JP3739325B2 - 有機絶縁膜のエッチング方法 - Google Patents

有機絶縁膜のエッチング方法 Download PDF

Info

Publication number
JP3739325B2
JP3739325B2 JP2002042514A JP2002042514A JP3739325B2 JP 3739325 B2 JP3739325 B2 JP 3739325B2 JP 2002042514 A JP2002042514 A JP 2002042514A JP 2002042514 A JP2002042514 A JP 2002042514A JP 3739325 B2 JP3739325 B2 JP 3739325B2
Authority
JP
Japan
Prior art keywords
etching
gas
insulating film
organic insulating
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002042514A
Other languages
English (en)
Other versions
JP2003168676A (ja
Inventor
通伸 水村
良次 福山
豊 大本
克哉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002042514A priority Critical patent/JP3739325B2/ja
Publication of JP2003168676A publication Critical patent/JP2003168676A/ja
Application granted granted Critical
Publication of JP3739325B2 publication Critical patent/JP3739325B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機絶縁膜のエッチング方法に係り、半導体装置の製造に用いられる有機絶縁膜のエッチングに好適なエッチング方法に関するものである。
【0002】
【従来の技術】
近年、半導体素子の配線にCuを用いたダマシン・プロセスが用いられるようになった。このダマシン・プロセスの応用としてデュアル・ダマシンがある。従来のデュアル・ダマシンは層間絶縁膜となる有機絶縁膜への配線溝を形成する際に、サブトレンチ(「マイクロトレンチ」とも呼ぶ。)を防ぐためにエッチストッパ層を用いていた。しかし、エッチストッパ層は誘電率が高いため、最近ではエッチストッパ層を無くして層間絶縁膜の誘電率を下げる試みがなされている。
〔従来技術1〕
エッチストッパ層を用いることなく、マイクロトレンチングを防ぎ有機絶縁膜をエッチングする方法としては、例えば、国際公開番号WO 01/15213A1(特開2001−60582号公報)に記載のものが知られている。該公報には、次のことが記載されている。
【0003】
ウエハの温度を処理に応じて20℃〜60℃程度に維持する。次いで、処理ガスとしてN2 とH2 とArの混合ガスを処理室に導入する。処理室内の圧力雰囲気を実質的に500mTorr以上、好ましくは、実質的に500mTorr〜800mTorrにする。次いで、下部電極に周波数が13.56MHz で、電力が600W〜1400Wの高周波電圧を印加する。上部電極に周波数が60MHzで、電力が600W〜1400Wの高周波電力を印加する。これにより、処理室内に高密度プラズマを生成し、該プラズマによってウエハの有機系低誘電率材料からなる層間絶縁層に、所定形状のコンタクトホールを形成する。
【0004】
また、該公報には、以下のことが記載されている。
処理室内に少なくとも窒素原子含有気体と水素原子含有気体とを含む処理ガスを導入し、真空処理室内の圧力を実質的に500mTorr以上にして、処理室内に配置された被処理体に形成された有機層膜に対するエッチングを行う。有機膜は比誘電率が3.5以下の低誘電率材料が好ましい。また、真空処理室内の圧力は実質的に500mTorr〜800mTorrが好ましい。
【0005】
また、処理ガスに少なくとも窒素原子含有気体と水素原子含有気体とを含み、真空処理室内の圧力を実質的に500mTorr以上にすると、エッチストッパを用いることなく、マイクロトレンチングを防ぐことができる。また、マスク選択比を高めることができる。これにより、エッチングを有機層膜の途中で停止する必要が生じるプロセス、例えば、デュアル・ダマシンプロセス等において特に効果的である。
【0006】
また、窒素原子含有気体としてN2 を採用してもよく、水素原子含有気体としてH2 を採用してもよい。N2 とH2 のガス流量の例として、N2/H2が400sccm/400sccm、N2/H2が200sccm/200sccm、N2/H2が100sccm/300sccmの例が述べられている。
〔従来技術2〕
同じく、有機絶縁膜のエッチング方法としては、例えば、特開2000−252359号公報に記載のものが知られている。該公報には、次のことが記載されている。
【0007】
水素ガスと窒素ガスの混合ガス、あるいは、アンモニアガスを含むガスプラズマにより発生するNH基を含むイオンまたはラジカルにより、CN基を含む反応生成物などを生成しながら、ポリアリールエーテル膜などの有機系誘電膜の絶縁膜(層間絶縁膜)をエッチング加工する。
【0008】
層間絶縁膜のエッチングにおいて、ECR(Electron Cyclotron Resonance)型のプラズマエッチング装置により、例えば(基板設置電極温度:20℃,μ波パワー(2.45GHz):2000W,圧力:0.8Pa,RFパワー:300W,エッチングガスおよび流量:NH3 =100sccm)の条件にてエッチング処理を施す。
【0009】
上記のエッチング処理において、エッチングガスとして、例えば、水素と窒素の混合ガス(流量H2+N2=100sccm(例えばH2/N2=75/25sccm))を用いる条件とし、上記と同様に水素と窒素の混合ガスを含むガスプラズマにより、エッチング処理することも可能である。
【0010】
NH基を含むイオンまたはラジカルによるエッチングによれば、導電不良の原因となるダメージ層を形成することなく、サイドエッチを抑制し、また、450nm/分程度の高いエッチング速度を維持して、スループットの低下をもたらさずに迅速に、有機系誘電膜を含む絶縁膜を異方性エッチング加工することができる。
【0011】
これにより、有機系誘電膜を含む絶縁膜をエッチングしてコンタクトホールを開口するほかに、溝配線を形成するためのダマシンプロセス、あるいは、溝配線とコンタクトホールを同時に開口するデュアルダマシンプロセスなどのエッチング加工に適用することも可能である。
【0012】
また、層間絶縁膜のエッチング処理として、(a)N2=100sccm ,(b)N2/H2=50/50sccm,(c)H2 =100sccmとしたときの発光スペクトルを測定すると、N2/H2混合ガス(b)でエッチングを行った場合には、N2 ガス(a)あるいはH2 ガス(c)を用いた場合には見られないNHのピークが観測される。また、CNのピークについては、N2/H2混合ガス(b)の場合はN2 ガス(a)あるいはH2ガス(c)の場合よりも強くピークが観測される。
【0013】
さらに、層間絶縁膜のエッチング処理として、N2/H2=100/0〜50/50〜0/100sccmとエッチングガス流量比を変化させたときの相対エッチング速度(N2/H2=100/0sccmのときのエッチング速度を1とする)と、各流量比における(CN,NH,N2 ,CH,H)の各発光成分の発光スペクトル強度比を測定すると、エッチング速度と、CNとNHの発光スペクトル強度比とはほぼ同じ挙動を示すことがわかる。
【0014】
【発明が解決しようとする課題】
前者従来技術(特開2001−60582号公報)は、真空処理室内の圧力を500mTorr(約66.5Pa)以上、好ましくは500mTorr〜800mTorrにして、有機層膜に対するエッチングを行っている。しかしながら、このエッチング方法の場合、処理室内の圧力が非常に高いので、(1)300ミリウエハのように大口径化する試料に対しては、ウエハ面内から発生した反応生成物の排気除去がウエハ中央部で十分に行われなくなり、ウエハ面内のエッチングレートの均一性が悪くなる、(2)反応生成物の量が非常に多くなって形状制御が難しい、(3)反応生成物の量が多くなって処理室内が汚れ易くなりエッチング処理の再現性が低下する、といった問題が想定される。このため、高い処理圧力で処理する場合には、これらの問題を解決する手段を講じる必要がある。
【0015】
一方、上述の高い処理圧力でのエッチング処理における問題を考慮する必要のないものとして、後者従来技術(特開2000−252359号公報)に記載のように低い処理圧力(0.8Pa)で有機絶縁膜をエッチング処理する方法が知られている。しかしながら、後者従来技術は、エッチストッパ層を用いることなくマイクロトレンチを防止してデュアルダマシンプロセスの有機絶縁膜をエッチングする点については配慮されていない。
【0016】
後者従来技術は、処理ガスとして水素ガスと窒素ガスの混合ガス中、あるいは、アンモニアガスの混合ガス中における気体放電などにより発生するNH基を含むイオン又はラジカルによって、CN基を含む反応生成物などを生成しながら、有機絶縁膜をエッチングしている。しかしながら、水素と窒素の混合ガスまたはアンモニアを用いた全ての流量比において、エッチストッパ層を用いることなくマイクロトレンチを防止してエッチングすることはできない。
【0017】
また、後者従来技術は、エッチング速度と、CNとNHの発光スペクトル強度比とがほぼ同じ挙動を示すことに着目したエッチング方法としている。このため、CNとNHの発光スペクトル強度比ではエッチングの最適条件を選ぶことはできず、エッチストッパ層を用いることなくマイクロトレンチを防止して有機絶縁膜をエッチングする際の最適条件を選択することができないという問題があった。
【0018】
なお、マイクロトレンチ(あるいは「サブトレンチ」と言う)が発生して、被エッチング部の溝や穴の底面が平坦にできなくなる原因は、特に、エッチング中の溝や穴の底面の形状においては、被エッチング部である溝や穴の側面の僅かなテーパによりプラズマからの入射イオンが側壁に衝突して溝や穴の底面の側壁際へ集中したり、溝や穴の中央部にエッチングに伴う多くの反応生成物が再付着するなどして、エッチングされた溝や穴の側壁際のエッチングレートが溝や穴の中央部のエッチングレートより速くなるためである。
【0019】
本発明の目的は、上記問題点を解決するものであり、処理室内への反応生成物の付着を抑制し、マイクロトレンチを防止して有機絶縁膜をエッチングすることのできる有機絶縁膜のエッチング方法を提供することにある。
【0020】
【課題を解決するための手段】
上記目的は、有機絶縁膜のエッチング方法において、水素原子と窒素原子を含む分子ガスをプラズマ化し、プラズマ中の水素原子及びシアン分子の発光スペクトル強度比率を測定し、該測定値を所定の値以下にして処理することにより、達成される。
また、プラズマ中の波長概486nmの水素原子(H)発光スペクトルと波長概388nmのシアン分子(CN)発光スペクトルの強度比CN/Hが1以下となるプラズマを用いる。
【0021】
また、上記目的は、有機絶縁膜のエッチング方法において、水素ガスと窒素ガスあるいはアンモニアガスをプラズマ化し、プラズマ中の水素原子及びシアン分子の発光スペクトル強度比率が所定の値以下となるように、水素ガスの流量を制御して処理することにより、達成される。
また、処理は処理圧力を一定に制御して行われる。
【0022】
また、上記目的は、有機絶縁膜を形成した被エッチング試料が配置されたエッチング処理室内に、窒素ガスと水素ガス、あるいは水素原子と窒素原子を含む分子ガスを供給し、エッチング処理室内の圧力を10Pa未満にして、波長概486nmの水素原子(H)発光スペクトルと波長概388nmのシアン分子(CN)発光スペクトルの強度比CN/Hが1以下となるプラズマを生成し、該プラズマを用いて被エッチング試料を処理することにより、達成される。
また、プラズマの生成に水素ガスおよび窒素ガスを用い、窒素ガスに対する水素ガスの混合比を10以上にする。さらに、水素ガスと窒素ガスの総流量を200cc/分以上にする。
また、水素原子を含む分子ガスが水素ガスであり、窒素原子を含む分子ガスがアンモニアガスであって、アンモニアガスに対する水素ガスの混合比を10以上にする。さらに、水素ガスとアンモニアガスの総流量を200cc/分以上にする。
【0023】
また、他の態様によれば、上記目的は、被エッチング試料を配置可能な試料台と、エッチングガスが供給される気密性の良い処理室と、処理室内を減圧雰囲気にする真空ポンプと、水素ガスと窒素ガス、あるいは水素原子と窒素原子を含む分子ガスの流量を制御可能な流量制御バルブと、真空ポンプと処理室間に設置され処理室内に供給されたエッチングガスの排気速度を制御可能な排気速度調整バルブと、処理室内のエッチングガスをプラズマ化する電力を投入可能な回路および電源と、処理室内の圧力を測定する真空計とを具備する装置を用い、処理室内にプラズマを発生させ、プラズマ中のシアン分子と水素原子との発光強度比を計測して、該計測値が所定値以下となるように前記流量制御バルブを制御して、被エッチング試料をエッチングすることにより、達成できる。さらに、流量制御バルブの制御は、水素ガスの流量を増やすように制御する。さらに、処理室内の圧力が一定になるように前記排気速度調整バルブを制御する。
また、計測値が所定値以下となるように前記エッチングガスをプラズマ化する電源の出力を制御して、被エッチング試料をエッチングする。電源の制御は、プラズマ中で水素原子が多く発生するように出力を上げるように制御する。
また、前記試料台に被エッチング試料へのバイアス電圧を印加可能な電源を接続し、計測値が所定値以下となるようにバイアス電圧を下げるように前記電源を制御する。
【0024】
【発明の実施の形態】
以下、本発明の一実施例を図1から図10を用いて説明する。
図1及び図2に本発明のエッチング方法を実施するためのプラズマエッチング処理装置の一例を示す。図1はエッチング処理部の概略構成を示す。図2は図1に示すエッチング処理部を設けたプラズマエッチング処理装置の全体を示す。
【0025】
真空容器11内には、被処理材であるウエハ2を配置可能な試料台24が設けられている。試料台24には、ウエハ2にバイアス電圧を与えるためのバイアス電圧用高周波電源25(例えば、周波数800kHz)が接続されている。また、試料台24にはウエハ2の温度を制御するための温度調整装置26が接続されている。
【0026】
真空容器11の上部には、円筒状の処理室が形成されている。真空容器11の処理室部の外側には処理室を囲んで磁場発生用コイル23a及び23bが設けてある。真空容器11内で処理室上部には、電磁波を透過可能な誘電体12を介して試料台24に対向させて導電体でなる平板アンテナ13が設けてある。平板アンテナ13上部には同軸線路15が設けられ、同軸線路15を介してプラズマ生成用の高周波電源16(例えば、周波数450MHz)が接続されている。
【0027】
平板アンテナ13には処理室内にエッチングガスを流すための多孔構造を成すガス供給路14が形成してある。ガス供給路14には流量制御バルブ17,18,19を介してそれぞれにガス供給源20,21,22が接続されている。
【0028】
また、真空容器11の下部には真空排気口が設けられ、排気速度調整バルブ27を介して真空ポンプ28が接続されている。
【0029】
真空容器11の処理室部には、平板アンテナ13と試料台24との間に形成されるプラズマ32からの発光を採光し、特定波長の光を電気信号に変換する分光・光電変換器30が設けられている。分光・光電変換器30からの電気信号は制御装置31に入力される。制御装置31内では後に述べる演算が行われ、流量制御バルブ17,18,19および高周波電源16,25に制御用の電気信号を出力する。また、真空容器11には真空計29が設けてあり、図示を省略しているが、検出信号は制御装置31に入力され、制御装置31は排気速度調整バルブ27を制御する。
【0030】
図1のように構成されたエッチング処理部は、図2に示すように真空搬送室6の周りにエッチング処理室10a,10bとして設けられる。また、真空搬送室6の周りにはロードロック室5a及びアンロードロック室5bが設けられている。ロードロック室5a及びアンロードロック室5bには、大気ユニット3が接続してある。大気ユニット3には大気搬送ロボット4が設けてあり、大気搬送ロボット4によってカセット1a又は1bとロードロック室5a又はアンロードロック室5bとの間でウエハ2を搬送する。真空搬送室6には真空搬送ロボット7が設けてあり、真空搬送ロボット7によってロードロック室5a又はアンロードロック室5bとエッチング処理室10a又は10bとの間でウエハ2を搬送する。
【0031】
上記のように構成された装置において、例えば、図2に示すようにカセット1aからエッチング処理室10aにウエハ2を搬入する。ウエハ2搬入後、ウエハ2は試料台24に保持され、上下動可能な試料台によって処理室内の所定高さ位置に設定される。また、ウエハ2は温度調節装置によって所定温度に保持される。真空容器11内部を真空ポンプ28により減圧した後、流量制御バルブ17,18,19を制御しガス供給源20,21,22からガス供給路14を介して処理ガス、この場合、エッチングガスを処理室内に導入し、所望の圧力に調整する。処理室内の圧力調整後、高周波電源16より、例えば、周波数450MHzの高周波電力を発振する。高周波電源16より発振された高周波電力は、同軸線路15を伝播し平板アンテナ13および誘電体12を介して処理室内に導入される。処理室内に導入された高周波電力による電界は、磁場発生用コイル23a及び23b、例えば、ソレノイドコイルによって処理室内に形成された磁場との相互作用によって、処理室内に低圧でプラズマ32を生成する。特に電子サイクロトロン共鳴を起こす磁場強度(例えば、160G)を処理室内に形成した場合、効率良くプラズマを生成することができる。プラズマ生成と同時に、試料台24には高周波電源25によって、例えば、周波数800KHzの高周波電力を印加する。これにより、プラズマ32中のイオンがウエハ2への入射エネルギを与えられ、イオンはウエハ2へ入射し、ウエハ2の異方性エッチングが促進される。
【0032】
次に、図3および図4により上述の装置を用い、デュアルダマシンプロセスで用いられる有機絶縁膜でなる層間絶縁膜のエッチング工程を説明する。
まず、第1エッチング処理室10aに未処理ウエハ2を搬入する(ステップ101)。このときの未処理ウエハ2は、図4(a)に示すように未加工のハードマスク45上にパターニングされたホトレジストが形成されている状態のものである。ウエハ2は基板上に多層配線が形成されたものであり、この場合、下層有機絶縁膜41(層間絶縁膜),下層配線42,下層ハードマスク43の層は既に加工済みである。下層ハードマスク43の上部にこれから加工を行う層間絶縁膜である有機絶縁膜44(誘電率2.6〜2.7の低誘電率の有機膜、例えば、ダウケミカル社製のSiLKTM),ハードマスク45(この場合、SiN膜/SiO2膜によるデュアルハードマスク)が膜付けされ、パターニングされたホトレジスト46が最上面に形成されている。
次に、第1エッチング処理室10aの処理室内に、ハードマスクエッチング加工用の処理ガス(例えば、Ar+O2+CF系ガス(C58))を供給し、プラズマエッチングを実行する。このエッチング処理では、有機絶縁膜44をエッチング加工するための接続穴加工用のマスクを形成する(ステップ102)。
ハードマスク45のエッチング加工は、発光分光法による終点検出によって、そのエッチング終了を検出する(ステップ103)。このときの被エッチング材の加工断面を図4(b)に示す。この時点では、ホトレジスト46が残っていても良い。
次に、ハードマスク45の加工が終了したウエハ2を第2エッチング処理室10bに搬送する(ステップ104)。
第2エッチング処理室10bの処理室では、該処理室内に、有機絶縁膜エッチング加工用の処理ガス(アンモニア(NH3 ))を供給し、プラズマエッチングを実行する。このエッチング処理では、有機絶縁膜44に下層配線42との接続穴を形成する(ステップ105)。なお、前工程で残っていたホトレジストは、基本的に有機絶縁膜と同様の成分からなるので、本工程のエッチング処理時に一緒にエッチング除去される。
有機絶縁膜44のエッチング加工は、発光分光法による終点検出によって、そのエッチング終了を検出する(ステップ106)。このときの被エッチング材の加工断面を図4(c)に示す。この時点では、ホトレジスト46は除去されており、接続穴47が下層配線42まで達している。
有機絶縁膜44のエッチング加工が終了したウエハ2は、元のカセット1aに回収される(ステップ107)。
【0033】
カセット1a内のウエハ2が全て上述のように加工されてカセット1a内に回収されたら、次に、有機絶縁膜44に配線用の溝を加工するための準備に移る。接続穴47の加工が終了したウエハ2を収納したカセット1aは、他の装置(洗浄装置,レジスト塗布装置,露光装置,現像装置等)に運ばれる。これらの装置によって、カセット1a内のウエハ2には、ハードマスク45上に、配線溝のパターンがパターニングされたホトレジストが形成されている(ステップ108)。
【0034】
次に、パターニング済みのホトレジストが形成されたウエハ2を収納したカセット1aが、プラズマエッチング処理装置の大気ユニット3にセットされる(ステップ111)。
カセット1aがセットされた後、第1エッチング処理室10aにウエハ2を搬入する(ステップ112)。このときのウエハ2は、図4(d)に示すようにハードマスク45上にパターニングされたホトレジスト48が形成されている。
次に、第1エッチング処理室10aの処理室内に、前記ステップ102と同様のハードマスクエッチング加工用の処理ガス(例えば、Ar+O2 +CF系ガス(C58))を供給し、プラズマエッチングを実行する。このエッチング処理では、有機絶縁膜44をエッチング加工するための配線溝加工用のマスクを形成する(ステップ113)。
ハードマスク45のエッチング加工は、発光分光法による終点検出によって、そのエッチング終了を検出する(ステップ114)。このときの被エッチング材の加工断面を図4(e)に示す。ハードマスク45には、接続穴47よりも開口の大きい配線溝用の開口が形成される。この時点では、ホトレジスト46が残っていても良い。
次に、ハードマスク45の加工が終了したウエハ2を第2エッチング処理室10bに搬送する(ステップ115)。
第2エッチング処理室10bの処理室では、該処理室内に、有機絶縁膜エッチング加工用の処理ガス(水素ガス(H2)と窒素ガス(N2))を供給し、プラズマエッチングを実行する。このエッチング処理では、有機絶縁膜44に所定深さの配線溝を形成する(ステップ116)。本エッチング処理ではエッチングストッパ層を用いないため、エッチング底面の平坦化が重要であるとともにウエハ面内の均一性が重要となる。本エッチング処理でのプロセス条件及びプロセス制御方法は後述する。なお、前工程で残っていたホトレジスト48は、前述と同様に本工程のエッチング処理時に一緒にエッチング除去される。
有機絶縁膜44のエッチング加工は、例えば、米国特許出願番号09/946504(特願2001−28098号明細書)に記載されているような、干渉光の微分値の波長パターンを用い、その標準パターンと実処理時の実パターンとから膜厚を測定し、エッチング深さを算出する終点検出方法によって、そのエッチング終了を検出する(ステップ117)。このときの被エッチング材の加工断面を図4(f)に示す。この時点では、ホトレジスト46は除去されており、配線溝49が所定の深さで形成されている。
有機絶縁膜44のエッチング加工が終了したウエハ2は、元のカセット1aに回収される(ステップ118)。
【0035】
上述した工程を実施することにより、デュアルダマシンプロセスの有機絶縁膜加工が行われる。本実施例のプラズマエッチング処理装置によれば、エッチング処理室を2個使用できるので、接続穴加工のときのハードマスク45のエッチング加工と有機絶縁膜44のエッチング加工とを連続して実施でき、また、第2エッチング処理室の処理ガスを切り替えるのみで、配線溝加工のときのハードマスク45のエッチング加工と有機絶縁膜44のエッチング加工とを連続して実施できる。これにより、1台の装置でデュアルダマシンプロセスの有機絶縁膜加工を行うことができる。
【0036】
また、エッチング処理室を真空搬送室6の周りに3個設けることにより、接続穴用と配線溝用のハードマスク45のエッチング加工を中央に配置した第2エッチング処理室で行い、有機絶縁膜44の接続穴のエッチング加工を第2エッチング処理室の隣(例えば、左側)の第1エッチング処理室で行い、有機絶縁膜44の配線溝のエッチング加工を第2エッチング処理室の隣(例えば、右側)の第3エッチング処理室で行うようにすれば、それぞれのエッチング処理室でプロセスを固定できる。また、第2エッチング処理室を交互に用いて、第2及び第1エッチング処理室で連続処理でき、第2及び第3エッチング処理室で連続処理できる。これにより、例えば、カセット1aには接続穴加工用のウエハを収納し、カセット1bには配線溝加工用のウエハを収納して、1台の装置で接続穴のエッチング加工と配線溝のエッチング加工とを同時に実施(同時処理)できる。
【0037】
さらに、エッチング処理室を真空搬送室6の周りに4個設けることにより、第1及び第2エッチング処理室を用いて接続穴用のハードマスク45のエッチング加工と有機絶縁膜44の接続穴のエッチング加工とを専用の処理室で連続処理でき、また、第3及び第4エッチング処理室を用いて配線溝用のハードマスク45のエッチング加工と有機絶縁膜44の配線溝のエッチング加工とを専用の処理室で連続処理できる。これにより、例えば、カセット1aには接続穴加工用のウエハを収納し、カセット1bには配線溝加工用のウエハを収納して、1台の装置で接続穴のエッチング加工と配線溝のエッチング加工とを並列処理することができる。
【0038】
なお、本実施例では、ロードロック室5aとアンロードロック室5bとを区別して使用しているが、カセット1aのウエハ搬入,搬出用にロック室5aを用い、カセット1bのウエハ搬入,搬出用にロック室5bを用いるようにしても良い。これにより、上述のエッチング処理室を3個及び4個設けた処理の場合の同時処理及び並列処理におけるウエハの搬送ルートを最短にできる。
【0039】
次に、上記ステップ116における有機絶縁膜44への配線溝加工のエッチング方法を図5から図10を用いて説明する。
配線溝のエッチングにおいて、表1に示す5つのケースで、エッチングの状態を評価した。
【表1】
Figure 0003739325
ケース1から4は処理圧力を10Pa未満、この場合、3Paにし、処理ガスの種類及びガス流量を変えて実験した。ケース1及び3は処理ガスとして、有機絶縁膜のエッチャントとなるガスに窒素ガスを使用し、水素ガス(H2 )と窒素ガス(N2 )との混合ガスを用いた。ケース2及び4は処理ガスとして、有機絶縁膜のエッチャントとなるガスにアンモニアガスを使用し、水素ガス(H2 )とアンモニアガス(NH3 )との混合ガスを用いた。ケース1は、有機絶縁膜のエッチャントとなる窒素ガスに対し水素ガスの量を20倍した。ケース2は、有機絶縁膜のエッチャントとなるアンモニアガスに対し水素ガスの量を10倍した。ケース3は、有機絶縁膜のエッチャントとなる窒素ガスに対し水素ガスの量を同じにした。ケース4は、有機絶縁膜のエッチャントとなるアンモニアガスに対し水素ガスの量を同じにした。ケース5は、ケース1と同じ処理ガス条件で処理圧力を10Pa以上、この場合、10Paにした。なお、いずれもプラズマを発生させる高周波電圧の電力は1kWで行った。
【0040】
この結果、次のことが分かる。
(1)エッチングレートにおいては、エッチャントになるガスとしてアンモニアガスを用いた方がエッチングレートが向上する。
(2)サブトレンチ率においては、エッチャントガスに比べ水素ガスを多くすることによりサブトレンチ率が改善される。なお、サブトレンチ率とは、(エッチングした側壁際のエッチングレート/溝中央部のエッチングレート)をパーセント表示したものであり、この率が100%以下であればサブトレンチが発生していないことになる。
(3)サブトレンチを防ぐためには、少なくとも処理ガス中のH成分ガスとN成分ガスとの混合比(H成分ガス/N成分ガス)は10以上であり、総流量は200cc/分以上であって、発光スペクトル強度比率(CN/H)が1以下となる条件にする必要がある。また、このことから、サブトレンチを防ぐにはエッチング処理室内の圧力を10Pa未満にする必要がある。
【0041】
上述のようにサブトレンチが生じなかったもの及びサブトレンチが生じたものについて、プラズマの発光強度を測定してみると、波長388nmと波長486nmの2点に特徴的な発光強度が現れることが分かった。この2つの発光スペクトルは、波長388nmのシアン分子(CN)と波長486nmの水素原子(H)であることが分かった。
【0042】
結果的に、サブトレンチのないエッチング条件は、ケース1及び2であった。サブトレンチが生じない条件でのプラズマ中の反応生成物であるシアン分子(CN)と水素原子(H)との発光強度を測定すると、図5に示すようにシアン分子(CN)の発光強度に比べ水素原子(H)の発光強度が高いことが分かった。この場合のエッチング条件は、H2:300sccm,N2:10sccm,処理圧力:3Pa,プラズマ発生用高周波電力:1kWである。
【0043】
シアン分子(CN)の発光強度に比べ水素原子(H)の発光強度が高いということは、プラズマ中の水素原子(H)量、言い換えれば、Hラジカル量がシアン分子CN量より多く存在することを意味する。これは図7に示すような反応状態を生じているものと考えられる。すなわち、プラズマ中にはエッチャントであるNイオンに比べHラジカルが多く存在し、Nイオンの被エッチング面への入射によって有機絶縁膜44と反応し反応生成物となって出て行ったシアン分子CNが再度ウエハ2に入射し、被エッチング部の底面に付着する。この付着したシアン分子CNにプラズマからのHラジカルが接して反応を生じ、このシアン分子CNはより揮発性の高い反応生成物HCNとなってエッチング表面から揮発し排気される。これにより、被エッチング部の反応生成物(この場合、シアン分子CN)の付着分布(反応生成物は被エッチング部の側壁側に比べ溝中央部に付着し易い)の影響を受けることなくエッチングが進行し、サブトレンチを防止することができる。
【0044】
これに対し、残りのケース3,4及び5ではサブトレンチが生じた。サブトレンチが生じたときの条件でのプラズマ中のシアン分子(CN)と水素原子(H)との発光強度を測定すると、図6に示すようにシアン分子(CN)の発光強度に比べ水素原子(H)の発光強度が小さいことが分かった。この場合のエッチング条件は、H2:35sccm,N2:35sccm,処理圧力:3Pa,プラズマ発生用高周波電力:1kWである。このときの反応状態は、図8に示すような状態になっていると考えられる。すなわち、プラズマ中にはNイオンの量が多く高いエッチングレートが得られる。これとともにシアン分子CNの量も多くなり、エッチング面へのCNの再付着が生じる。反応生成物の再付着は、エッチング面の側壁側底面よりも底面中央部に付着し易いので、側壁側底面部がエッチングされやすくなってサブトレンチが発生すると考えられる。また、ウエハへの入射エネルギが大きいNイオンが、前述したように被エッチング部の側壁際に集中し、サブトレンチが生じるものと考えられる。
【0045】
上述したシアン分子(CN)と水素原子(H)との発光強度の比(CN/H)とサブトレンチ率との関係を図9に示す。図9から分かるようにサブトレンチが生じないサブトレンチ率100%以下となるCN/H比はおよそ1以下であることが分かる。ちなみに、表1に示したケースのポイントは、ケース番号を付した点である。また、図5に示した発光強度の状態がポイント(a)であり、図6に示した発光強度の状態がポイント(b)である。
【0046】
次に、図1に示す制御装置31によるサブトレンチを防止するための制御方法について、図10により説明する。
前述の有機絶縁膜に配線溝を形成するエッチングのステップ116において、プラズマからのシアン分子CNと水素原子Hとの発光スペクトルを光電変換器によって電気信号に変換し、それぞれの発光強度を測定する(ステップ121)。測定したCN及びHの発光強度からCN/Hの発光強度比を求める(ステップ122)。次に、発光強度比CN/Hが1以下かどうか判定する(ステップ123)。判定した結果、発光強度比が1以下であれば、そのままエッチングを継続する(ステップ129)。エッチングが継続され前述した膜厚測定を用いたエッチング終点検出により、所定のエッチング量に達したかどうか判定する(ステップ130)。まだ所定のエッチング量に達していない場合には、ステップ121に戻り処理を継続する。所定のエッチング量に達しエッチングの終点を検出したなら、エッチング処理を終了する。
【0047】
他方、ステップ123において、発光強度比が1より大きい場合、水素ガスの流量制御弁を制御して水素ガスの流量を増やす(ステップ124)。この場合、窒素ガスの量を少なくするようにしても良いが、エッチングレートが低下するので、水素ガス流量を制御する方が好ましい。なお、図示を省略しているが、制御装置31は処理圧力が一定になるように排気速度調整バルブ27を制御する。次に、水素ガスの流量制御において、流量制御の値が上限に達っしているかどうか、すなわち、最大かどうかを判定する(ステップ125)。流量制御の値が最大に達していない間は、ステップ121に戻り発光強度比のチェックを繰り返す。
【0048】
他方、流量制御の値が最大で、これ以上水素ガスを増やすことができない場合には、プラズマ生成用の電力を増加させる(ステップ126)。これにより、プラズマ中の水素分子の分解が高められ、Hラジカルが多く発生し、Hの発光強度が高められる。次に、プラズマ生成用の高周波電源からの高周波電力の出力値が最大かどうかを判定する(ステップ127)。高周波電力の出力値が最大に達していない間は、ステップ121に戻り発光強度比のチェックを繰り返す。
【0049】
他方、高周波電力の出力値が最大で、これ以上電力値を上げられない場合には、ウエハへのバイアス印加の高周波電力の出力値を下げる(ステップ128)。
【0050】
上述のように第1段階では水素ガスを増加させ、第2段階ではプラズマ生成用の電力を増加させて制御しているので、エッチングレートに起因するパラメータを下げることなくサブトレンチの発生を抑制するので、所定のエッチング速度を維持したままサブトレンチを防止することができる。
【0051】
以上、本実施例によれば、10Paより低い処理圧力とするとともに、エッチング処理時に再付着し易い反応生成物CNを水素成分と反応させて、積極的に揮発性の高い反応生成物HCNにして排出しているので、処理室内への反応生成物の付着を抑制し、マイクロトレンチを防止して有機絶縁膜をエッチングすることができるという効果がある。
【0052】
また、本実施例によれば、低誘電率の有機絶縁膜のエッチングにおいて、サブトレンチを生じさせることなく、溝あるいは穴底形状を平坦にすることができるので、エッチングストッパ層を用いることなく半導体LSIチップ上の電気配線用溝を形成することができる。
【0053】
また、本実施例によれば、10Paより低い処理圧力下で処理ガスとして窒素ガスと水素ガスとの混合ガスを用い、プラズマ中のシアン分子CNと水素原子Hとの発光スペクトルの発光強度比CN/Hを1以下に制御することにより、サブトレンチなく有機絶縁膜をエッチング処理することができる。
【0054】
また、発光強度比CN/Hが1以下になるように水素ガスの流量を増加制御することにより、有機絶縁膜のエッチング速度を低下させることなくサブトレンチを抑制することができる。
【0055】
また、発光強度比CN/Hが1以下になるようにプラズマ生成用の高周波電力の出力を増加制御することにより、プラズマ中のHラジカル量を増加させて有機絶縁膜のエッチング速度を低下させることなくサブトレンチを抑制することができる。
【0056】
また、処理ガスとして窒素ガスと水素ガスとの混合ガスを用いているので、プラズマ中のガス組成が単純であり、処理ガスの流量制御で容易に発光強度比CN/Hを制御することができる。
【0057】
なお、本実施例では、有機絶縁膜の溝加工に処理ガスとして窒素ガスと水素ガスとの混合ガスを用いたが、アンモニアガスと水素ガスとの混合ガスを用いても同様にプラズマ中の発光強度比CN/Hが1以下にすることにより、同様の効果を得ることができる。
【0058】
また、本実施例では、プラズマ生成用の高周波電源として周波数450MHzの電源を用いたUHF有磁場型のプラズマ処理装置を用いたが、10Paより低い処理圧力で有機絶縁膜をエッチング処理する装置であれば、他の放電方式(例えば、マイクロ波ECR方式,容量結合方式,誘導結合方式,マグネトロン方式等)の装置においても、シアン分子と水素原子とのバランスをとり、同様の効果を得ることが可能である。
【0059】
【発明の効果】
以上、本発明によれば、処理室内への反応生成物の付着を抑制し、マイクロトレンチを防止して有機絶縁膜をエッチングすることのできるという効果がある。
【図面の簡単な説明】
【図1】本発明のエッチング方法を実施するためのエッチング装置の一例を示す縦断面図である。
【図2】図1のエチング装置を設けたプラズマエッチング処理装置の全体を示す平面図である。
【図3】図2の装置を用いたエッチング処理を示すフロー図である。
【図4】図3に示すエッチングフローに合せウエハのエッチング断面形状を示す縦断面図である。
【図5】有機絶縁膜の配線溝加工において、サブトレンチのないエッチングプロセスでのプラズマの発光強度を示す図である。
【図6】有機絶縁膜の配線溝加工において、サブトレンチが生じるエッチングプロセスでのプラズマの発光強度を示す図である。
【図7】図5のプラズマ発光強度状態でエッチング加工したエッチング断面形状を示す断面図である。
【図8】図6のプラズマ発光強度状態でエッチング加工したエッチング断面形状を示す断面図である。
【図9】有機絶縁膜の配線溝加工におけるプラズマ中のシアン分子と水素原子との発光強度比CN/Hと、サブトレンチとの関係を示す図である。
【図10】有機絶縁膜の配線溝加工におけるサブトレンチを抑制するフローを示す図である。
【符号の説明】
1a,1b…カセット、2…ウエハ、3…大気ユニット、4…大気搬送ロボット、5a…ロードロック室、5b…アンロードロック室、6…真空搬送室、7…真空搬送ロボット、10a…第1エッチング処理室、10b…第2エッチング処理室、11…真空容器、12…誘電体、13…平板アンテナ、14…ガス供給路、15…同軸線路、16…プラズマ生成用高周波電源、17,18,19…流量制御バルブ、20,21,22…ガス供給源、23a,23b…磁場発生用コイル、24…試料台、25…バイアス電圧用高周波電源、26…温度調整装置、27…排気速度調整バルブ、28…真空ポンプ、29…真空計、30…分光・光電変換器、31…制御装置、32…プラズマ、41…下層有機絶縁膜、42…下層配線、43…下層ハードマスク、44…有機絶縁膜、45…ハードマスク、46,48…ホトレジスト、47…接続穴、49…配線溝、50…サブトレンチ。

Claims (9)

  1. 有機絶縁膜を形成した被エッチング試料を生成されたプラズマを用いてエッチング処理する有機絶縁物のエッチング方法において、
    前記被エッチング試料が設置されたエッチング処理室内に、水素ガスと窒素ガス又はアンモニアガスとの混合ガスを供給して前記プラズマを生成するプラズマ生成ステップと、
    該プラズマ生成ステップで生成されたプラズマ中の水素原子の発光スペクトル波長486nm及びシアン分子の発光スペクトル波長388nmの強度を測定する測定ステップとを有し、
    前記プラズマ生成ステップにおいて、前記測定ステップで測定された水素原子の発光スペクトル強度を前記測定ステップで測定されたシアン分子の発光スペクトル強度以上に高めるように、少なくとも前記供給される混合ガスの混合比を制御する制御ステップを含むことを特徴とする有機絶縁膜のエッチング方法。
  2. 前記制御ステップにおいて、前記水素原子の発光スペクトル強度に対する前記シアン分子の発光スペクトル強度の比率を算出し、該算出された比率が1以下になるように少なくとも前記供給される混合ガスの混合比を制御することを含むことを特徴とする請求項1記載の有機絶縁膜のエッチング方法。
  3. 有機絶縁膜を形成した被エッチング試料を生成されたプラズマを用いてエッチング処理する有機絶縁物のエッチング方法において、
    前記被エッチング試料が設置されたエッチング処理室内に、水素ガスと窒素ガス又はアンモニアガスとの混合ガスを供給して前記プラズマを生成するプラズマ生成ステップと、
    該プラズマ生成ステップで生成されたプラズマ中の水素原子の発光スペクトル波長486nm及びシアン分子の発光スペクトル波長388nmの強度を測定する測定ステップとを有し、
    前記プラズマ生成ステップにおいて、前記測定ステップで測定された水素原子の発光スペクトル強度を前記測定ステップで測定されたシアン分子の発光スペクトル強度以上に高めるように、少なくとも前記供給される混合ガスの内前記水素ガスの流量を制御する制御ステップを含むことを特徴とする有機絶縁膜のエッチング方法。
  4. 前記制御ステップにおいて、前記水素原子の発光スペクトル強度に対する前記シアン分子の発光スペクトル強度の比率を算出し、該算出された比率が1以下になるように少なくとも前記供給される混合ガスの内前記水素ガスの流量を制御することを含むことを特徴とする請求項3記載の有機絶縁膜のエッチング方法。
  5. 前記プラズマ生成ステップにおいて、前記エッチング処理室内の圧力は10Pa未満であることを特徴とする請求項1または3記載の有機絶縁膜のエッチング方法。
  6. 前記プラズマ生成ステップにおいて、前記供給される前記混合ガスにおける前記窒素ガス又は前記アンモニアガスに対する前記水素ガスの混合比が10以上であることを特徴とする請求項1または3記載の有機絶縁膜のエッチング方法。
  7. 前記プラズマ生成ステップにおいて、前記供給される前記混合ガスの総流量が200cc/分以上であることを特徴とする請求項1または3記載の有機絶縁膜のエッチング方法。
  8. 前記制御ステップにおいて、更に、プラズマ生成用の電力を制御することを含むことを特徴とする請求項1または3記載の有機絶縁膜のエッチング方法。
  9. 前記制御ステップにおいて、更に、被エッチング試料へのバイアス印加の高周波電力の出力値を制御することを含むことを特徴とする請求項1または3記載の有機絶縁膜のエッチング方法。
JP2002042514A 2001-09-20 2002-02-20 有機絶縁膜のエッチング方法 Expired - Fee Related JP3739325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042514A JP3739325B2 (ja) 2001-09-20 2002-02-20 有機絶縁膜のエッチング方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001286052 2001-09-20
JP2001-286052 2001-09-20
JP2002042514A JP3739325B2 (ja) 2001-09-20 2002-02-20 有機絶縁膜のエッチング方法

Publications (2)

Publication Number Publication Date
JP2003168676A JP2003168676A (ja) 2003-06-13
JP3739325B2 true JP3739325B2 (ja) 2006-01-25

Family

ID=19109096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042514A Expired - Fee Related JP3739325B2 (ja) 2001-09-20 2002-02-20 有機絶縁膜のエッチング方法

Country Status (4)

Country Link
US (3) US6793833B2 (ja)
JP (1) JP3739325B2 (ja)
KR (1) KR100749839B1 (ja)
TW (1) TW535235B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750654B2 (en) * 2002-09-02 2010-07-06 Octec Inc. Probe method, prober, and electrode reducing/plasma-etching processing mechanism
US20040099283A1 (en) * 2002-11-26 2004-05-27 Axcelis Technologies, Inc. Drying process for low-k dielectric films
US7060196B2 (en) * 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
JP4490704B2 (ja) * 2004-02-27 2010-06-30 株式会社日立ハイテクノロジーズ プラズマ処理方法
CN1914714B (zh) * 2004-03-31 2011-09-28 富士通半导体股份有限公司 基板处理装置及半导体装置的制造方法
JP4723871B2 (ja) * 2004-06-23 2011-07-13 株式会社日立ハイテクノロジーズ ドライエッチング装置
US7192880B2 (en) * 2004-09-28 2007-03-20 Texas Instruments Incorporated Method for line etch roughness (LER) reduction for low-k interconnect damascene trench etching
JP5041713B2 (ja) * 2006-03-13 2012-10-03 東京エレクトロン株式会社 エッチング方法およびエッチング装置、ならびにコンピュータ読取可能な記憶媒体
US8828744B2 (en) * 2012-09-24 2014-09-09 Lam Research Corporation Method for etching with controlled wiggling
JP6173851B2 (ja) 2013-09-20 2017-08-02 株式会社日立ハイテクノロジーズ 分析方法およびプラズマエッチング装置
EP3038132B1 (en) * 2014-12-22 2020-03-11 IMEC vzw Method and apparatus for real-time monitoring of plasma etch uniformity
JP6438831B2 (ja) * 2015-04-20 2018-12-19 東京エレクトロン株式会社 有機膜をエッチングする方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633798A (en) 1995-04-13 1997-05-27 Phillips Petroleum Company Method and apparatus for measuring octane number
JP3418045B2 (ja) 1995-12-28 2003-06-16 シャープ株式会社 ドライエッチング方法
JPH08330278A (ja) 1995-05-30 1996-12-13 Anelva Corp 表面処理方法および表面処理装置
JPH10335308A (ja) 1997-05-29 1998-12-18 Tokyo Electron Ltd プラズマ処理方法
US6143476A (en) * 1997-12-12 2000-11-07 Applied Materials Inc Method for high temperature etching of patterned layers using an organic mask stack
JP2000252359A (ja) * 1999-03-03 2000-09-14 Sony Corp 絶縁膜のエッチング方法および配線層の形成方法
JP3997692B2 (ja) 1999-08-10 2007-10-24 Jfeスチール株式会社 プレス成形性に優れ且つコイル内でのプレス成形性の変動が少ない深絞り用冷延鋼板の製造方法
JP3844413B2 (ja) * 1999-08-23 2006-11-15 東京エレクトロン株式会社 エッチング方法
JP3215686B2 (ja) * 1999-08-25 2001-10-09 株式会社日立製作所 半導体装置及びその製造方法
JP2001176853A (ja) 1999-12-16 2001-06-29 Hitachi Ltd プラズマ処理装置
JP3511089B2 (ja) 2000-05-24 2004-03-29 独立行政法人産業技術総合研究所 低温プラズマによる固体表面処理制御方法
JP3403374B2 (ja) 2000-05-26 2003-05-06 松下電器産業株式会社 有機膜のエッチング方法、半導体装置の製造方法及びパターンの形成方法
JP2002110644A (ja) * 2000-09-28 2002-04-12 Nec Corp エッチング方法
US6548416B2 (en) * 2001-07-24 2003-04-15 Axcelis Technolgoies, Inc. Plasma ashing process

Also Published As

Publication number Publication date
US6793833B2 (en) 2004-09-21
US20060065624A1 (en) 2006-03-30
US20030052086A1 (en) 2003-03-20
US7396481B2 (en) 2008-07-08
KR100749839B1 (ko) 2007-08-16
TW535235B (en) 2003-06-01
KR20030025779A (ko) 2003-03-29
JP2003168676A (ja) 2003-06-13
US7014787B2 (en) 2006-03-21
US20040182514A1 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
US7396481B2 (en) Etching method of organic insulating film
KR101427505B1 (ko) 마스크 패턴의 형성 방법 및 반도체 장치의 제조 방법
US5897713A (en) Plasma generating apparatus
US9373522B1 (en) Titanium nitride removal
US7473377B2 (en) Plasma processing method
US8980048B2 (en) Plasma etching apparatus
TWI492297B (zh) 電漿蝕刻方法、半導體裝置之製造方法、及電漿蝕刻裝置
TWI442467B (zh) Etching methods and etching devices, as well as computer-readable memory media
JP2007103942A (ja) 炭素系ハードマスクを開く方法
JP2002543613A (ja) 低容量の誘電体層をエッチングするための技術
JP2014090192A (ja) 通常の低k誘電性材料および/または多孔質の低k誘電性材料の存在下でのレジスト剥離のための方法
JP2001110784A (ja) プラズマ処理装置および処理方法
JP2003023000A (ja) 半導体装置の製造方法
KR19980032978A (ko) 반도체 제조용 에너지 전자를 생산하기 위한 헬리콘 전파 여기
US9922840B2 (en) Adjustable remote dissociation
US20100043821A1 (en) method of photoresist removal in the presence of a low-k dielectric layer
US20030235993A1 (en) Selective etching of low-k dielectrics
JP2004363558A (ja) 半導体装置の製造方法およびプラズマエッチング装置のクリーニング方法
JPH10134995A (ja) プラズマ処理装置及びプラズマ処理方法
JP4577328B2 (ja) 半導体装置の製造方法
US5908320A (en) High selectivity BPSG:TiSi2 contact etch process
JP6666601B2 (ja) 多孔質膜をエッチングする方法
JP3172340B2 (ja) プラズマ処理装置
JP2004259819A (ja) 試料の表面処理装置及び表面処理方法
JP2003163205A (ja) 酸化膜エッチング方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees