、サイクロン5の排ガスG2から集塵するために備えられ、サイクロン5で回収できなかったダストD2を回収する。 The cyclone 5 is provided to collect dust from the exhaust gas G1 containing dust generated when the nonmagnetic material N1 is crushed by the crushing device 4, and collects the dust as dust D1. The bag filter 6 is provided to collect dust from the exhaust gas G2 of the cyclone 5 and collects the dust D2 that could not be collected by the cyclone 5.
 また、第2磁力選別装置7は、破砕物Cから鉄分等を含む磁性体M2を除去するために備えられる。第2磁力選別装置7としては、例えば、ドラム式磁選機や吊下式磁選機等を用いることができる。 Also, the second magnetic separator 7 is provided for removing the magnetic body M2 containing iron from the crushed material C. For example, a drum type magnetic separator or a suspended magnetic separator can be used as the second magnetic separator 7.
 渦電流選別装置8は、第2磁力選別装置7からの非磁性体N2に電磁誘導を引き起こし、非磁性体N2を導体Eと不導体Iとに分離するために備えられる。渦電流選別装置8には、回転磁石式のものを用いることができ、例えば、図2に示すように、円柱状に形成され、N極とS極とが円柱側面の周方向に交互に設けられる磁石8aと、磁石8aを内部に収容するドラム8bと、ドラム8bに巻回されて非磁性体N2を搬送するベルトコンベヤ(移動式ベルト)8cと、非磁性体N2を導体Eと不導体Iとに分離する板状のセパレータ8dとを備えるものを用いることができる。 The eddy current sorting device 8 is provided for causing electromagnetic induction in the nonmagnetic material N2 from the second magnetic force sorting device 7 and separating the nonmagnetic material N2 into the conductor E and the nonconductor I. As the eddy current sorting device 8, a rotary magnet type can be used. For example, as shown in FIG. 2, the eddy current sorting device 8 is formed in a cylindrical shape, and an N pole and an S pole are alternately provided in the circumferential direction of the side surface of the cylinder. Magnet 8a, drum 8b containing magnet 8a therein, belt conveyor (movable belt) 8c wound around drum 8b to convey nonmagnetic material N2, and nonmagnetic material N2 as conductor E and nonconductor What is provided with the plate-shaped separator 8d isolate | separated into I can be used.
 また、渦電流選別装置8のドラム8bの回転数は4000rpm以上にするのが好ましい。これにより、非磁性体N2から導体E側に貴金属及び金属アルミニウム分を効率よく回収することができる。特に、非磁性体N2の粒径が5mm以下である場合、ドラム8bの回転数を4000rpm以上にすることで、ドラム8bの回転数を4000rpm未満とする場合に比較して回収率を大きく向上させることができる。 Also, the rotational speed of the drum 8b of the eddy current sorting device 8 is preferably 4000 rpm or more. Thereby, a noble metal and a metal aluminum part can be efficiently collect | recovered from the nonmagnetic body N2 to the conductor E side. In particular, when the particle size of the non-magnetic material N2 is 5 mm or less, the recovery rate is greatly improved by setting the rotation speed of the drum 8b to 4000 rpm or more as compared with the case where the rotation speed of the drum 8b is less than 4000 rpm. be able to.
 図1に示すように、風力選別装置9は、渦電流選別装置8から排出された導体Eを風力によって重量物H1と軽量物L1とに分離するために備えられる。風力選別装置9は省略することも可能であるが、風力選別装置9を備えることにより、さらに効率的に貴金属の分離と回収を行うことが可能となる。 As shown in FIG. 1, the wind power sorting device 9 is provided for separating the conductor E discharged from the eddy current sorting device 8 into a heavy material H1 and a light material L1 by wind power. Although the wind sorting apparatus 9 can be omitted, the provision of the wind sorting apparatus 9 makes it possible to more efficiently separate and recover the noble metal.
 エアテーブル10は、風力選別装置9から排出された重量物H1を比重差選別によって高比重物H2と低比重物L2とに分離するために備えられる。エアテーブル10は、図3に示すように、所定の角度で傾斜すると共に空気流を通過させる複数の小通気口を有する振動式テーブル10aと、回転することで振動式テーブル10aの下面から上面に空気を供給する吹上送風機10b等を備える。 The air table 10 is provided to separate the heavy object H1 discharged from the wind sorting apparatus 9 into a high specific gravity object H2 and a low specific gravity object L2 by specific gravity difference sorting. As shown in FIG. 3, the air table 10 is inclined at a predetermined angle and has a vibration table 10a having a plurality of small vents through which air flow passes, and by rotating, the vibration table 10a is moved from the lower surface to the upper surface. A blower blower 10b for supplying air is provided.
 振動式テーブル10aの上面に供給された重量物H1は、振動式テーブル10aを通過する空気流によって振動式テーブル10aの上面から浮上した状態となり、振動式テーブル10aの傾斜方向に付与された振動により、比重の大きい高比重物H2が下層に、比重の小さい低比重物L2が上層に移動する。下層の高比重物H2は振動式テーブル10aの上面から摩擦力と振動力とを受けて斜め上方へ移動し、上層の低比重物L2は振動式テーブル10aの上面から摩擦力と振動力とを受けずに斜め下方へ押し流され、高比重物H2と低比重物L2とは振動式テーブル10aから別々に排出される。尚、エアテーブル10に代えて、その他の比重差選別装置を用いることもでき、乾式と湿式のいずれの装置を用いることもできる。 The heavy object H1 supplied to the upper surface of the vibration table 10a is floated from the upper surface of the vibration table 10a by the air flow passing through the vibration table 10a, and is caused by the vibration applied in the inclination direction of the vibration table 10a. The high specific gravity H2 having a large specific gravity moves to the lower layer, and the low specific gravity L2 having a small specific gravity moves to the upper layer. The lower specific gravity object H2 receives the frictional force and vibrational force from the upper surface of the vibration table 10a and moves obliquely upward, and the lower specific gravity object L2 receives the frictional force and vibrational force from the upper surface of the vibration table 10a. Without being received, it is swept downward obliquely, and the high specific gravity object H2 and the low specific gravity object L2 are separately discharged from the vibration table 10a. In addition, it replaces with the air table 10, other specific gravity difference sorting apparatuses can also be used, and either a dry-type or a wet-type apparatus can be used.
 次に、上記構成を有する焼却灰の処理装置1の動作について図1を中心に参照しながら説明する。 Next, the operation of the incineration ash treatment apparatus 1 having the above configuration will be described with reference to FIG.
 受け入れた焼却灰A1を乾燥装置2に供給し、焼却灰A1の水分含有率が20%程度以下になるまで乾燥する。次に、乾燥装置2から排出された乾燥灰A2を、第1磁力選別装置3で磁力選別して磁性体M1と非磁性体N1とに分離する。また、第1磁力選別装置3から排出した非磁性体N1を破砕装置4で破砕する。さらに、サイクロン5で破砕装置4の排ガスG1から集塵すると共に、バグフィルタ6でサイクロン5の排ガスG2から集塵し、サイクロン5及びバグフィルタ6でダストD1、D2を各々回収する。 The incinerated ash A1 received is supplied to the drying device 2 and dried until the moisture content of the incinerated ash A1 is about 20% or less. Next, the dry ash A2 discharged from the drying device 2 is magnetically sorted by the first magnetic sorting device 3 and separated into the magnetic body M1 and the non-magnetic body N1. Further, the nonmagnetic material N1 discharged from the first magnetic sorting device 3 is crushed by the crushing device 4. Further, the cyclone 5 collects dust from the exhaust gas G1 of the crushing device 4, and the bag filter 6 collects dust from the exhaust gas G2 of the cyclone 5, and the cyclone 5 and the bag filter 6 collect the dusts D1 and D2, respectively.
 破砕装置4から排出された破砕物Cを第2磁力選別装置7で磁力選別して磁性体M2と非磁性体N2とに分離し、第2磁力選別装置7から排出された非磁性体N2を渦電流選別装置8で渦電流選別して貴金属及び金属アルミニウム分を多く含む導体Eと不導体Iとに分離する。 The crushed material C discharged from the crushing device 4 is magnetically sorted by the second magnetic sorting device 7 to be separated into the magnetic material M2 and the nonmagnetic material N2, and the nonmagnetic material N2 discharged from the second magnetic sorting device 7 is separated. The eddy current sorter 8 separates the eddy current into a conductor E and a nonconductor I containing a large amount of noble metal and metal aluminum.
 次に、渦電流選別装置8から排出された導体Eを風力選別装置9に供給して貴金属やアルミニウム分を含む重量物H1と、貴金属や金属アルミニウム分の少ない軽量物L1とに分離した後、風力選別装置9から排出された重量物H1をエアテーブル10に供給して純度の高い貴金属を含む高比重物H2と純度の高いアルミニウム分を含む低比重物L2とに分離する。この際、サイクロン11でエアテーブル10から排出される排ガスG3から集塵すると共に、バグフィルタ12でサイクロン11の排ガスG4から集塵し、サイクロン11及びバグフィルタ12でダストD3、D4を各々回収する。 Next, after supplying the conductor E discharged from the eddy current sorting device 8 to the wind sorting device 9 and separating it into a heavy article H1 containing noble metal and aluminum and a light article L1 having little noble metal and metal aluminum, The heavy object H1 discharged from the wind power sorter 9 is supplied to the air table 10 and separated into a high specific gravity object H2 containing a high-purity precious metal and a low specific gravity object L2 containing a high-purity aluminum component. At this time, dust is collected from the exhaust gas G3 discharged from the air table 10 by the cyclone 11, and dust is collected from the exhaust gas G4 of the cyclone 11 by the bag filter 12, and the dusts D3 and D4 are collected by the cyclone 11 and the bag filter 12, respectively. .
 以上のように、渦電流選別装置8によって、非磁性体N2から貴金属や金属アルミニウム分が除去された灰分を不導体Iとして回収することができると共に、エアテーブル10によって、純度の高い貴金属を高比重物H2として回収することなどが可能となる。 As described above, the eddy current sorting device 8 can collect the ash from which the noble metal or metal aluminum content has been removed from the nonmagnetic material N2 as the non-conductor I, and the air table 10 can increase the purity of the noble metal with high purity. It can be recovered as the specific gravity H2.
 また、上記処理装置1で回収したものを各々有効に利用する。例えば、第1磁力選別装置3及び第2磁力選別装置7で除去した磁性体M1、磁性体M2には鉄分が多く含まれているため、製鉄用原料やセメント原料等の鉄分として利用することができる。また、サイクロン5及びバグフィルタ6で回収したダストD1、D2もセメント原料等に利用することができる。 Moreover, each thing collected by the processing apparatus 1 is used effectively. For example, since the magnetic substance M1 and the magnetic substance M2 removed by the first magnetic sorting apparatus 3 and the second magnetic sorting apparatus 7 contain a large amount of iron, it can be used as iron for raw materials for iron making or cement. it can. Further, the dusts D1 and D2 collected by the cyclone 5 and the bag filter 6 can also be used as a cement raw material.
 さらに、渦電流選別装置8から排出された不導体Iや、風力選別装置9から排出された軽量物L1にも貴金属や金属アルミニウム分がほとんど含まれていないため、セメント原料等に利用する。 Furthermore, since the non-conductor I discharged from the eddy current sorter 8 and the light weight L1 discharged from the wind sorter 9 contain almost no precious metal or metal aluminum, they are used as cement raw materials.
 尚、図示を省略するが、エアテーブル10から排出した高比重物H2から磁力選別によって鉄分等を除去し、貴金属の純度をさらに高めることもできる。 In addition, although illustration is abbreviate | omitted, iron content etc. can be removed by magnetic selection from the high specific gravity H2 discharged | emitted from the air table 10, and the purity of a noble metal can also be raised further.
 さらに、サイクロン11及びバグフィルタ12で回収したダストD3、D4には金属アルミニウム分が多く含まれているため、ダストD3、D4を組成に応じて金属アルミニウムのリサイクル原料やセメント原料として利用することができる。 Furthermore, since the dusts D3 and D4 collected by the cyclone 11 and the bag filter 12 contain a large amount of metal aluminum, the dusts D3 and D4 can be used as a metal aluminum recycling material or a cement material depending on the composition. it can.
 尚、上記実施の形態では、破砕装置4の破砕物Cを第2磁力選別装置7に供給したが、破砕装置4に代えて篩等の分級装置を設け、この分級装置で粒径が5mm以下の所定範囲内にある粒子を各々第2磁力選別装置7に供給することもできる。この場合、所定の粒径より大きい粒子はセメント原料等として系外に排出してもよいし、破砕して所定範囲内の粒径となるようにしてもよい。 In the above embodiment, the crushed material C of the crushing device 4 is supplied to the second magnetic sorting device 7, but a classifying device such as a sieve is provided instead of the crushing device 4, and the particle size is 5 mm or less. It is also possible to supply each of the particles within the predetermined range to the second magnetic separation device 7. In this case, particles larger than a predetermined particle size may be discharged out of the system as a cement raw material or may be crushed to a particle size within a predetermined range.
 さらに、上記実施の形態では、破砕装置4の破砕物Cを第2磁力選別装置7に供給したが、破砕物Cを分級する篩等の分級装置を設け、この分級装置で破砕物Cを分級して粒径が5mm以下の所定範囲内に調整してもよい。 Furthermore, in the said embodiment, although the crushed material C of the crushing apparatus 4 was supplied to the 2nd magnetic sorting apparatus 7, classification devices, such as a sieve which classifies the crushed material C, are provided, and the crushed material C is classified with this classification device. Then, the particle size may be adjusted within a predetermined range of 5 mm or less.
 また、5mm以下の所定範囲内にある粒子群をさらに粒群毎に細分化し、これらの粒子群を各々第2磁力選別装置7に供給することでより回収精度を高めることができる。例えば、破砕装置4から排出された破砕物Cを第1の篩に供給し、粒径5mm以上の粒子群と粒径5mm未満の粒子群とに分離する。次に、第1の篩で得られた粒径5mm未満の粒子群を第2の篩に供給し、粒径3mm以上5mm未満の粒子群と粒径3mm未満の粒子群とに分離する。さらに、第2の篩で得られた粒径3mm未満の粒子群を第3の篩に供給し、粒径2mm以上3mm未満の粒子群と粒径2mm未満の粒子群とに分離する。また、第3の篩で得られた粒径2mm未満の粒子群を第4の篩に供給し、粒径1mm以上2mm未満の粒子群と粒径1mm未満の粒子群とに分離する。そして、粒径5mm以上の粒子群、粒径3mm以上5mm未満の粒子群、粒径2mm以上3mm未満の粒子群、粒径1mm以上2mm未満の粒子群及び粒径1mm未満の粒子群を、別々に第2磁力選別装置7に供給し、粒径範囲毎に処理してもよい。 Further, the collection accuracy can be further improved by further subdividing the particle group within a predetermined range of 5 mm or less into each particle group and supplying each of these particle groups to the second magnetic separation device 7. For example, the crushed material C discharged from the crushing device 4 is supplied to the first sieve and separated into a particle group having a particle diameter of 5 mm or more and a particle group having a particle diameter of less than 5 mm. Next, the particle group having a particle diameter of less than 5 mm obtained by the first sieve is supplied to the second sieve, and separated into a particle group having a particle diameter of 3 mm or more and less than 5 mm and a particle group having a particle diameter of less than 3 mm. Further, the particle group having a particle size of less than 3 mm obtained by the second sieve is supplied to the third sieve and separated into a particle group having a particle size of 2 mm or more and less than 3 mm and a particle group having a particle size of less than 2 mm. Further, the particle group having a particle diameter of less than 2 mm obtained by the third sieve is supplied to the fourth sieve, and separated into a particle group having a particle diameter of 1 mm or more and less than 2 mm and a particle group having a particle diameter of less than 1 mm. A particle group having a particle size of 5 mm or more, a particle group having a particle size of 3 mm or more and less than 5 mm, a particle group having a particle size of 2 mm or more and less than 3 mm, a particle group having a particle size of 1 mm or more and less than 2 mm, and a particle group having a particle size of less than 1 mm are separately provided. May be supplied to the second magnetic separator 7 and processed for each particle size range.
 このように処理することで、渦電流選別装置8で非磁性体N2から貴金属や金属アルミニウム分をさらに効率よく導体E側に回収することができる。また、エアテーブル10で重量物H1に含まれる貴金属をさらに効率よく高比重物H2側に回収することができる。尚、上記分級点は5mm以下であれば適宜調整することができる。 By processing in this way, the eddy current sorting device 8 can more efficiently recover the noble metal or metal aluminum component from the nonmagnetic material N2 to the conductor E side. In addition, the noble metal contained in the heavy object H1 can be more efficiently recovered to the high specific gravity object H2 side by the air table 10. The classification point can be appropriately adjusted as long as it is 5 mm or less.
 また、渦電流選別装置8とエアテーブル10との間に風力選別装置9を設けたが、必ずしも風力選別装置9を設ける必要はなく、渦電流選別装置8から排出された導体Eを直接エアテーブル10に導入することもできる。さらに、受け入れた焼却灰A1の水分含有率やその他の物理的性状によっては、渦電流選別装置8や、例示したエアテーブル10等の比重差選別装置以外の装置については適宜省略することができる。 Further, the wind power sorting device 9 is provided between the eddy current sorting device 8 and the air table 10, but the wind sorting device 9 is not necessarily provided, and the conductor E discharged from the eddy current sorting device 8 is directly connected to the air table. 10 can also be introduced. Furthermore, depending on the moisture content of the received incineration ash A1 and other physical properties, devices other than the eddy current sorting device 8 and the specific gravity difference sorting device such as the air table 10 illustrated can be omitted as appropriate.
 次に、本発明の第1実施形態に係る焼却灰の処理装置の試験例について、図4を参照しながら説明する。 Next, a test example of the incineration ash treatment apparatus according to the first embodiment of the present invention will be described with reference to FIG.
 図4は試験例で用いた装置を示し、この処理装置21は、受け入れた焼却灰(都市ごみ焼却灰)A1を乾燥させる乾燥装置22と、乾燥装置22から排出された乾燥灰A2を磁力選別する第1磁力選別装置23と、第1磁力選別装置23から排出された非磁性体N1を分級する篩24と、篩24から排出された細粒Pを磁力選別する第2磁力選別装置25と、第2磁力選別装置25で分離された非磁性体N2を渦電流選別する渦電流選別装置26と、渦電流選別装置26から排出された導体Eを比重差選別するエアテーブル27等を備える。 FIG. 4 shows an apparatus used in the test example. This processing apparatus 21 magnetically sorts the drying apparatus 22 for drying the received incineration ash (city waste incineration ash) A1 and the dry ash A2 discharged from the drying apparatus 22. A first magnetic separator 23 that performs classification, a sieve 24 that classifies the non-magnetic material N1 discharged from the first magnetic separator 23, and a second magnetic separator 25 that magnetically selects fine particles P discharged from the sieve 24. An eddy current sorting device 26 that sorts the non-magnetic material N2 separated by the second magnetic sorting device 25, an air table 27 that sorts the conductor E discharged from the eddy current sorting device 26 by a specific gravity difference, and the like.
 焼却灰A1を内部温度が105℃の乾燥装置22に供給し、水分含有率が0%(絶乾状態)になるまで乾燥させた。次に、乾燥した焼却灰A1を吊下式の第1磁力選別装置23に供給して磁性体M1を除去し、得られた非磁性体N1を篩24に供給して分級し、篩24を通過した粒径5mm以下の細粒Pを回収した。さらに、細粒Pを第2磁力選別装置25に通過させて磁性体M2を除去し、非磁性体N2を回収した。非磁性体N2をドラムの回転数が6000rpmの渦電流選別装置(SGM社製渦電流選別機、型式TVIS)26に供給して導体Eと不導体Iとに分離した。さらに、この導体Eをエアテーブル(TRIPLE/S DYNAMICS, INC.(USA)社製)27で比重差選別して高比重物Hと低比重物Lとに分離した。 The incinerated ash A1 was supplied to a drying device 22 having an internal temperature of 105 ° C. and dried until the moisture content became 0% (absolutely dry state). Next, the dried incineration ash A1 is supplied to a suspended first magnetic separation device 23 to remove the magnetic material M1, and the obtained nonmagnetic material N1 is supplied to the sieve 24 and classified. Fine particles P having a diameter of 5 mm or less that passed through were collected. Further, the fine particles P were passed through the second magnetic separator 25 to remove the magnetic material M2 and collect the nonmagnetic material N2. The non-magnetic material N2 was supplied to an eddy current sorter (Eddy current sorter manufactured by SGM, model TVIS) 26 having a drum rotation speed of 6000 rpm, and separated into a conductor E and a nonconductor I. Further, the conductor E was separated into a high specific gravity material H and a low specific gravity material L by selecting a specific gravity difference with an air table (TRIPLE / S DYNAMICS, made by INC. (USA)) 27.
 上述のようにして得られた細粒P、導体E、不導体I、高比重物H及び低比重物Lに含まれる成分を各々分析した。この成分のうち、金及び銀はICP質量分析によって分析し、これら以外の成分は蛍光X線分析により分析した。尚、ICP質量分析は、分析対象物を100μm以下に粉砕したものを酸分解し、定量下限値0.1g/lで定量分析した。また、蛍光X線分析は、分析対象物を100μm以下に粉砕したものをファンダメンタルパラメータ法で半定量分析した。 The components contained in the fine particles P, conductor E, nonconductor I, high specific gravity H and low specific gravity L obtained as described above were analyzed. Among these components, gold and silver were analyzed by ICP mass spectrometry, and other components were analyzed by fluorescent X-ray analysis. In the ICP mass spectrometry, an object to be analyzed was ground to 100 μm or less, acid-decomposed, and quantitatively analyzed with a lower limit of quantification of 0.1 g / l. Further, in the fluorescent X-ray analysis, an object to be analyzed was pulverized to 100 μm or less, and semiquantitative analysis was performed by a fundamental parameter method.
 上記試験において、細粒Pに対する導体Eの各成分の含有率について、金は3.2倍程度上昇し、銀は103倍程度上昇した。さらに、銅も19倍程度の上昇が見られた。さらに、アルミニウム分は4.9倍程度まで含有率が上昇した。これらの結果により、焼却灰を渦電流選別することにより、焼却灰から貴金属及び金属アルミニウム分を効率よく回収できることが判った。一方、渦電流選別して得られた不導体Iについては、アルミニウム分の含有率が細粒Pの86%程度まで減少した。 In the above test, with respect to the content of each component of the conductor E with respect to the fine particles P, gold rose about 3.2 times and silver rose about 103 times. In addition, copper also increased about 19 times. Furthermore, the aluminum content increased to about 4.9 times. From these results, it was found that precious metals and metallic aluminum components can be efficiently recovered from the incinerated ash by sorting the incinerated ash by eddy current. On the other hand, for the nonconductor I obtained by eddy current selection, the content of aluminum decreased to about 86% of the fine particles P.
 さらに、導体Eに対する高比重物Hの各成分の含有率について、金は100倍程度、銀は2.1倍程度、銅は2.5倍程度まで上昇した。これらの結果により、焼却灰を渦電流選別して得られた導体Eを比重差選別することにより、導体Eから貴金属が多く含まれる高比重物Hを効率よく回収できることが判った。尚、鉄の含有率は、細粒P、導体E、不導体I、高比重物H、低比重物Lのいずれも略々等しい濃度であった。 Furthermore, the content of each component of the high specific gravity H with respect to the conductor E increased to about 100 times for gold, about 2.1 times for silver, and about 2.5 times for copper. From these results, it was found that the high specific gravity H containing a large amount of noble metal can be efficiently recovered from the conductor E by sorting the conductor E obtained by sorting the incinerated ash by eddy current. In addition, the content rate of iron was substantially the same density | concentration in all of the fine grain P, the conductor E, the nonconductor I, the high specific gravity H, and the low specific gravity L.
 また、上記試験において、ドラムの回転数を3500rpmとすると、導体Eは全く回収されなかった。よって、渦電流選別装置のドラムの回転数を4000rpm程度以上とするのが好ましい。 In the above test, when the drum rotation speed was 3500 rpm, the conductor E was not recovered at all. Therefore, it is preferable to set the rotation speed of the drum of the eddy current sorting device to about 4000 rpm or more.
 次に、本発明の第2実施形態に係る焼却灰の処理装置について説明する。この処理装置では、焼却灰に含有される水分に起因して生じる焼却灰の団粒化を防止するため、焼却灰に改質材を混合する。 Next, an incineration ash treatment apparatus according to a second embodiment of the present invention will be described. In this processing apparatus, in order to prevent the incineration ash from agglomerating due to moisture contained in the incineration ash, a modifier is mixed with the incineration ash.
 例えば、都市ごみの焼却灰は、水分を含有する湿灰であり、15%から35%の高い水分を含有する場合がある。こうした湿灰は、焼却灰の処理装置内における振動や、処理装置を構成する各装置間を移動する際の落下等により団粒化され、粗大化することがある。そして、粗大化した焼却灰は、焼却灰の処理装置内で閉塞を生じる他、所定の粒度や比重差で選別することが困難になり、選別効率の低下を招く虞がある。 For example, municipal waste incineration ash is wet ash containing moisture, and may contain 15 to 35% high moisture. Such wet ash may be agglomerated and coarsened due to vibration in the incinerator ash processing apparatus, dropping when moving between the apparatuses constituting the processing apparatus, or the like. The coarse incinerated ash is clogged in the incinerator ash processing apparatus, and it becomes difficult to sort the incinerated ash with a predetermined particle size or specific gravity difference, which may cause a reduction in sorting efficiency.
 そのため、上述した第1実施形態に係る焼却灰の処理装置1では、乾燥装置2を用いて焼却灰の乾燥を行いこれらの問題の発生を防止しているが、乾燥装置2を用いることなく問題の発生を防止することができれば、省エネルギーや低コスト化の面で好ましい。 For this reason, in the incineration ash processing apparatus 1 according to the first embodiment described above, the incineration ash is dried using the drying apparatus 2 to prevent the occurrence of these problems. If generation | occurrence | production of generation | occurrence | production can be prevented, it is preferable at the surface of energy saving or cost reduction.
 そこで、第2実施形態に係る焼却灰の処理装置では、乾燥装置2が除かれ、その代わりに焼却灰の団粒化を防止する改質材を混合するための各構成が追加されている。 Therefore, in the incineration ash processing apparatus according to the second embodiment, the drying apparatus 2 is removed, and instead, each component for mixing modifiers that prevent incineration ash from agglomerating is added.
 図5は、本発明に係る焼却灰の処理装置の第2実施形態を示す全体構成図である。第2実施形態に係る焼却灰の処理装置31は、第1篩選別装置32、第1破砕装置33、第1磁力選別装置34、第2篩選別装置35、混合装置36、第2磁力選別装置37、第2破砕装置38、サイクロン39、バグフィルタ40、第3磁力選別装置41、渦電流選別装置42、風力選別装置43、エアテーブル44、サイクロン45及びバグフィルタ46を備える。尚、これらの装置は、焼却灰Aの性状や、混合される改質材の量や性状等に応じて適宜省略することが可能である。 FIG. 5 is an overall configuration diagram showing a second embodiment of the incineration ash treatment apparatus according to the present invention. The incineration ash processing device 31 according to the second embodiment includes a first sieve sorting device 32, a first crushing device 33, a first magnetic sorting device 34, a second sieve sorting device 35, a mixing device 36, and a second magnetic sorting device. 37, a second crushing device 38, a cyclone 39, a bag filter 40, a third magnetic force sorting device 41, an eddy current sorting device 42, a wind power sorting device 43, an air table 44, a cyclone 45 and a bag filter 46. In addition, these apparatuses can be appropriately omitted depending on the properties of the incineration ash A, the amount and properties of the modifier to be mixed, and the like.
 焼却灰の処理装置31を構成する各装置のうち、第2磁力選別装置37、第2破砕装置38、サイクロン39、バグフィルタ40、第3磁力選別装置41、渦電流選別装置42、風力選別装置43、エアテーブル44、サイクロン45及びバグフィルタ46は、各々上述した第1実施形態に係る焼却灰の処理装置1の第1磁力選別装置3、破砕装置4、サイクロン5、バグフィルタ6、第2磁力選別装置7、渦電流選別装置8、風力選別装置9、エアテーブル10、サイクロン11及びバグフィルタ12と同一の構成を有するため、これらの構成についての詳細な説明は省略する。 Among the devices constituting the incineration ash processing device 31, the second magnetic sorting device 37, the second crushing device 38, the cyclone 39, the bag filter 40, the third magnetic sorting device 41, the eddy current sorting device 42, and the wind power sorting device. 43, the air table 44, the cyclone 45, and the bag filter 46 are the first magnetic sorting device 3, the crushing device 4, the cyclone 5, the bag filter 6, the second of the incineration ash treatment device 1 according to the first embodiment described above, respectively. Since it has the same configuration as the magnetic sorting device 7, the eddy current sorting device 8, the wind force sorting device 9, the air table 10, the cyclone 11 and the bag filter 12, detailed description of these configurations will be omitted.
 第1篩選別装置32は、粒径Xmm(15mm以上40mm未満の範囲から選択される所定の粒径、以下同じ。)未満の粒子P1を通過させる篩により粒子の選別を行う選別装置である。第1選別装置32に投入される焼却灰Aのうち、第1篩選別装置32を通過した粒子P1は、後述する混合装置36へと供給される。一方、第1篩選別装置32を通過しなかった、粒径がXmm以上の粒子P2は、第1破砕装置33へと供給される。粒径Xmmを15~40mmから選択したのは、粒径Xmmを15mm未満に設定すると、水分含有率の高い焼却灰Aの場合には、第1篩選別装置32で篩い目が閉塞し易く、粒径Xmmを40mm以上にすると、混合装置36で塊を混合することになり、混合装置36への負荷が大きくなると共に、40mm以上の粒径のものがあまり多くないため、第1破砕装置33から第2篩選別装置35で処理する焼却灰Aの量が少なくなり、非効率となるからである。 The first sieve sorting device 32 is a sorting device that sorts particles using a sieve that passes particles P1 having a particle size of less than X mm (a predetermined particle size selected from a range of 15 mm or more and less than 40 mm, the same shall apply hereinafter). Of the incinerated ash A put into the first sorting device 32, the particles P1 that have passed through the first sieve sorting device 32 are supplied to the mixing device 36 described later. On the other hand, the particles P <b> 2 having a particle size of X mm or more that have not passed through the first sieve sorting device 32 are supplied to the first crushing device 33. The particle size Xmm was selected from 15 to 40 mm because, when the particle size Xmm is set to less than 15 mm, in the case of the incinerated ash A having a high water content, the first sieve sorting device 32 tends to block the sieve mesh, When the particle size Xmm is 40 mm or more, the lump is mixed by the mixing device 36, the load on the mixing device 36 is increased, and there are not many particles having a particle size of 40 mm or more. This is because the amount of the incinerated ash A processed by the second sieve sorting device 35 is reduced, resulting in inefficiency.
 第1破砕装置33は、第1篩選別装置32から供給された粒径Xmm以上の粒子P2を、粒径Xmm未満の任意の粒径に破砕するために備えられる。第1破砕装置33による破砕物C1は、第1磁力選別装置34へと供給される。 The first crushing device 33 is provided to crush the particles P2 having a particle size of X mm or more supplied from the first sieve sorting device 32 into an arbitrary particle size of less than the particle size X mm. The crushed material C <b> 1 by the first crushing device 33 is supplied to the first magnetic sorting device 34.
 第1磁力選別装置34は、破砕物C1中に含まれる鉄分等を含む磁性体M1を除去するために備えられる。第1磁力選別装置34としては、例えば、ドラム式磁選機や吊下式磁選機等を用いることができる。第1磁力選別装置34により選別された非磁性体N1は、第2篩選別装置35へと供給される。第1磁力選別装置34により破砕物C1から磁性体M1を除去することにより、改質材による焼却灰Aの改質効果を高めることができる。 The first magnetic separator 34 is provided to remove the magnetic body M1 containing iron or the like contained in the crushed material C1. For example, a drum type magnetic separator or a suspended magnetic separator can be used as the first magnetic separator 34. The non-magnetic material N1 sorted by the first magnetic sorting device 34 is supplied to the second sieve sorting device 35. By removing the magnetic body M1 from the crushed material C1 by the first magnetic separator 34, the reforming effect of the incinerated ash A by the modifying material can be enhanced.
 第2篩選別装置35は、第1篩選別装置32と同様に、粒径がXmm未満の粒子P3を通過させる篩により粒子の選別を行う選別装置である。第2篩選別装置35を通過した、粒径がXmm未満の粒子P3は、混合装置36へと供給される。一方、第2篩選別装置35を通過しなかった、粒径がXmm以上の粒子P4は、系外に排出される。尚、粒子P4を系外に排出せず、第1破砕装置33に供給してもよい。 The second sieve sorting device 35 is a sorting device that sorts particles using a sieve that allows the passage of particles P3 having a particle size of less than X mm, as with the first sieve sorting device 32. The particles P3 having a particle size of less than X mm that have passed through the second sieve sorting device 35 are supplied to the mixing device 36. On the other hand, the particles P4 having a particle size of X mm or more that have not passed through the second sieve sorting device 35 are discharged out of the system. The particles P4 may be supplied to the first crushing device 33 without being discharged out of the system.
 混合装置36は、第1篩選別装置32及び第2篩選別装置35から供給された、粒径がXmm未満の粒子P1及びP3と、改質材RAとが投入されると共に、これらが混合されるミキサーである。 The mixing device 36 is supplied with the particles P1 and P3 having a particle diameter of less than X mm and the modifier RA supplied from the first sieve sorting device 32 and the second sieve sorting device 35, and these are mixed. It is a mixer.
 改質材RAは、湿灰である都市ごみの焼却灰の団粒化を防止するために焼却灰に混合され、焼却灰の粒子間に入り込むことで焼却灰の粒子同士が団粒化することを防止する。また、貴金属等が回収された後の残りの灰分をセメント原料等に有効利用するには、改質材RAをセメント原料等とすることのできる材料である必要がある。灰分をセメント原料に利用するには、改質材RAとして、都市ごみの焼却飛灰、石炭飛灰、石灰石粉及び砂粉砕物等を用いる。また、改質材RAとして、図5の風力選別装置43により選別される軽量物L1を用いてもよい。軽量物L1は、粗粒分及び水分が少なく、良好な団粒化防止効果を奏することができる。これらの改質材RAを単独で用いてもよく、あるいは2種類以上の改質材を混合して用いてもよい。 The modifier RA is mixed with the incineration ash to prevent the incineration ash from aggregating the municipal waste that is wet ash, and the particles of the incineration ash are aggregated by entering between the incineration ash particles. To prevent. Further, in order to effectively use the remaining ash after the precious metal or the like is recovered as a cement raw material or the like, it is necessary that the modifier RA be a material that can be used as a cement raw material or the like. In order to use ash as a cement raw material, incineration fly ash of municipal waste, coal fly ash, limestone powder, pulverized sand, and the like are used as the modifying material RA. Moreover, you may use the lightweight thing L1 sorted by the wind power sorter 43 of FIG. The lightweight material L1 has a small amount of coarse particles and moisture, and can exhibit a good anti-aggregation effect. These modifiers RA may be used alone, or two or more modifiers may be mixed and used.
 改質材RAの粒径は、0.1mm以下である。改質材RAの粒径が0.1mmを超えると、十分な団粒化防止効果を得ることができない。 The particle size of the reforming material RA is 0.1 mm or less. When the particle size of the modifying material RA exceeds 0.1 mm, it is not possible to obtain a sufficient aggregation preventing effect.
 改質材RAの混合割合は、焼却灰A100質量部に対して15質量部以上50質量部以下、好ましくは25質量部以上45質量部以下である。改質材RAの混合割合が25質量部未満であると、団粒化防止効果が不十分である。一方、45質量部を超えると、団粒化防止効果の向上は緩やかとなり、50質量部を超えると団粒化防止効果は飽和し、回収物の金属品位も低下してしまう。 The mixing ratio of the reforming material RA is 15 parts by mass or more and 50 parts by mass or less, preferably 25 parts by mass or more and 45 parts by mass or less with respect to 100 parts by mass of the incineration ash A. When the mixing ratio of the modifying material RA is less than 25 parts by mass, the effect of preventing agglomeration is insufficient. On the other hand, when it exceeds 45 parts by mass, the effect of preventing aggregation is moderated, and when it exceeds 50 parts by mass, the effect of preventing aggregation is saturated and the metal quality of the recovered product is also lowered.
 混合装置36により粒子P1、P3と改質材RAとが混合されて生成した混合物MAは、第2磁力選別装置37へと供給される。第2磁力選別装置37以降の処理は上述した第1実施形態に係る焼却灰の処理装置1と同様であり、貴金属等が回収される。 The mixture MA produced by mixing the particles P1 and P3 and the reforming material RA by the mixing device 36 is supplied to the second magnetic force sorting device 37. The processing after the second magnetic separator 37 is the same as that of the incineration ash processing apparatus 1 according to the first embodiment described above, and the precious metal and the like are collected.
 上述した構成を有する焼却灰の処理装置31によれば、焼却灰から貴金属等を効率よく回収すると共に、残りの灰分を有効利用することができる。また、焼却灰の団粒化を防止し、焼却灰の処理装置31内での閉塞や、選別効率の低下を効果的に防止することができる。 According to the incineration ash processing apparatus 31 having the above-described configuration, it is possible to efficiently recover precious metals and the like from the incineration ash and to effectively use the remaining ash. Moreover, the agglomeration of the incineration ash can be prevented, and the blockage of the incineration ash in the processing device 31 and the reduction of the sorting efficiency can be effectively prevented.
 尚、第1篩選別装置32、第1破砕装置33、第1磁力選別装置34及び第2篩選別装置35は、改質材による改質効率の向上のために設けられている構成であるが、本発明においては必須の構成ではない。そのため、例えば焼却灰の処理装置31に投入される焼却灰Aの粒径が当初からXmm未満である場合や、改質材RAの添加量を多くする場合等、状況に応じてこれらの構成を省略することができる。 Note that the first sieve sorting device 32, the first crushing device 33, the first magnetic sorting device 34, and the second sieve sorting device 35 are configured to improve the reforming efficiency by the modifier. In the present invention, this is not an essential configuration. Therefore, for example, when the particle size of the incineration ash A charged into the incineration ash processing device 31 is less than X mm from the beginning, or when the amount of addition of the modifier RA is increased, these configurations are configured depending on the situation. Can be omitted.
 次に、改質材RAによる焼却灰の団粒化防止に関する実験例について説明する。 Next, an experimental example regarding the prevention of agglomeration of incinerated ash by the modifying material RA will be described.
 表1は、3種類の焼却灰A~Cについて、水分量と図5に示す第一篩選別装置32からエアテーブル44による処理を行った場合の運転状況との関係についての実験結果を示す。各焼却灰A~Cは、各々ストーカ炉から発生した都市ごみ焼却灰の主灰であり、25mmの篩を通過したものである。 Table 1 shows the experimental results on the relationship between the moisture content and the operating condition when the treatment with the air table 44 is performed from the first sieve sorting device 32 shown in FIG. 5 for the three types of incinerated ash A to C. Each incineration ash A to C is the main ash of municipal waste incineration ash generated from the stoker furnace, and has passed through a 25 mm sieve.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
焼却灰Aについては、水分が24%以上であると、第2破砕装置38までに閉塞が生じて運転ができなくなった。焼却灰A水分20%、及び焼却灰B水分22%である場合には、運転は可能であったが、やや団粒化が生じるために回収物の金属品位が低下していた。焼却灰A水分11%以下、焼却灰B水分17%、及び焼却灰C水分18%では団粒化が生じなかった。このことから、焼却灰の水分が上昇するほど団粒化が生じ易くなり、概ね20%を超える水分量となると運転ができなくなる場合があることが判った。 As for the incineration ash A, when the water content was 24% or more, the second crushing device 38 was clogged, and the operation became impossible. When the incineration ash A moisture was 20% and the incineration ash B moisture was 22%, the operation was possible, but the agglomeration occurred slightly, and the metal quality of the recovered material was lowered. Aggregation did not occur when the incineration ash A moisture was 11% or less, the incineration ash B moisture was 17%, and the incineration ash C moisture was 18%. From this, it was found that as the water content of the incinerated ash increases, the agglomeration tends to occur, and when the water content exceeds approximately 20%, the operation may not be possible.
 次に、焼却灰A~Cのうち、焼却灰Aについては水分が29%、焼却灰Bについては水分が22%、焼却灰Cについては水分が18%のものについて、団粒化を模擬してミキサーで混合撹拌した。 Next, among the incineration ash A to C, the incineration ash A has a moisture content of 29%, the incineration ash B has a moisture content of 22%, and the incineration ash C has a moisture content of 18%. The mixture was stirred with a mixer.
 各焼却灰1000gを20リットルの容器(直径185mm、高さ386mm)に入れた後、RYOBI社製パワーミキサー(型番PM-311)を300rpmで回転させ、混合物を1分間混合した。 After putting 1000 g of each incineration ash into a 20 liter container (diameter 185 mm, height 386 mm), a RYOBI power mixer (model number PM-311) was rotated at 300 rpm, and the mixture was mixed for 1 minute.
 次に、焼却灰A~Cについて、1mm、2mm、5mm、10mmの目の篩を使用して篩分けを実施した。篩分けは JIS A 1102に準拠して、手動によって、篩に上下動及び水平動を与えて試料を揺り動かすことで行った。そして、1mm未満、1mm以上2mm未満、2mm以上5mm未満、5mm以上10mm未満、10mm以上の各粒径の粒について質量割合を測定した。この測定結果を表2に示す。尚、JIS A 1102:2014の骨材の篩分け試験方法では、公称目開き1.18mm、2.36mm、4.75mm、9.5mm、26.5mmの篩を各々1mm、2mm、5mm、10mm、25mmの篩と呼ぶことができ、本実験における篩の目の大きさはこの篩分け試験方法に則して設定されている。 Next, the incineration ash A to C was sieved using a 1 mm, 2 mm, 5 mm, and 10 mm eye sieve. The sieving was performed by manually moving the sample by vertically and horizontally moving the sieve in accordance with 準 拠 JIS A 1102. And the mass ratio was measured about the particle | grains of each particle size of less than 1 mm, 1 mm or more, less than 2 mm, 2 mm or more, less than 5 mm, 5 mm or more, less than 10 mm, or 10 mm or more. The measurement results are shown in Table 2. In the aggregate screening test method of JIS A 1102: 2014, sieves with nominal openings of 1.18 mm, 2.36 mm, 4.75 mm, 9.5 mm, and 26.5 mm are respectively 1 mm, 2 mm, 5 mm, and 10 mm. The size of the sieve mesh in this experiment is set according to this screening test method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、団粒化の模擬試験において、焼却灰B水分22%の結果から5mmを超える粒子が39%以下であれば、運転可能であると判断できることが判る。また、より好ましくは、焼却灰C水分18%の結果から5mmを超える粒子が19%以下であれば容易に運転可能であると判断できることが判る。 From Table 2, it can be seen that, in the simulation test of agglomeration, it can be judged that the operation is possible if the particle size exceeding 5 mm is 39% or less from the result of the incinerated ash B moisture 22%. More preferably, from the result of the incinerated ash C water content of 18%, it can be seen that if the particle size exceeding 5 mm is 19% or less, it can be determined that the operation is easy.
 次に、実験に用いた改質材の粒径と成分を表3に示す。 Next, Table 3 shows the particle diameter and components of the modifier used in the experiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 改質材として、ストーカ炉から生じた都市ごみ焼却飛灰であり粒径が0.1mm未満である飛灰A、流動床炉から生じた都市ごみ焼却飛灰であり粒径が0.1mm未満である飛灰B、石炭灰であり粒径が0.1mm未満である飛灰C、セメント原料であり粒径が0.1mm未満である石灰石粉、セメント強さ試験(JIS R 5201)用標準砂であり粒径が2mm未満である砂、及び同標準砂を粉砕したものであり粒径が0.1mm未満である砂粉砕品を用いた。 As the modifier, municipal waste incineration fly ash generated from a stoker furnace with a particle size of less than 0.1 mm, fly ash A produced from a fluidized bed furnace, with a particle size of less than 0.1 mm Fly ash B, coal ash, fly ash C, particle size less than 0.1 mm, limestone powder, cement raw material, particle size less than 0.1 mm, standard for cement strength test (JIS R 5201) Sand that is sand and has a particle size of less than 2 mm, and crushed sand that has been pulverized from the standard sand and has a particle size of less than 0.1 mm were used.
 次に、表3に示す改質材を用いて改質材による団粒化の防止効果の実証実験を行った。尚、焼却灰と所定量の改質材を上記と同様の要領で混合撹拌した。 Next, using the reforming materials shown in Table 3, a demonstration experiment of the effect of preventing agglomeration by the reforming material was performed. The incinerated ash and a predetermined amount of modifier were mixed and stirred in the same manner as described above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 具体的には、焼却灰Aについては、飛灰Aを15%以上混合したもの、飛灰Bを15%以上混合したもの、飛灰Cを20%以上混合したもの、石灰石粉を20%以上混合したもの、及び砂粉砕品を20%以上混合したものについて、運転が可能であると判定された。このときの混合物中の水分量はいずれも12%以下であった。 Specifically, for incineration ash A, 15% or more of fly ash A, 15% or more of fly ash B, 20% or more of fly ash C, 20% or more of limestone powder About what mixed and the thing which mixed 20% or more of crushed sand products, it was determined that the operation was possible. The water content in the mixture at this time was 12% or less.
 これらの結果より、改質材として都市ごみの焼却飛灰を用いる場合には、焼却灰に対して15%以上混合し、混合物の水分量を12%以下にすることにより、焼却灰の団粒化を防止できることが判った。また、改質材として石炭飛灰を用いる場合には、焼却灰に対して20%以上混合し、混合物の水分量を12%以下にすることにより、焼却灰の団粒化を防止できることが判った。さらに、改質材として砂粉砕品を用いる場合には、焼却灰に対して20%以上混合し、混合物の水分量を12%以下にすることにより、焼却灰の団粒化を防止し、効率よく焼却灰から貴金属を回収できることが判った。 From these results, when using municipal waste incineration fly ash as a reformer, mix 15% or more with the incineration ash, and reduce the moisture content of the mixture to 12% or less. It was found that it can be prevented. In addition, when coal fly ash is used as a modifier, it is understood that the incineration ash can be prevented from agglomeration by mixing 20% or more with the incineration ash and reducing the water content of the mixture to 12% or less. It was. Furthermore, when using a sand crushed product as a modifier, mixing 20% or more of the incinerated ash, and reducing the water content of the mixture to 12% or less prevents the incineration ash from agglomerating and improves efficiency. It was found that precious metals can be recovered from incineration ash well.
1 焼却灰の処理装置
2 乾燥装置
3 第1磁力選別装置
4 破砕装置
5 サイクロン
6 バグフィルタ
7 第2磁力選別装置
8 渦電流選別装置
8a 磁石
8b ドラム
8c ベルトコンベヤ
8d セパレータ
9 風力選別装置
10 エアテーブル
10a 振動式テーブル
10b 吹上送風機
11 サイクロン
12 バグフィルタ
21 焼却灰の処理装置
22 乾燥装置
23 第1磁力選別装置
24 篩
25 第2磁力選別装置
26 渦電流選別装置
27 エアテーブル
31 焼却灰の処理装置
32 第1篩選別装置
33 第1破砕装置
34 第1磁力選別装置
35 第2篩選別装置
36 混合装置
37 第2磁力選別装置
38 第2破砕装置
39 サイクロン
40 バグフィルタ
41 第3磁力選別装置
42 渦電流選別装置
43 風力選別装置
44 エアテーブル
45 サイクロン
46 バグフィルタ
A、A1 焼却灰
A2 乾燥灰
C 破砕物
C1 破砕物
D1~D4 ダスト
E 導体
G1~G4 排ガス
H1 重量物
H、H2 高比重物
I 不導体
L1 軽量物
L、L2 低比重物
M~M3 磁性体
MA 混合物
N~N3 非磁性体
P、P1、P3 細粒
P2 粗粒
R 残分
RA 改質材
 
DESCRIPTION OF SYMBOLS 1 Incineration ash processing apparatus 2 Drying apparatus 3 1st magnetic sorting apparatus 4 Crushing apparatus 5 Cyclone 6 Bag filter 7 2nd magnetic sorting apparatus 8 Eddy current sorting apparatus 8a Magnet 8b Drum 8c Belt conveyor 8d Separator 9 Wind sorting apparatus 10 Air table DESCRIPTION OF SYMBOLS 10a Vibrating table 10b Blowing blower 11 Cyclone 12 Bag filter 21 Incineration ash processing device 22 Drying device 23 First magnetic sorting device 24 Sieve 25 Second magnetic sorting device 26 Eddy current sorting device 27 Air table 31 Incinerated ash processing device 32 First sieve sorting device 33 First crushing device 34 First magnetic sorting device 35 Second sieve sorting device 36 Mixing device 37 Second magnetic sorting device 38 Second crushing device 39 Cyclone 40 Bag filter 41 Third magnetic sorting device 42 Eddy current Sorting device 43 Wind power sorting device 44 Air table 45 Cyclone 46 Bagufu Ruta A, A1 Incinerated ash A2 Dry ash C Crushed material C1 Crushed material D1 to D4 Dust E Conductor G1 to G4 Exhaust gas H1 Heavy material H, H2 High specific gravity I Nonconductor L1 Light weight L, L2 Low specific gravity M to M3 Magnetic MA MA mixture N to N3 Non-magnetic material P, P1, P3 Fine grain P2 Coarse grain R Residual RA Reformer

Claims (13)

  1.  焼却灰を最大粒径5mm以下に破砕又は分級あるいはこれらの両方を行う破砕装置又は/及び分級装置と、
     該破砕装置又は/及び分級装置から排出された最大粒径5mm以下の焼却灰を導体と不導体とに分離する渦電流選別装置と、
     該渦電流選別装置から排出された導体を高比重物と低比重物とに分離する比重差選別装置とを備えることを特徴とする焼却灰の処理装置。
    A crushing device or / and a classification device for crushing or classifying incinerated ash to a maximum particle size of 5 mm or less, or both,
    An eddy current sorting device for separating the incinerated ash having a maximum particle size of 5 mm or less discharged from the crushing device or / and the classifying device into a conductor and a nonconductor;
    An incineration ash treatment device comprising: a specific gravity difference sorting device for separating a conductor discharged from the eddy current sorting device into a high specific gravity material and a low specific gravity material.
  2.  前記比重差選別装置は、エアテーブルであることを特徴とする請求項1に記載の焼却灰の処理装置。 The incineration ash treatment device according to claim 1, wherein the specific gravity difference sorting device is an air table.
  3.  前記渦電流選別装置は、ドラムの回転数が4000rpm以上であることを特徴とする請求項1又は2に記載の焼却灰の処理装置。 The incinerator ash treatment device according to claim 1 or 2, wherein the eddy current sorting device has a drum rotation speed of 4000 rpm or more.
  4.  前記焼却灰に、団粒化を防止するための改質材を混合する混合装置をさらに備えることを特徴とする請求項1、2又は3に記載の焼却灰の処理装置。 4. The incineration ash treatment apparatus according to claim 1, 2 or 3, further comprising a mixing device for mixing a modifying material for preventing agglomeration into the incineration ash.
  5.  前記渦電流選別装置から排出された導体を、風力により重量物と軽量物とに分離する風力選別装置をさらに備えることを特徴とする請求項1乃至4のいずれかに記載の焼却灰の処理装置。 5. The incineration ash treatment device according to claim 1, further comprising a wind power sorting device that separates the conductor discharged from the eddy current sorting device into heavy and light materials by wind power. .
  6.  焼却灰を最大粒径5mm以下に破砕又は/及び分級し、
     該破砕又は/及び分級で得られた最大粒径5mm以下の焼却灰を渦電流選別により導体と不導体とに分離し、
     該渦電流選別で得られた導体を比重差選別により高比重物と低比重物とに分離することを特徴とする焼却灰の処理方法。
    Crushing or / and classifying the incinerated ash to a maximum particle size of 5 mm or less,
    Separating the incinerated ash having a maximum particle size of 5 mm or less obtained by the crushing or / and classification into a conductor and a nonconductor by eddy current sorting
    A method for treating incinerated ash, wherein the conductor obtained by the eddy current sorting is separated into a high specific gravity material and a low specific gravity material by specific gravity difference sorting.
  7.  前記不導体をセメント用原料とすることを特徴とする請求項6に記載の焼却灰の処理方法。 The method for treating incinerated ash according to claim 6, wherein the non-conductor is used as a raw material for cement.
  8.  前記焼却灰の破砕又は/及び分級の前に、前記焼却灰に、団粒化を防止する改質材を混合することを特徴とする請求項6又は7に記載の焼却灰の処理方法。 The method for treating incineration ash according to claim 6 or 7, wherein a modifier for preventing agglomeration is mixed with the incineration ash before crushing or / and classification of the incineration ash.
  9.  前記渦電流選別で得られた導体を、比重差選別する前に、風力選別により重量物と軽量物とに分離することを特徴とする請求項6、7又は8に記載の焼却灰の処理方法。 9. The method for treating incinerated ash according to claim 6, 7 or 8, wherein the conductor obtained by the eddy current sorting is separated into heavy and light weight by wind sorting before sorting by specific gravity difference. .
  10.  前記改質材は、都市ごみの焼却飛灰、石炭飛灰、石灰石粉及び砂粉砕物から選択される少なくとも1つからなることを特徴とする請求項8又は9に記載の焼却灰の処理方法。 The method for treating incineration ash according to claim 8 or 9, wherein the modifying material comprises at least one selected from incineration fly ash of municipal waste, coal fly ash, limestone powder, and crushed sand. .
  11.  前記改質材は、前記風力選別により選別された軽量物であることを特徴とする請求項9に記載の焼却灰の処理方法。 10. The method for treating incineration ash according to claim 9, wherein the reforming material is a lightweight material selected by the wind sorting.
  12.  前記改質材は、前記焼却灰100質量部に対して15質量部以上50質量部以下加えられることを特徴とする請求項8乃至9のいずれかに記載の焼却灰の処理方法。 The method for treating incineration ash according to any one of claims 8 to 9, wherein the modifier is added in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the incineration ash.
  13.  前記改質材の粒径は、0.1mm以下であることを特徴とする請求項8乃至12のいずれかに記載の焼却灰の処理方法。
     
    The method for treating incinerated ash according to any one of claims 8 to 12, wherein the particle diameter of the modifying material is 0.1 mm or less.
PCT/JP2017/030284 2016-09-28 2017-08-24 Incinerated-ash treatment device and treatment method WO2018061545A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17855503.3A EP3498387B1 (en) 2016-09-28 2017-08-24 Incinerated-ash treatment device and treatment method
CN201780060055.3A CN109789452A (en) 2016-09-28 2017-08-24 The processing unit and processing method of burning ash
US16/333,753 US11014092B2 (en) 2016-09-28 2017-08-24 Incinerated-ash treatment device and treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-188982 2016-09-28
JP2016188982 2016-09-28
JP2017-044525 2017-03-09
JP2017044525A JP7017855B2 (en) 2016-09-28 2017-03-09 Incinerator ash treatment equipment and treatment method

Publications (1)

Publication Number Publication Date
WO2018061545A1 true WO2018061545A1 (en) 2018-04-05

Family

ID=61759631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030284 WO2018061545A1 (en) 2016-09-28 2017-08-24 Incinerated-ash treatment device and treatment method

Country Status (1)

Country Link
WO (1) WO2018061545A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027017A (en) * 2018-08-10 2020-02-20 太平洋セメント株式会社 Selection method of cement clinker
CN113893939A (en) * 2021-08-19 2022-01-07 顺尔茨环保(北京)有限公司 Efficient crushing and sorting system and method for waste aluminum
WO2023042507A1 (en) * 2021-09-17 2023-03-23 川崎重工業株式会社 Specific gravity sorting device and incineration ash processing system comprising same
WO2023042506A1 (en) * 2021-09-17 2023-03-23 川崎重工業株式会社 Specific gravity sorting device, and incinerated ash treatment system comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123590U (en) * 1983-02-07 1984-08-20 株式会社ヘリオス Garbage incineration ash processing equipment
JP2003320311A (en) * 2002-05-07 2003-11-11 Jfe Engineering Kk Treatment method for waste household electric appliance
JP2013000685A (en) * 2011-06-17 2013-01-07 Mitsui Mining & Smelting Co Ltd Method of recovering valuable metal from home appliance
JP2016089196A (en) * 2014-10-30 2016-05-23 太平洋セメント株式会社 Valuable metal recovery method and valuable metal recovery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123590U (en) * 1983-02-07 1984-08-20 株式会社ヘリオス Garbage incineration ash processing equipment
JP2003320311A (en) * 2002-05-07 2003-11-11 Jfe Engineering Kk Treatment method for waste household electric appliance
JP2013000685A (en) * 2011-06-17 2013-01-07 Mitsui Mining & Smelting Co Ltd Method of recovering valuable metal from home appliance
JP2016089196A (en) * 2014-10-30 2016-05-23 太平洋セメント株式会社 Valuable metal recovery method and valuable metal recovery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498387A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027017A (en) * 2018-08-10 2020-02-20 太平洋セメント株式会社 Selection method of cement clinker
JP7144233B2 (en) 2018-08-10 2022-09-29 太平洋セメント株式会社 Cement clinker sorting method
CN113893939A (en) * 2021-08-19 2022-01-07 顺尔茨环保(北京)有限公司 Efficient crushing and sorting system and method for waste aluminum
CN113893939B (en) * 2021-08-19 2023-08-22 顺尔茨环保(北京)有限公司 Scrap aluminum crushing and sorting system and method
WO2023042507A1 (en) * 2021-09-17 2023-03-23 川崎重工業株式会社 Specific gravity sorting device and incineration ash processing system comprising same
WO2023042506A1 (en) * 2021-09-17 2023-03-23 川崎重工業株式会社 Specific gravity sorting device, and incinerated ash treatment system comprising same

Similar Documents

Publication Publication Date Title
JP7017855B2 (en) Incinerator ash treatment equipment and treatment method
WO2018061545A1 (en) Incinerated-ash treatment device and treatment method
JP5923039B2 (en) Soil purification method
US20150209829A1 (en) Extraction process of clay, silica and iron ore by dry concentration
JPS62294140A (en) Treatment of slag produced in iron making plant
JP6375205B2 (en) Valuable metal recovery method and valuable metal recovery system
CN106660054A (en) System and method for recovering metals from a waste stream
JP6960227B2 (en) How to recycle shredder dust
JP2012522127A (en) Recovery of platinum group metals from powdered waste.
JP2020069406A (en) Processing device and processing method of metal-containing waste
JP6817127B2 (en) How to treat shredder dust
JP2000005702A (en) Method and device for recovering metal from solid waste
JP6604346B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
US10569281B2 (en) System and method for recovering desired materials and producing clean aggregate from incinerator ash
JP7100602B2 (en) Incinerator ash treatment method and treatment equipment
CN104138852A (en) Method for separating miscellaneous stone from talcum mine
JPH0975853A (en) Treatment method for shredder dust incineration ash
JP7101637B2 (en) Combustible waste treatment equipment and treatment method
JP2011094208A (en) Method for recovering dust in scrap shredder facility
JP2023132909A (en) Method of treating metal-containing waste
JP2009138260A (en) Nickel concentration method for saprolite ore
JP2021001362A (en) Method of recovering valuable metal and recovery system
JP2022169310A (en) Method of recovering valuable metals from valuable metal containing waste
JP2023127433A (en) Method for treating metal-containing waste
RU2509606C1 (en) Method of processing radio electronic crap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017855503

Country of ref document: EP

Effective date: 20190311

NENP Non-entry into the national phase

Ref country code: DE