JP3743072B2 - Method for producing magnetic polymer particles - Google Patents

Method for producing magnetic polymer particles Download PDF

Info

Publication number
JP3743072B2
JP3743072B2 JP26935996A JP26935996A JP3743072B2 JP 3743072 B2 JP3743072 B2 JP 3743072B2 JP 26935996 A JP26935996 A JP 26935996A JP 26935996 A JP26935996 A JP 26935996A JP 3743072 B2 JP3743072 B2 JP 3743072B2
Authority
JP
Japan
Prior art keywords
magnetic
particles
polymer particles
weight
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26935996A
Other languages
Japanese (ja)
Other versions
JPH1087711A (en
Inventor
澄 笠井
雅幸 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP26935996A priority Critical patent/JP3743072B2/en
Publication of JPH1087711A publication Critical patent/JPH1087711A/en
Application granted granted Critical
Publication of JP3743072B2 publication Critical patent/JP3743072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Description

【0001】
【発明の属する技術分野】
本発明は、磁性ポリマー粒子の製造方法に関し、さらに詳しくは、診断薬担体、細菌分離単体、細胞培養担体、核酸分離精製担体、蛋白分離精製担体、固定化酵素担体、ドラッグデリバリー担体、磁性トナー、磁性インク、磁性塗料などに有用な磁性ポリマー粒子であって、粒子の表面に有用なカルボキシル基が多く存在し、表面荷電量が大きい粒子に関する。
【0002】
【従来の技術】
磁性体含有ポリマー粒子は、磁力により容易に捕集される特性に着目され、主に医学・生化学分野において、診断薬担体、細菌あるいは細胞分離担体、核酸あるいは蛋白分離・精製担体、ドラッグデリバリー担体、酵素反応担体、細胞培養担体等としての優れた実効作用が期待されている。磁性体含有ポリマー粒子の合成法として、従来知られている代表的な方法を挙げると、次のようなものがある。まず、磁性体がポリマー粒子内部に存在するタイプについては、親油化処理した磁性体を重合性モノマー中に分散し、これを懸濁重合する方法(特開昭59−221302号公報参照)、同じく親油化処理した磁性体を重合性モノマー中に分散し、ホモジナイザーで水中に均質化して重合することにより、比較的小粒子径の磁性粒子を得る方法(特公平4−3088号公報参照)、あるいは特定の官能基を有する多孔ポリマー粒子の存在下で、鉄化合物を析出させたのち酸化することにより、多孔ポリマー粒子内部に磁性体を入り込ませ、大粒径かつ均一径の磁性粒子を得る方法(特公平5−10808号公報参照)等が知られている。一方、磁性体がポリマー粒子表面に存在するタイプについては、ポリマー粒子エマルジョン中で鉄化合物を析出させたのち、ポリマー粒子表面をフェライト化する方法(特開平3−115862号公報あるいは特開平5−138009号公報参照)が知られている。しかしながら、これら従来の合成法により得られた磁性体含有ポリマー粒子を診断薬担体等に用いると、磁性体が表面に存在するタイプの粒子では磁性体の強い悪影響が現れた。また、磁性体がポリマー粒子内部に存在するタイプの粒子の場合でも、感度が大幅に低下したり、非特異的反応を示したりして、十分な実用性能が得られなかった。これは、従来の非磁性の乳化重合による粒子と比べて、懸濁重合で合成された磁性体粒子の表面に抗体が吸着あるいは化学結合するためのカルボキシル基が少ないためと考えられた。非磁性のポリマー粒子の合成においては、同一のモノマー組成、同一粒径であっても、懸濁重合での粒子は乳化重合による粒子より大幅に表面荷電量が少ない。これは、乳化重合は重合初期にミセルから形成された微小粒子や水中の水溶性オリゴマーが集合して核になってモノマーを吸収して肥大化するという粒子形成機構であるため、親水性の高い成分が粒子の表面に集合するのに対し、懸濁重合では基本的には当初のモノマー滴がそのまま重合して粒子になるとの機構であるためカルボキシル基が粒子内部に存在する量が多いためとされる。一方、磁性粒子を乳化重合で合成することが知られている(特公平3−57921)。しかし、この乳化重合による粒子は小粒径に限られ、磁気沈降が容易にできる1μm程度以上の粒子径を得ることはきわめて困難である。このように、従来の方法は、大粒径で、表面荷電量の高い磁性粒子を容易に合成することができなかった。
【0003】
【発明が解決しようとする課題】
本発明は、このような従来の問題点を解決すべき鋭意検討した結果なされたものであり、その課題は、粒子内部に磁性体を含有するタイプで懸濁重合による磁性粒子の表面のカルボキシル基を増加させることにある。
【0004】
【課題を解決するための手段】
本発明は、不飽和カルボン酸1〜20重量%を含むラジカル重合性ビニル単量体100重量部と磁性体5〜200重量部を混合し、水中に分散した後、油溶性開始剤で重合して得られる粒子を、有機性塩基および/またはアセトン、メルカプトエタノール、エリトリトール、ジチオエリトリトール、酢酸エチル、ブチルカルビトールアセテート、フェニルセロソルブからなる群から選ばれる水溶性溶剤で処理することを特徴とする磁性ポリマー粒子の製造方法を提供するものである。
【0005】
以下、本発明を詳細に説明する。本発明で使用するラジカル重合性ビニル単量体としては、例えば、(メタ)アクリル酸、イタコン酸、フマル酸、クロトン酸等の不飽和カルボン酸;スチレン、α−メチルスチレン、o−ビニルトルエン、m−ビニルトルエン、p−ビニルトルエン、ジビニルベンゼン等の芳香族ビニル化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリレート;(メタ)アクリロニトリル、シアン化ビニルデン等のシアン化ビニル化合物;塩化ビニル、塩化ビニリデン、ふっ化ビニル、ふっ化ビニリデン、テトラフルオロエチレン等のハロゲン化ビニル化合物;等を挙げることができる。本発明において、ラジカル重合性ビニル系単量体の1〜20重量%、好ましくは2〜10重量%は、不飽和カルボン酸である。不飽和カルボン酸が1重量%より少ないと、本発明での処理を行っても十分な表面荷電量が得られず、また、20重量%より多いと、重合時の安定性が劣悪になるとともに粒子の親水性が強くなりすぎ、診断薬での抗体吸着性が悪くなる。ラジカル重合性ビニル系単量体のうち、不飽和カルボン酸と共重合させる他の単量体としては、芳香族ビニル化合物および(メタ)アクリレートが好ましい。(メタ)アクリレートのうち、好ましいものとしては、メチルメタクリレート、シクロヘキシルメタクリレート、フェニルメタクリレートなどが挙げられる。不飽和カルボン酸および不飽和カルボン酸以外のラジカル重合性ビニル系単量体は、単独でまたは2種以上を混合して使用することができる。
【0006】
本発明で使用する磁性体としては、酸化鉄系磁性体が好ましいが、他の金属成分を使用することもできる。前記酸化鉄系磁性体としては、例えば Fe34、γ−Fe23、MnZnフェライト、NiZnフェライト、YFeガーネット、GaFeガーネット、Baフェライト、Srフェライト、窒化鉄等を挙げることができる。磁性体の粒子径は小さいほど、ポリマー粒子内部に均一に分散しやすい点から好ましく、特に粒子径が20nm以下の超常磁性体が好ましい。これら磁性体は、上記のラジカル重合性ビニル系単量体の一部または全部に分散して使用する。本願発明の磁性体は、カップリング剤、石ケンなどの親油化処理剤で処理し、磁性体表面を油性化することが好ましい。具体的には油性の磁性流体から取り出した磁性体が良好に使用できる。本発明において、磁性体の使用量はラジカル重合性ビニル系単量体100重量部に対し、5〜200重量部、好ましくは10〜100重量部である。磁性体の使用量が5重量部より少ないと、得られる磁性ポリマー粒子の磁性が小さく、磁性ポリマー粒子として機能を果たさない。一方、200重量部より多いと磁性ポリマー粒子表面への磁性体の露出が避けられず、診断薬担体では露出した磁性体による悪影響が生じる。
【0007】
本発明において磁性ポリマー粒子は、磁性体を分散したラジカル重合性ビニル系単量体に油溶性重合開始剤を添加し、これらを水中に分散して重合を行うことにより製造する。磁性体を分散したラジカル重合性ビニル系単量体を分散するには、ホモミキサー、コロイドミル、高圧ホモジナイザー、超音波ホモジナイザーなどが使用できる。本発明において、油溶性開始剤としては通常のものが使用でき、ベンゾイルペルオキシド、アゾビスイソブチロニトリル、ラウリルペルオキシドなどが挙げられる。その使用量も通常量で良く、重合条件、開始剤によって異なるが、ラジカル重合性ビニル単量体に対し、通常1〜5重量%である。本発明においては、重合安定剤として、アニオン系界面活性剤、ノニオン系界面活性剤、水溶性高分子、無機系懸濁保護剤などが使用できる。これらのうち、幅広い粒子径の粒子を得ることができ、正負いずれの表面荷電の粒子も合成できるという点から部分ケン化ポリビニルアルコールが良好に使用できる。重合安定剤の使用量も通常量であり、一般に界面活性剤では水に対し通常0.001〜1重量%程度、水溶性高分子、無機系懸濁保護剤では水に対し通常0.1から5重量%程度である。重合温度と時間には特に制限はなく、使用するモノマー、重合開始剤に合わせて定められる。通常は重合温度50−100℃、重合時間2−10時間である。
【0008】
本発明では、上記のように重合して得られた磁性ポリマー粒子を、さらに有機性塩基及びまたは水溶性溶剤で処理する。本発明において有機性塩基とは、アンモニアおよび、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン等の有機アミン化合物である。本発明において、水酸化ナトリウム、水酸化カリウムなどの無機系の固定塩基では、磁性ポリマー粒子内部への浸透性が不足し、本発明の効果がない。本発明において水溶性溶剤とは、水に溶解し、かつポリマーに親和性を有する有機溶剤であり、具体例としては、アセトン、メルカプトエタノール、エリトリトール、ジチオエリトリトール、酢酸エチル、ブチルカルビトールアセテート、フェニルセロソルブから選ばれるものである。ここで、有機溶剤の水への溶解度が25℃において1重量%以下であると本発明の効果が期待できない。本発明においては、磁性ポリマー粒子の水系分散液に有機性塩基および/または水溶性溶剤を添加して処理を行う。本発明において、有機性塩基の使用量は、通常、磁性ポリマー粒子の水系分散液の0.1〜20容量%、水溶性溶剤の使用料は、通常、磁性ポリマー粒子の水系分散液の1〜95容量%である。この際、磁性ポリマー粒子の水系分散液のpHはpH9以上である必要があり、好ましくはpH11以上である。処理温度にはとくに制限はないが、50℃〜80℃程度に加温することが好ましい。処理時間には制限はないが、通常1〜40時間である。処理の際の磁性ポリマー粒子の濃度は特に制限はないが、通常、0.1〜20重量%である。処理時間中に磁性ポリマー粒子が沈降する場合は、適度の撹拌を行うことが好ましい。
【0009】
本発明のように、有機性塩基および/または水系分散液で処理を行うことにより、磁性ポリマー粒子の表面荷電量が大幅に増大する。具体的には、表面荷電量は、カルボキシル基変性粒子として実用上問題なく使用できる値である0.05ミリ当量/g程度以上になる。本発明での表面荷電量は、電導度滴定で磁性ポリマー粒子の表面に存在する酸を測定して得られる値であり、ミリ当量/g(磁性ポリマー粒子1g当たりの粒子表面に存在するカルボキシル基のミリ当量数)で表す。この測定法が記載されている文献としては次のものが例示できる。J.Colloid Interface Sci., Vol.176 No.2 P.362-369 (1995)
本発明の方法で得られた磁性ポリマー粒子は、診断薬担体、細菌分離単体、細胞培養担体、核酸分離精製担体、蛋白分離精製担体、固定化酵素担体、ドラッグデリバリー担体、磁性トナー、磁性インク、磁性塗料などに使用することができる。
【0010】
以下、実施例を挙げて、本発明をさらに具体的に説明する。
【実施例】
本実施例において、粒子の平均粒子径、粒子径の範囲、表面荷電量は次のように測定した。
表面荷電量: J.Colloid Interface Sci., Vol.176 No.2 P.362-369 (1995)に記載の方法と同様の条件で測定した。
平均粒子径: 電子顕微鏡で粒子の写真を撮り、無作為に選んだ100個の粒子の粒子径を測定し、平均値を計算した粒子径の範囲:電子顕微鏡で粒子の写真を撮り、無作為に選んだ100個の粒子の粒子径を測定し、粒子の粒子径が最大のものから5番目から最小のものから5番目のものまでの範囲で表した合成例1(ベース磁性粒子の合成)
ベースの磁性粒子1を下記の懸濁重合法により合成した。市販の油性の磁性流体(タイホー工業(株)フェリコロイト゛HCー50)をアセトンに入れて磁性体を沈殿させたのち乾燥して、平均粒径10nmのフェライト系の超常磁性磁性体を得た。この磁性体30gにスチレン70g、アクリル酸ブチル20g、ジビニルベンゼン5g、メタクリル酸5gを加え均一に分散した後、ベンゾイルペルオキシド3gを溶解させた。これをポリビニルアルコール(日本合成化学(株)ゴーセノールGH17)10gを溶解した水1000mlに添加し、超音波分散機で5分間の分散を行い液滴径が0.1〜3μmの懸濁液を得た。その後、この懸濁液を窒素雰囲気下、80℃で6時間の重合を行って、重合凝固物量2重量%、重合収率98%でベース磁性粒子1を得た。得られたベース磁性粒子1の粒子径は平均径1.7μm、粒子径の範囲は約0.3〜5μm、熱天秤でのフェライト含量は22.1重量%であった。また、このベース粒子は磁石による磁気沈降性が良好であるが、メタクリル酸を単量体中5重量%と多く使用しているにもかかわらず、表面荷電量は0.002ミリ当量/gと少ないものであった。
合成例2および3合成例2ではメタクリル酸を1g、スチレンを74g、合成例3ではメタクリル酸を20g、スチレンを55gとするほかは合成例1と同様にして、ベース磁性粒子2、ベース磁性粒子3を得た。ベース磁性粒子2では重合凝固物量2重量%、重合収率97%、平均径1.5μm、表面荷電量0.002ミリ当量/gであった。ベース磁性粒子3は、重合凝固物量23重量%、重合収率98%、平均径3.5μm、表面荷電量0.008ミリ当量/gであった。ベース磁性粒子3は重合安定性が非常に悪く、また、大量にメタクリル酸を使用したにもかかわらず表面荷電量が低いままであった。
【0011】
実施例1(磁性粒子の処理)
合成例1のベース磁性粒子1の水分散液10g(固形分で1g)に1重量%アンモニア水を1g入れ、分散液のpHを12.5とした後、これを密栓して60℃で10時間ゆるく振とうして処理を行った。冷却後、0.5N硫酸で中和してpH7.5とし、磁性ポリマー粒子を4回水で洗浄・再分散し、アンモニア処理による実施例1の磁性粒子を得た。実施例1の粒子は磁性体含量、粒子径、粒子径分布はベース磁性粒子1と変わりがないが、表面荷電量は0.125ミリ当量/gと大幅に上昇した。
実施例2〜12および比較例1〜6表1に示すベース磁性粒子および処理剤を用いた以外は、実施例1と同様にして磁性ポリマー粒子を得た。これらの処理において、有機性塩基なしで水溶性溶剤のみで処理する場合は、系を0.5Nの水酸化ナトリウムでpH12に調整して行った。これらの表面荷電量の結果を表1に示す。実施例11は表面荷電量の上昇が見られるが、ベース磁性粒子の重合時のカルボン酸基含有単量体が少ないために本発明の処理を行っても表面荷電量の上昇が少なかった。実施例12では表面荷電量が上昇したが、処理後の粒子が多孔性になった。
【0012】
【表1】

Figure 0003743072
【0013】
応用例実施例1で得られた磁性ポリマー粒子と、処理前のベース磁性粒子1の診断薬用粒子としての可能性を見るために、アビジンを磁性ポリマー粒子のカルボキシル基と化学結合する操作を行ない、アイソトープでラベルしたビオチンを用いて結合量を評価した。操作は次の様に行った。
〔粒子へのアビジンの化学結合〕磁性ポリマー粒子濃度10重量%の水分散液1mlにアビジン500pmolと1-エチル、3(3-ジメチルアミノプロピル)カルボジイミド塩酸塩100mgを加え、60℃で8時間振とうして、粒子上にアビジンを化学結合させた。その後、磁石で粒子を分離し、1mlの生理食塩水で3回洗浄した。
〔粒子に結合したアビジン量の測定〕アビジンが結合した磁性ポリマー粒子濃度1重量%の粒子分散液100μl×5本に、末端がビオチンで修飾され、もう一方の末端が32Pでラベルされた合成DNA(塩基数30)をそれぞれ10、100、200、400、800pmolを添加し、反応系の濃度が1.5M/Lになるように5M/LのNaCl水溶液を加え、室温で20分間粒子に結合しているアビジンとビオチンの結合反応をさせた。その後、磁石で磁性ポリマー粒子を分離除去して、磁性ポリマー粒子に結合したビオチンを系から除いた。反応前後のRIカウントから反応したビオチン量を算出し、飽和反応量から磁性ポリマー粒子上に結合されてたアビジン量を求めた。同様に、実施例1で得られた磁性ポリマー粒子の代わりに、合成例1で得られたベース磁性粒子を用いた他は、上記と同様にして粒子にアビジンを結合し、アビジン量を測定した。その結果、実施例1の処理前のベース磁性粒子のアビジン結合量は粒子1mg当たり5pmolであったのに対し、本発明の処理を行った実施例1の粒子は粒子1mg当たり250pmolと大幅に増加していた。
【0014】
【発明の効果】
本発明の製造方法により得られる磁性粒子は、従来高い表面荷電量の粒子を得ることが困難であった懸濁重合による磁性ポリマー粒子において、重合法を変えずに粒子の後処理によって実用上問題のないレベルまで表面荷電量を上昇させることができた。このため、本発明の磁性粒子は表面が安定かつ親水性で、表面の増強されたカルボキシル基を利用して抗体蛋白、酵素、核酸プローブ、蛍光色素、薬剤など各種の機能物質を結合させることができる。このため、本発明の磁性粒子は生化学および医学関連を含む幅広い技術分野において極めて好適に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing magnetic polymer particles, and more specifically, a diagnostic agent carrier, a bacterial isolation simple substance, a cell culture carrier, a nucleic acid separation purification carrier, a protein separation purification carrier, an immobilized enzyme carrier, a drug delivery carrier, a magnetic toner, The present invention relates to magnetic polymer particles useful for magnetic inks, magnetic paints, etc., which have many useful carboxyl groups on the surface of the particles and have a large surface charge.
[0002]
[Prior art]
The magnetic substance-containing polymer particles have been focused on the property of being easily collected by magnetic force, and mainly in the medical and biochemical fields, diagnostic carrier, bacteria or cell separation carrier, nucleic acid or protein separation / purification carrier, drug delivery carrier In addition, excellent effective action as an enzyme reaction carrier, a cell culture carrier and the like is expected. As a method for synthesizing the magnetic substance-containing polymer particles, typical methods conventionally known include the following. First, for the type in which the magnetic substance is present inside the polymer particles, a method of dispersing the lipophilic magnetic substance in a polymerizable monomer and subjecting it to suspension polymerization (see JP-A-59-221302), Similarly, a method of obtaining magnetic particles having a relatively small particle diameter by dispersing a lipophilic magnetic substance in a polymerizable monomer, homogenizing it in water and polymerizing it (see Japanese Patent Publication No. 4-3088) Alternatively, by depositing an iron compound in the presence of porous polymer particles having a specific functional group and then oxidizing, a magnetic substance is introduced into the porous polymer particles to obtain magnetic particles having a large particle size and a uniform diameter. A method (refer to Japanese Patent Publication No. 5-10808) is known. On the other hand, for the type in which the magnetic substance is present on the surface of the polymer particles, a method of ferritizing the surface of the polymer particles after depositing an iron compound in the polymer particle emulsion (Japanese Patent Laid-Open No. 3-115862 or Japanese Patent Laid-Open No. 5-138009). No. gazette) is known. However, when the magnetic substance-containing polymer particles obtained by these conventional synthesis methods are used as a diagnostic agent carrier or the like, a strong adverse effect of the magnetic substance appears in the type of particles having the magnetic substance on the surface. Further, even in the case of the type of particles in which the magnetic substance is present inside the polymer particles, the sensitivity is greatly reduced or non-specific reaction is exhibited, and sufficient practical performance cannot be obtained. This was thought to be because the number of carboxyl groups for antibody adsorption or chemical bonding on the surface of magnetic particles synthesized by suspension polymerization was small compared to conventional non-magnetic emulsion polymerization particles. In the synthesis of non-magnetic polymer particles, even in the same monomer composition and the same particle size, particles in suspension polymerization have significantly less surface charge than particles by emulsion polymerization. This is because emulsion polymerization is a particle-forming mechanism in which microparticles formed from micelles in the early stage of polymerization and water-soluble oligomers in water gather to become nuclei and absorb the monomer to enlarge, making it highly hydrophilic. In contrast to the components gathering on the particle surface, suspension polymerization is basically a mechanism in which the initial monomer droplets are polymerized as they are to form particles, so the amount of carboxyl groups present inside the particles is large. Is done. On the other hand, it is known to synthesize magnetic particles by emulsion polymerization (Japanese Patent Publication No. 3-57921). However, the particles obtained by this emulsion polymerization are limited to a small particle size, and it is extremely difficult to obtain a particle size of about 1 μm or more that can facilitate magnetic precipitation. Thus, the conventional method could not easily synthesize magnetic particles having a large particle size and a high surface charge.
[0003]
[Problems to be solved by the invention]
The present invention was made as a result of diligent investigations that should solve such conventional problems, and the problem was that the carboxyl group on the surface of the magnetic particle by suspension polymerization in a type containing a magnetic substance inside the particle. Is to increase.
[0004]
[Means for Solving the Problems]
In the present invention, 100 parts by weight of a radically polymerizable vinyl monomer containing 1 to 20% by weight of an unsaturated carboxylic acid and 5 to 200 parts by weight of a magnetic material are mixed, dispersed in water, and then polymerized with an oil-soluble initiator. The particles obtained by treatment with an organic base and / or a water-soluble solvent selected from the group consisting of acetone, mercaptoethanol, erythritol, dithioerythritol, ethyl acetate, butyl carbitol acetate, and phenyl cellosolve A method for producing polymer particles is provided.
[0005]
Hereinafter, the present invention will be described in detail. Examples of the radical polymerizable vinyl monomer used in the present invention include unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, fumaric acid, and crotonic acid; styrene, α-methylstyrene, o-vinyltoluene, Aromatic vinyl compounds such as m-vinyltoluene, p-vinyltoluene, divinylbenzene; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (Meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene Glycol di (meth) acrylate, (Meth) acrylates such as methylolpropane tri (meth) acrylate; vinyl cyanide compounds such as (meth) acrylonitrile and vinylidene cyanide; halogenated vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, etc. Vinyl compounds; and the like. In the present invention, 1 to 20% by weight, preferably 2 to 10% by weight of the radical polymerizable vinyl monomer is an unsaturated carboxylic acid. If the amount of unsaturated carboxylic acid is less than 1% by weight, a sufficient amount of surface charge cannot be obtained even if the treatment according to the present invention is performed, and if it is more than 20% by weight, the stability during polymerization becomes poor. The hydrophilicity of the particles becomes too strong, and the antibody adsorptivity with the diagnostic agent becomes poor. Of the radical polymerizable vinyl monomers, aromatic vinyl compounds and (meth) acrylates are preferable as other monomers copolymerized with the unsaturated carboxylic acid. Among (meth) acrylates, preferred are methyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate and the like. The radically polymerizable vinyl monomers other than unsaturated carboxylic acid and unsaturated carboxylic acid can be used alone or in admixture of two or more.
[0006]
The magnetic material used in the present invention is preferably an iron oxide magnetic material, but other metal components can also be used. Examples of the iron oxide magnetic material include Fe 3 O 4 , γ-Fe 2 O 3 , MnZn ferrite, NiZn ferrite, YFe garnet, GaFe garnet, Ba ferrite, Sr ferrite, and iron nitride. As the particle diameter of the magnetic substance is small, preferably from the viewpoint of uniformly easily dispersed within the polymer particles, in particular particle size preferably less superparamagnetic material 20 nm. These magnetic materials are used by being dispersed in part or all of the above radical polymerizable vinyl monomers. The magnetic body of the present invention is preferably treated with a lipophilic agent such as a coupling agent or soap to make the surface of the magnetic body oily. Specifically, a magnetic material taken out from an oily magnetic fluid can be used satisfactorily. In this invention, the usage-amount of a magnetic body is 5-200 weight part with respect to 100 weight part of radically polymerizable vinylic monomers, Preferably it is 10-100 weight part. When the amount of the magnetic substance used is less than 5 parts by weight, the magnetic polymer particles obtained are small in magnetism and do not function as magnetic polymer particles. On the other hand, when the amount is more than 200 parts by weight, exposure of the magnetic substance to the surface of the magnetic polymer particles is unavoidable, and the diagnostic agent carrier has an adverse effect due to the exposed magnetic substance.
[0007]
In the present invention, the magnetic polymer particles are produced by adding an oil-soluble polymerization initiator to a radical polymerizable vinyl monomer in which a magnetic material is dispersed, and dispersing these in water for polymerization. A homomixer, a colloid mill, a high-pressure homogenizer, an ultrasonic homogenizer, or the like can be used to disperse the radical polymerizable vinyl monomer in which the magnetic material is dispersed. In the present invention, ordinary oil-soluble initiators can be used, and examples thereof include benzoyl peroxide, azobisisobutyronitrile, and lauryl peroxide. The amount used may be a normal amount and varies depending on the polymerization conditions and the initiator, but is usually 1 to 5% by weight based on the radical polymerizable vinyl monomer. In the present invention, anionic surfactants, nonionic surfactants, water-soluble polymers, inorganic suspension protective agents, and the like can be used as the polymerization stabilizer. Of these, partially saponified polyvinyl alcohol can be used favorably because particles having a wide range of particle diameters can be obtained, and particles having both positive and negative surface charges can be synthesized. The amount of the polymerization stabilizer used is also a normal amount. Generally, the surfactant is usually about 0.001 to 1% by weight with respect to water, and the water-soluble polymer and the inorganic suspension protective agent are usually about 0.1 to 5% by weight with respect to water. It is. There is no restriction | limiting in particular in superposition | polymerization temperature and time, It determines according to the monomer and polymerization initiator to be used. Usually, the polymerization temperature is 50-100 ° C. and the polymerization time is 2-10 hours.
[0008]
In the present invention, the magnetic polymer particles obtained by polymerization as described above are further treated with an organic base and / or a water-soluble solvent. In the present invention, the organic base is ammonia and organic amine compounds such as ethanolamine, diethanolamine, triethanolamine, dimethylamine, diethylamine, and trimethylamine. In the present invention, inorganic fixed bases such as sodium hydroxide and potassium hydroxide lack the permeability to the inside of the magnetic polymer particles and do not have the effect of the present invention. In the present invention, the water-soluble solvent is an organic solvent that is soluble in water and has an affinity for polymers. Specific examples include acetone, mercaptoethanol, erythritol, dithioerythritol, ethyl acetate, butyl carbitol acetate, phenyl It is chosen from cellosolve. Here, if the solubility of the organic solvent in water is 1% by weight or less at 25 ° C., the effect of the present invention cannot be expected. In the present invention, the treatment is performed by adding an organic base and / or a water-soluble solvent to the aqueous dispersion of magnetic polymer particles. In the present invention, the amount of organic base used is usually 0.1 to 20% by volume of the aqueous dispersion of magnetic polymer particles, and the amount of water-soluble solvent used is usually 1 to 95% of the aqueous dispersion of magnetic polymer particles. %. At this time, the pH of the aqueous dispersion of magnetic polymer particles needs to be 9 or more, and preferably 11 or more. Although there is no restriction | limiting in particular in processing temperature, It is preferable to heat to about 50 to 80 degreeC. Although there is no restriction | limiting in processing time, Usually, it is 1 to 40 hours. The concentration of the magnetic polymer particles during the treatment is not particularly limited, but is usually 0.1 to 20% by weight. When the magnetic polymer particles settle during the treatment time, it is preferable to perform moderate stirring.
[0009]
By performing the treatment with an organic base and / or an aqueous dispersion as in the present invention, the surface charge amount of the magnetic polymer particles is greatly increased. Specifically, the surface charge amount is about 0.05 meq / g or more, which is a value that can be used practically without any problem as the carboxyl group-modified particles. The surface charge amount in the present invention is a value obtained by measuring the acid present on the surface of the magnetic polymer particle by conductometric titration, and is equivalent to milliequivalent / g (carboxyl group present on the particle surface per 1 g of the magnetic polymer particle). Of milliequivalents). The following can be exemplified as documents describing this measurement method. J. Colloid Interface Sci., Vol.176 No.2 P.362-369 (1995)
The magnetic polymer particles obtained by the method of the present invention are a diagnostic agent carrier, a bacterial isolation simple substance, a cell culture carrier, a nucleic acid separation and purification carrier, a protein separation and purification carrier, an immobilized enzyme carrier, a drug delivery carrier, a magnetic toner, a magnetic ink, It can be used for magnetic paints.
[0010]
Hereinafter, the present invention will be described more specifically with reference to examples.
【Example】
In this example, the average particle diameter, the particle diameter range, and the surface charge amount of the particles were measured as follows.
Surface charge amount: Measured under the same conditions as described in J. Colloid Interface Sci., Vol. 176 No. 2 P.362-369 (1995).
Average particle size: Take a photo of the particle with an electron microscope, measure the particle size of 100 randomly selected particles, and calculate the average value. Range of particle size: Take a photo of the particle with an electron microscope, random Example 1 (Synthesis of base magnetic particles) in which the particle diameters of 100 particles selected in the above are measured and expressed in the range from the largest to the fifth particle from the largest to the fifth.
Base magnetic particles 1 were synthesized by the following suspension polymerization method. A commercially available oil-based magnetic fluid (Teiho Kogyo Co., Ltd. Ferricolide HC-50) was put in acetone to precipitate the magnetic material and then dried to obtain a ferrite-based superparamagnetic magnetic material having an average particle diameter of 10 nm. To 30 g of this magnetic material, 70 g of styrene, 20 g of butyl acrylate, 5 g of divinylbenzene and 5 g of methacrylic acid were added and dispersed uniformly, and then 3 g of benzoyl peroxide was dissolved. This was added to polyvinyl alcohol (Nippon Synthetic Chemical Industry Co., Gore Senoru GH17) water 1000ml were dissolved 10 g, droplet size was dispersed for 5 minutes by an ultrasonic dispersing machine a suspension of 0.1~3μm Obtained. Thereafter, this suspension was polymerized at 80 ° C. for 6 hours under a nitrogen atmosphere to obtain base magnetic particles 1 with a polymerized coagulum amount of 2% by weight and a polymerization yield of 98%. The obtained base magnetic particles 1 had an average particle size of 1.7 μm, a particle size range of about 0.3 to 5 μm, and a ferrite content of 22.1% by weight on a thermobalance. In addition, this base particle has good magnetic precipitation with a magnet, but the surface charge amount is as low as 0.002 meq / g despite the fact that methacrylic acid is used in a large amount of 5% by weight in the monomer. Met.
Synthetic Examples 2 and 3 In Synthetic Example 2, 1 g of methacrylic acid, 74 g of styrene, and in Synthetic Example 3, 20 g of methacrylic acid and 55 g of styrene, the same as in Synthetic Example 1, Base Magnetic Particle 2 and Base Magnetic Particle 3 was obtained. In the base magnetic particle 2, the amount of polymerized coagulum was 2% by weight, the polymerization yield was 97%, the average diameter was 1.5 μm, and the surface charge amount was 0.002 meq / g. The base magnetic particle 3 had a polymerized coagulated substance amount of 23% by weight, a polymerization yield of 98%, an average diameter of 3.5 μm, and a surface charge of 0.008 meq / g. The base magnetic particles 3 had very poor polymerization stability, and the surface charge amount remained low despite the use of a large amount of methacrylic acid.
[0011]
Example 1 (Treatment of magnetic particles)
1 g of 1% by weight ammonia water was added to 10 g of an aqueous dispersion of the base magnetic particles 1 of Synthesis Example 1 (1 g in solid content) to adjust the pH of the dispersion to 12.5, and this was sealed and sealed at 60 ° C. Shake gently for the treatment. After cooling, the mixture was neutralized with 0.5N sulfuric acid to pH 7.5, and the magnetic polymer particles were washed and redispersed with water four times to obtain magnetic particles of Example 1 by ammonia treatment. The particles of Example 1 had the same magnetic substance content, particle size, and particle size distribution as the base magnetic particles 1, but the surface charge increased significantly to 0.125 meq / g.
Examples 2-12 and Comparative Examples 1-6 Magnetic polymer particles were obtained in the same manner as in Example 1 except that the base magnetic particles and the treating agent shown in Table 1 were used. In these treatments, when treatment was carried out only with a water-soluble solvent without an organic base, the system was adjusted to pH 12 with 0.5N sodium hydroxide. Table 1 shows the results of these surface charge amounts. In Example 11, the surface charge amount increased, but since the amount of carboxylic acid group-containing monomers during polymerization of the base magnetic particles was small, the surface charge amount increased little even when the treatment of the present invention was performed. In Example 12, the surface charge amount increased, but the treated particles became porous.
[0012]
[Table 1]
Figure 0003743072
[0013]
Application Example In order to see the possibility of the magnetic polymer particle obtained in Example 1 and the base magnetic particle 1 before treatment as a diagnostic drug particle, an operation of chemically binding avidin to the carboxyl group of the magnetic polymer particle was performed. The amount of binding was evaluated using biotin labeled with an isotope. The operation was performed as follows.
[Chemical bonding of avidin to particles] Add 500 pmol of avidin and 100 mg of 1-ethyl, 3 (3-dimethylaminopropyl) carbodiimide hydrochloride to 1 ml of an aqueous dispersion containing 10% by weight of magnetic polymer particles, and shake at 60 ° C. for 8 hours. Thus, avidin was chemically bonded onto the particles. Thereafter, the particles were separated with a magnet and washed with 1 ml of physiological saline three times.
[Measurement of the amount of avidin bound to the particle] Synthesis in which 100 μl × 5 particle dispersions of magnetic polymer particles having a concentration of 1% by weight of avidin were modified with biotin at the other end and labeled with 32 P at the other end Add 10, 100, 200, 400, and 800 pmol of DNA (30 bases), respectively, and add a 5 M / L NaCl aqueous solution so that the concentration of the reaction system is 1.5 M / L. The binding reaction between the bound avidin and biotin was carried out. Thereafter, the magnetic polymer particles were separated and removed with a magnet, and biotin bound to the magnetic polymer particles was removed from the system. The amount of biotin reacted was calculated from the RI count before and after the reaction, and the amount of avidin bound on the magnetic polymer particles was determined from the saturated reaction amount. Similarly, avidin was bound to the particles in the same manner as above except that the base magnetic particles obtained in Synthesis Example 1 were used instead of the magnetic polymer particles obtained in Example 1, and the amount of avidin was measured. . As a result, the avidin binding amount of the base magnetic particles before the treatment of Example 1 was 5 pmol per 1 mg of the particles, whereas the particles of Example 1 treated with the present invention greatly increased to 250 pmol per 1 mg of the particles. Was.
[0014]
【The invention's effect】
The magnetic particles obtained by the production method of the present invention are practically problematic due to the post-treatment of the particles without changing the polymerization method in the case of magnetic polymer particles by suspension polymerization, which has conventionally been difficult to obtain particles with a high surface charge. The surface charge amount could be increased to a level with no noise. For this reason, the magnetic particles of the present invention have a stable and hydrophilic surface, and can bind various functional substances such as antibody proteins, enzymes, nucleic acid probes, fluorescent dyes, drugs using the enhanced surface carboxyl group. it can. For this reason, the magnetic particles of the present invention can be used very suitably in a wide range of technical fields including biochemistry and medicine.

Claims (3)

不飽和カルボン酸1〜20重量%を含むラジカル重合性ビニル単量体100重量部と磁性体5〜200重量部を混合し、水中に分散した後、油溶性開始剤で重合して得られる粒子を、有機性塩基および/またはアセトン、メルカプトエタノール、エリトリトール、ジチオエリトリトール、酢酸エチル、ブチルカルビトールアセテート、フェニルセロソルブからなる群から選ばれる水溶性溶剤で処理することを特徴とする磁性ポリマー粒子の製造方法。Particles obtained by mixing 100 parts by weight of a radically polymerizable vinyl monomer containing 1 to 20% by weight of an unsaturated carboxylic acid and 5 to 200 parts by weight of a magnetic material, dispersing in water, and then polymerizing with an oil-soluble initiator. A magnetic polymer particle characterized by treating an organic base with a water-soluble solvent selected from the group consisting of an organic base and / or acetone, mercaptoethanol, erythritol, dithioerythritol, ethyl acetate, butyl carbitol acetate, and phenyl cellosolve Method. 磁性体が粒子径20nm以下であることを特徴とする請求項1記載の磁性ポリマー粒子の製造方法。2. The method for producing magnetic polymer particles according to claim 1, wherein the magnetic substance has a particle diameter of 20 nm or less. 有機性塩基が有機アミン化合物およびアンモニアから選ばれることを特徴とする請求項1記載の磁性体ポリマー粒子の製造方法。2. The method for producing magnetic polymer particles according to claim 1, wherein the organic base is selected from an organic amine compound and ammonia.
JP26935996A 1996-09-19 1996-09-19 Method for producing magnetic polymer particles Expired - Lifetime JP3743072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26935996A JP3743072B2 (en) 1996-09-19 1996-09-19 Method for producing magnetic polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26935996A JP3743072B2 (en) 1996-09-19 1996-09-19 Method for producing magnetic polymer particles

Publications (2)

Publication Number Publication Date
JPH1087711A JPH1087711A (en) 1998-04-07
JP3743072B2 true JP3743072B2 (en) 2006-02-08

Family

ID=17471293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26935996A Expired - Lifetime JP3743072B2 (en) 1996-09-19 1996-09-19 Method for producing magnetic polymer particles

Country Status (1)

Country Link
JP (1) JP3743072B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017400A (en) * 2000-04-13 2002-01-22 Jsr Corp Amine-immobilized magnetic particle
JP4422982B2 (en) * 2003-06-24 2010-03-03 日立マクセル株式会社 Magnetic carrier for binding biological materials
JP4811565B2 (en) * 2005-03-31 2011-11-09 Jsr株式会社 Magnetic particle having porous surface and method for producing the same, biochemical carrier, and particle for binding biotins
JP2006307126A (en) * 2005-03-31 2006-11-09 Jsr Corp Magnetic particle with porous surface and method for producing the same, and carrier for biochemical use
DE102005058979A1 (en) * 2005-12-09 2007-06-21 Qiagen Gmbh Magnetic polymer particles
JP5277540B2 (en) 2007-01-09 2013-08-28 富士ゼロックス株式会社 Magnetic polymer particles, production method thereof, water dispersion, cartridge, and image forming apparatus
JP4716051B2 (en) * 2008-02-20 2011-07-06 Tdk株式会社 Manufacturing method of sintered magnet
JP2009229736A (en) 2008-03-21 2009-10-08 Fuji Xerox Co Ltd Magnetic polymer particle for magnetic latent image development, its manufacturing method, liquid development agent for magnetic latent image, cartridge, and image forming device
JP5351724B2 (en) * 2009-11-30 2013-11-27 シスメックス株式会社 Method for detecting core protein of hepatitis C virus and reagent kit for detection
JP6721495B2 (en) * 2016-12-05 2020-07-15 大日精化工業株式会社 Crosslinked acrylic fine particles and method for producing the same
JPWO2020196786A1 (en) * 2019-03-26 2020-10-01

Also Published As

Publication number Publication date
JPH1087711A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP3627342B2 (en) Magnetic polymer particles and method for producing the same
JP4980532B2 (en) Composite nanospheres and their complexes with biomolecules
JP3738847B2 (en) Method for producing diagnostic particles
JP4272513B2 (en) Composite particles, derivatized conjugates, methods for their production and uses
JP3743072B2 (en) Method for producing magnetic polymer particles
US20050014027A1 (en) Superparamagnetic pearl polymers
WO2009085016A1 (en) Nanostructures, methods of preparing and uses thereof
JP3646461B2 (en) Magnetic polymer particles and method for producing the same
JP2008164488A (en) Magnetic particle, its producing method, and carrier for biochemistry
US5976426A (en) Latex of calibrated monodisperse magnetizable microspheres, process of preparation and use of the said latex in chemistry or in biology
JP4593146B2 (en) Method for producing magnetic inclusion particles
JP5152884B2 (en) Method for producing polymer-coated ferromagnetic particles and polymer-coated ferromagnetic particles
JPH08176212A (en) Method of surface-modifying magnetic particle
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
CN114093586A (en) Polymer-coated magnetic microsphere and preparation method thereof
EP2000484B1 (en) Process for producing polymer-coated ferromagnetic particle, and polymer-coated ferromagnetic particle
JPH11191510A (en) Magnetic polymer article, its manufacturing and diagnostic medicine
JP2006131771A (en) Polymer-coated magnetic bead and method for producing the same
JP4788056B2 (en) Virus concentration material
JP4485823B2 (en) Magnetic inclusion particles and immunoassay particles
JP3637692B2 (en) Diagnostic carrier
JP2001158800A (en) Avidin particle
JP4404208B2 (en) Magnetic particle dispersion and diagnostic particle
CN112246196B (en) Preparation method of functionalized magnetic microsphere, magnetic microsphere and application
CN115975252B (en) Preparation method of magnetic polymer microsphere with double-layer shell structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term