JP3743743B2 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP3743743B2
JP3743743B2 JP06134499A JP6134499A JP3743743B2 JP 3743743 B2 JP3743743 B2 JP 3743743B2 JP 06134499 A JP06134499 A JP 06134499A JP 6134499 A JP6134499 A JP 6134499A JP 3743743 B2 JP3743743 B2 JP 3743743B2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
unit
external electrode
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06134499A
Other languages
Japanese (ja)
Other versions
JP2000261012A (en
Inventor
吉竜 川間
浩昭 森川
隆 石原
章裕 黒田
眞司 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06134499A priority Critical patent/JP3743743B2/en
Publication of JP2000261012A publication Critical patent/JP2000261012A/en
Application granted granted Critical
Publication of JP3743743B2 publication Critical patent/JP3743743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池の構造に関し、特に、受光表面に形成された電極構造に関する。
【0002】
【従来の技術】
図11は、例えば、シャープ株式会社製の住宅用太陽光発電システム等に広く用いられている一般的な太陽電池の構造を示す斜視図であり、図12は、その上面図、図13は、XII−XIIにおける断面図である。図中、1はp型シリコンからなる半導体基板、2はPOCl3を用いたリン拡散により形成したn型の不純物拡散層、3はシリコン窒化膜よりなる反射防止膜、4は印刷により形成した銀ペーストからなる細線電極、5は細線電極4と同じく印刷により形成した銀ペーストからなる集電電極、6は印刷により形成したアルミペーストからなる裏面電極、7は銅からなる外部電極、8は外部電極7を集電電極5上に固定する錫からなる半田層、9は集電電極5の上面と外部電極7の側壁との間に半田層8が渡って形成されたのフィレット部である。外部電極7は、仮想線で示す。
【0003】
【発明が解決しようとする課題】
従来構造の太陽電池では、製造工程中や使用中において、集電電極5上の外部電極7が剥離し、断線等の故障原因となっていた。
これに対して、集電電極5と外部電極7との固定強度について解析した結果、従来構造の太陽電池では、外部電極7は、半田層8によって集電電極5の上に固定されているが、詳細には、集電電極5と外部電極7との間に挿入された薄膜の半田層8による固定強度は小さく、集電電極4の上面と外部電極7の側面との間に半田層8が渡って形成されたのフィレット部9により、全体の固定強度がほぼ決定されている。従って、かかるフィレット部9の強度を増すことにより、集電電極5と外部電極7との剥離を防止できることを見出した。
即ち、本発明はかかる解析結果に基づいてなされたものであり、外部電極7と集電電極5との間の接着強度を高くし、外部電極7の剥離を防止した信頼性の高い太陽電池を提供することを目的とする。
【0004】
【課題を解決するための手段】
そこで、発明者らは鋭意研究の結果、集電電極5を、複数の単位集電電極5’に分割して形成し、半田層のフィレット部9が形成される領域の面積を増やすことにより、外部電極7と集電電極5との間の付着強度を高くして、外部電極7の剥離を防止できることを見出し、本発明を完成した。
【0005】
即ち、本発明は、異なる導電型の半導体層を積層し、該半導体層の一表面を受光面とする太陽電池であって、該受光面上に、略平行に設けられた複数の細線電極と該細線電極と接続された集電電極とからなる櫛型電極と、該集電電極に重なるように導電性接着剤で固定された外部電極とを備え、該集電電極が、該外部電極の長手方向に、その電極端部間が所定の間隔をおいて設けられ、側方に複数の該細線電極が接続された複数の単位集電電極からなり、該導電性接着剤が、該電極端部において該外部電極の下部にも回り込み、該電極端部の側壁部と該外部電極裏面との間を渡って接続するフィレット部を形成してなることを特徴とする太陽電池である。
このように、集電電極を分割して、複数の単位集電電極とすることにより、単位集電電極の側面と外部電極の裏面との間にもフィレット部を形成することができ、集電電極と外部電極との接着強度を向上させることができる。即ち、かかる構造を用いることにより、フィレット部の形成領域を大きくできるとともに、側面と裏面といった異なった方向から外部電極を固定することができ、外部電極の固定強度を大きくすることができる。これにより、製造工程中、又は使用中における外部電極の剥離を防止し、信頼性の高い太陽電池を提供することが可能となる。
【0006】
上記長手方向と垂直な方向の電極幅は、該外部電極より該単位集電電極の方が広くなり、該外部電極の側面と、該単位集電電極の上面との間を渡って接続するフィレット部を形成してなることが好ましい。
かかる構造を用いることにより、特に、太陽電池の発電効率を多少犠牲にしても外部電極の接続強度を大きくしたい場合には、単位集電電極の電極幅を広くして、フィレット部の形成面積を大きくすることにより、更に、外部電極の接続強度を大きくすることができるからである。
【0007】
上記単位集電電極は、電極幅を部分的に広くしたものであっても良い。
かかる構造を用いることにより、太陽電池の発電効率の低下を極力抑えながら、外部電極の接続強度を向上させることができるからである。
【0008】
上記電極幅は、該外部電極より該単位集電電極の方が狭くなり、該外部電極裏面と、該単位集電電極の側面との間を渡って接続するフィレット部を形成してなるものであっても良い。
かかる構造を用いることにより、太陽電池の発電効率を低下させないで、外部電極の接着強度を向上させることが可能だからである。
【0009】
上記電極幅は、該外部電極と、該単位集電電極とで略等しくなり、該外部電極の側面と、該単位集電電極の側面との間を渡って接続するフィレット部を形成してなるものであっても良い。
かかる構造を用いることによっても、太陽電池の発電効率を低下させないで、外部電極の接着強度を向上させることが可能だからである。
【0010】
上記単位集積電極の電極端部間の距離は、上記細線電極間の距離より広いことが好ましい。
例えば、電極端部間の距離を、細線電極の1ピッチ分とするより、3ピッチ分とするほうが、外部電極の接続強度が向上するからである。
【0011】
上記単位集電電極の電極端部は、該単位集電電極の電極幅より電極幅の狭い接続電極で接続されたものであっても構わない。
このように、単位集電電極より電極幅の狭い接続電極で接続することにより、外部電極の接続強度を増しつつ、電極部の抵抗値の増加を抑え、集電ロスを低減することができるからである。
【0012】
【発明の実施の形態】
実施の形態1.
本発明の第1の実施の形態について、図1〜3を参照して説明する。図1は、本実施の形態にかかる太陽電池の上面図、図2は、I−Iにおける断面図であり、図中、図11と同一符号は、同一又は相当箇所を示す。
【0013】
本実施の形態にかかる太陽電池では、受光面上に、略平行に設けられた複数の細線電極4と該細線電極4と接続された集電電極5とからなる櫛型電極と、該集電電極5に重なるように半田層8で固定された外部電極7とを備え、該集電電極5が、該外部電極7の長手方向に、その電極端部間が所定の間隔をおいて設けられた複数の単位集電電極5’からなり、半田層8が、該電極端部において該外部電極7の下部にも回り込み、該電極端部の側壁部と該外部電極7裏面との間を渡って接続するフィレット部9を形成している。
具体的には、集電電極5は、同一直線上に並んだ4つの単位集電電極5’に分割されており、単位集電電極5’間の距離は、図1の上方に示した電極では細線電極4の間隔と同じあり、一方、図1の下方に示した電極では細線電極4の間隔の3倍となっている。全ての単位集電電極5’は、その上に形成された外部電極7に電気的に接続されている。また、細線電極4は、その底面で、不純物拡散層2と電気的に接続されている。
【0014】
ここで、半田8のフィレット部9は、図2に示したように、集電電極5の上面と外部電極7の側面との間を渡るように形成され、かかるフィレット部9が多いほど、外部電極7の集電電極5に対する接着強度が増加する。
従って、本実施の形態では、集電電極5を4つに分割して単位集電電極5’とすることにより、図2に示すように、単位集電電極5’の電極端部において、半田層8が外部電極7の下部にも回り込み、単位集電電極5’の電極端部の側壁部と外部電極7裏面との間を渡ってフィレット部9を形成するようにしている。
【0015】
図3は、図1の構造において、集電電極5から外部電極板7を剥がすのに必要となるひっぱり強度をピール試験により測定した結果である。
横軸に、集電電極間の分断の無い場合(従来構造)、集電電極間の分断距離が、細線電極4の間隔の1ピッチに相当する場合(図1の上方に示した電極構造)、集電電極間の分断距離が、細線電極4の間隔の3ピッチに相当する場合(図1の下方に示した電極構造)を示し、縦軸に、ピール試験で測定した外部電極付着強度(kg/cm2)を示す。
図3から明らかなように、集電電極5に分断部分を持たせて、単位集電電極5’としたものは、分断しない従来構造のものより、付着強度(接着強度)が増加している。また、分断部分の距離を、1ピッチから3ピッチに広げることにより、更に付着強度が増加していることが分る。
以上のように、集電電極5を分割して、複数の単位集電電極5’とすることにより、従来構造よりフィレット部9の形成される面積が大きくなり、外部電極7と集電電極5との接着強度を大きくすることができる。
これにより、製造工程中、使用中における外部電極7の剥離を防止することができ、信頼性の高い太陽電池を提供することが可能となる。
なお、本実施の形態にかかる太陽電池では、単位集電電極5’に対して、外部電極7が表面全体で電気的に接続されているため、集電電極5が分割されることにより集電ロスが問題となるほど増加することはない。
【0016】
実施の形態2.
本発明の第2の実施の形態について、図4を参照して説明する。図4は、本実施の形態にかかる太陽電池の上面図であり、図中、図1と同一符号は、同一又は相当箇所を示す。また、上方に示した電極では、単位集電電極5’の間隔が細線電極4の1ピッチ分の間隔であり、下方に示した電極では、細線電極4の3ピッチ分の間隔となっている。
本実施の形態では、上記実施の形態1の単位集電電極5’の間を、集電電極5の長手方向と垂直な幅方向の電極幅が、単位集電電極5’の電極幅より狭い接続電極10により電気的に接続されている。
かかる接続電極10は、単位集電電極5’の形成工程で同時に形成することができ、材料も単位集電電極5’と同じ銀ペーストから形成される。
【0017】
このように、単位集電電極5’をそれより電極幅の狭い接続電極10で接続した構造とすることにより、単位集電電極5’の電極端部であって接続電極10と接続されていない部分と、外部電極7の裏面との間にフィレット部9を形成することができる。これにより、単位集電電極5’と外部電極7との接続強度を大きくし、外部電極7の剥離を防止することができる。更には、各単位集電電極5’の間が接続電極10により電気的に接続されているため、各単位集電電極5’が外部電極7のみで電気的に接続されている場合に比較して、電極部(単位集電電極5’と外部電極7)の抵抗値を小さくして、集電ロスを少なくすることができる。
本実施の形態では、接続電極10を、実施の形態1の構造に適用した場合について述べたが、以下に説明する実施の形態3〜5に適用することも可能である。
【0018】
実施の形態3.
本発明の第3の実施の形態について、図5、6を参照して説明する。図5は、本実施の形態にかかる太陽電池の上面図であり、図6は、V−Vにおける断面図である。図中、図1と同一符号は、同一又は相当箇所を示す。また、上方に示した電極では、単位集電電極5’の間隔が細線電極4の1ピッチ分の間隔であり、下方に示した電極では、細線電極4の3ピッチ分の間隔となっている。
本実施の形態にかかる太陽電池では、図5に示すように、単位集電電極5’が、電極端部において、電極幅を部分的に広くしたこと構造となっている。かかる構造を採用することにより、図6に示すように、電極幅が部分的に広くなった領域において、単位集電電極5’の上面と外部電極7の側面との間に半田層8が渡って形成されたフィレット部9の断面を、例えば、図2に示す構造に比較して大きくすることができ、単位集電電極5’と外部電極7との接続強度を大きくすることが可能となる。
即ち、単位集電電極5’の面積を大きくすることは、その上面に形成されるフィレット部9の断面積を大きくし、単位集電電極5’と外部電極7との接続強度を大きくすることにつながるが、一方で、太陽電池の受光表面の面積を小さくして、発電効率を低下させることになる。そこで、本実施の形態では、部分的に単位集電電極5’の電極幅を広くした領域を形成することにより、受光表面の面積低下を抑えながら、実施の形態1の場合より、単位集電電極5’と外部電極7との接続強度を大きくすることが可能となる。
なお、本実施の形態では、単位集電電極5’の両端の電極端部において、面積の広い領域を設けたが、端部以外の領域に設けることも可能である。
【0019】
実施の形態4.
本発明の第4の実施の形態について、図7を参照して説明する。図7は、本実施の形態にかかる太陽電池の上面図であり、図中、図1と同一符号は、同一又は相当箇所を示す。また、上方に示した電極では、単位集電電極5’の間隔が細線電極4の1ピッチ分の間隔であり、下方に示した電極では、細線電極4の3ピッチ分の間隔となっている。
【0020】
上記実施の形態3にかかる太陽電池では、単位集電電極5’を部分的に広く形成したのに対して、本実施の形態にかかる太陽電池では、単位集電電極5’全領域について、単位集電電極5’の面積を広くしている。即ち、単位集電電極5’のいずれの箇所で、電極幅方向の断面を取ってみても、図6のような断面構造となる。
従って、太陽電池の受光表面の面積が多少小さくなっても、単位集電電極5’と外部電極7との接続強度を大きくしたいといった要求のある場合には、図7に示すような構造を用いることにより、実施の形態1の場合より、更に、単位集電電極5’と外部電極7との接続強度を大きくして、外部電極7の剥離を防止することが可能となる。
【0021】
実施の形態5.
本発明の第5の実施の形態について、図8〜10を参照して説明する。図8は、本実施の形態にかかる太陽電池の上面図であり、図9、10は、VIII−VIIIにおける断面図である。図中、図1と同一符号は、同一又は相当箇所を示す。また、上方に示した電極では、単位集電電極5’の間隔が細線電極4の1ピッチ分の間隔であり、下方に示した電極では、細線電極4の3ピッチ分の間隔となっている。
【0022】
本実施の形態では、単位集電電極5’の電極幅を、外部電極7の電極幅と同じか、又はより狭くしたものである。
図9は、単位集電電極5’の電極幅を、外部電極7の電極幅より狭くした場合のVIII−VIIIにおける断面図である。図から明らかなように、実施の形態1では、単位集電電極5’の上面と、外部電極7の側壁との間に形成されていたフィレット部9が、単位集電電極5’の側面と、外部電極7の裏面との間に形成されることとなる。
かかる構造を用いることにより、単位集電電極5’と外部電極7との間に形成されるフィレット部9の断面積を同等に維持して、実施の形態1の場合と同程度の接続強度を維持しながら、単位集電電極5’の電極幅を、外部電極7の電極幅より狭くすることにより、太陽電池表面の受光表面の面積を増やすことができ、太陽電池の発電効率を向上させることが可能となる。
【0023】
一方、図10は、単位集電電極5’の電極幅と、外部電極7の電極幅とを同じとするとともに、フィレット部9が、単位集電電極5’の側面と、外部電極7の側面とを渡るように形成したものである。
このようにフィレット部9を形成することにより、実施の形態1のように、単位集電電極5’の上面と、外部電極7の側面との間にフィレット部9を形成した場合と同程度の接続強度を得ることが可能となる。また、単位集電電極5’の電極幅が、外部電極7の電極幅と、同程度まで狭くすることにより、太陽電池の受光表面の面積を増やすことができ、太陽電池の発電効率を向上させることが可能となる。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、集電電極を分割して、側方に複数の該細線電極が接続された複数の単位集電電極とすることにより、フィレット部が形成される面積が大きくなり、外部電極と集電電極との接続強度を大きくすることができ、外部電極の剥離を防止した、信頼性の高い太陽電池を提供することが可能となる。
【0025】
また、単位集電電極の面積を一部、又は全部において広くすることにより、フィレット部の接続強度を大きくし、更に、信頼性の高い太陽電池を提供することが可能となる。
【0026】
また、単位集電電極の電極幅を、外部電極と同等又はそれより小さくすることにより、外部電極の剥離を防止しながら、太陽電池の受光表面の面積を広くして、太陽電池の発電効率を向上させることが可能となる。
【0027】
更には、単位集電電極間を、それより電極幅の狭い接続電極で接続した構造とすることにより、電極部の抵抗値を小さくして、集電ロスを少なくすることが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1にかかる太陽電池の上面図である。
【図2】 I−Iにおける断面図である。
【図3】 外部電極付着強度の測定結果である。
【図4】 本発明の実施の形態2にかかる太陽電池の上面図である。
【図5】 本発明の実施の形態3にかかる太陽電池の上面図である。
【図6】 V−Vにおける断面図である。
【図7】 本発明の実施の形態4にかかる太陽電池の上面図である。
【図8】 本発明の実施の形態5にかかる太陽電池の上面図である。
【図9】 VIII−VIIIにおける断面図である。
【図10】 VIII−VIIIにおける断面図である。
【図11】 従来構造にかかる太陽電池の斜視図である。
【図12】 従来構造にかかる太陽電池の上面図である。
【図13】 XII−XIIにおける断面図である。
【符号の説明】
1 半導体基板、2 不純物拡散層、3 反射防止膜、4 細線電極、5 集電電極、5’ 単位集電電極、6 裏面電極、7 外部電極、8 半田層、9 フィレット部、10 接続電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a solar cell, and more particularly to an electrode structure formed on a light receiving surface.
[0002]
[Prior art]
FIG. 11 is a perspective view showing a structure of a general solar cell widely used in, for example, a residential solar power generation system manufactured by Sharp Corporation, FIG. 12 is a top view thereof, and FIG. It is sectional drawing in XII-XII. In the figure, 1 is a semiconductor substrate made of p-type silicon, 2 is an n-type impurity diffusion layer formed by phosphorus diffusion using POCl 3 , 3 is an antireflection film made of a silicon nitride film, 4 is silver formed by printing Fine wire electrode made of paste, 5 is a collector electrode made of silver paste formed by printing in the same manner as thin wire electrode 4, 6 is a back electrode made of aluminum paste formed by printing, 7 is an external electrode made of copper, and 8 is an external electrode. A solder layer made of tin that fixes 7 on the current collecting electrode 5, and 9 is a fillet portion in which the solder layer 8 is formed across the upper surface of the current collecting electrode 5 and the side wall of the external electrode 7. The external electrode 7 is indicated by a virtual line.
[0003]
[Problems to be solved by the invention]
In a solar cell having a conventional structure, the external electrode 7 on the current collecting electrode 5 is peeled off during the manufacturing process or in use, causing a failure such as disconnection.
On the other hand, as a result of analyzing the fixing strength between the collecting electrode 5 and the external electrode 7, in the conventional solar cell, the external electrode 7 is fixed on the collecting electrode 5 by the solder layer 8. Specifically, the fixing strength of the thin film solder layer 8 inserted between the current collecting electrode 5 and the external electrode 7 is small, and the solder layer 8 is interposed between the upper surface of the current collecting electrode 4 and the side surface of the external electrode 7. The overall fixing strength is substantially determined by the fillet portion 9 formed over the cross section. Therefore, it has been found that peeling between the collecting electrode 5 and the external electrode 7 can be prevented by increasing the strength of the fillet portion 9.
That is, the present invention has been made on the basis of such analysis results, and a highly reliable solar cell in which the adhesive strength between the external electrode 7 and the current collecting electrode 5 is increased and peeling of the external electrode 7 is prevented. The purpose is to provide.
[0004]
[Means for Solving the Problems]
Therefore, as a result of earnest research, the inventors divided and formed the collecting electrode 5 into a plurality of unit collecting electrodes 5 ′, and by increasing the area of the region where the fillet portion 9 of the solder layer was formed, The present inventors have found that the adhesion strength between the external electrode 7 and the current collecting electrode 5 can be increased to prevent the external electrode 7 from peeling off, and the present invention has been completed.
[0005]
That is, the present invention is a solar cell in which semiconductor layers of different conductivity types are stacked and one surface of the semiconductor layer is a light receiving surface, and a plurality of thin wire electrodes provided substantially in parallel on the light receiving surface and A comb-shaped electrode composed of a current collecting electrode connected to the thin wire electrode, and an external electrode fixed with a conductive adhesive so as to overlap the current collecting electrode. In the longitudinal direction, the electrode end portions are provided at predetermined intervals, and are composed of a plurality of unit current collecting electrodes to which a plurality of the thin wire electrodes are connected to the side, and the conductive adhesive is connected to the electrode ends. The solar cell is characterized by forming a fillet portion that goes around the lower portion of the external electrode and connects between the side wall portion of the electrode end portion and the back surface of the external electrode.
Thus, by dividing the current collecting electrode into a plurality of unit current collecting electrodes, a fillet portion can be formed between the side surface of the unit current collecting electrode and the back surface of the external electrode. The adhesive strength between the electrode and the external electrode can be improved. That is, by using such a structure, it is possible to enlarge the formation area of the fillet portion, and to fix the external electrode from different directions such as the side surface and the back surface, and to increase the fixing strength of the external electrode. Thereby, peeling of the external electrode during the manufacturing process or in use can be prevented, and a highly reliable solar cell can be provided.
[0006]
The electrode width in the direction perpendicular to the longitudinal direction is such that the unit collector electrode is wider than the external electrode, and the fillet is connected across the side surface of the external electrode and the upper surface of the unit collector electrode. It is preferable to form a part.
By using such a structure, in particular, when it is desired to increase the connection strength of the external electrode even if the power generation efficiency of the solar cell is somewhat sacrificed, the electrode collector of the unit current collecting electrode is widened to reduce the formation area of the fillet portion. This is because the connection strength of the external electrode can be further increased by increasing the value.
[0007]
The unit current collecting electrode may have a partially wide electrode width.
This is because, by using such a structure, the connection strength of the external electrode can be improved while suppressing the decrease in power generation efficiency of the solar cell as much as possible.
[0008]
The electrode width is such that the unit current collecting electrode is narrower than the external electrode, and a fillet portion is formed to connect between the back surface of the external electrode and the side surface of the unit current collecting electrode. There may be.
This is because by using such a structure, it is possible to improve the adhesive strength of the external electrode without reducing the power generation efficiency of the solar cell.
[0009]
The electrode width is substantially equal between the external electrode and the unit current collecting electrode, and forms a fillet portion connecting between the side surface of the external electrode and the side surface of the unit current collecting electrode. It may be a thing.
This is because even by using such a structure, it is possible to improve the adhesive strength of the external electrode without reducing the power generation efficiency of the solar cell.
[0010]
The distance between the electrode end portions of the unit integrated electrode is preferably wider than the distance between the thin wire electrodes.
For example, the connection strength of the external electrode is improved when the distance between the electrode end portions is set to 3 pitches rather than 1 pitch of the thin wire electrode.
[0011]
The electrode end portions of the unit collector electrode may be connected by a connection electrode having an electrode width narrower than the electrode width of the unit collector electrode.
In this way, by connecting with a connection electrode having a narrower electrode width than the unit current collection electrode, it is possible to increase the connection strength of the external electrode, suppress an increase in the resistance value of the electrode portion, and reduce the current collection loss. It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a top view of a solar cell according to the present embodiment, and FIG. 2 is a cross-sectional view taken along line II, in which the same reference numerals as those in FIG. 11 indicate the same or corresponding parts.
[0013]
In the solar cell according to the present embodiment, on the light receiving surface, a comb-shaped electrode including a plurality of thin wire electrodes 4 provided substantially in parallel and a current collecting electrode 5 connected to the thin wire electrode 4, and the current collecting device An external electrode 7 fixed by a solder layer 8 so as to overlap the electrode 5, and the collector electrode 5 is provided in the longitudinal direction of the external electrode 7 with a predetermined interval between the electrode ends. A plurality of unit current collecting electrodes 5 ′, and the solder layer 8 also wraps around the lower portion of the external electrode 7 at the electrode end portion, and crosses between the side wall portion of the electrode end portion and the back surface of the external electrode 7. The fillet portion 9 to be connected is formed.
Specifically, the current collecting electrode 5 is divided into four unit current collecting electrodes 5 ′ arranged on the same straight line, and the distance between the unit current collecting electrodes 5 ′ is the electrode shown in the upper part of FIG. Is the same as the interval between the thin wire electrodes 4, while the electrode shown in the lower part of FIG. All the unit current collecting electrodes 5 ′ are electrically connected to the external electrode 7 formed thereon. The thin wire electrode 4 is electrically connected to the impurity diffusion layer 2 at the bottom surface.
[0014]
Here, as shown in FIG. 2, the fillet portion 9 of the solder 8 is formed so as to cross between the upper surface of the current collecting electrode 5 and the side surface of the external electrode 7. The adhesion strength of the electrode 7 to the current collecting electrode 5 increases.
Therefore, in the present embodiment, the current collecting electrode 5 is divided into four to form the unit current collecting electrode 5 ′, so that as shown in FIG. The layer 8 also goes around the lower part of the external electrode 7 so as to form the fillet part 9 across the side wall part of the electrode end part of the unit collecting electrode 5 ′ and the back surface of the external electrode 7.
[0015]
FIG. 3 is a result of measuring the pulling strength required to peel the external electrode plate 7 from the collecting electrode 5 by a peel test in the structure of FIG.
On the horizontal axis, when there is no separation between the collecting electrodes (conventional structure), when the dividing distance between the collecting electrodes corresponds to one pitch of the interval between the thin wire electrodes 4 (electrode structure shown in the upper part of FIG. 1) , The separation distance between the collecting electrodes corresponds to 3 pitches of the distance between the thin wire electrodes 4 (electrode structure shown in the lower part of FIG. 1), and the vertical axis shows the external electrode adhesion strength (measured by a peel test) kg / cm 2 ).
As can be seen from FIG. 3, the unit current collecting electrode 5 ′ provided with the divided portion of the current collecting electrode 5 has a higher adhesion strength (adhesive strength) than that of the conventional structure which is not divided. . Further, it can be seen that the adhesion strength is further increased by increasing the distance of the divided portion from 1 pitch to 3 pitches.
As described above, by dividing the collecting electrode 5 into a plurality of unit collecting electrodes 5 ′, the area where the fillet portion 9 is formed becomes larger than that of the conventional structure, and the external electrode 7 and the collecting electrode 5 are formed. The adhesive strength can be increased.
Thereby, peeling of the external electrode 7 during use during the manufacturing process can be prevented, and a highly reliable solar cell can be provided.
In the solar cell according to the present embodiment, the external electrode 7 is electrically connected to the entire surface of the unit collector electrode 5 ′, so that the collector electrode 5 is divided to collect the current. It does not increase so much that loss becomes a problem.
[0016]
Embodiment 2.
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a top view of the solar cell according to the present embodiment, in which the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Further, in the electrode shown in the upper part, the interval between the unit collecting electrodes 5 ′ is one pitch of the fine wire electrode 4, and in the electrode shown in the lower part, the interval is three pitches of the fine wire electrode 4. .
In the present embodiment, the width of the electrode in the width direction perpendicular to the longitudinal direction of the current collecting electrode 5 is smaller than the width of the unit current collecting electrode 5 ′ between the unit current collecting electrodes 5 ′ of the first embodiment. The connection electrode 10 is electrically connected.
The connection electrode 10 can be formed at the same time in the step of forming the unit collector electrode 5 ′, and the material is also formed from the same silver paste as the unit collector electrode 5 ′.
[0017]
In this way, the unit current collecting electrode 5 ′ is connected by the connection electrode 10 having a narrower electrode width, so that it is not connected to the connection electrode 10 at the end of the unit current collecting electrode 5 ′. A fillet portion 9 can be formed between the portion and the back surface of the external electrode 7. Thereby, the connection intensity | strength of unit current collection electrode 5 'and the external electrode 7 can be enlarged, and peeling of the external electrode 7 can be prevented. Furthermore, since each unit current collecting electrode 5 ′ is electrically connected by the connection electrode 10, compared to the case where each unit current collecting electrode 5 ′ is electrically connected only by the external electrode 7. Thus, the resistance value of the electrode part (unit collecting electrode 5 ′ and external electrode 7) can be reduced to reduce the collecting loss.
Although the case where the connection electrode 10 is applied to the structure of the first embodiment has been described in the present embodiment, the connection electrode 10 can also be applied to the third to fifth embodiments described below.
[0018]
Embodiment 3.
A third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a top view of the solar cell according to the present embodiment, and FIG. 6 is a cross-sectional view at VV. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Further, in the electrode shown in the upper part, the interval between the unit collecting electrodes 5 ′ is one pitch of the fine wire electrode 4, and in the electrode shown in the lower part, the interval is three pitches of the fine wire electrode 4. .
In the solar cell according to the present embodiment, as shown in FIG. 5, the unit current collecting electrode 5 ′ has a structure in which the electrode width is partially widened at the electrode end. By adopting such a structure, as shown in FIG. 6, the solder layer 8 crosses between the upper surface of the unit collecting electrode 5 ′ and the side surface of the external electrode 7 in a region where the electrode width is partially widened. The cross section of the fillet portion 9 formed in this way can be made larger than, for example, the structure shown in FIG. 2, and the connection strength between the unit current collecting electrode 5 ′ and the external electrode 7 can be increased. .
That is, increasing the area of the unit collector electrode 5 ′ increases the cross-sectional area of the fillet portion 9 formed on the upper surface thereof, and increases the connection strength between the unit collector electrode 5 ′ and the external electrode 7. However, on the other hand, the area of the light receiving surface of the solar cell is reduced to reduce the power generation efficiency. Therefore, in the present embodiment, by forming a region where the electrode width of the unit collector electrode 5 ′ is partially widened, the unit current collector is more than in the case of the first embodiment while suppressing a reduction in the area of the light receiving surface. The connection strength between the electrode 5 ′ and the external electrode 7 can be increased.
In the present embodiment, a region having a large area is provided at the electrode end portions at both ends of the unit collecting electrode 5 ′. However, it may be provided in a region other than the end portions.
[0019]
Embodiment 4.
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a top view of the solar cell according to the present embodiment, in which the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Further, in the electrode shown in the upper part, the interval between the unit collecting electrodes 5 ′ is one pitch of the fine wire electrode 4, and in the electrode shown in the lower part, the interval is three pitches of the fine wire electrode 4. .
[0020]
In the solar cell according to the third embodiment, the unit current collecting electrode 5 ′ is partially widened, whereas in the solar cell according to the present embodiment, the unit current collecting electrode 5 ′ has a unit for the entire region. The area of the current collecting electrode 5 ′ is increased. That is, even if the cross section in the electrode width direction is taken at any location of the unit collecting electrode 5 ′, the cross sectional structure as shown in FIG. 6 is obtained.
Therefore, when there is a demand for increasing the connection strength between the unit current collecting electrode 5 ′ and the external electrode 7 even if the area of the light receiving surface of the solar cell is somewhat reduced, the structure shown in FIG. 7 is used. Accordingly, it is possible to further increase the connection strength between the unit collecting electrode 5 ′ and the external electrode 7 and prevent the external electrode 7 from being peeled off, as compared with the case of the first embodiment.
[0021]
Embodiment 5.
A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a top view of the solar cell according to the present embodiment, and FIGS. 9 and 10 are cross-sectional views taken along line VIII-VIII. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Further, in the electrode shown in the upper part, the interval between the unit collecting electrodes 5 ′ is one pitch of the fine wire electrode 4, and in the electrode shown in the lower part, the interval is three pitches of the fine wire electrode 4. .
[0022]
In the present embodiment, the electrode width of the unit collecting electrode 5 ′ is the same as or narrower than the electrode width of the external electrode 7.
FIG. 9 is a cross-sectional view taken along line VIII-VIII in the case where the electrode width of the unit collecting electrode 5 ′ is narrower than the electrode width of the external electrode 7. As is apparent from the figure, in the first embodiment, the fillet portion 9 formed between the upper surface of the unit collector electrode 5 ′ and the side wall of the external electrode 7 is connected to the side surface of the unit collector electrode 5 ′. In other words, it is formed between the back surface of the external electrode 7.
By using such a structure, the cross-sectional area of the fillet portion 9 formed between the unit current collecting electrode 5 ′ and the external electrode 7 is maintained to be equal, and the connection strength comparable to that in the first embodiment is obtained. While maintaining the width of the unit collector electrode 5 ′ smaller than the electrode width of the external electrode 7, the area of the light receiving surface of the solar cell surface can be increased, and the power generation efficiency of the solar cell can be improved. Is possible.
[0023]
On the other hand, FIG. 10 shows that the unit collector electrode 5 ′ has the same electrode width as that of the external electrode 7, and the fillet portion 9 includes the side surface of the unit collector electrode 5 ′ and the side surface of the external electrode 7. It is formed to cross.
By forming the fillet portion 9 in this way, the same degree as in the case of forming the fillet portion 9 between the upper surface of the unit collecting electrode 5 ′ and the side surface of the external electrode 7 as in the first embodiment. Connection strength can be obtained. Moreover, the area of the light receiving surface of the solar cell can be increased by reducing the electrode width of the unit collecting electrode 5 ′ to the same extent as the electrode width of the external electrode 7, thereby improving the power generation efficiency of the solar cell. It becomes possible.
[0024]
【The invention's effect】
As is clear from the above description, according to the present invention, the fillet portion is formed by dividing the current collecting electrode into a plurality of unit current collecting electrodes to which a plurality of the thin wire electrodes are connected to the side. As a result, the connection area between the external electrode and the collector electrode can be increased, and a highly reliable solar cell can be provided in which peeling of the external electrode is prevented.
[0025]
In addition, by increasing the area of the unit collecting electrode in part or in whole, it is possible to increase the connection strength of the fillet portion and to provide a highly reliable solar cell.
[0026]
In addition, by making the electrode width of the unit collecting electrode equal to or smaller than that of the external electrode, it is possible to increase the area of the light receiving surface of the solar cell while preventing the peeling of the external electrode, thereby improving the power generation efficiency of the solar cell It becomes possible to improve.
[0027]
Furthermore, by using a structure in which the unit current collecting electrodes are connected by connection electrodes having a narrower electrode width, it is possible to reduce the resistance value of the electrode portion and reduce the current collection loss.
[Brief description of the drawings]
FIG. 1 is a top view of a solar cell according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II.
FIG. 3 is a measurement result of external electrode adhesion strength.
FIG. 4 is a top view of a solar cell according to a second embodiment of the present invention.
FIG. 5 is a top view of a solar cell according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view taken along VV.
FIG. 7 is a top view of a solar cell according to a fourth embodiment of the present invention.
FIG. 8 is a top view of a solar cell according to a fifth embodiment of the present invention.
FIG. 9 is a sectional view taken along line VIII-VIII.
FIG. 10 is a sectional view taken along line VIII-VIII.
FIG. 11 is a perspective view of a solar cell according to a conventional structure.
FIG. 12 is a top view of a solar cell according to a conventional structure.
FIG. 13 is a sectional view taken along line XII-XII.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 2 Impurity diffused layer, 3 Anti-reflective film, 4 Thin wire electrode, 5 Current collecting electrode, 5 'Unit current collecting electrode, 6 Back surface electrode, 7 External electrode, 8 Solder layer, 9 Fillet part, 10 Connection electrode.

Claims (7)

異なる導電型の半導体層を積層し、該半導体層の一表面を受光面とする太陽電池であって、
該受光面上に、略平行に設けられた複数の細線電極と該細線電極と接続された集電電極とからなる櫛型電極と、
該集電電極に沿って、重なるように導電性接着剤で固定された外部電極とを備え、
該集電電極が、該外部電極の長手方向に、その電極端部間が所定の間隔をおいて設けられ、側方に複数の該細線電極が接続された複数の単位集電電極からなり、
該導電性接着剤が、該電極端部において該外部電極の下部にも回り込み、該電極端部の側壁部と該外部電極裏面との間を渡って接続するフィレット部を形成してなることを特徴とする太陽電池。
A solar cell in which semiconductor layers of different conductivity types are stacked and one surface of the semiconductor layer is a light receiving surface,
A comb-shaped electrode comprising a plurality of fine wire electrodes provided substantially parallel to the light receiving surface and a collecting electrode connected to the thin wire electrode;
An external electrode fixed with a conductive adhesive so as to overlap along the current collecting electrode,
The current collecting electrode is composed of a plurality of unit current collecting electrodes provided in the longitudinal direction of the external electrode with a predetermined interval between the electrode ends , and a plurality of the thin wire electrodes connected to the side .
The conductive adhesive wraps around the lower portion of the external electrode at the electrode end portion to form a fillet portion connecting between the side wall portion of the electrode end portion and the back surface of the external electrode. Solar cell featuring.
上記長手方向と垂直な方向の電極幅が、該外部電極より該単位集電電極の方が広くなり、該外部電極の側面と、該単位集電電極の上面との間を渡って接続するフィレット部を形成してなることを特徴とする請求項1に記載の太陽電池。  The electrode collector in the direction perpendicular to the longitudinal direction is wider in the unit collector electrode than in the external electrode, and the fillet is connected between the side surface of the external electrode and the upper surface of the unit collector electrode. The solar cell according to claim 1, wherein a solar cell is formed. 上記単位集電電極が、電極幅を部分的に広くしたことを特徴とする請求項2に記載の太陽電池。  The solar cell according to claim 2, wherein the unit collector electrode has a partially wide electrode width. 上記電極幅が、該外部電極より該単位集電電極の方が狭くなり、該外部電極裏面と、該単位集電電極の側面との間を渡って接続するフィレット部を形成してなることを特徴とする請求項1に記載の太陽電池。  The electrode width is such that the unit current collecting electrode is narrower than the external electrode, and a fillet portion is formed to connect between the back surface of the external electrode and the side surface of the unit current collecting electrode. The solar cell according to claim 1, wherein 上記電極幅が、該外部電極と、該単位集電電極とで略等しくなり、該外部電極の側面と、該単位集電電極の側面との間を渡って接続するフィレット部を形成してなることを特徴とする請求項1に記載の太陽電池。  The electrode width is substantially equal between the external electrode and the unit collector electrode, and a fillet portion is formed to connect across the side surface of the external electrode and the side surface of the unit collector electrode. The solar cell according to claim 1. 上記単位集積電極の電極端部間の距離が、上記細線電極間の距離より広いことを特徴とする請求項1に記載の太陽電池。  2. The solar cell according to claim 1, wherein a distance between electrode end portions of the unit integrated electrode is wider than a distance between the thin wire electrodes. 上記単位集電電極の電極端部が、該単位集電電極の電極幅より電極幅の狭い接続電極で接続されたことを特徴とする請求項1〜6のいずれかに記載の太陽電池。  The solar cell according to any one of claims 1 to 6, wherein an electrode end portion of the unit collector electrode is connected by a connection electrode having an electrode width narrower than an electrode width of the unit collector electrode.
JP06134499A 1999-03-09 1999-03-09 Solar cell Expired - Fee Related JP3743743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06134499A JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06134499A JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Publications (2)

Publication Number Publication Date
JP2000261012A JP2000261012A (en) 2000-09-22
JP3743743B2 true JP3743743B2 (en) 2006-02-08

Family

ID=13168434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06134499A Expired - Fee Related JP3743743B2 (en) 1999-03-09 1999-03-09 Solar cell

Country Status (1)

Country Link
JP (1) JP3743743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040727A (en) * 2011-12-30 2014-09-10 Memc新加坡私人有限公司 Bus bars for solar modules

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299772B2 (en) * 2003-11-27 2009-07-22 京セラ株式会社 Solar cell module
JP5014360B2 (en) * 2003-11-27 2012-08-29 京セラ株式会社 Solar cell module and solar cell element structure
JP5025135B2 (en) 2006-01-24 2012-09-12 三洋電機株式会社 Photovoltaic module
US20070235077A1 (en) * 2006-03-27 2007-10-11 Kyocera Corporation Solar Cell Module and Manufacturing Process Thereof
JP5016342B2 (en) * 2006-03-27 2012-09-05 京セラ株式会社 Solar cell module
JP2007266262A (en) * 2006-03-28 2007-10-11 Sharp Corp Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
TWI487124B (en) 2006-08-25 2015-06-01 Sanyo Electric Co Solar battery module and solar battery module manufacturing method
JP5230089B2 (en) 2006-09-28 2013-07-10 三洋電機株式会社 Solar cell module
JP4294048B2 (en) 2006-11-29 2009-07-08 三洋電機株式会社 Solar cell module
WO2008078741A1 (en) * 2006-12-26 2008-07-03 Kyocera Corporation Solar cell module
JP4974718B2 (en) * 2007-03-14 2012-07-11 三洋電機株式会社 Solar cell module
JP4174545B1 (en) * 2007-05-10 2008-11-05 シャープ株式会社 SOLAR CELL, SOLAR CELL MANUFACTURING METHOD, SOLAR CELL STRING AND SOLAR CELL MODULE
US8299350B2 (en) 2007-08-02 2012-10-30 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing the same
JP4463297B2 (en) 2007-08-07 2010-05-19 三洋電機株式会社 Solar cell module
US9136415B2 (en) 2009-04-30 2015-09-15 Mitsubishi Electric Corporation Solar battery cell
WO2011021655A1 (en) * 2009-08-19 2011-02-24 三洋電機株式会社 Solar battery, solar battery module and solar battery system
JP2011003936A (en) * 2010-09-30 2011-01-06 Sanyo Electric Co Ltd Photovoltaic module and photovolatic element
JP2012129359A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Solar cell module and solar cell
CN103262254B (en) 2010-12-21 2015-10-07 三菱电机株式会社 Solar module and manufacture method thereof
JPWO2012121348A1 (en) 2011-03-08 2014-07-17 日立化成株式会社 Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
CN202513180U (en) * 2011-03-08 2012-10-31 日立化成工业株式会社 Solar cell unit
US20120227785A1 (en) * 2011-03-08 2012-09-13 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
JP5289625B1 (en) * 2011-09-13 2013-09-11 京セラ株式会社 Solar cell module
JP5857245B2 (en) * 2011-09-29 2016-02-10 パナソニックIpマネジメント株式会社 Solar cell, solar cell module and manufacturing method thereof
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
JP5617857B2 (en) * 2012-03-06 2014-11-05 三洋電機株式会社 Manufacturing method of solar cell module
JP6015973B2 (en) * 2012-03-23 2016-10-26 パナソニックIpマネジメント株式会社 Solar cell module and manufacturing method thereof
JP5889701B2 (en) * 2012-04-06 2016-03-22 デクセリアルズ株式会社 Crystalline solar cell module and manufacturing method thereof
WO2013162720A1 (en) * 2012-04-26 2013-10-31 Applied Materials, Inc. Contact and interconnect metallization for solar cells
WO2014002247A1 (en) * 2012-06-29 2014-01-03 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
JP2013051452A (en) * 2012-12-12 2013-03-14 Mitsubishi Electric Corp Solar battery cell
TWI509818B (en) * 2013-03-20 2015-11-21 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
DE102013212845A1 (en) * 2013-07-02 2015-01-08 Solarworld Industries Sachsen Gmbh photovoltaic module
KR102053138B1 (en) 2013-09-27 2019-12-06 엘지전자 주식회사 Solar cell
EP3399556A1 (en) * 2014-07-07 2018-11-07 Lg Electronics Inc. Solar cell module
JP5906422B2 (en) * 2014-09-30 2016-04-20 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
KR20160038694A (en) 2014-09-30 2016-04-07 엘지전자 주식회사 Solar cell and solar cell panel including the same
EP3582266B1 (en) 2014-09-30 2021-01-27 Lg Electronics Inc. Solar cell and solar cell panel including the same
WO2016117180A1 (en) * 2015-01-21 2016-07-28 三菱電機株式会社 Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
JP5944081B1 (en) * 2015-01-21 2016-07-05 三菱電機株式会社 Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
KR101772542B1 (en) * 2015-04-30 2017-08-29 엘지전자 주식회사 Solar cell and solar cell panel including the same
US11532765B2 (en) 2015-04-30 2022-12-20 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same
KR20170028548A (en) * 2015-09-04 2017-03-14 엘지전자 주식회사 Solar cell module
CN108091714B (en) * 2016-11-17 2020-12-08 Lg电子株式会社 Solar cell panel
KR101915506B1 (en) 2018-02-27 2018-11-08 주성엔지니어링(주) A solar cell and a manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040727A (en) * 2011-12-30 2014-09-10 Memc新加坡私人有限公司 Bus bars for solar modules

Also Published As

Publication number Publication date
JP2000261012A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
JP3743743B2 (en) Solar cell
KR101462699B1 (en) Solar cell contact fingers and solder pad arrangement for enhanced efficiency
JP4738149B2 (en) Solar cell module
KR101258968B1 (en) Solar cell and solar cell manufacturing method
US7772486B2 (en) Photovoltaic device
US20090159114A1 (en) Photovoltaic Panel and Cell with Fine Fingers and Method of Manufacture of the Same
US20070144577A1 (en) Solar cell with physically separated distributed electrical contacts
US5430616A (en) Interconnector and electronic device element with the interconnector
JP2000164902A (en) Solar battery
US8796534B2 (en) Solar cell and assembly of a plurality of solar cells
JPH0231508B2 (en)
JP3853953B2 (en) Solar cell device
JP5819862B2 (en) SOLAR CELL HAVING SPECIAL BUSLINE SHAPE, SOLAR CELL ARRAY INCLUDING THE SOLAR CELL, AND METHOD FOR PRODUCING A SOLAR CELL
EP2605285B1 (en) Photovoltaic device
JP2001352089A (en) Thermal expansion strain preventing solar cell module
JP4953562B2 (en) Solar cell module
JPH06196744A (en) Interconnector and electronic device element with interconnector
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JP2567294Y2 (en) Solar cell module
JP4658380B2 (en) Solar cell element and solar cell module using the same
WO2019159255A1 (en) Method for manufacturing solar cell module
JP2016063129A (en) Heterojunction back contact cell and photoelectric conversion device
JP6785964B2 (en) Solar cells and solar modules
WO2018207312A1 (en) Solar cell and method for manufacturing solar cell
JP3906385B2 (en) Solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees