JP3741959B2 - 車両のステアリング装置の耐久性能試験方法及び試験装置 - Google Patents

車両のステアリング装置の耐久性能試験方法及び試験装置 Download PDF

Info

Publication number
JP3741959B2
JP3741959B2 JP2001026497A JP2001026497A JP3741959B2 JP 3741959 B2 JP3741959 B2 JP 3741959B2 JP 2001026497 A JP2001026497 A JP 2001026497A JP 2001026497 A JP2001026497 A JP 2001026497A JP 3741959 B2 JP3741959 B2 JP 3741959B2
Authority
JP
Japan
Prior art keywords
maximum
pinion
steering
steering angle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026497A
Other languages
English (en)
Other versions
JP2002228555A (ja
Inventor
純郎 山本
三幸 大内
裕明 増野
正敏 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Saginomiya Seisakusho Inc
Original Assignee
Toyota Motor Corp
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Saginomiya Seisakusho Inc filed Critical Toyota Motor Corp
Priority to JP2001026497A priority Critical patent/JP3741959B2/ja
Publication of JP2002228555A publication Critical patent/JP2002228555A/ja
Application granted granted Critical
Publication of JP3741959B2 publication Critical patent/JP3741959B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、右最大舵角と左最大舵角との間の往復動を繰り返して、自動車など車両のステアリング装置の耐久性能を調べる耐久性能試験方法及び試験装置に関する。
【0002】
【従来の技術】
自動車の操舵機構について、図8および図9を用いて簡単に説明する。図8は自動車の操舵機構の概略の斜視図である。図9はラックバーとラックエンドボールジョイントとの連結部付近の説明図で、(a)が要部外観図で、(b)が(a)のB部拡大断面図である。なお、図9の(b)において、ラックバーとタイロッドとを連結するボールジョイントを左側に図示している。
ステアリングホイール(所謂、ハンドル)1が取り付けられているハンドル軸2は、自在継手3などを介してピニオン4に連結されており、ステアリングホイール1を回転すると、ハンドル軸2や自在継手3などを介してピニオン4が回転する。ピニオン4に係合するラックバー6は筒状のシリンダ7に覆われているとともに、その左右両端部は各々ボールジョイント8を介してタイロッド9が連結されている。なお、ボールジョイント8付近は、シリンダ7の端部に取り付けられている蛇腹部材10で覆われている。そして、タイロッド9にナックルアーム11が連結され、このナックルアーム11が車輪12を左右に回動させる。シリンダ7の内部には、図9(b)に図示するように、オイルシール16が設けられているとともに、シリンダ7内にオイルが充填されている。そして、オイルシール16の配置部の左側には、シリンダ7の内面に段部17が形成されており、この段部17がラックエンドストッパー18の受部となっている。ラックエンドストッパー18は筒状をしており、ラックバー6に摺動自在に嵌合しているとともに、その外周面にはリング状の突条18aが一体に形成されている。このラックエンドストッパー18の突条18aの左側には、Cリング19がシリンダ7に固定されている。この様にして、ラックエンドストッパー18の突条18aは、シリンダ7の段部17とCリング19との間に配置され、かつ、ラックエンドストッパー18の先端は、突条18aからボールジョイント8配置側〔図9(b)においては左側〕に延在している。そして、ステアリング装置であるステアリングアッシィは、上記ピニオン4、ラックバー6、シリンダ7、継手であるボールジョイント8、タイロッド9および舵角抑制手段であるラックエンドストッパー18などで構成されており、ステアリング装置は舵角抑制手段を具備している。
【0003】
この様にして構成されている自動車の操舵装置において、ステアリングホイール1を回転すると、ピニオン4が回転し、ラックバー6およびタイロッド9が左右に移動し、ナックルアーム11を介して、車輪12を左右に回動すなわち転舵する。そして、右または左に目一杯に操舵すると、ボールジョイント8がラックエンドストッパー18に当たり、ラックエンドストッパー18を押圧する。押圧されたラックエンドストッパー18は段部17側にガタ分スライドし当接し、係止される。この様に、ステアリングアッシィには左右の操舵の上限角度を規制するストッパー部材が設けられている。そのため、ピニオン4に加わるトルクは、ボールジョイント8がラックエンドストッパー18に当接する最大舵角において急激に増大する。なお、この明細書において、舵角は中立状態からのピニオン4の回転角度の絶対値で、その向きは右側を+、左側を−としている。
【0004】
この様に構成されているステアリングアッシィの耐久性の試験をする際には、タイロッド9の端部に荷重負荷装置を設けるとともに、ピニオン4をサーボモータなどで回転駆動させる。このサーボモータは、図10(a)に図示するような信号に追随する様に制御されている。図10は従来のステアリングアッシィの性能試験における模式的グラフで、(a)がサーボモータへの入力信号のグラフ、(b)がピニオントルクのグラフである。なお、図10において、右側を+で、左側を−で表示している。サーボモータは右側の最大舵角Arまで回転し、その状態を保持時間Thの間維持し、ついで、左側に最大舵角Arまで回転し、その状態を保持時間Thの間維持することを順次繰り返している。
【0005】
【発明が解決しようとする課題】
ところで、この様に、ボールジョイント8がラックエンドストッパー18に当接し、このラックエンドストッパー18が押圧されて段部17に係止される最大舵角Arの状態を維持していると、図10(b)に図示するように、最大舵角Arにおける最大トルクTdが保持時間Thの間維持されることになる。ところが、実際に人間がステアリングホイール1を操作して車庫入れなどを行う際は、最大舵角Arまで操舵し、この最大舵角Arを保持時間Thの間維持するが、図11(b)に図示するように、最大トルクTdは一時的である。図11は人間が操舵する際の模式的グラフで、(a)は人間が操舵の目標としている舵角のグラフ、(b)がピニオントルクのグラフである。なお、図11(a)は人間が意識している舵角のグラフであり、実際に測定した舵角ではない。
すなわち、最大舵角Arまでの転舵時には、勢いを付けてステアリングホイール1を回転しているため、最大舵角Arに達した直後は慣性により過大なトルクが出るが、それ以降は、ステアリングホイール1をそれ以上回転する必要がなくなり、力を緩めている。したがって、ピニオン4に加わるピニオントルクは低下する。そして、最大舵角Arに達した時に、ボールジョイント8がラックエンドストッパー18を押圧している。そのため、従来のステアリングアッシィ性能試験と、人間が実際に行う操舵行為とに差が生じる。したがって、性能試験の精度が低下することになる。
【0006】
本発明は、以上のような課題を解決するためのもので、試験の精度を向上させることができる車両のステアリング装置の耐久性能試験方法及び試験装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の車両のステアリング装置の耐久性能試験方法は、ピニオン駆動装置(23)によりステアリング装置のピニオン(4)を回転駆動し、このピニオンの回転をラックバー(6)を介して左右のタイロッド(9)に伝達させて、右最大舵角と左最大舵角との間の往復動を繰り返させてステアリング装置の性能試験を行う車両のステアリング装置の耐久性能試験方法であって、左右の最大舵角の一方まで漸次回動し、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の他方に向かって漸次回動することを特徴としている。
【0008】
また、ピニオンに加わるピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御されている場合がある。
【0009】
本発明の車両のステアリング装置の耐久性能試験装置は、ピニオンと、このピニオンに係合して往復駆動されるラックバーと、このラックバーの左右の端部に連結されている左右のタイロッドとを有するステアリング装置の性能試験を行う。そして、前記ステアリング装置のピニオンを回転駆動するピニオン駆動装置と、前記タイロッドに負荷を加える荷重負荷装置(22)と、左右の最大舵角の一方まで漸次回動し、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の他方に向かって漸次回動させ、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の一方に向かって漸次回動させることを順次行いながら、右最大舵角と左最大舵角との間の往復動を繰り返す様に前記ピニオン駆動装置を制御するピニオン駆動制御装置(33)とを備えている。
また、前記ピニオンに加わるピニオントルクを検出するピニオントルク検出装置(47)が設けられ、このピニオントルク検出装置の検出したピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御する振幅制御手段(51)が設けられている場合がある。
【0011】
【発明の実施の形態】
次に、本発明におけるステアリング装置の耐久性能試験方法及び試験装置の実施の一形態を説明する。図1は本発明の実施の一形態のステアリング装置の性能試験装置のブロック図である。図2は実車の舵角およびラック荷重のグラフで、(a)が舵角とラック荷重のグラフ、(b)が舵角の時間変化のグラフ、(c)がラック荷重の時間変化のグラフである。図3は正入力試験におけるグラフで、(a)が舵角波形発生部の出力のグラフ、(b)が左側のタイロッドに加わるラック荷重のグラフ、(c)が右側のタイロッドに加わるラック荷重のグラフ、(d)がピニオントルクのグラフである。図4は舵角波形発生部の出力のグラフの拡大図である。図5は舵角波形発生部の出力波形の作成のフローチャートである。図6はステアリング装置の性能試験方法のフローチャートである。図7は据え切り試験におけるグラフで、(a)が舵角波形発生部の出力のグラフ、(b)が左側のタイロッドに加わるラック荷重のグラフ、(c)が右側のタイロッドに加わるラック荷重のグラフ、(d)がピニオントルクのグラフである。なお、グラフにおいて、右側を+で、左側を−で表示している。
【0012】
ステアリングアッシィ性能試験装置は、ステアリングホイール1、車輪12やナックルアーム11などは設けられておらず、その代わりに、自動車の操舵装置の左右のタイロッド9にリンク21を介して、油圧式のアクチュエータ22が連結され、ピニオン4にダイレクトドライブ形式のサーボモータ23が連結されている。ステアリングアッシィ24の構造は、図8および図9と略同じ構造をしている。この荷重負荷装置としてのアクチュエータ22および、ピニオン駆動装置としてのサーボモータ23を制御する制御装置は、ホストコンピュータ31と、このホストコンピュータ31にLANで接続されている設定管理コンピュータ32と、ホストコンピュータ31に接続されているピニオン駆動制御装置としてのサーボモータ制御部33およびラック荷重制御装置としてのアクチュエータ制御部34とを備えている。アクチュエータ制御部34は、左右のアクチュエータ22に対して各々設けられている。
【0013】
サーボモータ制御部33には、舵角波形発生部41、AGC(Automatic Gain Control)部51およびAMC(Automatic Mean Control)部52が設けられ、舵角波形発生部41から舵角信号としてのピニオン角度信号が、AGC部51およびAMC部52を介して出力される。この出力信号は、D/A変換部40aを介して舵角制御用加算部42に入力される。そして、この舵角制御用加算部42からの出力は、調整部43で増幅などを行って、サーボモータ23に入力されている。このサーボモータ23がピニオン4を回転駆動する。そして、ピニオン4の回転量を検出するロータリーエンコーダなどからなるピニオン角度検出装置46および、ピニオン4の軸に加わるピニオントルクを検出するピニオントルク検出装置47が設けられている。このピニオン角度検出装置46の出力信号は、センサ用アンプ48で増幅され舵角制御用加算部42に入力されるとともに、A/D変換部40bを介してサーボモータ制御部33に入力される。また、ピニオントルク検出装置47の出力信号は、センサ用アンプ49で増幅され、A/D変換部40cを介して、サーボモータ制御部33のAGC部51およびAMC部52に入力されている。そして、振幅制御手段としてのAGC部51は舵角波形発生部41からのピニオン角度信号の振幅を調整し、AMC部52は舵角波形発生部41からのピニオン角度信号の平均値を調整している。このAGC部51およびAMC部52は同時に作動しており、サーボモータ制御部33からは舵角波形発生部41のピニオン角度信号をAGC部51およびAMC部52で調整して出力される。そして、舵角制御用加算部42はサーボモータ制御部33の信号とピニオン角度検出装置46の信号との差信号をサーボモータ23に出力している。この様にして、サーボモータ制御部33、舵角制御用加算部42、サーボモータ23、ピニオン角度検出装置46などを有する舵角制御のフィードバック制御部が構成されている。そして、サーボモータ23は舵角波形発生部41の出力に追随するようにピニオン角度でフィードバック制御されているとともに、ピニオントルクでAGC制御およびAMC制御され、ピニオントルクの最大値Pmおよび平均値が設定された値となるように調整されている。
【0014】
アクチュエータ制御部34には、ラック荷重波形発生部61、AGC部71およびAMC部72が設けられ、このラック荷重波形発生部61がラック荷重信号を、AGC部71およびAMC部72を介して出力する。この出力信号は、D/A変換部60aを介してラック荷重制御用加算部62に入力される。そして、このラック荷重制御用加算部62からの出力は、調整部63で増幅などを行って、アクチュエータ22のサーボバルブ64に入力されている。このサーボバルブ64によりアクチュエータ22が駆動しタイロッド9を移動させる。そして、アクチュエータ22の駆動量すなわちタイロッド9の移動量を検出するラック変位量検出装置66および、アクチュエータ22に加わる荷重すなわちラック荷重を検出するラック荷重検出装置67が設けられている。このラック変位量検出装置66の出力信号は、センサ用アンプ68で増幅され、A/D変換部60bを介して、アクチュエータ制御部34に入力されている。また、ラック荷重検出装置67の出力信号は、センサ用アンプ69で増幅されてラック荷重制御用加算部62に入力されるとともに、A/D変換部60cを介してアクチュエータ制御部34に入力される。そして、アクチュエータ制御部34に入力されたラック荷重検出装置67からの信号は、AGC部71およびAMC部72に入力される。そして、AGC部71はラック荷重波形発生部61のラック荷重信号の振幅を調整し、AMC部72はラック荷重波形発生部61のラック荷重信号の平均値を調整している。このAGC部71およびAMC部72は同時に作動しており、アクチュエータ制御部34からは、ラック荷重検出装置67のラック荷重信号をAGC部71およびAMC部72で調整して出力される。そして、ラック荷重制御用加算部62はアクチュエータ制御部34の信号とラック荷重検出装置67の信号との差信号を荷重負荷装置の入力部であるサーボバルブ64に出力している。この様にして、アクチュエータ制御部34、ラック荷重制御用加算部62、サーボバルブ64、ラック荷重検出装置67などを有するラック荷重制御のフィードバック制御部が構成されている。そして、アクチュエータ22はラック荷重波形発生部61の出力に追随するようにラック荷重でフィードバック制御されているとともに、このラック荷重でAGC制御およびAMC制御され、ラック荷重の最大値および平均値が設定された値となるように調整されている。
【0015】
この様に構成されているステアリングアッシィ性能試験装置で、耐久性などの性能試験を行う際には、前もって、実車のデータを入手する。停車している実車のステアリングホイール1を回転させて、右最大舵角Amと左最大舵角−Amとの間で往復動し、ラックバー6の両端部に加わるラック荷重を検出する。その際の舵角の時間変化を図2(b)のグラフに、左側のラック荷重の時間変化を図2(c)のグラフに、また、舵角と左側のラック荷重との関係を図2(a)のグラフ(すなわち、リサージュ波形図)に各々図示している。この図2(c)のグラフから、ラック荷重の最大値Bm(圧縮側または引っ張り側の向きに関係なく荷重の絶対値の最大値)を得る。
【0016】
そして、ステアリングアッシィ性能試験方法には正入力試験と据え切り試験とがある。この両試験において、アクチュエータ22がタイロッド9を介してラックバー6に加えるラック荷重が異なっている。その詳細は後述するが、正入力試験においては、ラック荷重が圧縮側の最大値Bmと引っ張り側の最大値Bmとの間を往復動する矩形波形となっている。一方、据え切り試験では、図2(c)のグラフに基づいて、整形された波形となっている。
【0017】
また、正入力試験および据え切り試験において、舵角の時間変化は同じである。舵角波形発生部41は、図3(a)、図4および図7(a)のグラフに図示する時間変化の波形を出力している。すなわち、右側の設定された第2の舵角である最大舵角A0(以下、最大舵角A0と称する)まで一定の傾斜bで増大し、最大舵角A0に達すると、小さな角度a戻る。この下げ幅である角度aの移動時間はtaである。そして、保持舵角(設定された第1の舵角)である舵角(以下、保持舵角と称する)(A0−a)を保持時間Th維持している。この保持時間Th経過後、左側の最大舵角−A0まで一定の傾斜bで減少し、最大舵角−A0に達すると、角度a戻る。この下げ幅である角度aの移動時間はtaである。そして、保持舵角である舵角−(A0−a)を保持時間Th維持している。この保持時間Th経過後、右側の最大舵角A0に向かって傾斜bで増大する。これを繰り返している。
【0018】
この舵角波形発生部41の出力波形の作成のフローチャートを図5で簡単に説明する。ステップ1において、出力波形信号としての舵角信号Yに傾斜bを加算し、新しい舵角信号Yとする。なお、舵角信号Yの初期値は所定の値(たとえば、0)とする。ついで、ステップ2において、舵角信号Yが最大舵角A0か否かを判定し、最大舵角A0でない場合には、ステップ1に戻り、傾斜bを加算する。一方、最大舵角A0になった場合には、ステップ3に行く。ステップ3において、舵角信号Yから傾斜d(a÷ta)を減算し、新しい舵角信号Yとし、ステップ4に行く。ステップ4において、移動時間taが経過したか否かを判定し、経過していない場合には、ステップ3に戻り、傾斜dを減算する。一方、移動時間taが経過した場合には、ステップ5に行く。ステップ5において、舵角信号Yは保持舵角A0−aとなっている。そして、保持時間Thが経過したか否かを判定し、経過していない場合には、ステップ5に戻り、舵角信号Yを維持する。一方、保持時間Thが経過した場合には、ステップ6に行く。ステップ6において、舵角信号Yに傾斜bを減算し、新しい舵角信号Yとする。ついで、ステップ7において、舵角信号Yが左側の最大舵角−A0か否かを判定し、最大舵角−A0でない場合には、ステップ6に戻り、傾斜bを減算する。一方、最大舵角−A0になった場合には、ステップ8に行く。ステップ8において、舵角信号Yから傾斜dを加算し、新しい舵角信号Yとし、ステップ9に行く。ステップ9において、移動時間taが経過したか否かを判定し、経過していない場合には、ステップ8に戻り、傾斜dを加算する。一方、移動時間taが経過した場合には、ステップ10に行く。ステップ10において、舵角信号Yは保持舵角−(A0−a)となっている。そして、保持時間Thが経過したか否かを判定し、経過していない場合には、ステップ10に戻り、舵角信号Yを維持する。一方、保持時間Thが経過した場合には、ステップ1に行く。この様にして作成された波形は、右側の最大舵角A0と左側の最大舵角−A0との間を往復するとともに、この往復動の最中に最大舵角に達すると、保持舵角に戻り、この保持舵角を保持時間Th維持した後に、反対側の最大舵角に向かって移動している。この波形データは、ホストコンピュータ31で1周期分作成され、データファイルに保存される。
【0019】
また、正入力試験の際には、図3(b)に図示するように、左側のラック荷重波形発生部61の出力波形は、舵角信号Yの右回転時の保持時間Th経過までは、ラック荷重の圧縮側の最大値−Bmを維持する。保持時間Thの経過後、ラック波形の立ち上がり時間Trで引っ張り側の最大値Bmまで移行する。そして、舵角信号Yの左回転時の保持時間Th経過までは、ラック荷重の引っ張り側の最大値Bmを維持する。保持時間Thの経過後、ラック波形の立ち上がり時間Trで圧縮側の最大値−Bmまで移行する。一方、右側のラック荷重波形発生部61の出力波形は、図3(c)に図示するように、左側のラック荷重波形発生部61の圧縮側と引っ張り側とを反転させた出力波形となっている。これらの出力波形はホストコンピュータ31で1周期分作成され、データファイルに保存される。
【0020】
次に、試験全体のフローを図6のフローチャートに基づいて説明する。まず最初に、ステップ21において、設定管理コンピュータ32で条件を入力し、試験条件を設定する。正入力試験の場合には、保持時間Thおよび移動時間taが設けられていない状態での左側最大舵角から右側最大舵角に移行するまでに要する時間Tv/2、最大舵角A0、下げ幅角度a、移動時間ta、ピニオントルク最大値Pm、保持時間Th、ラック荷重の最大値Bm、立ち上がり時間Trを設定する。また、ラック荷重平均値およびピニオントルク平均値は所定の値(たとえば、0)に設定される。なお、最大トルク設定値(所定のピニオントルク)であるピニオントルク最大値Pmはストッパーに衝突している際、すなわち、ボールジョイント8が舵角抑制手段であるラックエンドストッパー18を押圧している際の値を設定する。もちろん、前記ラックエンドストッパー18の代わりに、任意のストローク位置で別途ストッパーを用いて良く、これに伴い前記最大舵角A0も、適宜変更されて良い。なお、Tvは、保持時間Thおよび移動時間taが設けられていない状態での左側最大舵角から右側最大舵角そして左側最大舵角に戻るのに要する時間〔すなわち、保持時間Thおよび移動時間taが設けられていない状態での往復周期(以下、「保持時間を含まない往復周期Tv」と呼ぶ)である。また、Tは、保持時間Thおよび移動時間taが設けられている状態での左側最大舵角から右側最大舵角そして左側最大舵角に戻るのに要する時間(すなわち、保持時間Thおよび移動時間taが設けられている状態での往復周期)である。
【0021】
この様にして、試験条件が設定されると、この設定値が設定管理コンピュータ32からホストコンピュータ31に転送され、ホストコンピュータ31で前述のように舵角波形発生部41およびラック荷重波形発生部61の出力波形を作成し、データファイルに保存する。なお、傾斜bは(2×A0)÷(Tv/2)で計算される。データファイルに保存された出力波形のデータは、舵角波形発生部41およびラック荷重波形発生部61が逐次読み出して出力し、1周期分の読み出しが終了すると、再度1周期分を読み出して出力することを繰り返す。そして、サーボモータ制御部33はピニオン4を舵角でフィードバック制御を行い、舵角波形発生部41の出力信号である舵角信号に追随してサーボモータ23が回転する。また、アクチュエータ制御部34はアクチュエータ22をラック荷重でフィードバック制御を行い、ラック荷重波形発生部61の出力信号であるラック荷重信号に追随してアクチュエータ22がタイロッド9に荷重を加える。そして、ステップ22に行く。
【0022】
ステップ22において、ラック荷重検出装置67の検出するラック荷重の振幅が、設定値すなわちラック荷重の最大値Bmになっているかを判定し、なっていない場合には、ステップ23に行き、AGC部71がラック荷重波形発生部61の出力の振幅を増減して調整する。なお、アクチュエータ22はラック荷重でフィードバック制御されているので、本来は略一致するはずであるが、ラック荷重波形発生部61から出力されたラック荷重信号と、ラック荷重検出装置67が検出するラック荷重には微妙にズレが発生し、振幅に誤差が生じる。この振幅の誤差を調整している。
【0023】
ついで、ステップ24において、ラック荷重検出装置67の検出するラック荷重の平均値が設定値(たとえば、0)になっているかを判定し、なっていない場合には、ステップ25に行き、AMC部72がラック荷重波形発生部61の出力の平均値を増減して調整する。
【0024】
ついで、ステップ26において、ピニオントルク検出装置47の検出するピニオントルクの振幅が設定されたピニオントルク最大値Pmになっているかを判定し、なっていない場合には、ステップ27に行き、AGC部51が舵角波形発生部41の出力の振幅を増減して調整する。なお、稼働初期において、ピニオン4に大きなトルクがかからないように、AGC部51は初期においては、舵角波形発生部41の出力波形の振幅を小さめに調整している。
【0025】
ついで、ステップ28において、ピニオントルク検出装置47の検出するピニオントルクの平均値が設定値(たとえば、0)になっているかを判定し、なっていない場合には、ステップ29に行き、AMC部52が舵角波形発生部41の出力の平均値を増減して調整する。
【0026】
この様にして、調整が終了すると、ステップ30において、本試験を開始する。この本試験の際にも、AGC部51,71およびAMC部52,72の調整は行われ、Cリング19やラックエンドストッパー18などの部材の消耗などによるラック荷重やピニオントルクの変動を防止している。
【0027】
次に、据え切り試験の場合には、舵角に関しては正入力試験と同じであり、一方、ラック荷重は実車試験に合わせて設定される。このラック荷重波形発生部61から出力されるラック荷重の出力波形信号は、舵角波形発生部41の出力波形信号から、図2(a)の舵角とラック荷重とのグラフに基づいて決定される。したがって、据え切り試験の左側のラック荷重の信号は、図7(b)に図示する様に、図2(c)に図示する左側のラック荷重のグラフと略同じになるが、保持時間Thの間は、ラック荷重は変動せずに一定に維持されている。そして、左側のラック荷重波形発生部61の出力波形として、図7(b)に図示する左側のラック荷重のグラフのデータを作成しデータファイルに保存され、一方、右側のラック荷重波形発生部61の出力波形として、図7(c)に図示する右側のラック荷重のグラフのデータを作成しデータファイルに保存される。
【0028】
据え切り試験における試験条件の設定は、設定管理コンピュータ32で行われ、保持時間を含まない往復周期Tvの半周期Tv/2、最大舵角A0、下げ幅角度a、移動時間ta、ピニオントルク最大値Pm、保持時間Thおよび、図2(a)の舵角とラック荷重との関係を示すグラフが設定される。そして、ホストコンピュータ31はこの設定値から、図7(b)に図示する左側のラック荷重のグラフに示す波形の1周期のデータ、および、図7(c)に図示する右側のラック荷重のグラフに示す波形の1周期のデータを作成し、データーファイルに保存する。また、ホストコンピュータ31は、ラック荷重平均値およびラック荷重振幅値を、図7(b)に図示する左側のラック荷重のグラフのデータ、および、図7(c)に図示する右側のラック荷重のグラフのデータから演算し、AMC部72およびAGC部71に各々設定する。また、ピニオントルク平均値は所定の値(たとえば、0)に設定される。なお、ピニオントルク最大値Pmはストッパーに衝突している際、すなわち、ボールジョイント8がラックエンドストッパー18を押圧している際の値を設定する。そして、傾斜bは(2×A0)÷(Tv/2)で計算される。
試験条件が設定された以降のフローは、正入力試験と略同じである。
【0029】
そして、正入力試験および据え切り試験の何れにおいても、ピニオントルクは図3(d)および図7(d)に図示するように、最大舵角A0時に最大トルクPmになるが、速やかに低下しており、保持時間Thの間も最大トルクPmよりも小さな値となっている。したがって、人間が操舵した時と同様な作動となっている。このステアリングアッシィ性能試験により、ラックエンドストッパー18、段部17やCリング19などの信頼性を検証することができる。
【0030】
前述のように、舵角波形発生部41などを具備するピニオン駆動制御装置(サーボモータ制御部33)は、ピニオン4を右側の最大舵角まで漸次回動させる手段と、右側の最大舵角に達した後、移動時間の間に下げ幅である小角度戻して右側の保持舵角とする手段と、この右側の保持舵角を保持時間維持する手段と、この保持時間経過後、左側の最大舵角まで漸次回動させる手段と、左側の最大舵角に達した後、移動時間の間に下げ幅である小角度戻して左側の保持舵角とする手段と、この左側の保持舵角を保持時間維持する手段と、この保持時間経過後、右側の最大舵角まで漸次回動させる手段と、上記右側の最大舵角と左側の最大舵角との往復動を繰り返させる手段とを備えている。
また、ピニオン駆動装置のAGC部51は、ピニオンに加わるピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御する手段であり、AMC部52は、ピニオンに加わるピニオントルクの平均値が設定値となる様に、前記右側の最大舵角と左側の最大舵角との往復動の振幅の平均値を制御する手段である。
ラック荷重負荷制御装置(アクチュエータ制御部34)は、ラックバーにラック荷重を負荷する荷重負荷装置(アクチュエータ22)を制御しており、矩形波形のラック荷重をラックバーに加える手段を備えている。また、実車試験で得た舵角とラック荷重との関係を示すデータに基づいて、ピニオンの回転量に応じたラック荷重をラックバーに加える手段を備えている。
さらに、ラック荷重負荷制御装置のAGC部71は、前記荷重負荷装置が加えるラック荷重の振幅が、予め設定された設定値となる様に振幅制御する手段であり、AMC部72は、前記荷重負荷装置が加えるラック荷重の平均値が、予め設定された値となる様に制御する手段である。
この様に、ステアリングアッシィ性能試験装置は、上記手段以外にも、実行される各作用に対応して各々、作用を実行する手段が、作用を行う各構成要素に設けられている。また、保持舵角は、舵角抑制手段すなわちラックエンドストッパー18が作動し始める舵角の近辺の舵角になるように設定されている。
【0031】
なお、ラック荷重負荷装置は、ラック荷重を負荷することができるならば、その構成を適宜変更することが可能で、油圧アクチュエータ以外の構成でも可能である。また、ピニオン駆動装置は、ピニオンを回動することができるならば、その構成を適宜変更することが可能で、サーボモータ以外の構成でも可能である。そして、保持時間を含まない往復周期Tvなどは適宜変更可能である。その際には、図2(a)に図示する舵角とラック荷重との関係を示すグラフのデータは、保持時間を含まない往復周期Tv毎に取得することが好ましい。
【0032】
【発明の効果】
本発明によれば、左右の最大舵角の一方まで漸次回動し、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の他方に向かって漸次回動している。そして、最大舵角ではピニオントルクが急激に増大して最大値となるが、舵角が少し戻るので、ピニオントルクが減少している。したがって、人間が車庫入れなどの際に最大舵角まで操舵した時と同じ様な作動となり、試験時にステアリング装置に加わる負荷を、実際の値に近づけることができる。その結果、ステアリング装置の性能試験の精度を向上させることができる。
【0033】
また、ピニオンに加わるピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御されている場合には、ピニオンに加わるトルクの振幅を、長期間の試験の最中において、略一定に維持することができる。したがって、ステアリング装置の部品に磨耗などが生じても、略一定の負荷をステアリング装置に加えることができる。その結果、ステアリング装置の性能試験の精度を向上させることができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の一形態のステアリング装置の性能試験装置のブロック図である。
【図2】図2は実車の舵角およびラック荷重のグラフで、(a)が舵角とラック荷重のグラフ、(b)が舵角の時間変化のグラフ、(c)がラック荷重の時間変化のグラフである。
【図3】図3は正入力試験におけるグラフで、(a)が舵角波形発生部の出力のグラフ、(b)が左側のタイロッドに加わるラック荷重のグラフ、(c)が右側のタイロッドに加わるラック荷重のグラフ、(d)がピニオントルクのグラフである。
【図4】図4は舵角波形発生部の出力のグラフの拡大図である。
【図5】舵角波形発生部の出力波形の作成のフローチャートである。
【図6】図6はステアリング装置の性能試験方法のフローチャートである。
【図7】図7は据え切り試験におけるグラフで、(a)が舵角波形発生部の出力のグラフ、(b)が左側のタイロッドに加わるラック荷重のグラフ、(c)が右側のタイロッドに加わるラック荷重のグラフ、(d)がピニオントルクのグラフである。
【図8】図8は自動車の操舵機構の概略の斜視図である。
【図9】図9はラックバーとラックエンドボールジョイントとの連結部付近の説明図で、(a)が要部外観図で、(b)が(a)のB部拡大断面図である。
【図10】図10は従来のステアリングアッシィの性能試験における模式的グラフで、(a)がサーボモータへの入力信号のグラフ、(b)がピニオントルクのグラフである。
【図11】図11は人間が操舵する際の模式的グラフで、(a)は人間が操舵の目標としている舵角のグラフ、(b)がピニオントルクのグラフである。
【符号の説明】
4 ピニオン
6 ラックバー
9 タイロッド
18 ラックエンドストッパー(舵角抑制手段)
22 アクチュエータ(荷重負荷装置)
23 サーボモータ(ピニオン駆動装置)
24 ステアリングアッシィ(ステアリング装置)
33 サーボモータ制御部(ピニオン駆動制御装置)
47 ピニオントルク検出装置
51 ピニオン駆動制御装置のAGC部(振幅制御手段)

Claims (4)

  1. ピニオン駆動装置によりステアリング装置のピニオンを回転駆動し、このピニオンの回転をラックバーを介して左右のタイロッドに伝達させて、右最大舵角と左最大舵角との間の往復動を繰り返させてステアリング装置の性能試験を行う車両のステアリング装置の耐久性能試験方法であって、
    左右の最大舵角の一方まで漸次回動し、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の他方に向かって漸次回動することを特徴としている車両のステアリング装置の耐久性能試験方法。
  2. 前記ピニオンに加わるピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御されていることを特徴としている請求項1記載の車両のステアリング装置の耐久性能試験方法。
  3. ピニオンと、このピニオンに係合して往復駆動されるラックバーと、このラックバーの左右の端部に連結されている左右のタイロッドとを有するステアリング装置の性能試験を行う車両のステアリング装置の耐久性能試験装置において、
    前記ステアリング装置のピニオンを回転駆動するピニオン駆動装置と、
    前記タイロッドに負荷を加える荷重負荷装置と、
    左右の最大舵角の一方まで漸次回動し、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の他方に向かって漸次回動させ、最大舵角になると、最大舵角よりも少し小さな舵角である保持舵角まで戻して、この保持舵角を保持時間維持し、保持時間経過後、前記左右の最大舵角の一方に向かって漸次回動させることを順次行いながら、右最大舵角と左最大舵角との間の往復動を繰り返す様に前記ピニオン駆動装置を制御するピニオン駆動制御装置とを備えていることを特徴とする車両のステアリング装置の耐久性能試験装置。
  4. 前記ピニオンに加わるピニオントルクを検出するピニオントルク検出装置が設けられ、
    このピニオントルク検出装置の検出したピニオントルクが最大トルク設定値になった時の舵角が、前記最大舵角となる様に振幅制御する振幅制御手段が設けられていることを特徴としている請求項3記載の車両のステアリング装置の耐久性能試験装置。
JP2001026497A 2001-02-02 2001-02-02 車両のステアリング装置の耐久性能試験方法及び試験装置 Expired - Fee Related JP3741959B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026497A JP3741959B2 (ja) 2001-02-02 2001-02-02 車両のステアリング装置の耐久性能試験方法及び試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026497A JP3741959B2 (ja) 2001-02-02 2001-02-02 車両のステアリング装置の耐久性能試験方法及び試験装置

Publications (2)

Publication Number Publication Date
JP2002228555A JP2002228555A (ja) 2002-08-14
JP3741959B2 true JP3741959B2 (ja) 2006-02-01

Family

ID=18891302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026497A Expired - Fee Related JP3741959B2 (ja) 2001-02-02 2001-02-02 車両のステアリング装置の耐久性能試験方法及び試験装置

Country Status (1)

Country Link
JP (1) JP3741959B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635152A (zh) * 2015-01-30 2015-05-20 上汽通用五菱汽车股份有限公司 蝶形窗扣开关的耐久实验装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504537B2 (ja) * 2010-10-22 2014-05-28 ダイハツ工業株式会社 トルク演算装置
JP5483592B2 (ja) * 2010-10-29 2014-05-07 ダイハツ工業株式会社 試験装置
CN102128997B (zh) * 2010-12-30 2013-04-03 重庆长安汽车股份有限公司 一种汽车旋转连接器耐久性试验装置
JP5637101B2 (ja) * 2011-08-29 2014-12-10 トヨタ自動車株式会社 車両のステアリング装置の耐久試験装置と耐久試験方法
JP6062642B2 (ja) * 2012-03-08 2017-01-18 株式会社鷺宮製作所 伝達力調整治具、および、伝達力調整治具を用いたタイロッドの試験装置、伝達力調整治具を用いたタイロッドの試験システム、ならびに、タイロッドの試験方法
CN103941110B (zh) * 2013-01-21 2016-08-10 重庆长安汽车股份有限公司 汽车旋转连接器的耐久性试验装置及试验方法
CN105258943B (zh) * 2015-10-14 2017-09-22 北京曙光航空电气有限责任公司 一种直线作动器试验装置
JP7042139B2 (ja) * 2018-03-30 2022-03-25 株式会社鷺宮製作所 インターミディエイトシャフトのねじり試験装置
CN112771361B (zh) * 2018-09-28 2023-10-03 国际计测器株式会社 测试装置、测试进程的设定方法和操纵装置的测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635152A (zh) * 2015-01-30 2015-05-20 上汽通用五菱汽车股份有限公司 蝶形窗扣开关的耐久实验装置
CN104635152B (zh) * 2015-01-30 2018-03-13 上汽通用五菱汽车股份有限公司 蝶形窗扣开关的耐久实验装置

Also Published As

Publication number Publication date
JP2002228555A (ja) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3741959B2 (ja) 車両のステアリング装置の耐久性能試験方法及び試験装置
JP5905443B2 (ja) 人協調型産業用ロボットの外力判定方法および外力判定装置
JP5449552B2 (ja) 自動操舵式駐車支援装置の較正のための方法および制御装置
HUE033139T2 (en) Method and system for determining at least one of the wrist properties
Chaichaowarat et al. Design and modeling of a variable-stiffness spring mechanism for impedance modulation in physical human–robot interaction
JP4533779B2 (ja) 載荷装置および載荷方法
US9764414B2 (en) Spot welding system and spot welding method
JP2001171543A (ja) 電動操舵装置
JP4239083B2 (ja) ロボットの制御装置および制御方法
JP2011041995A (ja) ロボット、2足歩行ロボット及びこれらの制御方法
US20050240308A1 (en) Method and device for controlling walking of legged robot
US10901451B2 (en) Input device
Dežman et al. Pseudo-linear variable lever variable stiffness actuator: Design and evaluation
JP3130008B2 (ja) 関節装置、ロボット装置及び関節制御方法
KR101905969B1 (ko) 근력 보조 로봇용 구동 장치
JPH0544897B2 (ja)
JP7227018B2 (ja) 学習制御装置、ロボット制御装置およびロボット
JP3315952B2 (ja) 電動加圧式抵抗スポット溶接装置及びそれの作動制御方法
JP7015508B2 (ja) ロボットハンド装置
JP2006272470A (ja) 二足歩行ロボットの制御方法
WO2018212189A1 (ja) 把持システム
JP2583272B2 (ja) ロボットの制御装置
JP2003291082A (ja) 多関節脚制御装置
JP2505394B2 (ja) 産業用ロボットの加速度変化を利用した制御方法
JP7380446B2 (ja) ステアリング装置、駆動源制御方法、および駆動源制御プログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees