JP3740589B2 - High pressure storage facility in bedrock - Google Patents

High pressure storage facility in bedrock Download PDF

Info

Publication number
JP3740589B2
JP3740589B2 JP08310897A JP8310897A JP3740589B2 JP 3740589 B2 JP3740589 B2 JP 3740589B2 JP 08310897 A JP08310897 A JP 08310897A JP 8310897 A JP8310897 A JP 8310897A JP 3740589 B2 JP3740589 B2 JP 3740589B2
Authority
JP
Japan
Prior art keywords
storage facility
plug
concrete
lining
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08310897A
Other languages
Japanese (ja)
Other versions
JPH10280447A (en
Inventor
博夫 熊坂
敏行 八田
明 峯垣
哲 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP08310897A priority Critical patent/JP3740589B2/en
Publication of JPH10280447A publication Critical patent/JPH10280447A/en
Application granted granted Critical
Publication of JP3740589B2 publication Critical patent/JP3740589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧気体を岩盤内に貯蔵する岩盤内高圧貯蔵施設に関する。
【0002】
【従来の技術】
岩盤内高圧貯蔵施設(以下、単に貯蔵施設と称する)は、高圧気体(空気、天然ガス、プロパン、ブタン、水素、ヘリウム等)を岩盤内に貯蔵することを目的とした施設である。この貯蔵施設の形態としては、略球状のサイロ型のもの、寝かせた円筒形状のトンネル型のもの等がある。このうち、トンネル型の貯蔵施設は、トンネルを構築する要領で岩盤に掘削された坑の内部に設けられ、坑内の側壁と切羽、および坑口側に打設された裏込めコンクリートの内側に鋼板製のライニングが貼設されて構築されている。
【0003】
このトンネル型の貯蔵施設の施工に際しては、切羽側に設置される切羽ライニングに続いて円筒形の側壁ライニングを坑内に搬入し、ライニングまわりの間隙に裏込めコンクリートを打設し、切羽ライニングと側壁ライニング、および坑口側から遅れて搬入される坑口ライニングとを溶接し、各溶接部の気密性が確保されているかを検査したうえで、坑口側にさらに裏込めコンクリートを打設する。
【0004】
ライニングの施工後、裏込めコンクリートのさらに坑口側には貯蔵施設の内圧を抑える目的で坑口を塞ぐ鉄筋コンクリート造のプラグを配設する。このプラグには裏込めコンクリートを介して貯蔵施設内の圧力が常時作用するため、圧力に対抗し得るようにプラグを大型化して強度をもたせる傾向が強いが、施工に要する費用の削減と工期の短縮を実現するために、経済的で合理的な設計が求められている。
【0005】
【発明が解決しようとする課題】
そこで、貯蔵施設の設計にダムの閉塞トンネルの設計方法を採用すると、プラグが長大な大きさとなり施工上の経済性、合理性を追及する意味がなくなってしまう。そのため、プラグを形成するコンクリートの強度および周辺の岩盤の支持力を利用した設計が必要となる。
【0006】
有限要素法により貯蔵施設の応力・変形解析を行うと、裏込めコンクリートおよびプラグには、ライニングに膨張方向に向けて大きな引張り応力が生じることがわかる。ここで、裏込めコンクリートは設計の思想として引張り応力の発生に伴ってクラックを発生させることを許容している。これに対して、プラグは引張り応力を鉄筋で荷重分担させることを前提に設計されている。このため、裏込めコンクリートからプラグに過度の引張り応力が作用した場合、それによってプラグ内に局所的に大きなクラックが発生する恐れがあり、このプラグ内に発生するクラックが、岩盤内高圧貯蔵施設の高圧の耐荷構造物としての健全性を損う原因となると考えられる。
【0007】
本発明は上記の事情に鑑みてなされたものであり、プラグにクラックが発生することを防止し、高圧の耐荷構造物として高い健全性を備える岩盤内高圧貯蔵施設を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するための手段として、裏込めコンクリートとプラグとの間に挟まれるようにして、プラグを構成する鉄筋コンクリートよりも剛性の低い縁切り材を配設する。
このように縁切り材を配設することで、裏込めコンクリートからプラグに向けて圧縮応力のみが伝達され、引張り応力は縁切り材で吸収されてクラックの進展が縁切り材の手前までに留められる。
【0009】
なお、縁切り材の材料としては、トンネル等に使用される防水シートやナイロンシート等の繊維材料が考えられるが、貯蔵施設のライニングの材料と同じ肉薄の鋼板やステンレススチールといった金属板を使用することも可能である。
縁切り材にライニングと同様の金属板を使用することで、貯蔵施設から漏気が発生しても、縁切り材が2次シール機構として作用して坑道への高圧気体の流出が防止される。
【0010】
【発明の実施の形態】
本発明に係る岩盤内高圧貯蔵施設の一実施形態を図1および図2に示して説明する。
図1に示す岩盤内高圧貯蔵施設(以下、単に貯蔵施設と称する)1は、寝かせた円筒形状を有するいわゆるトンネル型であり、岩盤に設けられた坑道2内に構築されている。
【0011】
坑道2内には側壁に沿って円筒形の側壁ライニング3が配置され、坑道2の切羽、および坑口側に切羽ライニング4、坑口ライニング5が配置され、さらにこれら各ライニング3、4、5の周囲には坑道2との間隙を埋めるように裏込めコンクリート6が打設充填されている。
【0012】
坑口ライニング5の周囲に打設された裏込めコンクリート6のさらに坑口側に位置して坑道2内に露出する側面7は、坑道2の断面方向にほぼ平行に形成され、その中央付近には貯蔵施設内部への高圧気体の出し入れを行うための給排気設備(図示せず)を通す開口8が設けられている。
【0013】
さらに坑道2内には、貯蔵施設1の内圧を抑えるプラグ9が裏込めコンクリート6の側面7に密接して設置されている。このプラグ9は鉄筋コンクリート構造によって構築されており、貯蔵施設1の内圧に耐え得る強度が与えられている。
【0014】
プラグ9が設置される部分の坑道2は径が拡大されて外方に向けて膨出した空間となっており、この部分にプラグ9が側壁との間に間隙を設けず構築されることで、貯蔵施設1の内圧を抑える閉塞栓として機能している。また、プラグ9には、開口8に連通して給排気設備を通すアクセストンネル11が設けられている。
【0015】
裏込めコンクリート6とプラグ9との間には、裏込めコンクリート6の側面7に沿うように縁切り材10が配設されている。縁切り材10は、坑口ライニング5等と同じ薄肉の鋼板もしくはステンレススチールでできており、その素材にはプラグ9を形成する鉄筋コンクリートと比べて剛性が非常に低い薄肉の鋼板もしくはステンレススチールが使用されている。
【0016】
上記のように構成されている貯蔵施設1において、図2に示すように貯蔵施設に高圧気体が満たされた状態では、プラグ9に裏込めコンクリート6を介して貯蔵施設内の圧力が常時作用している。
【0017】
裏込めコンクリート6には、貯蔵された高圧気体の圧力で各ライニング3、4、5が膨張方向に変形することによって圧縮応力と引張り応力とが作用し、特に引張り応力が作用することによってクラックを生じる。しかしながら、裏込めコンクリート6は引張り応力の発生に伴ってクラックを発生させることを許容して設計がなされており、クラックは当初から考慮されたものであるので問題とはならない。
【0018】
プラグ9には、裏込めコンクリート6がクラックを生じることで圧縮応力と引張り応力とが伝達されるが、裏込めコンクリート6とプラグ9とは鉄筋コンクリートより剛性の低い縁切り材10によって縁切りされているので、圧縮応力はプラグ9に伝達されるものの、引張り応力はこの縁切り材10に吸収されてしまうためプラグ9には伝達されず、裏込めコンクリート6に生じたクラックの進展は縁切り材9の手前までに留められる。
【0019】
上記のように構成された貯蔵施設1では、裏込めコンクリート6からプラグ9に向けて伝達される引張り応力が縁切り材10に吸収され、裏込めコンクリート6に生じたクラックの進展が縁切り材10の手前までに留められるので、プラグ9にクラックが生じずプラグ9の強度低下が防止され、これによって貯蔵施設の高圧の耐荷構造物としての健全性を保つことができる。
【0020】
また、縁切り材10に、坑口ライニング5等と同じ薄肉の鋼板もしくはステンレススチールといった金属板を使用することで、貯蔵施設1から漏気が発生しても、この縁切り材10が2次シール機構として作用して坑道2への高圧気体の流出が防止され、これによって貯蔵施設1の安全性を保つことができる。
【0021】
なお、本実施形態においては縁切り材10に薄肉の鋼板もしくはステンレススチールを使用しているが、これらにかえてトンネル等の施工に用いられる防水シートやナイロンシート等の繊維材料を使用しても構わない。
【0022】
【発明の効果】
以上説明したように、本発明に係る岩盤内高圧貯蔵施設によれば、裏込めコンクリートとプラグとの間に挟まれるようにして、プラグを構成する鉄筋コンクリートよりも剛性の低い縁切り材を配設したことにより、裏込めコンクリートからプラグに向けて伝達される引張り応力が縁切り材に吸収され、裏込めコンクリートに生じたクラックの進展が縁切り材の手前までに留められるので、プラグにクラックが生じて強度が低下することが防止され、これによって貯蔵施設の高圧の耐荷構造物としての健全性を保つことができる。
【0023】
また、本発明に係る岩盤内高圧貯蔵施設によれば、縁切り材に金属板を使用することで、貯蔵施設から漏気が発生しても、この縁切り材が2次シール機構として作用して坑道への高圧気体の流出を防止し、貯蔵施設の安全性を保つことができる。
【図面の簡単な説明】
【図1】 本発明に係る岩盤内高圧貯蔵施設の一実施形態を示す立断面図である。
【図2】 図1に示した岩盤内高圧貯蔵施設にクラックが生じる様子を示す要部断面図である。
【符号の説明】
1 岩盤内高圧貯蔵施設
2 坑道
3 側壁ライニング
4 切羽ライニング
5 坑口ライニング
6 裏込めコンクリート
9 プラグ
10 縁切り材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-rock high-pressure storage facility for storing high-pressure gas in a rock.
[0002]
[Prior art]
The high pressure storage facility in the rock (hereinafter simply referred to as storage facility) is a facility intended to store high pressure gas (air, natural gas, propane, butane, hydrogen, helium, etc.) in the rock. Examples of the storage facility include a substantially spherical silo type and a laid cylindrical tunnel type. Among them, the tunnel-type storage facility is installed inside the pit excavated in the rock in the way of constructing the tunnel, and is made of steel plate inside the side wall and face of the mine, and inside the backfill concrete placed on the pit side. The lining has been built.
[0003]
When constructing this tunnel type storage facility, following the face lining installed on the face side, a cylindrical side wall lining is carried into the pit, and backfilled concrete is placed in the gap around the lining. After welding the lining and the wellhead lining which is carried in from the wellhead side, and checking whether the airtightness of each welded part is ensured, further backfill concrete is placed on the wellhead side.
[0004]
After the lining construction, a reinforced concrete plug is installed on the back side of the backfill concrete to close the well in order to reduce the internal pressure of the storage facility. Since the pressure in the storage facility always acts on this plug via backfilled concrete, the plug tends to be enlarged and strengthened so that it can counter the pressure. In order to realize shortening, an economical and rational design is required.
[0005]
[Problems to be solved by the invention]
Therefore, when the design method of the dam blocking tunnel is adopted for the design of the storage facility, the plug becomes long and the meaning of pursuing economic efficiency and rationality in construction is lost. Therefore, it is necessary to design using the strength of the concrete forming the plug and the supporting force of the surrounding rock mass.
[0006]
When the stress / deformation analysis of the storage facility is performed by the finite element method, it can be seen that a large tensile stress is generated in the lining lining and the plug in the direction of expansion. Here, the backfilled concrete allows the generation of cracks with the generation of tensile stress as a design philosophy. On the other hand, the plug is designed on the assumption that the tensile stress is shared by the reinforcing bars. For this reason, if excessive tensile stress is applied to the plug from the backfill concrete, a large crack may be generated locally in the plug, and the crack generated in the plug is caused by the high pressure storage facility in the rock mass. This is considered to cause a loss of soundness as a high pressure load-bearing structure.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-pressure storage facility in a rock that prevents cracks from occurring in a plug and has high soundness as a high-pressure load-bearing structure. .
[0008]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, an edge cutting material having a rigidity lower than that of the reinforced concrete constituting the plug is disposed so as to be sandwiched between the backfill concrete and the plug.
By arranging the edge-cutting material in this way, only the compressive stress is transmitted from the backfill concrete to the plug, the tensile stress is absorbed by the edge-cutting material, and the progress of the crack is stopped before the edge-cutting material.
[0009]
In addition, as the material of the edge cutting material, fiber materials such as waterproof sheets and nylon sheets used for tunnels, etc. can be considered, but the same thin steel plate or stainless steel metal plate as the lining material of the storage facility should be used. Is also possible.
By using the same metal plate as the lining material for the edge cutting material, even if leakage occurs from the storage facility, the edge cutting material acts as a secondary sealing mechanism and prevents the high-pressure gas from flowing out into the tunnel.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a high pressure storage facility in a rock according to the present invention will be described with reference to FIGS. 1 and 2.
A bedrock high-pressure storage facility (hereinafter simply referred to as a storage facility) 1 shown in FIG. 1 is a so-called tunnel type having a laid down cylindrical shape, and is constructed in a tunnel 2 provided in the bedrock.
[0011]
A cylindrical side wall lining 3 is arranged along the side wall in the mine shaft 2, a face lining 4 and a mine lining 5 are arranged on the face of the mine shaft 2, and the side of the mine shaft. Further, around each lining 3, 4, 5 Is filled with backfill concrete 6 so as to fill the gap with the mine shaft 2.
[0012]
A side surface 7 of the backfill concrete 6 placed around the well lining 5 and located on the well well side and exposed in the well 2 is formed substantially parallel to the cross-sectional direction of the well 2 and is stored near the center. An opening 8 through which a supply / exhaust facility (not shown) for taking in and out the high-pressure gas into and out of the facility is provided.
[0013]
Further, a plug 9 that suppresses the internal pressure of the storage facility 1 is installed in close contact with the side surface 7 of the backfill concrete 6 in the tunnel 2. The plug 9 is constructed of a reinforced concrete structure, and has a strength that can withstand the internal pressure of the storage facility 1.
[0014]
The portion of the tunnel 2 where the plug 9 is installed is a space whose diameter is expanded and bulges outward, and the plug 9 is constructed in this portion without providing a gap between the side wall and the side wall. It functions as an obstruction stopper that suppresses the internal pressure of the storage facility 1. Further, the plug 9 is provided with an access tunnel 11 that communicates with the opening 8 and passes the air supply / exhaust equipment.
[0015]
Between the backfill concrete 6 and the plug 9, an edge cutting material 10 is disposed along the side surface 7 of the backfill concrete 6. The edge-cutting material 10 is made of the same thin steel plate or stainless steel as the wellhead lining 5 or the like, and the material is a thin steel plate or stainless steel having a very low rigidity compared to the reinforced concrete forming the plug 9. Yes.
[0016]
In the storage facility 1 configured as described above, when the storage facility is filled with high-pressure gas as shown in FIG. 2, the pressure in the storage facility always acts on the plug 9 through the backfill concrete 6. ing.
[0017]
The backfill concrete 6 is subjected to compressive stress and tensile stress when the linings 3, 4, and 5 are deformed in the expansion direction by the pressure of the stored high-pressure gas, and particularly cracks are generated due to the tensile stress acting. Arise. However, the backfill concrete 6 is designed to allow cracks to be generated with the generation of tensile stress, and the cracks have not been considered a problem since they have been considered from the beginning.
[0018]
Compressive stress and tensile stress are transmitted to the plug 9 due to cracks in the backfilled concrete 6, but the backfilled concrete 6 and the plug 9 are edged by the edge cutting material 10 having a rigidity lower than that of reinforced concrete. Although the compressive stress is transmitted to the plug 9, the tensile stress is absorbed by the edge cutting material 10, and thus is not transmitted to the plug 9, and the cracks generated in the backfilled concrete 6 progress to the front of the edge cutting material 9. To be held in.
[0019]
In the storage facility 1 configured as described above, the tensile stress transmitted from the backfilling concrete 6 toward the plug 9 is absorbed by the edge cutting material 10, and the progress of cracks generated in the backfilling concrete 6 is caused by the edge cutting material 10. Since the plug 9 is fastened to the front, cracks are not generated in the plug 9 and the strength of the plug 9 is prevented from being lowered, thereby maintaining the soundness of the storage facility as a high-pressure load-bearing structure.
[0020]
Moreover, even if leakage occurs from the storage facility 1 by using the same thin-wall steel plate or stainless steel plate as the wellhead lining 5 or the like as the edge lining material 5, the edge cutting material 10 serves as a secondary sealing mechanism. This prevents the high-pressure gas from flowing out into the mine shaft 2, thereby maintaining the safety of the storage facility 1.
[0021]
In the present embodiment, a thin steel plate or stainless steel is used for the edge cutting material 10, but a fiber material such as a waterproof sheet or a nylon sheet used for construction of a tunnel or the like may be used instead. Absent.
[0022]
【The invention's effect】
As explained above, according to the high pressure storage facility in the rock according to the present invention, the edge cutting material having lower rigidity than the reinforced concrete constituting the plug is disposed so as to be sandwiched between the backfill concrete and the plug. As a result, the tensile stress transmitted from the backfilling concrete toward the plug is absorbed by the edge cutting material, and the progress of the crack generated in the backfilling concrete is stopped before the edge cutting material. Can be prevented, thereby maintaining the soundness of the storage facility as a high-pressure load-bearing structure.
[0023]
Further, according to the high pressure storage facility in the rock according to the present invention, even if air leakage occurs from the storage facility by using a metal plate for the edge cutting material, the edge cutting material acts as a secondary seal mechanism, and the tunnel It is possible to prevent the high-pressure gas from flowing into the tank and maintain the safety of the storage facility.
[Brief description of the drawings]
FIG. 1 is an elevational sectional view showing an embodiment of a high pressure storage facility in a rock according to the present invention.
FIG. 2 is a cross-sectional view of a main part showing a state in which a crack is generated in the in-bed rock high-pressure storage facility shown in FIG.
[Explanation of symbols]
1 High pressure storage facility in bedrock 2 Tunnel 3 Side wall lining 4 Face lining 5 Wellhead lining 6 Backfill concrete 9 Plug 10 Edge cutting material

Claims (2)

高圧気体を岩盤内に貯蔵するトンネル型の岩盤内高圧貯蔵施設であって、
岩盤に掘削された坑の側壁と切羽、および坑口側に貯蔵空間を形成するライニングが配置され、該ライニングの周囲に坑道との間隙を埋めるように裏込めコンクリートが打設充填され、裏込めコンクリートの坑口側には前記岩盤内高圧貯蔵施設の内圧を抑えるための鉄筋コンクリート造のプラグが配設されており、
前記裏込めコンクリートと前記プラグとの間には、プラグを構成する鉄筋コンクリートよりも剛性の低い縁切り材が配設されて裏込めコンクリートとプラグの双方が縁切りされていることを特徴とする岩盤内高圧貯蔵施設。
It is a tunnel type high pressure storage facility in the rock that stores high pressure gas in the rock,
The side wall and face of the mine excavated in the bedrock, and the lining that forms the storage space on the pit side are arranged, and the backfill concrete is cast and filled around the lining so as to fill the gap with the tunnel. A reinforced concrete plug for suppressing the internal pressure of the high pressure storage facility in the rock is arranged at the wellhead side.
Between the backfilling concrete and the plug, an edge cutting material having rigidity lower than that of the reinforced concrete constituting the plug is disposed, and both the backfilling concrete and the plug are cut off. Storage facility.
請求項1に記載された岩盤内高圧貯蔵施設において、
前記縁切り材として金属板を使用することを特徴とする岩盤内高圧貯蔵施設。
In the high-pressure storage facility in the rock according to claim 1,
A high-pressure storage facility in bedrock, wherein a metal plate is used as the edge cutting material.
JP08310897A 1997-04-01 1997-04-01 High pressure storage facility in bedrock Expired - Fee Related JP3740589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08310897A JP3740589B2 (en) 1997-04-01 1997-04-01 High pressure storage facility in bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08310897A JP3740589B2 (en) 1997-04-01 1997-04-01 High pressure storage facility in bedrock

Publications (2)

Publication Number Publication Date
JPH10280447A JPH10280447A (en) 1998-10-20
JP3740589B2 true JP3740589B2 (en) 2006-02-01

Family

ID=13793014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08310897A Expired - Fee Related JP3740589B2 (en) 1997-04-01 1997-04-01 High pressure storage facility in bedrock

Country Status (1)

Country Link
JP (1) JP3740589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832666A1 (en) * 2013-08-02 2015-02-04 Park-ID B.V. Installation for storing compressed air

Also Published As

Publication number Publication date
JPH10280447A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
EP2320123B1 (en) Double barrier for liquefied gas storage tank and method of constructing the same
JP6127193B1 (en) Construction method of large section underground structure
JP2001171812A (en) Storage facility in rock mass and its execution method
JP2008127793A (en) Support structure of adit
JP6257814B1 (en) Construction method of large section underground structure
JP3740589B2 (en) High pressure storage facility in bedrock
JP2007205163A (en) Tunnel structure and construction method of tunnel
JP3793955B2 (en) Multiple support construction method
JP6062098B1 (en) Construction method of large section underground structure
JP4037124B2 (en) Tunnel structure and tunnel construction method
JP3250045B2 (en) Pressure-resistant concrete wall structure and construction method
CN109611116A (en) A kind of the pipe-plate lining structure and its construction method of suitable for surrounding rock large deformation
JP2001280594A (en) Storage facility in bedrock, method of execution of work and leakage detection method
JPH09501377A (en) Method for operating an underground cavity for storing low temperature hydrocarbons and low temperature hydrocarbon storage facility
CN109538255B (en) Sleeve device for shield part starting and tunnel portal leakage and construction method thereof
JP3954894B2 (en) Construction port closing method and apparatus during roof air lasing of storage tank
JP3864365B2 (en) Rock tank for high pressure gas storage
JP3637511B2 (en) Crack prevention method in high pressure gas storage facility in bedrock.
CN207599339U (en) A kind of low temperature bimetallic full appearance tank inner canister anchor band tube-in-tube structure
JP4392571B2 (en) High pressure energy storage facility in bedrock
CN213599055U (en) Anchoring structure of vertical steel cylindrical tank
JP3677732B2 (en) High-temperature high-pressure gas / liquid storage facility
JP3769707B2 (en) High pressure storage facility in bedrock
JP3528241B2 (en) Open inspection method of double shell ground low temperature tank
JP2000346296A (en) Cryogenic tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees