JP3742533B2 - Steel sheet for laminated containers with excellent can-making processability - Google Patents

Steel sheet for laminated containers with excellent can-making processability Download PDF

Info

Publication number
JP3742533B2
JP3742533B2 JP19405299A JP19405299A JP3742533B2 JP 3742533 B2 JP3742533 B2 JP 3742533B2 JP 19405299 A JP19405299 A JP 19405299A JP 19405299 A JP19405299 A JP 19405299A JP 3742533 B2 JP3742533 B2 JP 3742533B2
Authority
JP
Japan
Prior art keywords
resins
compounds
steel sheet
organic resin
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19405299A
Other languages
Japanese (ja)
Other versions
JP2000234181A (en
Inventor
茂 平野
博一 横矢
和成 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19405299A priority Critical patent/JP3742533B2/en
Priority to EP00944342A priority patent/EP1134305A4/en
Priority to PCT/JP2000/004556 priority patent/WO2001004380A1/en
Publication of JP2000234181A publication Critical patent/JP2000234181A/en
Application granted granted Critical
Publication of JP3742533B2 publication Critical patent/JP3742533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は製缶加工用素材として、特に、絞りしごき加工、溶接性、耐食性、フィルム密着性に優れたラミネート容器用鋼板に関するものである。
【0002】
【従来の技術】
飲料や食品に用いられる金属容器は、2ピース缶と3ピース缶に大別される。DI缶に代表される2ピース缶は、絞りしごき加工が行われた後、缶内面側に塗装が、缶外面側には塗装及び印刷が行われる。3ピース缶は、缶内面に相当する面に塗装が、缶外面側に相当する面に印刷が行われた後缶胴部の溶接が行われる。何れの缶種においても、製缶前後に塗装工程が不可欠な工程である。塗装には、溶剤系もしくは水系の塗料が使用され、その後、焼付けが行われるが、この塗装工程において、塗料に起因する廃棄物(廃溶剤等)が産業廃棄物として排出され、排ガス(主に炭酸ガス)が大気に放出されている。近年、地球環境保全を目的とし、これら産業廃棄物や排ガスを低減しようとする取組みが行われている。この中で、塗装に代わるものとしてフィルムをラミネートする技術が注目され、急速に広まってきた。
【0003】
これまでに、2ピース缶においては、フィルムをラミネートし製缶する缶の製造方法やこれに関連する発明が多数提供されている。例えば、「絞りしごき罐の製造方法(特許第1571783号)」、「絞りしごき罐(特許第1670957号)」、「薄肉化深絞り缶の製造方法(特開平2−263523号公報)」、「絞りしごき罐用被覆鋼板(特許第1601937号)」が挙げられる。
また、3ピース缶においては、「スリーピース缶用フィルム積層鋼帯およびその製造方法(特開平3−236954号公報)」、「ストライプ状の多層有機被膜を有するスリーピース缶用鋼板(特開平5−111979号公報)」、「3ピース缶ストライプラミネート鋼板の製造方法(特開平5−147181号公報)」が挙げられる。
【0004】
これらの、ラミネート缶のフィルムの下地に用いられる鋼板には、多くの場合、電解クロメート処理を施したクロメート被膜が用いられている。クロメート被膜は、2層構造を有し、金属Cr層の上層に水和酸化Cr層が存在している。従って、ラミネートフィルム(接着剤付きのフィルムであれば接着層)はクロメート被膜の水和酸化Cr層を介して鋼板との密着性を確保している。この密着発現の機構については詳細は明らかにされていないが、水和酸化Crの水酸基とラミネートフィルムのカルボニル基あるいはエステル基などの官能基との水素結合であると言われている。
また、電解クロメート処理を行わない被膜として、「金属材料の表面にフィルムラミネート用下地皮膜を形成させた被覆金属材料およびその製造方法(特開平10−46101号公報)」が挙げられる。
【0005】
【発明が解決しようとする課題】
上記の発明は、確かに、地球環境の保全を大きく前進せしめる効果が得られるが、その一方で、近年、飲料容器市場では、PETボトル、瓶、紙等の素材とのコスト並びに品質競争が激化しており、上記のラミネート容器用鋼板に対しても、従来以上により優れた製缶加工性、特にフィルム密着性、加工フィルム密着性、耐食性などが求められるようになった。
【0006】
【課題を解決するための手段】
本発明者等は、クロメート被膜に代わる新たな被膜として無機物質又は有機樹脂を活用した被膜を鋭意検討した結果、無機物質又は有機樹脂を活用した被膜はその被膜の上層に施されるラミネートフィルムと非常に極力な共有結合を形成し、従来のクロメート被膜以上の優れた製缶加工性が得られることを知見し本発明に至ったものである。
【0007】
即ち本発明は、
(1)少なくとも鋼板片面に、Sn、Ni、Feの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m 2 のTiまたはZrまたはそれらの化合物の1種以上を含むエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から成る被膜を1〜500nm付与することを特徴とした製缶加工性に優れたラミネート容器用鋼板。
【0008】
(2)少なくとも鋼板片面に、Sn、Ni、Feの1種以上を含む表面処理層の上に、電解処理によりCrまたは水和酸化Crを付与した前記(1)に記載の製缶加工性に優れたラミネート容器用鋼板。
【0009】
(3)少なくとも鋼板片面に、Sn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m2 のTiまたはZrまたはそれらの化合物の1種以上を含むリン酸系化合物、有機ケイ素化合物、硫酸系化合物、ハロゲン化合物、塩素酸系化合物、硝酸系化合物の中から1種以上選択される無機系化合物およびエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から構成される無機−有機樹脂から成る被膜を1〜500nm付与することを特徴とした前記(1)または前記(2)に記載の製缶加工性に優れたラミネート容器用鋼板。
【0010】
(4)少なくとも鋼板片面に、Sn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m 2 のTiまたはZrまたはそれらの化合物の1種以上を含み、更に、Pとして0.1mg/m 2 以上のリン酸系化合物、Siとして0.1mg/m 2 以上の有機ケイ素化合物の1種以上を含むエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から成る被膜を1〜500nm付与することを特徴とした前記(1)または(2)記載の製缶加工性に優れたラミネート容器用鋼板にある。
【0011】
以下に、本発明の作用である製缶加工性に優れたラミネート容器用鋼板について詳細に説明する。
本発明で用いられる原板は特に限定されるものではなく、通常、容器材料として使用される鋼板を用いる。この原板の製造法、材質なども特に規制されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延等の工程を経て製造される。この原板に、Sn、Ni、Fe、Cr、水和酸化Crを含む表面処理層を付与する方法については特に限定するものでは無く、例えば、電気めっき法や真空蒸着法やスパッタリング法などの公知技術を用いれば良く、拡散層を付与するための加熱処理を組み合わせても良い。
【0012】
こうして付与されたSn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層において、Snは金属Snとして80〜6000mg/m2 、Niは金属Niとして10〜800mg/m2 、Feは金属Feとして10〜800mg/m2 、Cr及び水和酸化Crは金属Crとして2〜200mg/m2 が好ましい。
【0013】
Snは優れた加工性、溶接性を発揮する。この効果が発現するのは金属Snとして80mg/m2 以上が望ましい。十分な溶接性を確保するためには200mg/m2 以上、十分な加工性を確保するためには、1000mg/m2 以上付与する事が更に望ましい、Sn付着量の増加伴い、Snの優れた加工性、溶接性の向上効果は増加するが、6000mg/m2 以上ではその向上効果が飽和するため経済的に不利である。従って、Snの付着量は金属Snとして6000mg/m2 以下が望ましい。
【0014】
Ni、Feは、フィルム密着性、耐食性、溶接性にその効果を発揮し、その為には、金属NiあるいはFeとして、10mg/m2 以上のNiあるいはFeが付着していることが望ましい。Ni、Feの付着量の増加に伴い、Ni、Feの優れたフィルム密着性、耐食性、溶接性の向上効果は増加するが、800mg/m2 以上ではその向上効果が飽和するため経済的に不利である。従って、Ni、Feの付着量は金属NiあるいはFeとして10mg/m2 以上、800mg/m2 以下が望ましい。
【0015】
更に、優れたフィルム密着性、耐食性を発揮するCr及び水和酸化Crは金属Crとして2〜200mg/m2 が望ましい。即ち、Cr及び水和酸化Crの付着量が金属Crとして2mg/m2 を下回る密着性の点で不十分である。従って、Cr及び水和酸化Crの付着量は金属Crとして2mg/m2 以上が望ましい。Cr及び水和酸化Crの付着量が増加する程、フィルム密着性、耐食性の向上効果は増加するが、200mg/m2 を越えると溶接性が劣化する傾向がある事から、Cr及び水和酸化Crの付着量は金属Crとして200mg/m2 以下にするのが望ましい。
Sn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層を付与した後に、本発明の本質とする処の有機樹脂または無機−有機樹脂が付与される。
【0016】
本発明で付与される有機樹脂被膜は、前述の如く、ラミネートされるフィルムあるいは接着層と共有結合を発生し、高い密着性を確保せしめる効果を発揮する。この効果が得られる樹脂には、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂などが挙げられるが、特に優れた性能を発揮する樹脂として、フェノール系樹脂が挙げられる。フェノール系樹脂は常法に製造可能で、例えば、フェノール化合物、ナフトール化合物またはビスフェノール類とホルムアルデヒドを重縮合し、作製される。
【0017】
本発明の有機樹脂においては、種々の樹脂と混合されてもその効果を発揮するが、フェノール系樹脂の優れた特性を発揮するためには、フェノール樹脂分が70%以上含有することが望ましい。
また、この樹脂中に含まれる場合の無機系の化合物はフィルム密着性や耐食性を大幅に向上せしめる効果がある。この無機系化合物には、リン酸系化合物、有機ケイ素化合物、硫酸系化合物、ハロゲン化合物、塩素酸系化合物、硝酸系化合物などが挙げられるが、特に、高いフィルム密着性や耐食性の向上効果が認められる物として、リン酸系化合物、有機ケイ素化合物が挙げられる。
【0018】
これらの向上効果が認められるリン酸系化合物としては、リン酸もしくはその塩、縮合リン酸もしくはその塩、リン酸ジルコニウム、リン酸チタン等が挙げられる。塩としてはアンモニウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。
また、有機ケイ素化合物としては、ビニルエトキシシラン、アミノプロピルトリエトキシシラン、メルカプトプロピルトリメトキシシラン、メラクリロキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等が挙げられる。
【0019】
リン酸系化合物あるいは有機ケイ素化合物の1種以上が有機樹脂中に存在する事により、高いフィルム密着性や耐食性の向上が発揮されるが、その効果の発現には、Pとして0.1mg/m2 以上のリン酸系化合物、または、Siとして0.1mg/m2 以上の有機ケイ素化合物が存在することが望ましい。しかし、樹脂中のリン酸系化合物あるいは有機ケイ素化合物の含有量が増加すると、経済的に不利益を被るため、樹脂中のリン酸系化合物あるいは有機ケイ素化合物の含有量は、PあるいはSiとして、200mg/m2 以下にすることが好ましい。
【0020】
更に本発明においては、無機−有機樹脂中にTiまたはZrまたはそれらの化合物の1種以上を含ませる事により、より優れたフィルム密着性、耐食性を発揮させることが出来る。また、Ti、Zrは被膜中のPあるいはSiと結合しても本発明の効果は失われない。無機−有機樹脂中に含有されるTiまたはZrまたはそれらの化合物の含有量はTiまたはZrとして0.2〜300mg/m2 が望ましい。TiまたはZrの含有量が0.2mg/m2 を下回るとフィルム密着性、耐食性の向上効果が小さく、また、300mg/m2 を越えると経済的に不利になるため、無機−有機樹脂中に含有されるTiまたはZrまたはそれらの化合物の含有量は、TiまたはZrとして0.2〜300mg/m2 が望ましい。
【0021】
無機−有機樹脂中にTiまたはZrまたはそれらの化合物を含有させる方法は、特に規制しない。後述する処理液中にTi化合物またはZr化合物を含有させ、その中に鋼板を浸漬する事により可能である。Ti化合物は特に規制しないが、実用上あるいは性能上からもTi塩が望ましい。Ti塩としては、例えば、リン酸チタン、チタン弗化水素酸及びそのリチウム、ナトリウム、アンモニウム等の塩、硫酸チタン、硫酸チタニル等が挙げられる。
【0022】
また、Zr化合物も特に規制しないが、実用上あるいは性能上からもZr塩が望ましい。Zr塩としては、例えば、リン酸ジルコニウム、ジルコニウム弗化水素酸及びそのリチウム、ナトリウム、アンモニウム等の塩、硫酸ジルコニウム、硫酸ジルコニル、硝酸ジルコニル等が挙げられる。
以上述べた無機−有機樹脂を付与する方法は特に規制しない。例えば、上述の有機樹脂(エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂)と上述のリン酸系化合物、有機ケイ素化合物あるいはTi化合物、Zr化合物を混合した処理液に浸漬し、リンガーロール等で絞り、乾燥させて得る事が出来る。
【0023】
【実施例】
以下に本発明の実施例及び比較例について述べ、その結果を表1に示す。
以下の処理法(1)〜(7)の方法を用いて鋼板上に表面処理層を付与した。(処理法1)
冷間圧延後、焼鈍、調圧された原板にフェロスタン浴を用いてSnめっきを施し、その上に必要に応じてクロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
(処理法2)
冷間圧延後、焼鈍、調圧された原板にワット浴を用いてNiめっきを施し、その上に必要に応じてクロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
【0024】
(処理法3)
冷間圧延後、ワット浴を用いてNiめっきを施し、焼鈍時にNi拡散層を形成させ、その後、必要に応じて、クロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
(処理法4)
冷間圧延後、焼鈍、調圧された原板に硫酸−塩酸浴を用いてFeめっきを施し、その上に必要に応じてクロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
【0025】
(処理法5)
冷間圧延後、焼鈍、調圧された原板に、クロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
(処理法6)
冷間圧延後、焼鈍、調圧された原板に硫酸−塩酸浴を用いてFe−Ni合金めっきを施し、引き続き、フェロスタン浴を用いてSnめっきを施し、加熱処理により、Snめっき層を一部合金化させ、その上に必要に応じてクロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
【0026】
(処理法7)
冷間圧延後、焼鈍、調圧された原板に硫酸−塩酸浴を用いてSn−Ni合金を施し、その上に必要に応じてクロム酸−硫酸溶液中で電解処理を行いCrまたは水和酸化Crを付与した。
上記の処理により表面処理層を付与した後、以下の処理法(8)〜(13)で無機−有機樹脂からなる被膜を付与した。
(処理法8)
フェノール樹脂、リン酸、必要に応じてリン酸チタンアンモニウム塩を溶解させた処理液に上記鋼板を浸漬後、乾燥し、無機−有機樹脂からなる被膜を付与した。
【0027】
(処理法9)
ウレタン樹脂、ミノプロピルトリエトキシシラン、必要に応じて硫酸ジルコニウムを溶解させた処理液に上記鋼板を浸漬後、乾燥し、無機−有機樹脂からなる被膜を付与した。
(処理法10)
85%フェノール樹脂−15%エポキシ樹脂、リン酸ナトリウム、必要に応じて硫酸チタンまたは硫酸ジルコニウムを溶解させた処理液に上記鋼板を浸漬後、乾燥し、無機−有機樹脂からなる被膜を付与した。
【0028】
(処理法11)
フェノール樹脂、フッ化チタンを溶解させた処理液に上記鋼板を浸漬後、乾燥し、無機−有機樹脂からなる被膜を付与した。
(処理法12)
85%フェノール樹脂−15%エポキシ樹脂を溶解させた処理液に上記鋼板を浸漬後、乾燥し、有機樹脂からなる被膜を付与した。
【0029】
上記処理材について、厚さ20nmのポリエチレンフィルムを200℃でラミネートし試験材を作製し、以下に示す(A)〜(D)の各項目について性能評価を行った。
(A)成形性
試験材に絞り加工としごき加工を段階的に行い、成型を4段階(◎:非常に良い、〇:良い、△:疵が認められる、×:破断し加工不能)で評価した。
【0030】
(B)溶接性
ワイヤーシーム溶接性を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して溶接を実施し、十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、4段階(◎:非常に広い、〇:良い、△:劣る、×:溶接不能)で溶接性を評価した。
【0031】
(C)フィルム密着性
絞りしごき加工を行った試験材に125℃、30minのレトルト処理を行い、フィルムの剥離状況を、4段階(◎:全く剥離無し、〇:実用上問題無い程度の極僅かな剥離有り、△:僅かな剥離有り、×:大部分で剥離)で評価した。
【0032】
(D)耐食性
試験材に絞りしごき加工を行い、缶を作製し、1.5%クエン酸−1.5%食塩混合液からなる試験液を充填し、蓋を取付け、55℃、1ヶ月間、恒温室に安置し、缶内面の腐食状況を4段階(◎:腐食が認められない、〇:実用上問題無い程度の僅かな腐食が認められる、△:微小な腐食が認められる、×:激しい腐食が認められる)で判断して評価した。
【0033】
【表1】

Figure 0003742533
【0034】
【発明の効果】
表1に示すように、本特許により製造された製缶加工性に優れたラミネート容器用鋼板は、優れた成形性、溶接性、フィルム密着性、耐食性を有することが明らかになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate for a laminated container that is excellent in drawing ironing, weldability, corrosion resistance, and film adhesion, in particular, as a material for can manufacturing.
[0002]
[Prior art]
Metal containers used for beverages and foods are roughly classified into two-piece cans and three-piece cans. A two-piece can represented by a DI can is squeezed and ironed, then painted on the inner surface of the can and painted and printed on the outer surface of the can. The three-piece can is coated on the surface corresponding to the inner surface of the can and printed on the surface corresponding to the outer surface of the can, and then the can body is welded. In any type of can, a coating process is indispensable before and after canning. Solvent-based or water-based paints are used for painting, followed by baking. In this painting process, waste (such as waste solvents) resulting from the paint is discharged as industrial waste, and exhaust gas (mainly Carbon dioxide) is released to the atmosphere. In recent years, efforts have been made to reduce these industrial waste and exhaust gas for the purpose of protecting the global environment. Among these, the technique of laminating films as an alternative to painting has attracted attention and has spread rapidly.
[0003]
So far, in the two-piece can, there have been provided a large number of methods for producing a can in which a film is laminated and made, and related inventions. For example, “a method for producing a squeezed iron cake (Japanese Patent No. 1571783)”, “a method for producing a squeezed iron cake (Japanese Patent No. 1670957)”, “a method for producing a thinned deep-drawn can (Japanese Patent Laid-Open No. 2-263523)”, “ For example, a coated steel sheet for squeezing and ironing iron (Japanese Patent No. 1601937).
Further, in a three-piece can, “a film laminated steel strip for a three-piece can and a manufacturing method thereof (Japanese Patent Laid-Open No. 3-236955)”, “a steel plate for a three-piece can having a striped multilayer organic coating (Japanese Patent Laid-Open No. 5-111979). No. Publication No. 5-147181), and “Method for Producing Three-Piece Can Striped Laminated Steel Sheet (JP-A-5-147181)”.
[0004]
In many cases, a chromate film subjected to an electrolytic chromate treatment is used for the steel sheet used as the base of the film of the laminated can. The chromate film has a two-layer structure, and a hydrated Cr oxide layer is present on the metal Cr layer. Therefore, the laminate film (adhesive layer in the case of a film with an adhesive) ensures adhesion to the steel sheet through the hydrated Cr oxide layer of the chromate film. Although the details of the mechanism of this adhesion development are not clarified, it is said to be a hydrogen bond between a hydroxyl group of hydrated Cr oxide and a functional group such as a carbonyl group or an ester group of a laminate film.
Further, examples of the coating not subjected to the electrolytic chromate treatment include “a coated metal material in which a base film for film lamination is formed on the surface of the metal material and a manufacturing method thereof (Japanese Patent Laid-Open No. 10-46101)”.
[0005]
[Problems to be solved by the invention]
Although the above-mentioned invention certainly has the effect of greatly advancing the conservation of the global environment, on the other hand, in the beverage container market, cost and quality competition with materials such as PET bottles, bottles and paper have intensified in recent years. Therefore, the above-described steel sheet for laminated containers has been required to have superior can-making processability, particularly film adhesion, processed film adhesion, corrosion resistance, and the like.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on a film utilizing an inorganic substance or an organic resin as a new film replacing the chromate film, the present inventors have found that a film utilizing an inorganic substance or an organic resin is a laminate film applied to the upper layer of the film. The present inventors have found that a covalent bond can be formed as much as possible and an excellent can-making processability that is superior to that of a conventional chromate film can be obtained.
[0007]
That is, the present invention
(1) At least one surface of the steel sheet has a surface treatment layer containing one or more of Sn, Ni, and Fe, and further has a metal amount of 0.2 to 300 mg / m 2. An organic resin selected from at least one selected from the group consisting of epoxy resins, phenol resins, urethane resins, vinyl resins, ester resins, and styrene resins containing at least one of Ti or Zr or a compound thereof. A steel sheet for a laminate container excellent in can manufacturing process, characterized by imparting a coating in an amount of 1 to 500 nm.
[0008]
(2) The can manufacturing process according to the above (1), in which Cr or hydrated Cr oxide is applied by electrolytic treatment on a surface treatment layer containing at least one of Sn, Ni, and Fe on at least one surface of the steel plate. Excellent steel sheet for laminated containers.
[0009]
(3) At least one surface of the steel sheet has a surface treatment layer containing one or more of Sn, Ni, Fe, Cr, and hydrated Cr oxide, and further, Ti having a metal amount of 0.2 to 300 mg / m 2 or Zr or including phosphoric acid compound with one or more of these compounds, organosilicon compounds, sulfuric compounds, halogenated compounds, chloric acid compounds, inorganic compounds are at least one selected from among nitric acid compound and 1 to 500 nm thick coating of inorganic- organic resin composed of one or more organic resins selected from epoxy resins, phenolic resins, urethane resins, vinyl resins, ester resins, and styrene resins The steel plate for laminated containers excellent in can manufacturing process as described in (1) or (2) above .
[0010]
(4) at least on the steel sheet one surface has Sn, Ni, Fe, Cr, a surface treatment layer containing one or more hydrated oxide Cr, over its, 0.2~300mg / m 2 by metal weight Ti or Zr or one or more compounds thereof, and further, P is 0.1 mg / m 2 The above phosphoric acid compound, Si as 0.1 mg / m 2 A film made of an organic resin selected from one or more of epoxy resins, phenolic resins, urethane resins, vinyl resins, ester resins, and styrene resins containing one or more of the above organosilicon compounds. It is in the steel plate for laminated containers excellent in can manufacturing process of the said (1) or (2) description characterized by providing -500nm .
[0011]
Below, the steel plate for laminated containers excellent in can manufacturing process which is an effect | action of this invention is demonstrated in detail.
The original plate used in the present invention is not particularly limited, and usually a steel plate used as a container material is used. There are no particular restrictions on the manufacturing method, material, and the like of the original plate, and the original plate is manufactured through processes such as hot rolling, pickling, and cold rolling from a normal slab manufacturing process. There is no particular limitation on the method of applying a surface treatment layer containing Sn, Ni, Fe, Cr, and hydrated Cr oxide to the original plate. For example, known techniques such as electroplating, vacuum deposition, and sputtering. May be used, and a heat treatment for providing a diffusion layer may be combined.
[0012]
In the surface treatment layer containing one or more of Sn, Ni, Fe, Cr and hydrated Cr oxide applied in this way, Sn is 80 to 6000 mg / m 2 as metal Sn, Ni is 10 to 800 mg / m 2 as metal Ni. Fe is preferably 10 to 800 mg / m 2 as metal Fe, and Cr and hydrated Cr are preferably 2 to 200 mg / m 2 as metal Cr.
[0013]
Sn exhibits excellent workability and weldability. It is desirable that the effect is 80 mg / m 2 or more as metal Sn. In order to ensure sufficient weldability, it is more desirable to give 200 mg / m 2 or more, and in order to ensure sufficient workability, it is more desirable to give 1000 mg / m 2 or more. Although the improvement effect of workability and weldability increases, since the improvement effect is saturated at 6000 mg / m 2 or more, it is economically disadvantageous. Accordingly, the amount of Sn deposited is preferably 6000 mg / m 2 or less as metallic Sn.
[0014]
Ni and Fe exert their effects on film adhesion, corrosion resistance, and weldability. For this purpose, it is desirable that 10 mg / m 2 or more of Ni or Fe is attached as metal Ni or Fe. As Ni and Fe adherence increases, the improvement effect of excellent film adhesion, corrosion resistance, and weldability of Ni and Fe increases. However, since the improvement effect is saturated at 800 mg / m 2 or more, it is economically disadvantageous. It is. Therefore, the adhesion amount of Ni and Fe is preferably 10 mg / m 2 or more and 800 mg / m 2 or less as metallic Ni or Fe.
[0015]
Further, Cr and hydrated Cr oxide exhibiting excellent film adhesion and corrosion resistance are desirably 2 to 200 mg / m 2 as metal Cr. That is, the adhesion amount of Cr and hydrated Cr oxide is inadequate in terms of adhesion, which is less than 2 mg / m 2 as metal Cr. Therefore, the adhesion amount of Cr and hydrated Cr oxide is desirably 2 mg / m 2 or more as metal Cr. As the adhesion amount of Cr and hydrated Cr increases, the effect of improving film adhesion and corrosion resistance increases. However, if it exceeds 200 mg / m 2 , weldability tends to deteriorate. The adhesion amount of Cr is desirably 200 mg / m 2 or less as metallic Cr.
After providing the surface treatment layer containing one or more of Sn, Ni, Fe, Cr, and hydrated Cr oxide, the organic resin or inorganic-organic resin as the essence of the present invention is given.
[0016]
As described above, the organic resin coating applied in the present invention generates a covalent bond with the laminated film or adhesive layer, and exhibits the effect of ensuring high adhesion. Resins that can achieve this effect include epoxy resins, phenol resins, urethane resins, vinyl resins, ester resins, styrene resins, and the like. Resin. The phenolic resin can be produced by a conventional method, and is produced, for example, by polycondensation of a phenol compound, a naphthol compound, or a bisphenol with formaldehyde.
[0017]
The organic resin of the present invention exhibits its effect even when mixed with various resins, but it is desirable that the phenol resin content is 70% or more in order to exhibit the excellent characteristics of the phenolic resin.
Moreover, the inorganic compound when contained in this resin has an effect of greatly improving film adhesion and corrosion resistance. Examples of the inorganic compounds include phosphoric acid compounds, organosilicon compounds, sulfuric acid compounds, halogen compounds, chloric acid compounds, and nitric acid compounds. Particularly, high film adhesion and corrosion resistance are improved. Examples of the product include phosphoric acid compounds and organosilicon compounds.
[0018]
Examples of the phosphoric acid compounds that can be improved include phosphoric acid or a salt thereof, condensed phosphoric acid or a salt thereof, zirconium phosphate, and titanium phosphate. Examples of the salt include alkali metal salts such as ammonium salt, sodium salt and potassium salt.
Examples of the organosilicon compound include vinylethoxysilane, aminopropyltriethoxysilane, mercaptopropyltrimethoxysilane, melacryloxypropyltriethoxysilane, and γ-glycidoxypropyltrimethoxysilane.
[0019]
The presence of one or more of a phosphoric acid compound or an organosilicon compound in the organic resin improves high film adhesion and corrosion resistance. It is desirable that 2 or more phosphoric acid compounds or an organosilicon compound of 0.1 mg / m 2 or more exist as Si. However, if the content of the phosphoric acid compound or organosilicon compound in the resin is increased, it is economically disadvantageous. Therefore, the content of the phosphoric acid compound or organosilicon compound in the resin is P or Si, It is preferable to be 200 mg / m 2 or less.
[0020]
In the present invention, more excellent film adhesion and corrosion resistance can be exhibited by including at least one of Ti or Zr or a compound thereof in the inorganic-organic resin. Even if Ti and Zr are combined with P or Si in the coating, the effect of the present invention is not lost. The content of Ti or Zr or a compound thereof contained in the inorganic-organic resin is preferably 0.2 to 300 mg / m 2 as Ti or Zr. If the content of Ti or Zr is less than 0.2 mg / m 2 , the effect of improving film adhesion and corrosion resistance is small, and if it exceeds 300 mg / m 2 , it is economically disadvantageous. The content of Ti or Zr contained or compounds thereof is preferably 0.2 to 300 mg / m 2 as Ti or Zr.
[0021]
The method of incorporating Ti or Zr or a compound thereof into the inorganic-organic resin is not particularly restricted. This is possible by containing a Ti compound or a Zr compound in the treatment liquid described later and immersing the steel sheet in the Ti compound or Zr compound. The Ti compound is not particularly restricted, but a Ti salt is desirable from the standpoint of practical use or performance. Examples of the Ti salt include titanium phosphate, titanium hydrofluoric acid and salts thereof such as lithium, sodium, and ammonium, titanium sulfate, titanyl sulfate, and the like.
[0022]
Further, Zr compounds are not particularly restricted, but Zr salts are desirable from the viewpoint of practical use and performance. Examples of the Zr salt include zirconium phosphate, zirconium hydrofluoric acid and salts thereof such as lithium, sodium, and ammonium, zirconium sulfate, zirconyl sulfate, zirconyl nitrate, and the like.
The method for applying the inorganic-organic resin described above is not particularly restricted. For example, the above organic resin (epoxy resin, phenol resin, urethane resin, vinyl resin, ester resin, styrene resin) and the above phosphoric acid compound, organosilicon compound, Ti compound, or Zr compound are mixed. It can be obtained by dipping in the treated liquid, squeezing with a ringer roll or the like and drying.
[0023]
【Example】
Examples of the present invention and comparative examples are described below, and the results are shown in Table 1.
The surface treatment layer was provided on the steel sheet using the following treatment methods (1) to (7). (Treatment method 1)
After cold rolling, the annealed and pressure-regulated original plate was subjected to Sn plating using a ferrostan bath, and then subjected to electrolytic treatment in a chromic acid-sulfuric acid solution as necessary to give Cr or hydrated Cr oxide. .
(Treatment method 2)
After cold rolling, Ni plating was applied to the annealed and pressure-adjusted original plate using a Watt bath, and electrolytic treatment was carried out in a chromic acid-sulfuric acid solution as necessary to give Cr or hydrated Cr oxide. .
[0024]
(Treatment method 3)
After cold rolling, Ni plating is performed using a Watt bath, and a Ni diffusion layer is formed during annealing. Then, if necessary, electrolytic treatment is performed in a chromic acid-sulfuric acid solution to provide Cr or hydrated Cr oxide. did.
(Treatment method 4)
After cold rolling, the annealed and pressure-adjusted original plate is Fe-plated using a sulfuric acid-hydrochloric acid bath, and if necessary, electrolytic treatment is performed in a chromic acid-sulfuric acid solution to add Cr or hydrated Cr oxide. Granted.
[0025]
(Treatment method 5)
After cold rolling, the annealed and pressure-adjusted original plate was subjected to electrolytic treatment in a chromic acid-sulfuric acid solution to give Cr or hydrated Cr oxide.
(Treatment method 6)
After cold rolling, the annealed and pressure-controlled original plate is subjected to Fe-Ni alloy plating using a sulfuric acid-hydrochloric acid bath, followed by Sn plating using a ferrostan bath, and a portion of the Sn plating layer is subjected to heat treatment. Alloying was performed, and electrolytic treatment was performed in a chromic acid-sulfuric acid solution as necessary to give Cr or hydrated Cr oxide.
[0026]
(Treatment method 7)
After cold rolling, an annealed and pressure-adjusted original plate is subjected to a Sn-Ni alloy using a sulfuric acid-hydrochloric acid bath, and then subjected to electrolytic treatment in a chromic acid-sulfuric acid solution as necessary, and Cr or hydrated oxidation Cr was added.
After providing a surface treatment layer by said process, the film which consists of inorganic-organic resin was provided with the following processing methods (8)-(13).
(Treatment method 8)
The steel sheet was immersed in a treatment solution in which a phenol resin, phosphoric acid, and if necessary, a titanium ammonium phosphate salt were dissolved, and then dried to give a coating made of an inorganic-organic resin.
[0027]
(Treatment method 9)
The steel sheet was immersed in a treatment solution in which urethane resin, minopropyltriethoxysilane, and if necessary, zirconium sulfate was dissolved, and then dried to give a coating made of an inorganic-organic resin.
(Treatment method 10)
The steel sheet was dipped in a treatment solution in which 85% phenol resin-15% epoxy resin, sodium phosphate, and if necessary, titanium sulfate or zirconium sulfate was dissolved, and then dried to give a film made of an inorganic-organic resin.
[0028]
(Treatment method 11)
The steel sheet was immersed in a treatment solution in which a phenol resin and titanium fluoride were dissolved, and then dried to give a film made of an inorganic-organic resin.
(Treatment method 12)
The steel sheet was immersed in a treatment solution in which 85% phenolic resin-15% epoxy resin was dissolved, and then dried to give a film made of an organic resin.
[0029]
About the said processing material, the 20-nm-thick polyethylene film was laminated at 200 degreeC, the test material was produced, and performance evaluation was performed about each item of (A)-(D) shown below.
(A) Formability The test material is subjected to drawing and ironing step by step, and the molding is evaluated in four stages (◎: very good, ○: good, △: flaws are recognized, ×: broken and incapable of processing) did.
[0030]
(B) Weldability Using wire seam weldability, welding is performed by changing the current under the condition of a welding wire speed of 80 m / min. Judging comprehensively from the range of the appropriate current range consisting of the maximum current value at which welding defects start to stand out, the weldability is evaluated in four stages (◎: very wide, ○: good, △: inferior, ×: unweldable) did.
[0031]
(C) Film adhesion Test material that has been squeezed and ironed is subjected to a retort treatment at 125 ° C. for 30 minutes, and the film is peeled in four stages (◎: no peeling, ◯: very little to the extent that there is no practical problem. ): Slight peeling, x: peeling in most part).
[0032]
(D) Corrosion resistance The test material is squeezed and ironed to prepare a can, filled with a test solution consisting of 1.5% citric acid-1.5% salt mixture, attached with a lid, 55 ° C for 1 month , Placed in a temperature-controlled room, and the corrosion status of the inner surface of the can in 4 stages (◎: No corrosion is observed, ○: Slight corrosion is observed with no practical problem, △: Minute corrosion is observed, ×: Judgment was made and evaluated.
[0033]
[Table 1]
Figure 0003742533
[0034]
【The invention's effect】
As shown in Table 1, it was clarified that the steel plate for laminate containers manufactured by this patent and having excellent can processability has excellent formability, weldability, film adhesion, and corrosion resistance.

Claims (4)

少なくとも鋼板片面に、Sn、Ni、Feの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m 2 のTiまたはZrまたはそれらの化合物の1種以上を含むエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から成る被膜を1〜500nm付与することを特徴とした製缶加工性に優れたラミネート容器用鋼板。At least one surface of the steel sheet has a surface treatment layer containing one or more of Sn, Ni, and Fe, and further has a metal content of 0.2 to 300 mg / m 2. An organic resin selected from at least one selected from the group consisting of epoxy resins, phenol resins, urethane resins, vinyl resins, ester resins, and styrene resins containing at least one of Ti or Zr or a compound thereof. A steel sheet for a laminate container excellent in can manufacturing process, characterized by imparting a coating in an amount of 1 to 500 nm. 少なくとも鋼板片面に、Sn、Ni、Feの1種以上を含む表面処理層の上に、電解処理によりCrまたは水和酸化Crを付与した請求項1に記載の製缶加工性に優れたラミネート容器用鋼板。  The laminate container excellent in can manufacturing process according to claim 1, wherein Cr or hydrated Cr oxide is applied by electrolytic treatment on a surface treatment layer containing at least one of Sn, Ni, and Fe on at least one surface of the steel plate. Steel plate. 少なくとも鋼板片面に、Sn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m2 のTiまたはZrまたはそれらの化合物の1種以上を含むリン酸系化合物、有機ケイ素化合物、硫酸系化合物、ハロゲン化合物、塩素酸系化合物、硝酸系化合物の中から1種以上選択される無機系化合物およびエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から構成される無機−有機樹脂から成る被膜を1〜500nm付与することを特徴とした請求項1または請求項2記載の製缶加工性に優れたラミネート容器用鋼板。At least one surface of the steel sheet has a surface treatment layer containing one or more of Sn, Ni, Fe 2 , Cr, hydrated Cr oxide , and further, Ti or Zr with a metal amount of 0.2 to 300 mg / m 2 Inorganic compounds and epoxy resins selected from at least one of phosphoric acid compounds, organosilicon compounds, sulfuric acid compounds, halogen compounds, chloric acid compounds, and nitric acid compounds containing at least one of these compounds , It is characterized by providing a coating of 1 to 500 nm comprising an inorganic-organic resin composed of an organic resin selected from one or more of phenolic resins, urethane resins, vinyl resins, ester resins, and styrene resins. The steel plate for laminate containers excellent in can manufacturing process according to claim 1 or 2 . 少なくとも鋼板片面に、Sn、Ni、Fe、Cr、水和酸化Crの1種以上を含む表面処理層を有し、その上に、金属量で0.2〜300mg/m 2 のTiまたはZrまたはそれらの化合物の1種以上を含み、更に、Pとして0.1mg/m 2 以上のリン酸系化合物、Siとして0.1mg/m 2 以上の有機ケイ素化合物の1種以上を含むエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ビニル系樹脂、エステル系樹脂、スチレン系樹脂の中から1種以上選択される有機樹脂から成る被膜を1〜500nm付与することを特徴とした請求項1または請求項2記載の製缶加工性に優れたラミネート容器用鋼板。At least on the steel sheet one surface has Sn, Ni, Fe, Cr, a surface treatment layer containing one or more hydrated oxide Cr, over its, 0.2~300mg / m 2 by metal weight Ti or Zr or one or more compounds thereof, and further, P is 0.1 mg / m 2 The above phosphoric acid compound, Si as 0.1 mg / m 2 A film made of an organic resin selected from one or more of epoxy resins, phenolic resins, urethane resins, vinyl resins, ester resins, and styrene resins containing one or more of the above organosilicon compounds. The steel sheet for laminated containers excellent in can-making processability according to claim 1 or 2, wherein -500 nm is provided.
JP19405299A 1998-12-14 1999-07-08 Steel sheet for laminated containers with excellent can-making processability Expired - Fee Related JP3742533B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19405299A JP3742533B2 (en) 1998-12-14 1999-07-08 Steel sheet for laminated containers with excellent can-making processability
EP00944342A EP1134305A4 (en) 1999-07-08 2000-07-07 Steel plate for laminated container, and method for producing can using the same and can
PCT/JP2000/004556 WO2001004380A1 (en) 1999-07-08 2000-07-07 Steel plate for laminated container, and method for producing can using the same and can

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-354502 1998-12-14
JP35450298 1998-12-14
JP19405299A JP3742533B2 (en) 1998-12-14 1999-07-08 Steel sheet for laminated containers with excellent can-making processability

Publications (2)

Publication Number Publication Date
JP2000234181A JP2000234181A (en) 2000-08-29
JP3742533B2 true JP3742533B2 (en) 2006-02-08

Family

ID=26508270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19405299A Expired - Fee Related JP3742533B2 (en) 1998-12-14 1999-07-08 Steel sheet for laminated containers with excellent can-making processability

Country Status (1)

Country Link
JP (1) JP3742533B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041601A (en) * 2000-11-28 2002-06-03 이구택 A cold rolled steel sheet for ferment food vessel with superior perservation property
JP3909030B2 (en) * 2003-03-20 2007-04-25 新日本製鐵株式会社 Steel plate for laminated containers with excellent rust resistance
CN101410553B (en) * 2006-03-29 2012-06-27 新日本制铁株式会社 Steel sheet for containers
ES2719740T3 (en) * 2006-09-08 2019-07-12 Nippon Steel Corp Steel plate for container, and method for its production
JP5994495B2 (en) * 2011-09-05 2016-09-21 Jfeスチール株式会社 Steel plate for containers
WO2015012176A1 (en) * 2013-07-24 2015-01-29 Jfeスチール株式会社 Steel sheet for container

Also Published As

Publication number Publication date
JP2000234181A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP5093797B2 (en) Steel plate for containers with excellent can processability
JP4886811B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP5196035B2 (en) Steel plate for container and method for producing the same
JP5214437B2 (en) Steel plate for containers
JP5240489B2 (en) Resin-coated aluminum alloy plate and molded body using the same
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
JP5672775B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP5729230B2 (en) Steel plate for container and method for producing the same
JP4897818B2 (en) Steel plate for container and manufacturing method thereof
JP2002355921A (en) Steel panel for container excellent in adhesion and corrosion resistance
JP3742533B2 (en) Steel sheet for laminated containers with excellent can-making processability
JP5311266B2 (en) Resin-coated seamless aluminum can with excellent corrosion resistance and adhesion
JP2000226676A (en) Steel sheet for laminate welded can
EP1484174A1 (en) Resin coated steel sheet and can formed by pressing the same
JP3909030B2 (en) Steel plate for laminated containers with excellent rust resistance
WO2001004380A1 (en) Steel plate for laminated container, and method for producing can using the same and can
JP4293065B2 (en) Welding cans with excellent resistance to sulfur discoloration and corrosion
JP2003119570A (en) Pretreated aluminum material superior in coating adhesiveness and corrosion resistance
JP2003260758A (en) Press molded can made of precoated sheet steel
JP2004285380A (en) Steel sheet with superior adhesiveness, corrosion resistance, workability and weldability for high-functionality vessel
JP2003063518A (en) Steel di can
JP2696729B2 (en) Manufacturing method of surface treated steel sheet for organic resin coating with excellent processing adhesion
JP2807482B2 (en) Double coated steel sheet for can making and its manufacturing method
JP6553936B2 (en) Method for producing aluminum alloy sheet for packaging container
JPH0241594B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees