JP3744628B2 - Method and apparatus for controlling specific gravity sorter - Google Patents

Method and apparatus for controlling specific gravity sorter Download PDF

Info

Publication number
JP3744628B2
JP3744628B2 JP33040996A JP33040996A JP3744628B2 JP 3744628 B2 JP3744628 B2 JP 3744628B2 JP 33040996 A JP33040996 A JP 33040996A JP 33040996 A JP33040996 A JP 33040996A JP 3744628 B2 JP3744628 B2 JP 3744628B2
Authority
JP
Japan
Prior art keywords
specific gravity
control device
sorted
weight
sorter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33040996A
Other languages
Japanese (ja)
Other versions
JPH10151418A (en
Inventor
覺 佐竹
繁晴 金本
康治 三苫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP33040996A priority Critical patent/JP3744628B2/en
Publication of JPH10151418A publication Critical patent/JPH10151418A/en
Application granted granted Critical
Publication of JP3744628B2 publication Critical patent/JP3744628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、収穫玄米を選別した後に残る屑(くず)米(いわゆる特定米)を上米、中米及び下米に選別する穀物用比重選別機の制御方法及びその装置関する。
【0002】
【従来の技術】
屑米は、収穫した原料玄米のうち粒選別機の目幅を通り抜けた玄米であるから、収穫時の原料玄米に含まれる整粒や青米などの組成比率により、粒選別後の屑米の組成比率も異なる。原料玄米の組成比率は、圃(ほ)場や品種、収穫年によって都度異なることが一般的である。
【0003】
【発明が解決しようとする課題】
さて、現在すでに比重選別機によって、屑米からなる特定米を粒の大きさに応じて上、中、下米と選別しているが、様々な地域または品種から得られる屑米は、それぞれ様々な組成比率となっており一定していることはない。このような組成比率の異なる屑米を集荷して比重選別機で一定の選別をしようとすれば、経時的に、また、ロットごとに組成比率が変化するたびに比重選別機の選別板傾斜角度、風量等を調整する必要があり、この調整が大変面倒であった。特に、組成比率が変わると容積重(いわゆる、かさ密度)が変化し、選別板上の原料の流量や風の抵抗なども変化することになり、原料産地や品種が変わるごとに比重選別機の供給流量、選別風量及び選別板の傾斜角度を人手により調整する必要があった。
【0004】
本発明は上記問題点にかんがみ、組成比率の異なる屑米を比重選別機で選別する際の制御方法と、該制御方法により比重選別機の供給流量、選別風量及び選別板の傾斜角度を自動的に制御する比重選別機の制御装置を提供することを技術的課題とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため本発明は、選別板を複数段に設けた選別機枠を傾斜させると共に該選別機枠を斜め上下に振動可能に構成し、その下方から上方に通風する送風ファンを設けた比重選別機において、該比重選別機に供給される被選別物の容積重を測定し、該容積重の変化に応じて被選別物の供給量を制御するという技術的手段を講じた。
【0006】
【0007】
【0008】
さらに、被選別物又は選別物の水分を検出し、該水分の変化に応じて前記送風ファンの送風量を制御するとよい。
【0009】
また、前記比重選別機を複数台連座すると共に、該複数台の比重選別機の適宜箇所に流量測定装置を設けて、該流量測定装置の検出値に基づいて組成比率の異なる屑米を上米、中米、下米の3種類に選別する比重選別システムを構築すればよい。
【0010】
【発明の実施の形態】
本発明の比重選別機を図面に基づき具体的に説明する。
【0011】
図1は、本発明の穀物用の比重選別機の一部破断側面図と該比重選別機を制御するブロック図を示したものである。比重選別機1は、機台2に対し、比重の小さい穀粒の排出側を低位に、比重の大きい穀粒の排出側を高位に傾斜状に支架した動選別機枠3と、該動選別機枠3の上部に設けた排風室4と、該排風室4に接続して吸引ファン5に連絡する風路6と、該風路6の上面側で上方に湾曲状に載設した穀粒供給シュート7と、動選別機枠3の下部に配設した二次選別部8とから構成される。
【0012】
前記動選別機枠3には、複数種の目幅からなる上選別板9を傾斜させて配設するとともに、該上選別板9の下方には、織網からなる下選別板10を多段状に傾斜させて配置し、それぞれを一体的に設ける。前記上選別板9の形状は例えば、図2に示すように、上選別板9の穀粒供給側から織網部11、楕円状の長穴網部12及び丸穴網部13を連続して接合したものがよく、下選別板10の形状は、板面全体にわたって織網に形成するのがよい。前記動選別機枠3は、側面に選別板9,10を監視する窓14が設けられ、傾斜低位側をジョイント15を介して機台2に枢支し、傾斜高位側は高さ調節装置16を介して機台2に枢支する。そして、この高さ調節装置16にはギヤモータ等の駆動装置17が取り付けられ、動選別機枠3の傾斜角度を自動で調節可能にする。また、動選別機枠3の傾斜低位側には、比重選別機1全体を動させる振動モータ18が設けられ、図中矢印Wで示すように斜め上下に振動される。
【0013】
前記動選別機枠3に傾斜状に配設した上選別板9は、その傾斜低位側を下米排出部19となして下米排出樋20と連絡し、傾斜高位側は穀粒供給部21となして前記穀粒供給シュート7と連絡する。上選別板9下方の下選別板10は、その傾斜低位側を中米排出部22となして中米排出樋23と連絡し、傾斜高位側24は二次選別部8と連絡する。動選別機枠3の下部に配設した二次選別部8は、その傾斜低位側に上米排出樋25を連絡し、傾斜高位側に異物排出樋26を連絡する。
【0014】
前記動選別機枠3の上部に設けた排風室4は、せっ頭四角錐(四角錐台)状の風胴27で形成されており、該風胴27の側面には選別状況を監視する窓28が設けられている。そして、該排風室4の上部一側は風路6を介して風量調節バルブ29が設けられる。この風量調節バルブ29にはギヤモータ等の駆動装置30が設けられ、風量調節バルブ29の開閉を自動で調節可能とする。符号31は吸引ファン5と風量調節バルブ29との接続管である。
【0015】
二次選別部8は、選別板10の下方にファンケース32を設け、該ファンケース32にパイプ33を介して、選別板の下方から送風する噴風ファン34を接続する。
【0016】
前記風路6の上方には、湾曲状の穀粒供給シュート7が設けられるが、該穀粒供給シュート7は、上選別板9全面に穀粒が広がるように機体とほぼ同一幅で接続される。該穀粒供給シュート7の上方側には流量調節バルブ35を備えた穀粒供給筒36が設けられる。前記流量調節バルブ35にはギヤモータ等の駆動装置37が設けられ、流量調節バルブ35の開閉を自動で調節可能にする。
【0017】
前記穀粒供給筒36の前段には、原料穀粒の流量、容積重及び水分を検出する電磁流量測定装置38が設けられる。この電磁流量測定装置38からの検出信号は、リード線39を介して演算制御装置40に接続し、演算制御装置40からは、リード線41,42,43を介して各駆動装置30,37,17とそれぞれ接続する。
【0018】
次に、前記電磁流量測定装置38の構成を図3を参照して詳細に説明する。電磁流量測定装置38は、穀粒供給筒36の前段に設けられ、穀粒供給筒36の上方に任意長の流路パイプ44を連絡させるとともに、この流路パイプ44は、機台2に固設したロードセル式重量検出器45によって穀粒供給筒36と非接触で浮かされた状態となっている。また、流路パイプ44の内面には静電容量検出器46を設けてあり、流路パイプ44の任意位置にはレベル計47を設けてある。符号56は、流路パイプ44の流路内に設けた水分センサーであり、この水分センサーに代えてロール電極による水分センサー(図示せず)を設けてもよい。
【0019】
流路パイプ44下部の排出口48には、回動開閉板49とシリンダー50により構成された開閉装置51を設け、流路パイプ44上部の投入筒52には、スライド開閉板53とシリンダー54により構成された開閉装置55を設けてあり、2つの開閉装置51,55を作動させて流路を遮断するようにしてある。シリンダー50,54は、それぞれエアー配管され、電磁弁(図示せず)等により電気的に入出動する。
【0020】
次に、電磁流量測定装置38の電気的接続を説明する。図3では、静電容量検出器46、ロードセル式重量検出器45及び水分センサー56を適宜なアンプ(図示せず)等を介して演算制御装置40に接続するのであるが、図5に示すように複数個の電磁流量測定装置38…を接続する場合は、集合線などで並列的に演算制御装置40と接続することもある。演算制御装置40にはCPUを中心にした演算回路、各種メモリ等の記憶装置、通信機能及びAD変換機能等のインターフェース(いずれも図示せず)を備え、この演算制御装置40により重量測定の際に開閉板49,53が連動され、容積重の測定が連続的に行われる。
【0021】
次に、上記構成における作用を図4のフローチャートを参照して説明する。図4においてステップ101からステップ105までは、比重選別機1が基準の処理能力となるよう初期設定を行うフローであり、ステップ106以降のフローは電磁流量測定装置38によりフィードフォワード制御を行うフローである。
【0022】
ステップ101は初期設定であり、例えば、原料供給量を5ton /h の一定流量に流量調節バルブ35を制御し、吸引風量を100m3/min
の一定風量に風量調節バルブ29を制御し、選別板角度を適宜な選別角度となるよう高さ調節装置16を制御しておく。これら流量調節バルブ35、風量調節バルブ29及び高さ調節装置16はそれぞれに連絡した駆動装置37, 30, 17により容易に制御できる。そして、ステップ102では風量調節バルブ29をスタート風量に調節し、ステップ103で精品の排出を循環側に切り換え、ステップ104において原料穀粒が投入される。流量調節バルブ35により5ton /h の一定流量に調節された原料穀粒は、穀粒供給シュート7の幅方向に振動拡散されて流下し、穀粒供給部21に機体と同一幅で均等に供給される。ステップ105では、穀粒供給部21に至った原料穀粒が上選別板9の幅方向に均等に拡散されたか否か判断される。つまり、振動モータ18により動選別機枠3が動されると同時にタイマーが作動され、所定時間を経過してタイムアップすると、原料穀粒が上選別板9上に層状に拡散されたと判断する。このタイマーに代えて選別板センサーにより原料穀粒が層状に拡散されたか否かを判断してもよい。
【0023】
次のステップ106からは、比重選別機1の本格的稼動にともない、電磁流量測定装置38によるフィードフォワード制御が行われる。ステップ106では、風量調節バルブ29を標準選別風量に設定する。ステップ107で精品の循環を排出側に切り換えて精品を排出し、ステップ108で流量測定判別を行う。このステップ108の流量測定判別は、初期設定の流量(例えば、5ton /h )が増減したか否か判別される。
【0024】
このステップ108の流量測定判別について図3を参照して詳細に説明する。流量測定は電磁流量測定装置38を用いて行われ、まず、演算制御装置40は、流路パイプ44に何も流れていない状態での静電容量検出器46の出力 C0 と、同じ状態でのロードセル式重量検出器45の出力 W0 (風袋重量)とを測定し、それぞれを記憶装置(図示せず)に記憶しておく。
【0025】
次に、流路パイプ44への投入可能信号を演算制御装置40からシリンダー50,54に連絡して投入が開始される。つまり、上部の開閉板53を開放するとともに、下部の回動開閉板49で排出口48を閉じると、原料穀粒が徐々に堆(たい)積するようになる。そして、演算制御装置40は、時間 Tf の計測を開始し、任意の位置まで堆積すると流路パイプ44に設置してあるレベル計47により検知される。演算制御装置40はレベル計47の信号を検知すると、上部の開閉板53を閉じて流路パイプ44への原料穀粒の流入が遮断される。さらに、演算制御装置40は、時間 Tf の計測を終了し、レベル計47位置まで堆積した原料穀粒の重量 Wf をロードセル式重量検出器45から検出する。測定が終了したら、演算制御装置40はシリンダー50,54に出力して回動開閉板49とスライド開閉板53とを開いて遮断が解除され、流路パイプ44に再び原料穀粒が流れ始める。流路パイプ44に原料穀粒が流れ始めると、演算制御装置40では、現在流れている原料穀粒の流量を静電容量で換算して正確な流量を得る。
【0026】
【数1】

Figure 0003744628
数式1では、重量 Wf とそのときの投入時間 Tf とから、流量 Sk を求めることができる。また、静電容量で換算した流量 Sm は、先に求めた流量 Sk と、空静電容量 C0 と静電容量 Ck と、静電容量検出器46に特有の係数Kとから求められる。ところで、この流量の演算は、バッチ処理を行うので一時的に流路を遮断するが、例えば、1ton /h の流量でも測定時間は短時間(5秒前後)で行われる。
【0027】
再び、図4のフローチャートに戻る。ステップ109では、流路パイプ44に流入する原料穀粒の容積重演算を行う。例えば、流路パイプ44内のレベル計47位置までの容積が一定容積(例えば、1.0 リットル)であり、そのときの原料穀粒の重量をロードセル式重量検出器45から検出すれば容積重ρ(例えば、単位を[g /リットル]とする)を計測することができる。また、この求めた容積重ρ[g /リットル]を空静電容量 C0 と静電容量 CK と、係数Kとから補正してもよい。屑米は容積重 ρが安定せず、バッチ処理の計量を行う毎に容積重 ρのばらつきが生じるため、容積重 ρと流量 Sk ,Sm に応じて比重選別機1の制御を行う必要がある。
【0028】
ステップ110では、ステップ101で初期設定した流量(例えば、5ton /h )とステップ108により演算した流量 Sk ,Sm とを比較し、また、ステップ109により演算した容積重 ρのばらつきをみる。そして、今回の流量が5ton /h 以上であり、今回の容積重が増加していればステップ111へ至り、今回の流量が5ton /h 未満であり、今回の容積重が減少していればステップ112に至る。
【0029】
ステップ110で今回測定した流量が5ton /h 以上であり、容積重が前回より増加していれば、ステップ111では流量を下げるための制御と風量を増加させる制御が行われる。すなわち、演算制御装置40から駆動装置37に出力して流量調節バルブ35の開度を狭める制御をし、演算制御装置40から駆動装置30に出力して風量調節バルブ29の開度を広げる制御をする。
【0030】
ステップ110で今回測定した流量が5ton /h 未満であり、容積重が前回より減少していれば、ステップ112に至り、更に流量が基準値より小か否か、また、容積重が基準値より小か否か判断される。流量と容積重が基準値以下であればステップ113に至り、流量を上げるための制御と風量を減少させる制御が行われる。すなわち、演算制御装置40から駆動装置37に出力して流量調節バルブ35の開度を広げる制御をし、演算制御装置40から駆動装置30に出力し風量調節バルブ29の開度を狭める制御をする。
【0031】
ステップ111の制御が終了すると、次に、ステップ114に至り、穀粒の水分検出を行う。ステップ115では原料穀粒の水分が基準値より大か否か判断し、水分が基準値より大きければステップ116に至り、水分が基準値より小さければステップ117に至る。ステップ116では、水分過多により選別板上での穀粒の滑りが悪くなるため、演算制御装置40が駆動装置17に出力して選別機枠3の傾斜角度を急にする。ステップ117では、更に、水分が基準値より小か否か判断される。水分が基準値以下であればステップ118に至り、演算制御装置40から駆動装置17に出力して選別機枠3の傾斜角度を緩める制御をする。上記の原料穀粒の水分検出による比重選別機の制御は、ステップ116及びステップ118の選別機枠3の傾斜角度の制御だけでなく、流量調節バルブ35の開度の制御及び送風ファンの送風量の制御を行ってもよい。そして、上記の流量調節バルブ35、風量調節バルブ29及び選別板傾斜角度の制御が終了すると、再びステップ108に戻る。
【0032】
図5は、図1とは異なり比重選別機1の精品排出側、つまり、下米排出樋20、中米排出樋23及び上米排出樋25のそれぞれの排出樋に電磁流量測定装置38…を設けた実施例である。この電磁流量測定装置38…からの検出信号は、演算制御装置40に連絡され、演算制御装置40からは、リード線41,42,43を介して各駆動装置30,37,17とそれぞれ連絡する。この実施例の場合、精品排出側の流量、容積重及び水分を測定して比重選別機1の流量調節バルブ35、風量調節バルブ29及び高さ調節装置16をフィードバック制御するものである。この実施例の作用については、前述とほぼ同様であり説明は省略する。
【0033】
図6は、図1に示すような比重選別機1を複数台連座すると共に、複数台の比重選別機1A〜1Cの適宜箇所に電磁流量測定装置38A〜38Dを設け、組成比率の異なる屑米を上米、中米及び下米の3種類に選別する穀物用比重選別システムを示すブロック図である。図6において、各比重選別機1A〜1Cのダンパー開度が右に行くほど全開に近くなっていることが分かり、右に行くほど原料の容積重が大きくなり、これに応じて風量を増加させることを示すものである。
【0034】
図7は、図6に示す穀物用比重選別システムの電気的接続を説明するブロック図である。電磁流量測定装置38A〜38Dは、演算制御装置40に適宜な通信回線(例えば、RS232C)を介して並列又は直列に接続される。また、各比重選別機の風量調節バルブ29A〜29Cには、バルブの開閉を電気的に制御する駆動装置30A〜30Cが設けられ、該駆動装置30A〜30Cは演算制御装置40にインターフェース57を介して並列又は直列に接続される。各駆動装置30A〜30Cは、手動で風量調節バルブ29A〜29Cを調整できるように手動・自動切り換えスイッチ58A〜58Cを介して演算制御装置40に連絡してもよい。
【0035】
図8は、図6に示す穀物用比重選別システムのフローチャートである。この図に基づいて比重選別システムの作用を説明する。
【0036】
比重選別システムに供給される原料穀粒は、まず、電磁流量測定装置38Aに投入され、原料穀粒の流量と容積重が測定される。そして、例えば、流量が10(ton /h )で、容積重が741 (g /リットル)の原料穀粒と測定され、この原料穀粒が比重選別機1Aに投入される(流路59)。比重選別機1Aでは、容積重が変化しても流量が10(ton /h )に維持されるよう、電磁流量測定装置38Aの出力値からフィードフォワード制御され、100 %の原料穀粒を比率23.3%の下米(流路60)と、比率76.7%の下米以外の米(流路61)に選別する。このとき、選別された下米の容積重は685 (g /リットル)であり、下米以外の米の容積重は762 (g /リットル)となる。
【0037】
次に、下米以外の米は比重選別機1Bに投入され(流路61)、比率19.8%の下米(流路62)と比率47.7%の中米(流路63)と比率9.2 %の上米(流路64)とに選別される。このとき選別された比率9.2 %の上米は、電磁流量測定装置38Bに投入され(流路64)、流量と容積重が測定される。そして、例えば、流量が2.2 (ton /h )で、容積重が783 (g /リットル)の上米と測定さる。比重選別機1Bでは、上米の流量と容積重が変化しないよう、電磁流量測定装置38Bの出力値からフィードバック制御されている。
【0038】
比率47.7%の中米は、次に比重選別機1Cに投入され(流路63)、比率5.8 %の下米(流路65)と比率14%の上米(流路66)と比率27.9%の中米(流路67)とに選別される。このとき選別された比率14%の上米は、電磁流量測定装置38Cに投入され(流路66)、流量と容積重が測定される。そして、例えば、流量が1.4 (ton /h )で、容積重が768 (g /リットル)の上米と測定される。比重選別機1Cでは、上米の流量と容積重が変化しないよう、電磁流量測定装置38Cの出力値からフィードバック制御されている。
【0039】
比重選別機1A〜1Cにおける流路60,62,65は、下米の排出流路となるが、これらの流路を流路68により集合して電磁流量測定装置38Dに導き、下米の最終的な流量と容積重を測定して比重選別機1A〜1Cのフィードバック制御を行う。そして、比重選別機1Cの流路67から排出された中米は、流路59にリターンするとよい。以上のような実施例の穀物用比重選別システムでは、100 %の原料穀粒から、上米を23.2%の組成比率で、中米を27.9%の組成比率で、下米を48.9%の組成比率で抽出することができる。そして、このような穀物用比重選別システムでは、全自動で組成比率の異なる屑米を選別することが可能となる。
【0040】
【発明の効果】
以上のように本発明によれば、比重選別機に供給される被選別物又は選別物の容積重を測定し、該容積重の変化に応じて被選別物の供給量を制御するので、組成比率の異なる屑米を選別する際に人手を要さずに、比重選別機を自動的に制御することが可能となった。
【0041】
【0042】
さらに被選別物又は選別物の水分を検出し、該水分の変化に応じて前記送風ファンの送風量を制御するので、比重選別機の選別精度が向上した。
【0043】
【0044】
【0045】
そして、容積重を測定可能とした流量測定装置を設けた比重選別機を形成する場合は、前記流量測定装置が、前記比重選別機の選別物供給側又は選別物排出側に設けた流路パイプと、該流路パイプに設けた静電容量検出器と、前記流路パイプの上部と下部とを遮断する開閉装置と、前記流路パイプの実重量を検出するロードセル式重量検出器と、選別物の水分を検出する水分センサーとから形成するので、簡単な構成で精度よく選別物の流量、容積重及び水分を検出することが可能である。
【0046】
また、前記比重選別機を複数台連座すると共に、該複数台の比重選別機の適宜箇所に前記電磁流量測定装置を設けて、該電磁流量測定装置の検出値に基づいて組成比率の異なる屑米を上米、中米、下米の3種類に選別する穀物用比重選別システムに形成すれば、屑米を精度よく高能率で選別することが可能となる。
【図面の簡単な説明】
【図1】 本発明の穀物用の比重選別機の一部破断側面図と該比重選別機を制御するブロック図である。
【図2】 本発明の穀物用の比重選別機における上選別板及び下選別板の断面図である。
【図3】 電磁流量測定装置を示す概略図である。
【図4】 本発明の穀物用の比重選別機をフィードフォワード制御する際のフローチャートである。
【図5】 本発明の穀物用比重選別機をフィードバック制御する場合のブロック図である。
【図6】 屑米を上米、中米、下米の3種類に選別する穀物用比重選別システムを示すブロック図である。
【図7】 穀物用比重選別システムの電気的接続を説明するブロック図である。
【図8】 穀物用比重選別システムのフローチャートである。
【符号の説明】
1 比重選別機
2 機台
動選別機枠
4 排風室
5 吸引ファン
6 風路
7 穀粒供給シュート
8 二次選別部
9 上選別板
10 下選別板
11 織網部
12 長穴網部
13 丸穴網部
14 窓
15 ジョイント
16 高さ調節装置
17 駆動装置
18 振動モータ
19 下米排出部
20 下米排出樋
21 穀粒供給部
22 中米排出部
23 中米排出樋
24 傾斜高位側
25 上米排出樋
26 異物排出樋
27 風胴
28 窓
29 風量調節バルブ
30 駆動装置
31 接続管
32 ファンケース
33 パイプ
34 噴風ファン
35 流量調節バルブ
36 穀粒供給筒
37 駆動装置
38 電磁流量測定装置
39 リード線
40 演算制御装置
41 リード線
42 リード線
43 リード線
44 流路パイプ
45 ロードセル式重量検出器
46 静電容量検出器
47 レベル計
48 排出口
49 回動開閉板
50 シリンダー
51 開閉装置
52 投入筒
53 スライド開閉板
54 シリンダー
55 開閉装置
56 水分センサー
57 インターフェース
58 手動・自動切り換えスイッチ
59 流路
60 流路
61 流路
62 流路
63 流路
64 流路
65 流路
66 流路
67 流路
68 流路[0001]
BACKGROUND OF THE INVENTION
The present invention relates debris remaining after screening harvested rice (waste) Rice (so-called specific rice) on rice, the control method and apparatus of the Central and cereal gravity sorter for sorting under rice.
[0002]
[Prior art]
Scrap rice is brown rice that has passed through the grain size of the grain sorter among the harvested raw brown rice, so the proportion of scrap rice after grain sorting depends on the composition ratio of sized and blue rice contained in the raw brown rice at the time of harvest. The composition ratio is also different. In general, the composition ratio of raw brown rice varies depending on the field, variety, and harvest year.
[0003]
[Problems to be solved by the invention]
Now, specific rice made of waste rice is already sorted into upper, middle, and lower rice according to the size of the grains by the specific gravity sorter, but there are various kinds of waste rice obtained from various regions or varieties. Therefore, the composition ratio is not constant. If you collect waste rice with different composition ratios and try to sort them with a specific gravity sorter, the inclination angle of the sorting plate of the specific gravity sorter will change over time and every time the composition ratio changes from lot to lot. It was necessary to adjust the air volume etc., and this adjustment was very troublesome. In particular, when the composition ratio changes, the bulk density (so-called bulk density) changes, and the flow rate of the raw material on the sorting plate and the wind resistance also change. It was necessary to manually adjust the supply flow rate, the sorting air volume, and the inclination angle of the sorting plate.
[0004]
In view of the above problems, the present invention automatically controls the control method for sorting waste rice having different composition ratios with a specific gravity sorter, and the supply flow rate of the specific gravity sorter, the sort air volume, and the inclination angle of the sort plate by the control method. An object of the present invention is to provide a control device for a specific gravity sorter to be controlled .
[0005]
[Means for Solving the Problems]
The present invention for solving the above problem is, the blowing fan sorting plate vibrations capable constitute該選specific machine frame diagonally up and down together with the tilting sorter frame provided in a plurality of stages, ventilating upwards from below In the specific gravity sorter provided , the technical means of measuring the volumetric weight of the material to be sorted supplied to the specific gravity sorter and controlling the supply amount of the material to be sorted according to the change in the volumetric gravity was taken. .
[0006]
[0007]
[0008]
Furthermore, it is good to detect the water | moisture content of a to-be-sorted object or a to-be-sorted object, and to control the ventilation volume of the said ventilation fan according to the change of this water | moisture content .
[0009]
In addition, a plurality of the specific gravity sorters are connected to each other, and a flow measuring device is provided at an appropriate location of the plurality of specific gravity sorters, and the waste rice having a different composition ratio based on the detected value of the flow measuring device is What is necessary is just to build a specific gravity sorting system that sorts into three types, Central America and Lower Rice.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The specific gravity sorter of the present invention will be specifically described with reference to the drawings.
[0011]
FIG. 1 shows a partially broken side view of a specific gravity sorter for grain according to the present invention and a block diagram for controlling the specific gravity sorter. Gravity sorter 1 to the base 2, the lower small grain discharge side specific gravity, the dynamic sorting machine frame 3 vibration that支架large grain discharge side of the specific gravity high inclined shape, the vibration A wind exhaust chamber 4 provided in the upper part of the moving sorter frame 3, an air passage 6 connected to the exhaust air chamber 4 and connected to the suction fan 5, and an upwardly curved shape on the upper surface side of the air passage 6. a grain feed chute 7 which is set, and a vibration is disposed in the lower portion of the dynamic separator frame 3 secondary sorting unit 8.
[0012]
Wherein the vibration screening machine frame 3, as well as arranged by inclining the upper screening plate 9 comprising a plurality of kinds of eye width, below the upper sorting plate 9, the lower sorting plate 10 made of a woven network multistage Are arranged in a slanted manner, and each is provided integrally. For example, as shown in FIG. 2, the shape of the upper sorting plate 9 includes a woven net portion 11, an elliptical long hole net portion 12, and a round hole net portion 13 continuously from the grain supply side of the upper sorting plate 9. What was joined is good and the shape of the lower sorting board 10 is good to form in a woven net over the whole board surface. The vibration sorter frame 3, a window 14 for monitoring is provided a sorting plate 9 on the side surface, the inclined lower side is pivotally supported on the base 2 via a joint 15, the inclined high-side height adjustment device 16 is pivotally supported on the machine base 2 through 16. And, this height-adjusting device 16 is mounted a drive device 17 such as a gear motor, to allow adjusting the angle of inclination of the vibration screening machine frame 3 automatically. Further, the inclined lower side of the vibration screening machine frame 3, the vibration motor 18 which vibrated across gravity sorter 1 is provided and the vibration obliquely vertically as indicated by arrow W.
[0013]
The vibration sorter frame 3 in an inclined shape on the sorting plate 9 which is disposed in, contact with the lower rice discharge trough 20 forms the inclined lower side of the lower rice discharge portion 19, the inclined high side grain supply portion 21 and communicate with the grain supply chute 7. The lower sorting plate 10 below the upper sorting plate 9 communicates with the central rice discharge unit 23 with the inclined lower side serving as the central rice discharge unit 22, and the inclined higher level side 24 communicates with the secondary sorting unit 8. Dynamic sorting machine frame secondary sorting unit 8 which is arranged in the lower part of the 3 vibration, contact on rice discharge trough 25 to the inclined lower side, to contact foreign material discharge trough 26 to tilt the high side.
[0014]
Haifushitsu 4 provided on the upper portion of the vibration screening machine frame 3, Se'atama is formed in a quadrangular pyramid (truncated quadrangular pyramid) shape wind tunnel 27, monitors the selection conditions on the side of該風Do 27 A window 28 is provided. An air volume adjusting valve 29 is provided on the upper side of the exhaust chamber 4 through the air passage 6. The air volume adjusting valve 29 is provided with a driving device 30 such as a gear motor so that the opening and closing of the air volume adjusting valve 29 can be automatically adjusted. Reference numeral 31 denotes a connecting pipe between the suction fan 5 and the air volume adjusting valve 29.
[0015]
The secondary sorting unit 8 is provided with a fan case 32 below the sorting plate 10 and is connected to the fan case 32 via a pipe 33 and a blast fan 34 that blows air from below the sorting plate.
[0016]
A curved grain supply chute 7 is provided above the air passage 6, and the grain supply chute 7 is connected to the entire body with the same width so that the grain spreads over the entire upper sorting plate 9. The On the upper side of the grain supply chute 7, a grain supply cylinder 36 provided with a flow rate adjusting valve 35 is provided. The flow rate adjusting valve 35 is provided with a driving device 37 such as a gear motor so that the opening and closing of the flow rate adjusting valve 35 can be automatically adjusted.
[0017]
An electromagnetic flow rate measuring device 38 for detecting the flow rate, bulk weight and moisture of the raw material grain is provided in the front stage of the grain supply cylinder 36. The detection signal from the electromagnetic flow measuring device 38 is connected to the arithmetic control device 40 via the lead wire 39, and the driving control devices 30, 37, and 37 are connected to the arithmetic control device 40 via the lead wires 41, 42, and 43. 17 and each.
[0018]
Next, the configuration of the electromagnetic flow measuring device 38 will be described in detail with reference to FIG. The electromagnetic flow rate measuring device 38 is provided in the front stage of the grain supply cylinder 36, and an arbitrary-length flow path pipe 44 is connected to the upper side of the grain supply cylinder 36, and the flow path pipe 44 is fixed to the machine base 2. The load cell type weight detector 45 provided is in a state of floating in a non-contact manner with the grain supply cylinder 36. Further, a capacitance detector 46 is provided on the inner surface of the flow channel pipe 44, and a level meter 47 is provided at an arbitrary position of the flow channel pipe 44. Reference numeral 56 denotes a moisture sensor provided in the flow channel of the flow channel pipe 44, and a moisture sensor (not shown) using a roll electrode may be provided instead of the moisture sensor.
[0019]
An opening / closing device 51 composed of a rotary opening / closing plate 49 and a cylinder 50 is provided at the discharge port 48 below the flow channel pipe 44, and a slide opening / closing plate 53 and a cylinder 54 are provided at the input cylinder 52 above the flow channel pipe 44. A constructed opening / closing device 55 is provided, and the two opening / closing devices 51, 55 are operated to block the flow path. The cylinders 50 and 54 are each air-pipe, and are electrically moved in and out by a solenoid valve (not shown) or the like.
[0020]
Next, the electrical connection of the electromagnetic flow measuring device 38 will be described. In FIG. 3, the capacitance detector 46, the load cell type weight detector 45, and the moisture sensor 56 are connected to the arithmetic and control unit 40 via an appropriate amplifier (not shown) or the like. As shown in FIG. When a plurality of electromagnetic flow measuring devices 38 are connected to each other, they may be connected to the arithmetic and control unit 40 in parallel by a collective line or the like. The arithmetic and control unit 40 includes an arithmetic circuit centered on the CPU, a storage device such as various memories, and an interface (not shown) such as a communication function and an AD conversion function. The open / close plates 49 and 53 are interlocked with each other, and the measurement of the bulk weight is continuously performed.
[0021]
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. In FIG. 4, Step 101 to Step 105 are a flow for performing initial setting so that the specific gravity sorter 1 has the standard processing capability, and the flow after Step 106 is a flow for performing feedforward control by the electromagnetic flow measuring device 38. is there.
[0022]
Step 101 is an initial setting. For example, the flow rate adjusting valve 35 is controlled to a constant flow rate of 5 ton / h, and the suction air flow rate is set to 100 m 3 / min.
The air volume adjusting valve 29 is controlled to a constant air volume, and the height adjusting device 16 is controlled so that the sorting plate angle becomes an appropriate sorting angle. The flow rate adjusting valve 35, the air volume adjusting valve 29, and the height adjusting device 16 can be easily controlled by driving devices 37, 30, and 17 connected thereto. In step 102, the air volume control valve 29 is adjusted to the start air volume, and in step 103, the discharge of the refined product is switched to the circulation side, and in step 104, raw material grains are introduced. The raw material grain adjusted to a constant flow rate of 5 ton / h by the flow control valve 35 is oscillated and diffused in the width direction of the grain supply chute 7 and flows down to the grain supply unit 21 evenly with the same width as the machine body. Is done. In step 105, it is determined whether or not the raw material grains that have reached the grain supply unit 21 have been evenly diffused in the width direction of the upper sorting plate 9. In other words, determination is simultaneously actuated timer when the vibration screening machine frame 3 is vibration by the vibration motor 18, when the time is up after the lapse of a predetermined time, a raw material grain is spread in layers on the upper sorting plate 9 To do. Instead of this timer, it may be determined whether the raw material grains are diffused in layers by a sorting plate sensor.
[0023]
From the next step 106, the feedforward control by the electromagnetic flow measuring device 38 is performed with the full-scale operation of the specific gravity sorter 1. In step 106, the air volume adjusting valve 29 is set to the standard selected air volume. In step 107, the circulation of the refined product is switched to the discharge side to eject the refined product, and in step 108, the flow rate measurement is determined. In step 108, the flow rate measurement is determined as to whether or not the initial flow rate (for example, 5 ton / h) has increased or decreased.
[0024]
The flow measurement determination in step 108 will be described in detail with reference to FIG. The flow rate is measured using the electromagnetic flow rate measuring device 38. First, the arithmetic and control unit 40 is in the same state as the output C0 of the capacitance detector 46 in a state where nothing flows through the flow path pipe 44. The output W0 (tare weight) of the load cell type weight detector 45 is measured and stored in a storage device (not shown).
[0025]
Next, a signal indicating that the flow can be input to the flow path pipe 44 is communicated from the arithmetic and control unit 40 to the cylinders 50 and 54, and charging is started. That is, when the upper opening / closing plate 53 is opened and the discharge port 48 is closed by the lower rotating opening / closing plate 49, the raw material grains gradually accumulate. Then, the arithmetic and control unit 40 starts measuring the time Tf, and when it accumulates to an arbitrary position, it is detected by the level meter 47 installed in the flow path pipe 44. When the arithmetic and control unit 40 detects the signal from the level meter 47, the upper opening / closing plate 53 is closed to block the flow of the raw material grains into the flow channel pipe 44. Furthermore, the arithmetic and control unit 40 ends the measurement of the time Tf, the weight Wf of the raw material grains deposited to a level meter 47 positioned to detect the load cell type weight detector 45. When the measurement is completed, the arithmetic and control unit 40 outputs to the cylinders 50 and 54 to open the rotation opening / closing plate 49 and the slide opening / closing plate 53, the interruption is released, and the raw material grain begins to flow again into the flow path pipe 44. When the raw material grain begins to flow into the flow channel pipe 44, the arithmetic and control unit 40 obtains an accurate flow rate by converting the flow rate of the currently flowing raw material grain with the capacitance.
[0026]
[Expression 1]
Figure 0003744628
In Formula 1, the flow rate Sk can be obtained from the weight Wf and the charging time Tf at that time. The flow rate Sm converted in terms of capacitance is obtained from the flow rate Sk obtained previously, the empty capacitance C0 and the capacitance Ck, and the coefficient K specific to the capacitance detector 46. By the way, since the calculation of the flow rate performs batch processing, the flow path is temporarily interrupted. For example, even when the flow rate is 1 ton / h, the measurement time is short (around 5 seconds).
[0027]
Again, it returns to the flowchart of FIG. In step 109, the volume gravity of the raw material grain flowing into the flow channel pipe 44 is calculated. For example, the volume up to the position of the level meter 47 in the flow channel pipe 44 is a constant volume (for example, 1.0 liter), and if the weight of the raw material grain at that time is detected from the load cell type weight detector 45, the volume weight ρ ( For example, the unit can be [g / liter]. Further, the obtained volume weight ρ [g / liter] may be corrected from the empty electrostatic capacity C0, the electrostatic capacity CK, and the coefficient K. Since the bulk weight ρ is not stable and the weight of the bulk weight ρ varies every time batch processing is performed, it is necessary to control the specific gravity sorter 1 according to the bulk weight ρ and the flow rates Sk and Sm. .
[0028]
In step 110, the flow rate initially set in step 101 (for example, 5 ton / h) is compared with the flow rates Sk and Sm calculated in step 108, and the variation in volume weight ρ calculated in step 109 is observed. If the current flow rate is 5 ton / h or more and the current bulk weight is increased, the process proceeds to step 111. If the current flow rate is less than 5 ton / h and the current bulk weight is decreased, the step is performed. 112.
[0029]
If the flow rate measured this time in step 110 is 5 ton / h or more and the bulk weight has increased from the previous time, in step 111, control for decreasing the flow rate and control for increasing the air volume are performed. In other words, the control unit 40 outputs to the drive unit 37 to control to reduce the opening degree of the flow rate adjustment valve 35, and the control unit 40 outputs to the drive unit 30 to control to increase the opening degree of the air volume adjustment valve 29. To do.
[0030]
If the flow rate measured this time in step 110 is less than 5 ton / h and the volumetric weight has decreased from the previous time, step 112 is reached, whether the flow rate is smaller than the reference value, and whether the volumetric weight is lower than the reference value. It is judged whether it is small. If the flow rate and the bulk weight are equal to or less than the reference values, the process proceeds to step 113, where control for increasing the flow rate and control for reducing the air volume are performed. That is, control is performed from the arithmetic control device 40 to the drive device 37 to widen the opening degree of the flow rate adjustment valve 35, and output from the arithmetic control device 40 to the drive device 30 is control to narrow the opening degree of the air volume adjustment valve 29. .
[0031]
When the control of step 111 is completed, the routine proceeds to step 114, where moisture detection of the grain is performed. In step 115, it is determined whether or not the moisture content of the raw material grain is greater than the reference value. If the moisture content is greater than the reference value, the process proceeds to step 116, and if the moisture content is smaller than the reference value, the process proceeds to step 117. In step 116, the grain slip on the sorting plate becomes worse due to excessive moisture, so the calculation control device 40 outputs it to the driving device 17 to make the inclination angle of the sorting machine frame 3 steep. In step 117, it is further determined whether or not the moisture is lower than the reference value. If the water content is below the reference value, the routine proceeds to step 118, where it is output from the arithmetic and control unit 40 to the drive unit 17 to control the tilt angle of the sorter frame 3 to be relaxed. The control of the specific gravity sorter based on the moisture detection of the raw material grains described above is not only the control of the inclination angle of the sorter frame 3 in step 116 and step 118, but also the control of the opening degree of the flow control valve 35 and the blower fan's blown amount You may control. When the control of the flow rate adjusting valve 35, the air volume adjusting valve 29, and the sorting plate inclination angle is completed, the process returns to step 108 again.
[0032]
FIG. 5 differs from FIG. 1 in that an electromagnetic flow measuring device 38... Is provided on the fine product discharge side of the specific gravity sorter 1, that is, the lower rice discharge basket 20, the central rice discharge basket 23, and the upper rice discharge basket 25. It is the provided example. The detection signals from the electromagnetic flow measuring devices 38 are communicated to the arithmetic control device 40, and the arithmetic control device 40 communicates with the driving devices 30, 37, and 17 via lead wires 41, 42, and 43, respectively. . In the case of this embodiment, the flow rate, bulk weight and moisture on the fine product discharge side are measured, and the flow rate adjustment valve 35, the air volume adjustment valve 29 and the height adjustment device 16 of the specific gravity sorter 1 are feedback-controlled. The operation of this embodiment is almost the same as described above, and the description thereof is omitted.
[0033]
6 includes a plurality of specific gravity sorters 1 as shown in FIG. 1 and a plurality of specific gravity sorters 1A to 1C provided with electromagnetic flow measuring devices 38A to 38D at different positions, and waste rice having different composition ratios. It is a block diagram which shows the specific gravity classification system for grains which classify | categorizes into three types, upper rice, central rice, and lower rice. In FIG. 6, it can be seen that the damper opening degree of each of the specific gravity sorters 1A to 1C is closer to the full opening as it goes to the right, and the volume density of the raw material increases as it goes to the right, and the air volume is increased accordingly. It shows that.
[0034]
FIG. 7 is a block diagram for explaining the electrical connection of the grain specific gravity sorting system shown in FIG. The electromagnetic flow measuring devices 38A to 38D are connected to the arithmetic and control device 40 in parallel or in series via an appropriate communication line (for example, RS - 232C). The air volume control valves 29A to 29C of the specific gravity sorters are provided with driving devices 30A to 30C for electrically controlling the opening and closing of the valves. The driving devices 30A to 30C are connected to the arithmetic control device 40 via an interface 57. Connected in parallel or in series. Each of the driving devices 30A to 30C may communicate with the arithmetic and control unit 40 via the manual / automatic switch 58A to 58C so that the air volume adjusting valves 29A to 29C can be manually adjusted.
[0035]
FIG. 8 is a flowchart of the specific gravity sorting system for grain shown in FIG. The operation of the specific gravity sorting system will be described based on this figure.
[0036]
The raw material grain supplied to the specific gravity sorting system is first put into the electromagnetic flow rate measuring device 38A, and the flow rate and bulk density of the raw material grain are measured. Then, for example, it is measured as a raw material grain having a flow rate of 10 (ton / h) and a bulk weight of 741 (g / liter), and this raw material grain is put into the specific gravity sorter 1A (channel 59). In the specific gravity sorter 1A, feedforward control is performed from the output value of the electromagnetic flow measuring device 38A so that the flow rate is maintained at 10 (ton / h) even when the bulk density changes, and 100% of the raw material grain is ratio 23.3. % Of lower rice (channel 60) and 76.7% ratio of non-lower rice (channel 61). At this time, the bulk weight of the selected lower rice is 685 (g / liter), and the bulk weight of the rice other than the lower rice is 762 (g / liter).
[0037]
Next, rice other than lower rice is put into the specific gravity sorter 1B (flow path 61), lower rice (flow path 62) with a ratio of 19.8%, central rice (flow path 63) with a ratio of 47.7%, and a ratio of 9.2%. Sorted into upper rice (channel 64). The upper rice selected at the ratio of 9.2% is put into the electromagnetic flow measuring device 38B (flow path 64), and the flow rate and the bulk weight are measured. For example, the flow rate is 2.2 (ton / h) and the bulk weight is 783 (g / liter). In the specific gravity sorter 1B, feedback control is performed from the output value of the electromagnetic flow measurement device 38B so that the flow rate and bulk weight of the upper rice do not change.
[0038]
Central rice with a ratio of 47.7% is then put into the specific gravity sorter 1C (flow path 63), lower rice with a ratio of 5.8% (flow path 65) and upper rice with a ratio of 14% (flow path 66) and a ratio of 27.9% To Central America (channel 67). The upper rice of the selected ratio of 14% is put into the electromagnetic flow measuring device 38C (flow channel 66), and the flow rate and the bulk weight are measured. For example, the flow rate is measured as 1.4 (ton / h) and the bulk weight is 768 (g / liter). In the specific gravity sorter 1C, feedback control is performed from the output value of the electromagnetic flow measuring device 38C so that the flow rate and bulk weight of the upper rice do not change.
[0039]
The flow paths 60, 62, and 65 in the specific gravity sorters 1A to 1C serve as discharge paths for lower rice. These flow paths are gathered by the flow path 68 and led to the electromagnetic flow measurement device 38D, and the final flow of the lower rice The specific flow rate and bulk weight are measured, and feedback control of the specific gravity sorters 1A to 1C is performed. Then, the central rice discharged from the flow path 67 of the specific gravity sorter 1 </ b> C may be returned to the flow path 59. In the specific gravity sorting system for grains in the above example, from 100% raw grain, upper rice is composed of 23.2%, central rice is composed of 27.9%, and lower rice is composed of 48.9%. Can be extracted. And in such a specific gravity sorting system for grains, it becomes possible to sort waste rice having different composition ratios fully automatically.
[0040]
【The invention's effect】
As described above, according to the present invention, the specific gravity of the selection object or the selection object supplied to the specific gravity sorter is measured, and the supply amount of the selection object is controlled in accordance with the change in the specific gravity. It became possible to automatically control the specific gravity sorter without sorting human hands when sorting waste rice with different ratios.
[0041]
[0042]
Furthermore , since the moisture of the object to be sorted or the sorted object is detected and the amount of air blown from the blower fan is controlled according to the change in the moisture, the sorting accuracy of the specific gravity sorter is improved.
[0043]
[0044]
[0045]
And when forming a specific gravity sorter provided with a flow rate measuring device capable of measuring bulk density, the flow rate measuring device is a flow path pipe provided on the sorted product supply side or sorted product discharge side of the specific gravity sorter. A capacitance detector provided in the flow channel pipe, a switching device that shuts off the upper and lower portions of the flow channel pipe, a load cell type weight detector that detects the actual weight of the flow channel pipe, and selection Since it forms from the moisture sensor which detects the water | moisture content of a thing, it is possible to detect the flow volume of a selection thing, a volume weight, and a water | moisture content with a simple structure accurately.
[0046]
In addition, a plurality of the specific gravity sorters are connected together, and the electromagnetic flow measurement device is provided at an appropriate location of the multiple specific gravity sorters, and the waste rice having a different composition ratio based on the detection value of the electromagnetic flow measurement device If it is formed into a grain specific gravity sorting system that sorts rice into three types of upper, central and lower rice, it becomes possible to sort waste rice with high accuracy and high efficiency.
[Brief description of the drawings]
FIG. 1 is a partially broken side view of a specific gravity sorter for grain according to the present invention and a block diagram for controlling the specific gravity sorter.
FIG. 2 is a cross-sectional view of an upper sorting plate and a lower sorting plate in a specific gravity sorter for grain according to the present invention.
FIG. 3 is a schematic view showing an electromagnetic flow measuring device.
FIG. 4 is a flowchart when feedforward control is performed on a grain specific gravity sorter according to the present invention.
FIG. 5 is a block diagram in the case of feedback control of the grain specific gravity sorter of the present invention.
FIG. 6 is a block diagram showing a grain specific gravity sorting system for sorting waste rice into three types of upper rice, central rice, and lower rice.
FIG. 7 is a block diagram for explaining the electrical connection of the grain specific gravity sorting system.
FIG. 8 is a flowchart of a grain specific gravity sorting system.
[Explanation of symbols]
1 gravity sorter 2 machine base 3 vibration sorter frame 4 Haifushitsu 5 suction fan 6 air path 7 grain feed chute 8 secondary sorting part 9 above the sorting plate 10 beneath the sorting plate 11 think portion 12 long hole net unit DESCRIPTION OF SYMBOLS 13 Round hole net part 14 Window 15 Joint 16 Height adjustment apparatus 17 Drive apparatus 18 Vibration motor 19 Lower rice discharge part 20 Lower rice discharge pad 21 Grain supply part 22 Central rice discharge part 23 Central rice discharge part 24 Inclined high side 25 Upper rice discharge rod 26 Foreign matter discharge rod 27 Wind tunnel 28 Window 29 Air volume control valve 30 Drive device 31 Connection pipe 32 Fan case 33 Pipe 34 Fan fan 35 Flow control valve 36 Grain supply cylinder 37 Drive device 38 Electromagnetic flow measurement device 39 Lead wire 40 Arithmetic control device 41 Lead wire 42 Lead wire 43 Lead wire 44 Flow pipe 45 Load cell type weight detector 46 Capacitance detector 47 48 Discharge port 49 Rotating opening / closing plate 50 Cylinder 51 Opening / closing device 52 Loading cylinder 53 Slide opening / closing plate 54 Cylinder 55 Opening / closing device 56 Moisture sensor 57 Interface 58 Manual / automatic switch 59 Flow channel 60 Flow channel 61 Flow channel 62 Flow channel 63 flow path 64 flow path 65 flow path 66 flow path 67 flow path 68 flow path

Claims (7)

選別板を複数段に設けた選別機枠を傾斜させると共に該選別機枠を斜め上下に振動可能に構成し、その下方から上方に通風する送風ファンを設けた比重選別機において、
該比重選別機に供給される被選別物又は選別物の容積重を測定し、該容積重の変化に応じて被選別物の供給量を制御することを特徴とする比重選別機の制御方法。
Sorting plate vibration capable constitute該選specific machine frame diagonally up and down together with the tilting sorter frame provided in a plurality of stages, in the specific gravity sorter provided with a blower fan for air upward from below,
Measuring the volume weight of the sorted matter or sorted matter is supplied to the ratio weight sorter, the control method of the gravity sorter, characterized by controlling the supply amount of the sorted matter according to the container stacking changes.
被選別物又は選別物の水分を検出し、該水分の変化に応じて前記送風ファンの送風量を制御することを特徴とする請求項記載の比重選別機の制御方法。Detecting the moisture of the sorted matter or sorted matter, method of controlling a gravity sorter according to claim 1, wherein the controlling the air volume of the blower fan in accordance with a change in the moisture. 選別板を複数段に傾斜状に設けて斜め上下に振動可能に構成した動選別機枠と、該動選別機枠の下方から上方に通風する送風ファンと、前記選別板への被選別物の供給量を調節する流量調節手段と、前記送風ファンの風量を調節する風量調節手段と、前記動選別機枠を適宜な傾斜角度に調節する角度調節手段と、前記各調節手段を駆動する駆動装置とを設け被選別物供給流路又は選別物排出流路に、被選別物又は選別物の容積重を測定可能とした流量測定装置を設け、該流量測定装置と前記各駆動装置とを制御装置を介して接続した比重選別機において、
前記流量測定装置は、前記比重選別機の被選別物供給側又は選別物排出側に設けた流路パイプと、該流路パイプに設けた静電容量検出器と、前記流路パイプの上部と下部とを遮断する開閉装置と、前記流路パイプの実重量を検出するロードセル式重量検出器と、被選別物又は選別物の水分を検出する水分センサーとから形成したことを特徴とする比重選別機の制御装置。
A vibration screening machine frame which is rotatably configured vibration diagonally up and down the sorting plate is provided on inclined in a plurality of stages, a blowing fan for ventilation upward from below the vibration screening machine frame, the to the sorting plate a flow rate adjustment means for adjusting a supply amount of sorted matter, and air volume adjusting means for adjusting the air volume of the blower fan, and an angle adjusting means for adjusting the vibration sorter frame to an appropriate inclination angle, each of said adjusting means a driving device that drives provided, to be sorted matter supply channel or sorted matter discharge passage, the flow measuring device capable measuring the volume weight of the sorted object or sorted matters provided, each driving a flow quantity measuring device In the specific gravity sorter connected with the device through the control device ,
The flow rate measuring device includes a flow path pipe provided on a sorting object supply side or a sorted product discharge side of the specific gravity sorter, a capacitance detector provided on the flow path pipe, and an upper portion of the flow path pipe. Specific gravity sorting characterized by comprising: an opening / closing device that shuts off the lower portion; a load cell type weight detector that detects the actual weight of the flow pipe; and a moisture sensor that detects moisture of the object to be sorted or the sorted object. Machine control device.
前記制御装置は、前記静電容量検出器及び前記ロードセル式重量検出器の検出値から被選別物又は選別物の容積重を演算し、演算した容積重の変化量に応じて前記流量調節手段を制御することを特徴とする請求項3記載の比重選別機の制御装置。  The control device calculates the volume weight of the object to be selected or the selection object from the detection values of the capacitance detector and the load cell type weight detector, and controls the flow rate adjusting means according to the calculated change in the volume weight. 4. The control device for a specific gravity sorter according to claim 3, wherein the control device is controlled. 前記制御装置は、前記静電容量検出器及び前記ロードセル式重量検出器の検出値から被選別物又は選別物の容積重を演算し、演算した容積重の変化量に応じて前記風量調節手段を制御することを特徴とする請求項又は記載の比重選別機の制御装置。The control device calculates the volume weight of the object to be selected or the selection object from the detection values of the capacitance detector and the load cell type weight detector, and the air volume adjusting means is operated according to the calculated change in the volume weight. The control device for a specific gravity sorter according to claim 3 or 4 , wherein the control device is controlled. 前記制御装置は、前記静電容量検出器及び前記ロードセル式重量検出器の検出値から被選別物の容積重を演算し、演算した容積重の変化量に応じて前記角度調節手段を制御することを特徴とする請求項又はのいずれかに記載の比重選別機の制御装置。The control device calculates a volume weight of the object to be sorted from detection values of the capacitance detector and the load cell type weight detector, and controls the angle adjusting unit according to the calculated change amount of the volume weight. The control device for a specific gravity sorter according to any one of claims 3 , 4 and 5 . 前記制御装置は、前記水分センサーの検出値から被選別物又は選別物の水分を演算し、演算した水分の変化量に応じて前記流量調節手段又は前記角度調節手段を制御することを特徴とする請求項から請求項のいずれかに記載の比重選別機の制御装置。The control device calculates the moisture of the selection object or the selection object from the detection value of the moisture sensor, and controls the flow rate adjusting means or the angle adjusting means according to the calculated amount of change in moisture. The control device for a specific gravity sorter according to any one of claims 3 to 6 .
JP33040996A 1996-11-25 1996-11-25 Method and apparatus for controlling specific gravity sorter Expired - Lifetime JP3744628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33040996A JP3744628B2 (en) 1996-11-25 1996-11-25 Method and apparatus for controlling specific gravity sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33040996A JP3744628B2 (en) 1996-11-25 1996-11-25 Method and apparatus for controlling specific gravity sorter

Publications (2)

Publication Number Publication Date
JPH10151418A JPH10151418A (en) 1998-06-09
JP3744628B2 true JP3744628B2 (en) 2006-02-15

Family

ID=18232284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33040996A Expired - Lifetime JP3744628B2 (en) 1996-11-25 1996-11-25 Method and apparatus for controlling specific gravity sorter

Country Status (1)

Country Link
JP (1) JP3744628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471170B1 (en) * 2013-03-26 2014-12-11 주식회사 한미이엔씨 Air classification device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347798B1 (en) * 2002-03-22 2002-08-07 주식회사 얼텍 Complete rice sorting method by specific gravity and its device
CN100431719C (en) * 2007-04-17 2008-11-12 北京厨房设备集团公司 Plastic winnowing device
KR101587444B1 (en) * 2015-06-30 2016-02-02 (주)에이치엠티 Specific gravity separator using air and vibration
JP6672569B2 (en) * 2018-07-02 2020-03-25 株式会社 安西製作所 Specific gravity sorter and its sorting control method
DE112019004566B4 (en) * 2018-09-12 2023-04-27 Japan Tobacco Inc. System for feeding a granulated material and feeding method used therein
CN113680667B (en) * 2021-08-31 2022-11-11 辽宁宝来生物能源有限公司 Foam coke removing and sorting equipment in calcined needle coke
CN117695973B (en) * 2024-02-06 2024-04-30 通威微电子有限公司 Silicon carbide powder synthesizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681169A (en) * 1979-12-06 1981-07-02 Satake Eng Co Ltd Automatic controller for cereal sorter
DE3148475A1 (en) * 1981-02-23 1982-09-23 Gebrüder Bühler AG, 9240 Uzwil "SEPARATING DEVICE FOR CEREALS AND SIMILAR GRAIN GOODS"
JPS62118577U (en) * 1986-01-17 1987-07-28
JPH0614853Y2 (en) * 1987-11-05 1994-04-20 セイレイ工業株式会社 Beer barley adjuster wind force controller
JPH0754267B2 (en) * 1987-12-03 1995-06-07 セイレイ工業株式会社 Rice selection, work efficiency display of weighing machine
JPH0463181A (en) * 1990-06-29 1992-02-28 Iseki & Co Ltd Controller for oscillating classifier
JP2566029Y2 (en) * 1991-08-22 1998-03-25 株式会社タイガーカワシマ Rocking sorter with water content meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471170B1 (en) * 2013-03-26 2014-12-11 주식회사 한미이엔씨 Air classification device

Also Published As

Publication number Publication date
JPH10151418A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3744628B2 (en) Method and apparatus for controlling specific gravity sorter
KR100458243B1 (en) Threshing apparatus
JPH11155349A (en) Thresher
JPH0614853Y2 (en) Beer barley adjuster wind force controller
JP3405798B2 (en) Method for detecting the percentage of hulling process and percentage control device
JP3615450B2 (en) Thresher
JP4119214B2 (en) Brown rice style sorting equipment
JPS6349347Y2 (en)
KR102092666B1 (en) Selection apparatus for foodstuff pellet
JP7131650B1 (en) Threshing device
JP3973452B2 (en) Threshing device
JPH0448866Y2 (en)
JPH07227137A (en) Shaking separator in threshing machine
JP3295980B2 (en) Combine threshing rocking sorter
JPH0233907Y2 (en)
JPH07274694A (en) Vibration-grading device in threshing device
JP3187951B2 (en) Threshing control device in threshing machine
JP3901654B2 (en) Conveyor device for hull sorter
JP2963900B1 (en) Hulling sorting equipment
JPH07135838A (en) Threshing device
JPS5944901B2 (en) Automatic rice supply amount adjustment device in huller sorting machine
JPH10295166A (en) Threshing machine
JP2004024948A (en) Facility for sorting and shipping soybean
CN115999911A (en) Double-pipe type multistage winnowing instrument
JPH0236358Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term