JP3742931B2 - Humidity controller heat exchanger - Google Patents

Humidity controller heat exchanger Download PDF

Info

Publication number
JP3742931B2
JP3742931B2 JP2004101727A JP2004101727A JP3742931B2 JP 3742931 B2 JP3742931 B2 JP 3742931B2 JP 2004101727 A JP2004101727 A JP 2004101727A JP 2004101727 A JP2004101727 A JP 2004101727A JP 3742931 B2 JP3742931 B2 JP 3742931B2
Authority
JP
Japan
Prior art keywords
adsorbent
air
heat exchanger
space
humidity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101727A
Other languages
Japanese (ja)
Other versions
JP2005283052A (en
Inventor
裕彦 松下
敬久 末岡
周司 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004101727A priority Critical patent/JP3742931B2/en
Priority to EP05727663A priority patent/EP1736725A4/en
Priority to AU2005227438A priority patent/AU2005227438B2/en
Priority to KR1020067022601A priority patent/KR100837501B1/en
Priority to US10/594,598 priority patent/US7717163B2/en
Priority to PCT/JP2005/005963 priority patent/WO2005095882A1/en
Publication of JP2005283052A publication Critical patent/JP2005283052A/en
Application granted granted Critical
Publication of JP3742931B2 publication Critical patent/JP3742931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a latent heat treatment capacity without increasing a thickness of a support layer by more than necessity by increasing the adhesiveness of a fin and the support layer. <P>SOLUTION: In this heat exchanger 47, 49 of a humidity controller wherein an adsorbent is held on a surface of a group of fins 59 having a number of fins 57, the adsorbent is heated or cooled by the refrigerant flowing inside of the group of fins 59, and the moisture in the air flowing outside of the group of fins 59 is adsorbed or desorbed by the adsorbent to control the humidity of the air, the support layer on the surface of the fins 57 of the adsorbent is composed of a dried solidified layer of an organic water emulsion binder in which the adsorbent is mixed. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は、吸着剤と冷凍サイクルとを利用して空気の湿度調節を行う調湿装置の熱交換器に関するものである。   The present invention relates to a heat exchanger of a humidity control apparatus that adjusts air humidity using an adsorbent and a refrigeration cycle.

特許文献1には、乾式除湿装置の熱交換部材として、銅管の周囲に板状のフィンを一体に外嵌合し、これら銅管及びフィンの表面に空気中の水分の吸着と空気中への水分の脱離とを行う吸着剤を担持させ、銅管内を流れる冷媒によって上記吸着剤の加熱や冷却を行うようにしたものが開示されている。
特開平7−265649号公報(第2頁、図1)
In Patent Document 1, as a heat exchange member of a dry dehumidifier, plate-like fins are integrally fitted around a copper tube, and moisture in the air is adsorbed onto the surfaces of the copper tube and the fin and into the air. An adsorbent that desorbs water is supported, and the adsorbent is heated and cooled by a refrigerant flowing in a copper tube.
Japanese Patent Laid-Open No. 7-265649 (second page, FIG. 1)

上記の特許文献1のように、フィン表面に吸着剤を担持させることにより潜熱処理能力を高めることができるが、潜熱処理能力をさらに高めるために吸着剤のフィン表面の担持量を増加させると、担持層の厚みが増大してフィンと担持層との密着性が低下する。特に、フィンと担持層とは熱膨張率の差に大きなひらきがあることから、加熱・冷却の繰り返しにより急激な温度変化が起こる環境下では密着性の問題は深刻である。一方、吸着剤のフィン表面への担持量を減少させると、所定の潜熱処理能力を確保するには熱交換部材が大型化してしまう。   As described in Patent Document 1, the latent heat treatment capability can be increased by supporting the adsorbent on the fin surface, but in order to further increase the latent heat treatment capability, the amount of the adsorbent fin surface supported is increased. The thickness of the support layer increases and the adhesion between the fin and the support layer decreases. In particular, since there is a large difference in the difference in thermal expansion coefficient between the fin and the support layer, the problem of adhesion is serious in an environment where a rapid temperature change occurs due to repeated heating and cooling. On the other hand, if the amount of the adsorbent supported on the fin surface is reduced, the heat exchange member will be enlarged in order to ensure a predetermined latent heat treatment capability.

この発明はかかる点に鑑みてなされたものであり、その目的とするところは、フィンと担持層との密着性を高め、担持層の厚みを必要以上に厚くすることなく潜熱処理能力を高めることである。   The present invention has been made in view of the above points, and the object of the invention is to improve the adhesion between the fin and the support layer and to increase the latent heat treatment capability without increasing the thickness of the support layer more than necessary. It is.

上記の目的を達成するため、この発明は、吸着剤を担持するバインダの種類を特定したことを特徴とする。   In order to achieve the above object, the present invention is characterized in that the type of the binder carrying the adsorbent is specified.

具体的には、この発明は、多数のフィン(57)を有する本体の表面に吸着剤が担持され、上記本体の内部を流れる冷媒によって吸着剤を加熱又は冷却することで上記本体の外側を流れる空気中の水分を吸着剤で吸着又は脱着して空気の湿度を調節する調湿装置の熱交換器を対象とし、次のような解決手段を講じた。   Specifically, in the present invention, an adsorbent is supported on the surface of a main body having a large number of fins (57), and the adsorbent is heated or cooled by a refrigerant flowing inside the main body, and flows outside the main body. The following solution was taken for a heat exchanger of a humidity control device that adjusts the humidity of the air by adsorbing or desorbing moisture in the air with an adsorbent.

すなわち、請求項1に記載の発明は、上記吸着剤のフィン(57)表面の担持層は、吸着剤が混入された有機系の水エマルジョンバインダの乾燥固化層からなり、上記水エマルジョンバインダの固形分と吸着剤との重量配合比が、1:3以上1:8以下であることを特徴とする。 That is, a first aspect of the present invention, carrier layer of the fins (57) the surface of the adsorbent, Ri Do from drying and solidifying layer of water emulsion binder organic adsorbent is mixed, the water emulsion binder ratio by weight of the solids and the adsorbent is 1: 3 to 1: 8, characterized in der Rukoto below.

請求項2に記載の発明は、請求項1に記載の発明において、吸着剤は、ゼオライト、シリカゲル又はその混合物であり、水エマルジョンバインダは、ウレタン系樹脂、アクリル系樹脂又はエチレン酢酸ビニル共重合体であることを特徴とする。 The invention according to claim 2 is the invention according to claim 1, wherein the adsorbent is zeolite, silica gel or a mixture thereof, and the water emulsion binder is a urethane resin, an acrylic resin or an ethylene vinyl acetate copolymer. It is characterized by being.

請求項3に記載の発明は、請求項1又は2に記載の発明において、担持層の厚みが50μm以上500μm以下であることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, characterized in that the thickness of the support layer is not less than 50 μm and not more than 500 μm.

請求項1に係る発明によれば、吸着剤のフィン(57)表面の担持層として、吸着剤が混入された有機系の水エマルジョンバインダの乾燥固化層を採用したので、無機系バインダの乾燥固化層に比べて柔軟性があり、急激な温度変化や衝撃に対して強くて剥離し難く、良好な密着性を得ることができる。したがって、単位面積当たりの吸着剤の混入量を多くしても密着性を良好に確保でき、担持層の厚みを必要以上に厚くしたり、熱交換器(47,49)を大型化することなく潜熱処理能力を高めることができる。   According to the first aspect of the present invention, since the dry solidified layer of the organic water emulsion binder mixed with the adsorbent is employed as the support layer on the surface of the fin (57) of the adsorbent, the dry solidification of the inorganic binder is performed. It is more flexible than the layer, is strong against rapid temperature changes and impacts, is difficult to peel off, and can provide good adhesion. Therefore, even if the amount of adsorbent mixed per unit area is increased, good adhesion can be secured, without increasing the thickness of the support layer more than necessary or increasing the size of the heat exchanger (47, 49). The latent heat treatment ability can be increased.

また、水エマルジョンバインダの固形分と吸着剤との重量配合比を1:3以上1:8以下にしたので、広範囲な温度変化に対しても十分に密着性を確保することができる。 Moreover, since the weight blending ratio of the solid content of the water emulsion binder and the adsorbent is set to 1: 3 or more and 1: 8 or less, sufficient adhesion can be ensured even for a wide range of temperature changes.

請求項3に係る発明によれば、担持層の厚みを50μm以上500μm以下にしたので、圧力損失を低減してファン効率の向上及びファン騒音の低減を達成することができる。   According to the invention of claim 3, since the thickness of the support layer is set to 50 μm or more and 500 μm or less, it is possible to reduce the pressure loss and improve the fan efficiency and the fan noise.

以下、この発明の実施の形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はこの発明の実施形態に係る熱交換器が適用された調湿装置の構成を概略的に示し、図1(a)は図1(b)のX−X線における断面図、図1(b)は内部を見せた状態の平面図であって図で下側が正面側である。図1(c)は図1(b)のY−Y線における断面図である。この調湿装置は矩形箱状のケーシング(1)を備え、ケーシング(1)内部は、前後に延びる第1仕切板(3)で収納容積の大きい左側の第1空間(5)と、収納容積の小さい右側の第2空間(7)とに区画されている。また、上記第1空間(5)は、左右に平行に延びる前後2枚の第2及び第3仕切板(9,11)で収納容積の大きい中央の第3空間(13)と、収納容積の小さい前後2つの第4及び第5空間(15,17)とに区画され、上記第3空間(13)は、前後に延びる第4仕切板(19)で左側空間(13a)と右側空間(13b)とに区画されている。さらに、後側の第5空間(17)は、左右に水平に延びる第5仕切板(21)で上下に区画され、上側空間を第1流入路(23)とし、下側の空間を第1流出路(25)としている。一方、前側の第4空間(15)も、左右に水平に延びる第6仕切板(27)で上下に区画され、上側空間を第2流入路(29)とし、下側の空間を第2流出路(31)としている。   FIG. 1 schematically shows a configuration of a humidity control apparatus to which a heat exchanger according to an embodiment of the present invention is applied. FIG. 1A is a cross-sectional view taken along line XX in FIG. (B) is a top view of the state which showed the inside, and a lower side is a front side in a figure. FIG.1 (c) is sectional drawing in the YY line of FIG.1 (b). This humidity control device includes a rectangular box-shaped casing (1), and the inside of the casing (1) is a first partition plate (3) extending in the front-rear direction and a left first space (5) having a large storage volume, and a storage volume. Is divided into a small second space (7) on the right side. The first space (5) includes a central third space (13) having a large storage volume by two front and rear second and third partition plates (9, 11) extending parallel to the left and right, and a storage volume. The third space (13) is divided into two small front and rear fourth and fifth spaces (15, 17). The third space (13) is a fourth partition plate (19) extending in the front-rear direction, and the left space (13a) and the right space (13b). ) And is divided. Further, the rear fifth space (17) is partitioned vertically by a fifth partition plate (21) extending horizontally from side to side, the upper space is defined as the first inflow passage (23), and the lower space is defined as the first space. Outflow channel (25). On the other hand, the fourth space (15) on the front side is also divided vertically by a sixth partition plate (27) extending horizontally from side to side, the upper space is the second inlet channel (29), and the lower space is the second outlet. Road (31).

上記第3仕切板(11)には、4つの第1〜4開口(11a〜11d)が第3空間(13)の左右の空間(13a,13b)、第1流入路(23)及び第1流出路(25)と連通するように上下左右に並んで形成されている(図1(a)参照)。また、上記第2仕切板(9)にも、4つの第5〜8開口(9a〜9d)が第3空間(13)の左右の空間(13a,13b)、第2流入路(29)及び第2流出路(31)と連通するように上下左右に並んで形成されている(図1(c)参照)。なお、これら第1〜4開口(11a〜11d)及び第5〜8開口(9a〜9d)には、図示しないが、ダンパがそれぞれ開閉自在に設けられている。   The third partition plate (11) has four first to fourth openings (11a to 11d), the left and right spaces (13a, 13b) of the third space (13), the first inflow passage (23), and the first It is formed side by side vertically and horizontally so as to communicate with the outflow path (25) (see FIG. 1 (a)). Also, the second partition plate (9) has four fifth to eighth openings (9a to 9d), the left and right spaces (13a, 13b) of the third space (13), the second inflow channel (29), and It is formed side by side vertically and horizontally so as to communicate with the second outflow path (31) (see FIG. 1C). Although not shown, dampers are provided in the first to fourth openings (11a to 11d) and the fifth to eighth openings (9a to 9d) so as to be freely opened and closed.

また、上記ケーシング(1)の左側面後側には、室外空気吸込口(33)が上記第1流入路(23)に連通するように形成され、ケーシング(1)の右側面後側には排気吹出口(35)が形成され、この排気吹出口(35)は上記第2空間(7)後側に配置された排気ファン(37)に接続されて第1流出路(25)と連通している。一方、上記ケーシング(1)の左側面前側には、室内空気吸込口(39)が上記第2流入路(29)に連通するように形成され、ケーシング(1)の右側面前側には給気吹出口(41)が形成され、この給気吹出口(41)は上記第2空間(7)前側に配置された給気ファン(43)に接続されて第2流出路(31)と連通している。   An outdoor air suction port (33) is formed on the rear side of the left side surface of the casing (1) so as to communicate with the first inflow passage (23), and on the rear side of the right side surface of the casing (1). An exhaust outlet (35) is formed, and the exhaust outlet (35) is connected to an exhaust fan (37) disposed on the rear side of the second space (7) and communicates with the first outflow passage (25). ing. On the other hand, an indoor air suction port (39) is formed on the front side of the left side surface of the casing (1) so as to communicate with the second inflow passage (29), and an air supply port is provided on the front side of the right side surface of the casing (1). An air outlet (41) is formed, and the air supply outlet (41) is connected to an air supply fan (43) disposed on the front side of the second space (7) and communicates with the second outflow passage (31). ing.

このように構成されたケーシング(1)内には、図2に示すような冷媒回路(45)が収納されている。この冷媒回路(45)は、第1熱交換器(47)、第2熱交換器(49)、圧縮機(51)、四方切換弁(53)及び電動膨張弁(55)が介設された閉回路であって冷媒が充填されていて、この冷媒を循環させることにより蒸気圧縮式の冷凍サイクルが行われる。具体的には、圧縮機(51)の吐出側が四方切換弁(53)の第1ポートに接続され、吸入側が四方切換弁(53)の第2ポートに接続されている。第1熱交換器(47)の一端は四方切換弁(53)の第3ポートに接続され、他端は電動膨張弁(55)を介して第2熱交換器(49)の一端に接続されている。第2熱交換器(49)の他端は四方切換弁(53)の第4ポートに接続されている。四方切換弁(53)は、第1ポートと第3ポートが連通して第2ポートと第4ポートが連通する状態(図2(a)に示す状態)と、第1ポートと第4ポートが連通して第2ポートと第3ポートが連通する状態(図2(b)に示す状態)とに切り換え自在に構成されている。そして、この冷媒回路(45)は、四方切換弁(53)を切り換えることにより、第1熱交換器(47)が凝縮器として機能して第2熱交換器(49)が蒸発器として機能する第1冷凍サイクル動作と、第1熱交換器(47)が蒸発器として機能して第2熱交換器(49)が凝縮器として機能する第2冷凍サイクル動作とを切り換えて行うように構成されている。また、冷媒回路(45)の各構成要素は、図1に示すように、第1熱交換器(47)が第3空間(13)の右側空間(13b)に、第2熱交換器(49)が第3空間(13)の左側空間(13a)に、圧縮機(51)が第2空間(7)の前後中程にそれぞれ配置されている。なお、図示しないが、四方切換弁(53)や電動膨張弁(55)も第2空間(7)に配置されている。   In the casing (1) thus configured, a refrigerant circuit (45) as shown in FIG. 2 is accommodated. The refrigerant circuit (45) includes a first heat exchanger (47), a second heat exchanger (49), a compressor (51), a four-way switching valve (53), and an electric expansion valve (55). A closed circuit is filled with a refrigerant, and a vapor compression refrigeration cycle is performed by circulating the refrigerant. Specifically, the discharge side of the compressor (51) is connected to the first port of the four-way switching valve (53), and the suction side is connected to the second port of the four-way switching valve (53). One end of the first heat exchanger (47) is connected to the third port of the four-way switching valve (53), and the other end is connected to one end of the second heat exchanger (49) via the electric expansion valve (55). ing. The other end of the second heat exchanger (49) is connected to the fourth port of the four-way switching valve (53). In the four-way switching valve (53), the first port and the third port communicate with each other, the second port and the fourth port communicate with each other (the state shown in FIG. 2A), and the first port and the fourth port communicate with each other. It is configured to be able to switch to a state where the second port and the third port communicate with each other (the state shown in FIG. 2B). In the refrigerant circuit (45), the first heat exchanger (47) functions as a condenser and the second heat exchanger (49) functions as an evaporator by switching the four-way switching valve (53). The first refrigeration cycle operation and the second refrigeration cycle operation in which the first heat exchanger (47) functions as an evaporator and the second heat exchanger (49) functions as a condenser are switched and performed. ing. In addition, as shown in FIG. 1, each component of the refrigerant circuit (45) includes a first heat exchanger (47) in the right space (13b) of the third space (13) and a second heat exchanger (49 ) Is disposed in the left space (13a) of the third space (13), and the compressor (51) is disposed in the middle of the second space (7). Although not shown, a four-way switching valve (53) and an electric expansion valve (55) are also arranged in the second space (7).

上記第1及び第2熱交換器(47,49)は共に、図3に示すようなクロスフィン型のフィン・アンド・チューブ熱交換器であり、多数枚のアルミニウム合金製フィン(57)が間隔をあけて並列配置されたフィン群(59)を備えている。このフィン群(59)のフィン配列方向両端面とフィン長手方向両端側の端面とは矩形の金属製枠板(61)で取り囲まれ、第1及び第2熱交換器(47,49)は上記枠板(61)を介して第3空間(13)の左右の空間(13a,13b)にそれぞれ配置されている。上記フィン群(59)には伝熱管(63)が配置されている。この伝熱管(63)は直管部(63a)とU字管部(63b)とで蛇行状に形成され、上記直管部(63a)が上記フィン群(59)をフィン配列方向に貫挿するとともに、上記U字管部(63b)が上記枠板(61)から突出している。また、上記伝熱管(63)の一端には接続管(65)の一端が接続され、この接続管(65)により伝熱管(63)を図示しない冷媒配管に接続するようになっている。そして、上記フィン群(59)外表面には吸着剤(図示せず)が担持され、第1及び第2熱交換器(47,49)の本体であるフィン群(59)の内部(伝熱管(63))を流れる冷媒によって吸着剤を加熱又は冷却することで上記フィン群(59)の外側を流れる空気中の水分を吸着剤で吸着又は脱着して空気の湿度を調節するようになっている。   The first and second heat exchangers (47, 49) are both cross fin type fin-and-tube heat exchangers as shown in FIG. 3, and a plurality of aluminum alloy fins (57) are spaced apart. A fin group (59) arranged in parallel with a gap is provided. The fin array direction both end surfaces of the fin group (59) and the end surfaces on both ends of the fin longitudinal direction are surrounded by a rectangular metal frame plate (61), and the first and second heat exchangers (47, 49) are Arranged in the left and right spaces (13a, 13b) of the third space (13) via the frame plate (61). A heat transfer tube (63) is disposed in the fin group (59). The heat transfer tube (63) is formed in a meandering manner with a straight tube portion (63a) and a U-shaped tube portion (63b), and the straight tube portion (63a) penetrates the fin group (59) in the fin arrangement direction. In addition, the U-shaped tube portion (63b) protrudes from the frame plate (61). One end of the connection pipe (65) is connected to one end of the heat transfer pipe (63), and the connection pipe (65) connects the heat transfer pipe (63) to a refrigerant pipe (not shown). An adsorbent (not shown) is carried on the outer surface of the fin group (59), and the inside of the fin group (59) which is the main body of the first and second heat exchangers (47, 49) (heat transfer tube) (63)) By heating or cooling the adsorbent with the refrigerant flowing through the adsorbent, moisture in the air flowing outside the fin group (59) is adsorbed or desorbed by the adsorbent to adjust the humidity of the air. Yes.

上記吸着剤のフィン(57)表面の担持層は、吸着剤が混入された有機系の水エマルジョンバインダの乾燥固化層からなり、このことを本発明の特徴としている。この有機系の水エマルジョンバインダの乾燥固化層は、無機系バインダの乾燥固化層に比べて柔軟性があり、急激な温度変化や衝撃に対して強くて剥離し難く、フィン(57)と担持層とに大きな熱膨張率の差があっても良好な密着性を得ることができる。したがって、単位面積当たりのバインダ量を少なくして吸着剤の混入量を多くしても密着性を良好に確保でき、担持層の厚みを必要以上に厚くしたり、熱交換器(47,49)を大型化することなく潜熱処理能力を高めることができる。   The supporting layer on the surface of the fin (57) of the adsorbent is composed of a dry solidified layer of an organic water emulsion binder mixed with the adsorbent, which is a feature of the present invention. The dry solidified layer of the organic water emulsion binder is more flexible than the dry solidified layer of the inorganic binder, and is resistant to abrupt temperature changes and impacts and is difficult to peel off. The fin (57) and the carrier layer Even when there is a large difference in thermal expansion coefficient, good adhesion can be obtained. Therefore, even if the amount of binder per unit area is reduced and the adsorbent content is increased, good adhesion can be secured, and the thickness of the support layer can be increased more than necessary, or the heat exchanger (47, 49) The capacity of the latent heat treatment can be increased without increasing the size.

上記吸着剤のフィン(57)表面の担持層の厚みは、圧力損失を低減してファン効率の向上及びファン騒音の低減を達成する観点から、50μm以上500μm以下であることが好ましい。なお、フィン(57)以外にも吸着剤の担持層を形成してもよい。この場合、圧力損失増加にあまり影響しない箇所(例えば、枠板(61)、伝熱管(63)及び接続管(65))には、担持層をフィン(57)よりも厚く形成して吸脱着性能を向上させてもよい。   The thickness of the carrier layer on the surface of the fin (57) of the adsorbent is preferably 50 μm or more and 500 μm or less from the viewpoint of reducing pressure loss to achieve improvement in fan efficiency and reduction in fan noise. In addition to the fins (57), an adsorbent support layer may be formed. In this case, at the locations that do not significantly affect the increase in pressure loss (for example, the frame plate (61), heat transfer tube (63), and connection tube (65)), the support layer is formed thicker than the fin (57) to absorb Performance may be improved.

吸着剤としては、例えば、ゼオライト、シリカゲル、活性炭、親水性又は吸水性の官能基を有する有機高分子ポリマ系材料、カルボキシル基又はスルホン酸基を有するイオン交換樹脂系材料、感温性高分子等の機能性高分子材料、セピオライト、イモゴライト、アロフェン及びカオリナイト等の粘土鉱物系材料等、水分の吸着に優れているものであれば特にこだわらないが、分散性や粘度等を考慮するとゼオライト、シリカゲル又はその混合物が好ましい。   Examples of the adsorbent include zeolite, silica gel, activated carbon, an organic polymer polymer material having a hydrophilic or water-absorbing functional group, an ion exchange resin material having a carboxyl group or a sulfonic acid group, and a temperature-sensitive polymer. Functional polymer materials, such as clay mineral materials such as sepiolite, imogolite, allophane and kaolinite, etc., are not particularly particular as long as they are excellent in moisture adsorption, but considering dispersibility and viscosity, zeolite, silica gel Or a mixture thereof is preferred.

上記水エマルジョンバインダは、ウレタン系樹脂、アクリル系樹脂又はエチレン酢酸ビニル共重合体であり、上記水エマルジョンバインダの固形分と吸着剤との重量配合比は1:3以上1:10以下、好ましくは1:5以上1:8以下である。この重量配合比により、広範囲な温度変化に対しても十分に密着性を確保することができる。なお、担持方法としては、例えば、上記吸着剤を混合したスラリーに浸漬する方法があるが、吸着剤の性能を確保できる方法であれば特にこだわらない。   The water emulsion binder is a urethane resin, an acrylic resin, or an ethylene vinyl acetate copolymer, and the weight blending ratio of the solid content of the water emulsion binder and the adsorbent is 1: 3 or more and 1:10 or less, preferably 1: 5 or more and 1: 8 or less. With this weight blending ratio, sufficient adhesion can be secured even over a wide range of temperature changes. In addition, as a carrying | support method, there exists the method of immersing in the slurry which mixed the said adsorbent, for example, However, if it is a method which can ensure the performance of an adsorbent, it will not specifically stick.

下記の表1に、水エマルジョンバインダの固形分と吸着剤との重量配合比を変えた際の担持層密着性(初期)と吸着性能を示す。ここでは、吸着剤としてゼオライトを、水エマルジョンバインダとしてウレタン系のものをそれぞれ用いた。表1中、◎印は密着性や吸着性能が良好なことを、○印は◎印よりは密着性や吸着性能が若干下がるが、使用に問題のないことを、×印は担持層が剥離したり吸着性能が十分に発揮されず使用に耐えないことを、−印は剥離により吸着性能を測定できないことをそれぞれ表す。   Table 1 below shows the support layer adhesion (initial) and adsorption performance when the weight blending ratio of the solid content of the water emulsion binder and the adsorbent is changed. Here, zeolite was used as the adsorbent, and urethane-based one as the water emulsion binder. In Table 1, ◎ indicates that the adhesion and adsorption performance are good, ○ indicates that the adhesion and adsorption performance are slightly lower than ◎, but there is no problem in use, and X indicates that the carrier layer is peeled off The sign indicates that the adsorption performance cannot be fully exhibited and cannot be used, and the symbol-indicates that the adsorption performance cannot be measured by peeling.

その結果、吸着性能を上げるために、水エマルジョンバインダの固形分と吸着剤との重量配合比を1:15とバインダ量を少なくして吸着剤量を多くすると、担持層が硬くなってヒビ割れて剥離してしまった。一方、密着性を上げるために、水エマルジョンバインダの固形分と吸着剤との重量配合比を1:1とバインダ量を多くして吸着剤量を少なくすると、密着性は良かったが、吸着性能が低下した。これに対し、水エマルジョンバインダの固形分と吸着剤との重量配合比が1:3以上1:10以下の場合には、いずれも密着性及び吸着性能共に望ましい結果を得ることができた。なかでも、水エマルジョンバインダの固形分と吸着剤との重量配合比が1:5以上1:8以下の場合に優れた密着性及び吸着性能を得ることができた。 As a result, in order to improve the adsorption performance, if the weight blending ratio of the solid content of the water emulsion binder and the adsorbent is 1:15 and the amount of the adsorbent is increased by decreasing the amount of the binder, the support layer becomes hard and cracks occur. I peeled off. On the other hand, in order to increase the adhesion, when the weight blending ratio of the solid content of the water emulsion binder and the adsorbent was 1: 1 and the binder amount was increased to reduce the adsorbent amount, the adhesion was good, but the adsorption performance Decreased. On the other hand, in the case where the weight ratio of the solid content of the water emulsion binder and the adsorbent was 1: 3 or more and 1:10 or less, desirable results were obtained in both adhesion and adsorption performance. In particular, excellent adhesion and adsorption performance were obtained when the weight ratio of the solid content of the water emulsion binder to the adsorbent was 1: 5 or more and 1: 8 or less.

このように構成された調湿装置の調湿動作について図4〜7を参照しながら説明する。   The humidity control operation of the humidity control apparatus configured as described above will be described with reference to FIGS.

−調湿装置の調湿動作−
この調湿装置では、除湿運転と加湿運転とが切り換え可能となっている。また、除湿運転中や加湿運転中には、第1動作と第2動作とが交互に繰り返される。
-Humidity control operation of humidity control device-
In this humidity control apparatus, the dehumidifying operation and the humidifying operation can be switched. Further, during the dehumidifying operation and the humidifying operation, the first operation and the second operation are alternately repeated.

《除湿運転》
除湿運転時において、調湿装置では、給気ファン(43)及び排気ファン(37)が運転される。そして、調湿装置は、室外空気(OA)を第1空気として取り込んで室内に供給する一方、室内空気(RA)を第2空気として取り込んで室外に排出する。
《Dehumidification operation》
In the dehumidifying operation, the air supply fan (43) and the exhaust fan (37) are operated in the humidity control apparatus. The humidity control apparatus takes in outdoor air (OA) as first air and supplies it to the room, while taking in indoor air (RA) as second air and discharges it to the outside.

まず、除湿運転時の第1動作について、図2及び図4を参照しながら説明する。この第1動作では、第1熱交換器(47)において吸着剤の再生が行われ、第2熱交換器(49)において第1空気である室外空気(OA)の除湿が行われる。   First, the first operation during the dehumidifying operation will be described with reference to FIGS. In the first operation, the adsorbent is regenerated in the first heat exchanger (47), and the outdoor air (OA), which is the first air, is dehumidified in the second heat exchanger (49).

第1動作時において、冷媒回路(45)では、四方切換弁(53)が図2(a)に示す状態に切り換えられる。この状態で圧縮機(51)を運転すると、冷媒回路(45)で冷媒が循環し、第1熱交換器(47)が凝縮器となって第2熱交換器(49)が蒸発器となる第1冷凍サイクル動作が行われる。具体的には、圧縮機(51)から吐出された冷媒は、第1熱交換器(47)で放熱して凝縮し、その後に電動膨張弁(55)へ送られて減圧される。減圧された冷媒は、第2熱交換器(49)で吸熱して蒸発し、その後に圧縮機(51)へ吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機(51)から吐出される。   During the first operation, in the refrigerant circuit (45), the four-way switching valve (53) is switched to the state shown in FIG. When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes a condenser, and the second heat exchanger (49) becomes an evaporator. A first refrigeration cycle operation is performed. Specifically, the refrigerant discharged from the compressor (51) dissipates heat and condenses in the first heat exchanger (47), and then is sent to the electric expansion valve (55) to be depressurized. The decompressed refrigerant absorbs heat and evaporates in the second heat exchanger (49), and is then sucked into the compressor (51) and compressed. Then, the compressed refrigerant is discharged again from the compressor (51).

また、第1動作時には、第2開口(11b)、第3開口(11c)、第5開口(9a)及び第8開口(9d)が開口状態となり、第1開口(11a)、第4開口(11d)、第6開口(9b)及び第7開口(9c)が閉鎖状態になる。そして、図4に示すように、第1熱交換器(47)へ第2空気としての室内空気(RA)が供給され、第2熱交換器(49)へ第1空気としての室外空気(OA)が供給される。   In the first operation, the second opening (11b), the third opening (11c), the fifth opening (9a), and the eighth opening (9d) are in the open state, and the first opening (11a) and the fourth opening ( 11d), the sixth opening (9b) and the seventh opening (9c) are closed. Then, as shown in FIG. 4, indoor air (RA) as second air is supplied to the first heat exchanger (47), and outdoor air (OA) as the first air is supplied to the second heat exchanger (49). ) Is supplied.

具体的には、室内空気吸込口(39)より流入した第2空気は、第2流入路(29)から第5開口(9a)を通って第3空間(13)の右側空間(13b)へ送り込まれる。右側空間(13b)では、第2空気が第1熱交換器(47)を上から下へ向かって通過して行く。第1熱交換器(47)では、フィン(57)表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。吸着剤から脱離した水分は、第1熱交換器(47)を通過する第2空気に付与される。第1熱交換器(47)で水分を付与された第2空気は、第3空間(13)の右側空間(13b)から第3開口(11c)を通って第1流出路(25)へ流出する。その後、第2空気は、排気ファン(37)へ吸い込まれ、排気吹出口(35)から排出空気(EA)として室外へ排出される。   Specifically, the second air flowing in from the indoor air inlet (39) passes through the fifth inlet (9a) from the second inlet (29) to the right space (13b) of the third space (13). It is sent. In the right space (13b), the second air passes through the first heat exchanger (47) from top to bottom. In the first heat exchanger (47), the adsorbent supported on the fin (57) surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is given to the second air passing through the first heat exchanger (47). The second air given moisture in the first heat exchanger (47) flows out from the right space (13b) of the third space (13) through the third opening (11c) to the first outflow passage (25). To do. Thereafter, the second air is sucked into the exhaust fan (37), and discharged from the exhaust outlet (35) to the outside as exhaust air (EA).

一方、室外空気吸込口(33)より流入した第1空気は、第1流入路(23)から第2開口(11b)を通って第3空間(13)の左側空間(13a)へ送り込まれる。左側空間(13a)では、第1空気が第2熱交換器(49)を上から下へ向かって通過して行く。第2熱交換器(49)では、フィン(57)表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。第2熱交換器(49)で除湿された第1空気は、第3空間(13)の左側空間(13a)から第8開口(9d)を通って第2流出路(31)へ流出する。その後、第1空気は、給気ファン(43)へ吸い込まれ、給気吹出口(41)から供給空気(SA)として室内へ供給される。   On the other hand, the 1st air which flowed in from the outdoor air suction inlet (33) is sent into the left side space (13a) of the 3rd space (13) through the 2nd opening (11b) from the 1st inflow path (23). In the left space (13a), the first air passes through the second heat exchanger (49) from top to bottom. In the second heat exchanger (49), the moisture in the first air is adsorbed by the adsorbent carried on the surface of the fin (57). The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified by the second heat exchanger (49) flows out from the left space (13a) of the third space (13) through the eighth opening (9d) to the second outlet channel (31). Thereafter, the first air is sucked into the air supply fan (43), and is supplied into the room as supply air (SA) from the air supply outlet (41).

次に、除湿運転時の第2動作について、図2及び図5を参照しながら説明する。この第2動作では、第2熱交換器(49)において吸着剤の再生が行われ、第1熱交換器(47)において第1空気である室外空気(OA)の除湿が行われる。   Next, the second operation during the dehumidifying operation will be described with reference to FIGS. In the second operation, the adsorbent is regenerated in the second heat exchanger (49), and the outdoor air (OA) that is the first air is dehumidified in the first heat exchanger (47).

第2動作時において、冷媒回路(45)では、四方切換弁(53)が図2(b)に示す状態に切り換えられる。この状態で圧縮機(51)を運転すると、冷媒回路(45)で冷媒が循環し、第1熱交換器(47)が蒸発器となって第2熱交換器(49)が凝縮器となる第2冷凍サイクル動作が行われる。具体的には、圧縮機(51)から吐出された冷媒は、第2熱交換器(49)で放熱して凝縮し、その後に電動膨張弁(55)へ送られて減圧される。減圧された冷媒は、第1熱交換器(47)で吸熱して蒸発し、その後に圧縮機(51)へ吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機(51)から吐出される。   During the second operation, in the refrigerant circuit (45), the four-way switching valve (53) is switched to the state shown in FIG. When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes an evaporator, and the second heat exchanger (49) becomes a condenser. A second refrigeration cycle operation is performed. Specifically, the refrigerant discharged from the compressor (51) dissipates heat and condenses in the second heat exchanger (49), and then is sent to the electric expansion valve (55) to be depressurized. The decompressed refrigerant absorbs heat and evaporates in the first heat exchanger (47), and then is sucked into the compressor (51) and compressed. Then, the compressed refrigerant is discharged again from the compressor (51).

また、第2動作時には、第1開口(11a)、第4開口(11d)、第6開口(9b)及び第7開口(9c)が開口状態となり、第2開口(11b)、第3開口(11c)、第5開口(9a)及び第8開口(9d)が閉鎖状態となる。そして、図5に示すように、第1熱交換器(47)へ第1空気としての室外空気(OA)が供給され、第2熱交換器(49)へ第2空気としての室内空気(RA)が供給される。   In the second operation, the first opening (11a), the fourth opening (11d), the sixth opening (9b), and the seventh opening (9c) are in the open state, and the second opening (11b) and the third opening ( 11c), the fifth opening (9a) and the eighth opening (9d) are closed. Then, as shown in FIG. 5, outdoor air (OA) as first air is supplied to the first heat exchanger (47), and indoor air (RA) as second air is supplied to the second heat exchanger (49). ) Is supplied.

具体的には、室内空気吸込口(39)より流入した第2空気は、第2流入路(29)から第6開口(9b)を通って第3空間(13)の左側空間(13a)へ送り込まれる。左側空間(13a)では、第2空気が第2熱交換器(49)を上から下へ向かって通過して行く。第2熱交換器(49)では、フィン(57)表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。吸着剤から脱離した水分は、第2熱交換器(49)を通過する第2空気に付与される。第2熱交換器(49)で水分を付与された第2空気は、第3空間(13)の左側空間(13a)から第4開口(11d)を通って第1流出路(25)へ流出する。その後、第2空気は、排気ファン(37)へ吸い込まれ、排気吹出口(35)から排出空気(EA)として室外へ排出される。   Specifically, the second air flowing in from the indoor air inlet (39) passes through the sixth opening (9b) from the second inlet (29) to the left space (13a) of the third space (13). It is sent. In the left space (13a), the second air passes through the second heat exchanger (49) from top to bottom. In the second heat exchanger (49), the adsorbent supported on the surface of the fin (57) is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is given to the second air passing through the second heat exchanger (49). The second air given moisture in the second heat exchanger (49) flows out from the left space (13a) of the third space (13) through the fourth opening (11d) to the first outflow passage (25). To do. Thereafter, the second air is sucked into the exhaust fan (37), and discharged from the exhaust outlet (35) to the outside as exhaust air (EA).

一方、室外空気吸込口(33)より流入した第1空気は、第1流入路(23)から第1開口(11a)を通って第3空間(13)の右側空間(13b)へ送り込まれる。右側空間(13b)では、第1空気が第1熱交換器(47)を上から下へ向かって通過して行く。第1熱交換器(47)では、フィン(57)表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。第1熱交換器(47)で除湿された第1空気は、第3空間(13)の右側空間(13b)から第7開口(9c)を通って第2流出路(31)へ流出する。その後、第1空気は、給気ファン(43)へ吸い込まれ、給気吹出口(41)から供給空気(SA)として室内へ供給される。   On the other hand, the 1st air which flowed in from the outdoor air suction inlet (33) is sent into the right side space (13b) of the 3rd space (13) through the 1st opening (11a) from the 1st inflow passage (23). In the right space (13b), the first air passes through the first heat exchanger (47) from top to bottom. In the first heat exchanger (47), the moisture in the first air is adsorbed by the adsorbent carried on the surface of the fin (57). The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified by the first heat exchanger (47) flows out from the right space (13b) of the third space (13) through the seventh opening (9c) to the second outflow passage (31). Thereafter, the first air is sucked into the air supply fan (43), and is supplied into the room as supply air (SA) from the air supply outlet (41).

《加湿運転》
加湿運転時において、調湿装置では、給気ファン(43)及び排気ファン(37)が運転される。そして、調湿装置は、室内空気(RA)を第1空気として取り込んで室外に排出する一方、室外空気(OA)を第2空気として取り込んで室内に供給する。
《Humidification operation》
During the humidifying operation, the air supply fan (43) and the exhaust fan (37) are operated in the humidity control apparatus. The humidity control apparatus takes in indoor air (RA) as first air and discharges it outside the room, while taking in outdoor air (OA) as second air and supplies it to the room.

まず、加湿運転時の第1動作について、図2及び図6を参照しながら説明する。この第1動作では、第1熱交換器(47)において第2空気である室外空気(OA)の加湿が行われ、第2熱交換器(49)において第1空気である室内空気(RA)から水分の回収が行われる。   First, the first operation during the humidifying operation will be described with reference to FIGS. 2 and 6. In this first operation, the outdoor air (OA) that is the second air is humidified in the first heat exchanger (47), and the indoor air (RA) that is the first air in the second heat exchanger (49). Water is collected from the water.

第1動作時において、冷媒回路(45)では、四方切換弁(53)が図2(a)に示す状態に切り換えられる。この状態で圧縮機(51)を運転すると、冷媒回路(45)で冷媒が循環し、第1熱交換器(47)が凝縮器となって第2熱交換器(49)が蒸発器となる第1冷凍サイクル動作が行われる。   During the first operation, in the refrigerant circuit (45), the four-way switching valve (53) is switched to the state shown in FIG. When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes a condenser, and the second heat exchanger (49) becomes an evaporator. A first refrigeration cycle operation is performed.

また、第1動作時には、第1開口(11a)、第4開口(11d)、第6開口(9b)及び第7開口(9c)が開口状態になり、第2開口(11b)、第3開口(11c)、第5開口(9a)及び第8開口(9d)が閉鎖状態になる。そして、図6に示すように、第1熱交換器(47)には第2空気としての室外空気(OA)が供給され、第2熱交換器(49)には第1空気としての室内空気(RA)が供給される。   In the first operation, the first opening (11a), the fourth opening (11d), the sixth opening (9b), and the seventh opening (9c) are in the open state, and the second opening (11b) and the third opening (11c), the fifth opening (9a) and the eighth opening (9d) are closed. Then, as shown in FIG. 6, outdoor air (OA) as second air is supplied to the first heat exchanger (47), and indoor air as first air is supplied to the second heat exchanger (49). (RA) is supplied.

具体的には、室内空気吸込口(39)より流入した第1空気は、第2流入路(29)から第6開口(9b)を通って第3空間(13)の左側空間(13a)へ送り込まれる。第2熱交換室(42)では、第1空気が第2熱交換器(49)を上から下へ向かって通過して行く。左側空間(13a)では、フィン(57)表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第4開口(11d)、第1流出路(25)、排気ファン(37)を順に通過し、排出空気(EA)として排気吹出口(35)から室外へ排出される。   Specifically, the 1st air which flowed in from the indoor air suction inlet (39) passes through the 6th opening (9b) from the 2nd inflow path (29) to the left space (13a) of the 3rd space (13). It is sent. In the second heat exchange chamber (42), the first air passes through the second heat exchanger (49) from top to bottom. In the left space (13a), the moisture in the first air is adsorbed by the adsorbent carried on the surface of the fin (57). The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the first air deprived of moisture passes through the fourth opening (11d), the first outflow passage (25), and the exhaust fan (37) in this order, and from the exhaust outlet (35) as exhaust air (EA). It is discharged outside the room.

一方、室外空気吸込口(33)より流入した第2空気は、第1流入路(23)から第1開口(11a)を通って第3空間(13)の右側空間(13b)へ送り込まれる。右側空間(13b)では、第2空気が第1熱交換器(47)を上から下へ向かって通過して行く。第1熱交換器(47)では、フィン(57)表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。吸着剤から脱離した水分は、第1熱交換器(47)を通過する第2空気に付与される。その後、加湿された第2空気は、第7開口(9c)、第2流出路(31)、給気ファン(43)を順に通過し、供給空気(SA)として給気吹出口(41)から室内へ供給される。   On the other hand, the 2nd air which flowed in from the outdoor air suction inlet (33) is sent into the right space (13b) of the 3rd space (13) through the 1st opening (11a) from the 1st inflow passage (23). In the right space (13b), the second air passes through the first heat exchanger (47) from top to bottom. In the first heat exchanger (47), the adsorbent supported on the fin (57) surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is given to the second air passing through the first heat exchanger (47). Thereafter, the humidified second air sequentially passes through the seventh opening (9c), the second outflow passage (31), and the air supply fan (43), and serves as supply air (SA) from the air supply outlet (41). Supplied indoors.

次に、加湿運転時の第2動作について、図2及び図7を参照しながら説明する。この第2動作では、第2熱交換器(49)において第2空気である室外空気(OA)の加湿が行われ、第1熱交換器(47)において第1空気である室内空気(RA)から水分の回収が行われる。   Next, the second operation during the humidifying operation will be described with reference to FIGS. In the second operation, the outdoor air (OA) that is the second air is humidified in the second heat exchanger (49), and the indoor air (RA) that is the first air in the first heat exchanger (47). Water is collected from the water.

第2動作時において、冷媒回路(45)では、四方切換弁(53)が図2(b)に示す状態に切り換えられる。この状態で圧縮機(51)を運転すると、冷媒回路(45)で冷媒が循環し、第1熱交換器(47)が蒸発器となって第2熱交換器(49)が凝縮器となる第2冷凍サイクル動作が行われる。   During the second operation, in the refrigerant circuit (45), the four-way switching valve (53) is switched to the state shown in FIG. When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes an evaporator, and the second heat exchanger (49) becomes a condenser. A second refrigeration cycle operation is performed.

また、第2動作時には、第2開口(11b)、第3開口(11c)、第5開口(9a)及び第8開口(9d)が開口状態になり、第1開口(11a)、第4開口(11d)、第6開口(9b)及び第7開口(9c)が閉鎖状態になる。そして、図7に示すように、第1熱交換器(47)には第1空気としての室内空気(RA)が供給され、第2熱交換器(49)には第2空気としての室外空気(OA)が供給される。   In the second operation, the second opening (11b), the third opening (11c), the fifth opening (9a), and the eighth opening (9d) are in the open state, and the first opening (11a) and the fourth opening (11d), the sixth opening (9b) and the seventh opening (9c) are closed. Then, as shown in FIG. 7, indoor air (RA) as first air is supplied to the first heat exchanger (47), and outdoor air as second air is supplied to the second heat exchanger (49). (OA) is supplied.

具体的には、室内空気吸込口(39)より流入した第1空気は、第2流入路(29)から第5開口(9a)を通って第3空間(13)の右側空間(13b)に送り込まれる。右側空間(13b)では、第1空気が第1熱交換器(47)を上から下に向かって通過して行く。第1熱交換器(47)では、フィン(57)表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第3開口(11c)、第1流出路(25)、排気ファン(37)を順に通過し、排出空気(EA)として排気吹出口(35)から室外へ排出される。   Specifically, the 1st air which flowed in from the indoor air suction inlet (39) passes through the 5th opening (9a) from the 2nd inflow path (29) to the right space (13b) of the 3rd space (13). It is sent. In the right space (13b), the first air passes through the first heat exchanger (47) from top to bottom. In the first heat exchanger (47), the moisture in the first air is adsorbed by the adsorbent carried on the surface of the fin (57). The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the first air deprived of moisture passes through the third opening (11c), the first outflow passage (25), and the exhaust fan (37) in this order, and from the exhaust outlet (35) as exhaust air (EA). It is discharged outside the room.

一方、室外空気吸込口(33)より流入した第2空気は、第1流入路(23)から第2開口(11b)を通って第3空間(13)の左側空間(13a)に送り込まれる。左側空間(13a)では、第2空気が第2熱交換器(49)を上から下へ向かって通過して行く。第2熱交換器(49)では、フィン(57)表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。吸着剤から脱離した水分は、第2熱交換器(49)を通過する第2空気に付与される。その後、加湿された第2空気は、第8開口(9d)、第2流出路(31)、給気ファン(43)を順に通過し、供給空気(SA)として給気吹出口(41)から室内へ供給される。   On the other hand, the 2nd air which flowed in from the outdoor air suction inlet (33) is sent into the left side space (13a) of the 3rd space (13) through the 2nd opening (11b) from the 1st inflow path (23). In the left space (13a), the second air passes through the second heat exchanger (49) from top to bottom. In the second heat exchanger (49), the adsorbent supported on the surface of the fin (57) is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is given to the second air passing through the second heat exchanger (49). Thereafter, the humidified second air sequentially passes through the eighth opening (9d), the second outlet channel (31), and the air supply fan (43), and is supplied as supply air (SA) from the air supply outlet (41). Supplied indoors.

以上、全換気モードの除湿運転及び加湿運転について説明したが、この調湿装置は、室内空気(RA)を第1空気として取り込み室内に供給する一方、室外空気(OA)を第2空気として取り込み室外に排出する循環モードの除湿運転や、室外空気(OA)を第1空気として取り込み室外に排出する一方、室内空気(RA)を第2空気として取り込み室内に供給する循環モードの加湿運転をも行うものである。また、室外空気(OA)を第1空気及び第2空気として取り込み、一部を室内に供給すると同時に、残りを室外に排出する給気モードの除湿運転及び加湿運転や、室内空気(RA)を第1空気及び第2空気として取り込み、一部を室内に供給すると同時に、残りを室外に排出する排気モードの除湿運転及び加湿運転をも行うものである。   As described above, the dehumidifying operation and the humidifying operation in the full ventilation mode have been described. This humidity control apparatus takes in indoor air (RA) as the first air and supplies it into the room, while taking in outdoor air (OA) as the second air. A dehumidifying operation in a circulation mode for discharging outside, and a humidifying operation in a circulation mode for taking outdoor air (OA) as first air and discharging it outside the room while taking in indoor air (RA) as second air and supplying it to the room. Is what you do. In addition, the outdoor air (OA) is taken in as the first air and the second air, and a part of the air is supplied to the room at the same time. A dehumidifying operation and a humidifying operation in an exhaust mode in which the air is taken in as the first air and the second air and a part thereof is supplied to the room and the remaining part is discharged to the outside are also performed.

この発明は、吸着剤と冷凍サイクルとを利用して空気の湿度調節を行う調湿装置の熱交換器に有用である。   The present invention is useful for a heat exchanger of a humidity control apparatus that adjusts the humidity of air using an adsorbent and a refrigeration cycle.

調湿装置の概略構成図である。It is a schematic block diagram of a humidity control apparatus. 調湿装置の冷媒回路を示す配管系統図である。It is a piping system diagram which shows the refrigerant circuit of a humidity control apparatus. 第1及び第2熱交換器の斜視図である。It is a perspective view of the 1st and 2nd heat exchanger. 除湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in the 1st operation | movement of a dehumidification driving | operation. 除湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in 2nd operation | movement of a dehumidification driving | operation. 加湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in the 1st operation | movement of a humidification driving | operation. 加湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in 2nd operation | movement of a humidification driving | operation.

符号の説明Explanation of symbols

47 第1熱交換器
49 第2熱交換器
57 フィン
59 フィン群(本体)
47 1st heat exchanger
49 Second heat exchanger
57 fins
59 Fin group (main body)

Claims (3)

多数のフィン(57)を有する本体の表面に吸着剤が担持され、上記本体の内部を流れる冷媒によって吸着剤を加熱又は冷却することで上記本体の外側を流れる空気中の水分を吸着剤で吸着又は脱着して空気の湿度を調節する調湿装置の熱交換器であって、
上記吸着剤のフィン(57)表面の担持層は、吸着剤が混入された有機系の水エマルジョンバインダの乾燥固化層からなり、
上記水エマルジョンバインダの固形分と吸着剤との重量配合比が、1:3以上1:8以下であることを特徴とする調湿装置の熱交換器。
Adsorbent is supported on the surface of the main body having a large number of fins (57), and the adsorbent adsorbs moisture in the air flowing outside the main body by heating or cooling the adsorbent with the refrigerant flowing inside the main body. Or a heat exchanger of a humidity control device that desorbs and adjusts the humidity of air,
Carrying layer of the fins (57) the surface of the adsorbent, Ri Do from drying and solidifying layer of water emulsion binder organic adsorbent is mixed,
Ratio by weight of the solids and the adsorbent of the water emulsion binder, 1: 3 to 1: 8 or less der heat exchanger Rukoto humidity control apparatus according to claim.
請求項1に記載の調湿装置の熱交換器において、
吸着剤は、ゼオライト、シリカゲル又はその混合物であり、
水エマルジョンバインダは、ウレタン系樹脂、アクリル系樹脂又はエチレン酢酸ビニル共重合体であることを特徴とする調湿装置の熱交換器。
In the heat exchanger of the humidity control apparatus of Claim 1,
The adsorbent is zeolite, silica gel or a mixture thereof,
Water emulsion binder, a urethane resin, the heat exchanger for humidity control apparatus, characterized in that an acrylic resin or an ethylene-vinyl acetate copolymer.
請求項1又は2に記載の調湿装置の熱交換器において、
担持層の厚みが50μm以上500μm以下であることを特徴とする調湿装置の熱交換器。
In the heat exchanger of the humidity control apparatus according to claim 1 or 2,
A heat exchanger for a humidity control apparatus, wherein the thickness of the support layer is 50 μm or more and 500 μm or less.
JP2004101727A 2004-03-31 2004-03-31 Humidity controller heat exchanger Expired - Lifetime JP3742931B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004101727A JP3742931B2 (en) 2004-03-31 2004-03-31 Humidity controller heat exchanger
EP05727663A EP1736725A4 (en) 2004-03-31 2005-03-29 Heat exchanger
AU2005227438A AU2005227438B2 (en) 2004-03-31 2005-03-29 Heat exchanger
KR1020067022601A KR100837501B1 (en) 2004-03-31 2005-03-29 Heat exchanger
US10/594,598 US7717163B2 (en) 2004-03-31 2005-03-29 Heat exchanger
PCT/JP2005/005963 WO2005095882A1 (en) 2004-03-31 2005-03-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101727A JP3742931B2 (en) 2004-03-31 2004-03-31 Humidity controller heat exchanger

Publications (2)

Publication Number Publication Date
JP2005283052A JP2005283052A (en) 2005-10-13
JP3742931B2 true JP3742931B2 (en) 2006-02-08

Family

ID=35181638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101727A Expired - Lifetime JP3742931B2 (en) 2004-03-31 2004-03-31 Humidity controller heat exchanger

Country Status (1)

Country Link
JP (1) JP3742931B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130709B2 (en) * 2005-12-20 2013-01-30 三菱化学株式会社 Adsorption sheet, adsorption element, method for producing the same, and uses thereof
JP6385781B2 (en) * 2014-10-06 2018-09-05 シャープ株式会社 Dehumidifier
AU2015337843B2 (en) * 2014-10-27 2017-08-17 Intex Holdings Pty Ltd Dehumidification system and method
WO2022071515A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Adsorption heat exchanger

Also Published As

Publication number Publication date
JP2005283052A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100855446B1 (en) Heat exchanger
JP3668786B2 (en) Air conditioner
JP3891207B2 (en) Humidity control device
JP3861902B2 (en) Humidity control device
JP2005114294A (en) Air conditioner
JP2005315485A (en) Adsorption heat exchanger
WO2005095882A1 (en) Heat exchanger
JP2005283041A (en) Humidity controller
JP3742931B2 (en) Humidity controller heat exchanger
JP3807409B2 (en) Humidity control device
JP2006078108A (en) Humidity controller
WO2005095880A1 (en) Heat exchanger
JP3742932B2 (en) Heat exchanger
JP3815484B2 (en) Heat exchanger
JP2006349342A (en) Heat exchanger
JP2005134005A (en) Humidity conditioning device
JP2004321885A (en) Humidity control element
JP2006346659A (en) Humidity controller
JP2005291592A (en) Heat exchanger
JP2006078171A (en) Humidity controller
JP2005291596A (en) Humidifier
JP4529530B2 (en) Humidity control device
JP2005283054A (en) Heat exchanger
JP4569150B2 (en) Humidity control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R151 Written notification of patent or utility model registration

Ref document number: 3742931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8