JP3738521B2 - Flying object guidance device - Google Patents

Flying object guidance device Download PDF

Info

Publication number
JP3738521B2
JP3738521B2 JP06982797A JP6982797A JP3738521B2 JP 3738521 B2 JP3738521 B2 JP 3738521B2 JP 06982797 A JP06982797 A JP 06982797A JP 6982797 A JP6982797 A JP 6982797A JP 3738521 B2 JP3738521 B2 JP 3738521B2
Authority
JP
Japan
Prior art keywords
information
flying object
target
observation
flying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06982797A
Other languages
Japanese (ja)
Other versions
JPH10267596A (en
Inventor
智則 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06982797A priority Critical patent/JP3738521B2/en
Publication of JPH10267596A publication Critical patent/JPH10267596A/en
Application granted granted Critical
Publication of JP3738521B2 publication Critical patent/JP3738521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、航空機、ミサイル又は砲弾等の飛しょう体を地上に固定設置、若しくは車両、艦船、航空機又は衛星等の移動体に搭載され、電波又は光波等を測定手段とするレーダ、光波センサ等のセンサの情報により、地上施設、車両、艦船、航空機、ミサイル、砲弾又は衛星等の目標に向けて誘導する飛しょう体誘導装置に関するものである。
【0002】
【従来の技術】
図2(a)は従来の飛しょう体誘導装置の構成を示す図であり、Tは目標、1は目標の位置、速度等の情報を取得する目標測定手段、3は誘導計算手段、4は制御計算手段、5は飛しょう体の推進、6は飛しょう体の推進及び操舵等の結果による空力特性に応じた飛しょう体力学、7は飛しょう体の飛しょう姿勢測定手段、8は飛しょう体力学6の結果による飛しょう体空間運動、9は飛しょう体の位置、速度等の情報を取得する飛しょう体測定手段である。
【0003】
次に上記飛しょう体誘導装置の動作について説明する。目標Tに向けて飛しょう体を誘導する場合、目標測定手段1により目標Tの位置、速度等の目標観測情報の取得及び飛しょう体測定手段9により誘導する飛しょう体の位置、速度等の飛しょう体観測情報の取得を行い、誘導計算手段3により、目標測定手段1及び飛しょう体測定手段9からの情報に基づき、誘導する飛しょう体進路の誘導誤差を求める誘導計算を行い、制御計算手段4により、誘導計算手段3からの情報及び飛しょう体の飛しょう姿勢を測定する姿勢測定手段7からの情報に基づき、飛しょう体の制御計算を行い、その情報に基づき操舵等の制御を行う。その結果、飛しょう体は推進、操舵等に応じた飛しょう体力学6により、進路方向の変更や推進等の飛しょう体空間運動8を行う。これら一連の処理を繰り返すことにより、飛しょう体を目標に向けて誘導する。
【0004】
図2(b)は図2(a)の構成をそれらに関与する機材に振り分けて模式的に示した図であり、Tは目標、Mは誘導する飛しょう体、Sは電波又は光波等を測定手段とし目標Tと飛しょう体Mの観測情報の取得及び飛しょう体Mの管制を行う管制センサ、1は目標測定手段、3は誘導計算手段、4は制御計算手段、7は姿勢測定手段、9は飛しょう体測定手段であり、101は管制センサSによる目標Tの観測、102は目標測定手段1により取得した目標観測情報、104は誘導計算手段3により計算した飛しょう体Mの誘導誤差情報、105は姿勢測定手段7により測定された飛しょう体Mの飛しょう姿勢情報、106は管制センサSによる飛しょう体Mの観測、107は飛しょう体測定手段9により取得した飛しょう体観測情報である。
【0005】
次に各機材の機能分担と動作について説明する。管制センサSは電波又は光波等を測定手段として目標Tの観測101を行い、目標測定手段1による目標観測情報102の取得、及び誘導する飛しょう体Mの観測106を行い、飛しょう体測定手段9による飛しょう体観測情報107の取得を行う。これらを入力情報として管制センサS上で誘導計算手段3により飛しょう体Mの目標Tに対する誘導誤差情報104を算出し、飛しょう体Mに送信する。飛しょう体Mは姿勢測定手段7による飛しょう姿勢の測定により、飛しょう姿勢情報105を取得し、制御計算手段4で、管制センサSから受信した誘導誤差情報104及び上記飛しょう姿勢情報105に基づき飛しょう体の制御計算を行い、制御情報を算出し、操舵等の制御を行う。飛しょう体は制御量に応じた飛しょう体力学により、進路方向の変更や推進等の飛しょう体空間運動により目標に向かい誘導され、これら一連の処理を繰り返すことにより目標に向けて飛しょうする。
【0006】
【発明が解決しようとする課題】
上記の従来の飛しょう体の誘導装置では、一つの管制センサによって飛しょう体を誘導の目標と誘導する飛しょう体を観測することにより、目標観測情報と飛しょう体観測情報を取得し、飛しょう体を誘導する。この方法では飛しょう体を誘導するための精度は、上記管制センサと目標及び飛しょう体の相対位置や地理的条件等の管制センサの置かれた環境等により左右され、その結果飛しょう体を誘導するための精度も左右される。管制センサの観測情報はその観測対象の情報の真値に観測雑音等の精度を劣化させる要素が加算され、観測誤差となり、管制センサと観測対象との間の距離が大きくなるほど観測誤差は大きくなる。つまり観測情報の精度は、管制センサと観測対象との間の距離が大きくなるほど悪くなり、つまりは飛しょう体を誘導するための精度は誘導の目標とその誘導を管制する管制センサからの距離が大きくなるほど悪くなる。さらには、誘導の目標及び誘導する飛しょう体を観測するために要する時間並びに誘導誤差情報等の飛しょう体の誘導に必要な情報の管制センサから飛しょう体への送信に要する時間は誘導の目標と誘導する飛しょう体との間の距離が大きくなるほどそれに比例して大きくなり、誘導する飛しょう体に送信する誘導誤差情報等の誘導に必要な情報の送信頻度は減少する。つまりは飛しょう体に与える情報が少なくなることにより、飛しょう体を誘導するための精度は悪くなる。従って、誘導の目標の大きさが極小であり、それが超高速で移動しており、高精度の誘導が要求され、さらには目標が超遠距離に位置しているような場合には、誘導する飛しょう体が目標に到達できるような誘導を行うことができなかった。
【0007】
この発明は、前述したような目標が超遠距離に位置する場合に対しても誘導する飛しょう体に高頻度かつ高精度な誘導情報を提供する事により、飛しょう体の高精度な誘導を行うことを目的とする。
【0008】
【課題を解決するための手段】
この発明の飛しょう体誘導装置は、従来一つの管制センサによって取得していたセンサの観測誤差を含む誘導に必要な目標情報及び誘導する飛しょう体情報等を、地上に固定設置、若しくは車両、艦船、航空機又は衛星等の移動体に搭載され、電波又は光波等を測定手段とするレーダ、光波センサ等の複数のセンサにより、様々の方向、様々の位置からの観測により取得する手段と、これらの情報に含まれる観測誤差を低減させ、取得した情報をそれぞれ一つの目標情報及び飛しょう体情報に融合する手段と、融合された情報により飛しょう体の誘導計算を行い、誘導情報を提供する手段と、誘導する飛しょう体の飛しょう姿勢を測定し、飛しょう姿勢情報を提供する手段と、誘導情報と飛しょう姿勢情報から飛しょう体の制御計算を行う手段と、制御計算の出力に基づき、飛しょう体を制御し、飛しょう体を目標へ誘導する手段とを備えて構成される。
【0009】
また、この発明の飛しょう体誘導装置は地上航法情報発信局又は航法衛星等から発信される航法情報を取得する手段と、飛しょう体の位置、速度等の飛しょう体計測情報を計測する手段と、複数のセンサから提供される上記飛しょう体情報と上記飛しょう体計測情報を比較し、複数のセンサから提供される上記目標情報に含まれるセンサの観測誤差推定量を推定計算する手段と、上記目標情報を融合する時に複数のセンサから提供される複数情報に上記観測誤差推定量に比例した重み付けを行い、一つの情報に情報融合を行う手段とを備えて構成される。
【0010】
【発明の実施の形態】
実施の形態1.
図1(a)はこの発明の実施の形態1を示し、飛しょう体誘導装置の構成を示す図であり、Tは目標、1は目標の位置、速度等の情報を取得する目標測定手段、2は複数の情報を融合する情報融合手段、3は誘導計算手段、4は制御計算手段、5は飛しょう体の推進、6は飛しょう体の推進及び操舵等の制御の結果の空力特性による飛しょう体力学、7は飛しょう体の飛しょう姿勢測定手段、8は6の飛しょう体力学の結果による飛しょう体空間運動、9は飛しょう体の位置、速度等の情報を取得する飛しょう体測定手段、Nは航法情報、10は飛しょう体においてNから発せられる情報を受信することにより、飛しょう体の位置、速度等の情報を計測する位置計測手段、11は9で得た情報と10で得た同時刻の情報とを比較し、その差分から1の情報に含まれる観測誤差量を推定計算する観測誤差推定手段である。
【0011】
次に動作について説明する。目標Tに向けて飛しょう体を誘導する場合、目標Tの位置、速度等の目標観測情報を複数のセンサの目標測定手段1による複数の取得及び誘導する飛しょう体の位置、速度等の飛しょう体観測情報を複数のセンサの飛しょう体測定手段9による複数の取得を行う。また同時に、誘導される飛しょう体では、地上航法情報発信局又は航法衛星等から発信される航法情報Nを受信することにより位置計測手段10で位置計測を行い、飛しょう体の位置、速度等の飛しょう体計測情報を取得し、同時刻の飛しょう体観測情報と飛しょう体計測情報とを比較することによりその差分から推定観測誤差を算出し、各センサと目標及び飛しょう体の相対距離の比、飛しょう体観測情報と目標観測情報の時刻差並びに観測センサの特性から目標観測情報に含まれる観測誤差を推定する。上述した複数の目標観測情報と、それに含まれる推定観測誤差と、上述した複数の飛しょう体観測情報と、飛しょう体計測情報とを情報融合手段2で目標観測情報及び飛しょう体観測情報の観測誤差分の除去並びに推定観測誤差から各情報の信頼度を算出し、それに基づいた各情報の重み付け平均により情報融合し、観測誤差を大幅に低減させた目標情報と、飛しょう体情報をする。それらに基づき、誘導する飛しょう体進路の誘導誤差を求める誘導計算手段3で誘導計算を行い、誘導計算手段3からの情報及び飛しょう体の飛しょう姿勢を測定する姿勢測定手段7からの情報に基づき、飛しょう体の制御計算手段4で制御計算を行い、操舵等の制御を行う。その結果、飛しょう体は推進、操舵等の状態に応じた飛しょう体力学6により、進路方向の変更や推進等の飛しょう体空間運動8を行う。これら一連の処理を繰り返すことにより、目標に向けて、高精度な誘導情報に基づき、高精度な飛しょう体誘導を実現させる。
【0012】
図1(b)はこの発明による実施の形態1における装置の構成を示した図1の手段をそれらに関与する機材に振り分けて模式的に示した図であり、Tは目標、Mを誘導する飛しょう体、S1〜S3は電波又は光波等を測定手段とし目標Tと飛しょう体Mの観測情報の取得を行うセンサを示し、Nは航法情報、1は前述S1〜S3等の複数のセンサの目標観測による目標測定手段、2は飛しょう体で受信した情報の情報融合手段、3は誘導計算手段、4は制御計算手段、7は姿勢測定手段、9は前述S1〜S3等複数のセンサの飛しょう体観測による飛しょう体測定手段、10は航法情報Nを受信する事による飛しょう体Mの位置、速度等の計測を行う位置計測手段、11は10位置計測の出力及び9飛しょう体計測手段の出力から各センサS1〜S3の観測情報に含まれる観測誤差を推定する観測誤差推定手段であり、101は各センサS1〜S3による目標Tの観測、102は目標測定1により取得した目標観測情報、情報融合2により各センサS1〜S3の観測情報及び観測誤差推定手段11による推定観測誤差を融合することにより得た、目標情報及び飛しょう体情報、104は誘導計算手段3により計算した飛しょう体Mの誘導誤差情報、105は姿勢測定手段7により測定された飛しょう体Mの飛しょう姿勢情報、106は各センサS1〜S3による飛しょう体Mの観測、107は飛しょう体測定手段9により取得した飛しょう体観測情報、108は地上航法情報発信局又は航法衛星等から発信される航法情報、109は位置計測手段10による飛しょう体の計測情報、110は観測推定手段11により算出される各センサS1〜S3の観測情報に含まれる目標観測情報推定誤差である。
【0013】
次に各機材の機能分担と動作について説明する。目標Tを電波または光波を測定手段とした複数のセンサS1〜S3により目標観測101し、それぞれのセンサで目標測定手段1により目標観測情報102を取得し、飛しょう体Mへ送信し、飛しょう体Mでこれらの情報を受信する。この時、S1〜S3の数量は3機に限らず、固定施設に設置若しくは車両、艦船、航空機又は衛星等様々な移動体に設置又は搭載されたセンサにより、実現することができ、S1は地上に固定設置されたレーダの例、S2は艦船に搭載されたレーダの例、S3は航空機に搭載されたレーダの例を示している。この時同時に同センサで、飛しょう体観測106を行い、飛しょう体測定手段9により飛しょう体観測情報107を取得し、飛しょう体Mへ送信し、飛しょう体Mで受信する。また、飛しょう体Mでは並行して地上航法情報発信局又は航法衛星等から発信される航法情報Nを受信し、飛しょう***置計測回路により実現される位置計測手段10により、飛しょう体計測情報109取得する。飛しょう体計測情報109と飛しょう体Mにより受信された飛しょう体観測情報107は、観測誤差推定回路により実現される観測誤差推定11で比較され、その差分より目標観測情報推定誤差110を取得する。
【0014】
センサS1〜S3より送信され、飛しょう体Mにより受信された複数の目標観測情報102及び飛しょう体観測情報107は目標観測情報110と共に、目標情報融合回路及び飛しょう体情報融合回路によって実現される情報融合手段7によりそれぞれ1つに融合され、観測誤差を大幅に低減させた目標情報及び飛しょう体情報103を出力する。これらを入力情報として飛しょう体M上で誘導計算回路により実現される誘導計算手段3により飛しょう体Mの誘導誤差情報104を出力する。これと同時に飛しょう体姿勢測定回路により実現される姿勢測定手段7により飛しょう姿勢を測定し、飛しょう姿勢情報105を取得する。飛しょう体制御計算回路により実現され、上記誘導誤差情報104及び上記飛しょう姿勢情報105を入力として制御計算手段4で飛しょう体の制御計算を行い、制御情報を算出し、飛しょう体制御装置により操舵等の制御を行う。飛しょう体は制御量に応じた飛しょう体力学により、進路方向の変更や推進等の飛しょう体空間運動により目標に向かい誘導され、これら一連の処理を繰り返すことにより観測誤差が大幅に低減された高精度な誘導情報により高精度な誘導が行われ、目標に向けて飛しょうする。
【0015】
【発明の効果】
以上のようにこの発明によれば、目標情報及び誘導する飛しょう体の情報を複数のセンサから取得することにより、高頻度に情報の更新ができ、並びに様々な位置、様々な方向から多方向観測された情報を融合することにより、取得した目標情報及び飛しょう体情報に含まれる観測誤差を低減し、高精度な誘導情報が提供される。
【0016】
さらには、航法情報から飛しょう体の位置情報を計測し、上記各センサの飛しょう体情報と比較・推定する事により上記各センサからの目標情報に含まれる観測誤差量を算出し、上記情報の融合に使用することにより、より高精度な誘導情報が提供でき、つまりは高精度な誘導ができる効果がある。
【図面の簡単な説明】
【図1】 この発明による飛しょう体誘導装置の実施の形態1における構成を示す図である。
【図2】 従来の飛しょう体誘導装置の構成を示す図である。
【符号の説明】
T 目標、M 飛しょう体、S 管制センサ、S1 センサ1、S2 センサ2 S3 センサ3、N 航法情報、1 目標測定手段、2 情報融合手段、3誘導計算手段、4 制御計算手段、5 飛しょう体の推進、6 飛しょう体力学、7 姿勢測定手段、8 飛しょう体空間運動、9 飛しょう体測定手段、10 位置計測手段、11 観測誤差推定手段、101 目標観測、102 目標観測情報、103 目標情報及び飛しょう体情報、104 誘導誤差情報、105 飛しょう姿勢情報、106 飛しょう体観測、107 飛しょう体観測情報、108 航法情報、109 飛しょう体計測情報、110 目標観測情報推定誤差。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a radar, a light wave sensor, etc., which has a flying object such as an aircraft, a missile or a cannonball fixed on the ground, or is mounted on a moving object such as a vehicle, a ship, an aircraft or a satellite, and uses radio waves or light waves as measuring means. The present invention relates to a flying object guidance device that guides a target such as a ground facility, a vehicle, a ship, an aircraft, a missile, a shell, or a satellite based on the information of the sensor.
[0002]
[Prior art]
FIG. 2 (a) is a diagram showing the configuration of a conventional flying object guiding apparatus, where T is a target, 1 is a target measuring means for acquiring information such as a target position and speed, 3 is a guidance calculating means, Control calculation means, 5 is propulsion of the flying object, 6 is flying object dynamics according to the aerodynamic characteristics resulting from the propulsion and steering of the flying object, 7 is the flying attitude measurement means of the flying object, and 8 is the flying object. Flying object space motion based on the result of the flying object mechanics 6, 9 is a flying object measuring means for acquiring information such as the position and velocity of the flying object.
[0003]
Next, the operation of the flying object guidance device will be described. When the flying object is guided toward the target T, the target measurement means 1 acquires the target observation information such as the position and speed of the target T and the flying object position and speed guided by the flying object measurement means 9. The flying object observation information is acquired, and the guidance calculation means 3 performs the guidance calculation to obtain the guidance error of the flying object course to be guided based on the information from the target measurement means 1 and the flying object measurement means 9, and performs control. The calculation means 4 performs control calculation of the flying object based on the information from the guidance calculation means 3 and the information from the attitude measurement means 7 that measures the flying attitude of the flying object, and controls steering and the like based on the information. I do. As a result, the flying object performs a flying object space motion 8 such as a change of a course direction or a propulsion by a flying object mechanics 6 according to propulsion, steering and the like. By repeating these series of processes, the flying object is guided toward the target.
[0004]
FIG. 2 (b) is a diagram schematically showing the configuration of FIG. 2 (a) divided into the equipment involved in them, where T is the target, M is the flying object to be guided, S is the radio wave or light wave, etc. A control sensor for obtaining observation information of the target T and the flying object M and controlling the flying object M as a measuring means, 1 is a target measuring means, 3 is a guidance calculating means, 4 is a control calculating means, and 7 is an attitude measuring means. , 9 is the flying object measuring means, 101 is the observation of the target T by the control sensor S, 102 is the target observation information acquired by the target measuring means 1, and 104 is the guidance of the flying object M calculated by the guidance calculating means 3. Error information, 105 is the flying attitude information of the flying object M measured by the attitude measuring means 7, 106 is the observation of the flying object M by the control sensor S, 107 is the flying object acquired by the flying object measuring means 9. It is observation information
[0005]
Next, the function sharing and operation of each equipment will be described. The control sensor S performs observation 101 of the target T using radio waves or light waves as measurement means, acquires target observation information 102 by the target measurement means 1, and performs observation 106 of the flying object M to be guided. The flying object observation information 107 according to 9 is acquired. Using these as input information, the guidance calculation means 3 calculates the guidance error information 104 for the target T of the flying object M on the control sensor S and transmits it to the flying object M. The flying object M acquires the flying attitude information 105 by measuring the flying attitude by the attitude measuring means 7, and the control calculation means 4 stores the guidance error information 104 received from the control sensor S and the flying attitude information 105. Based on the control calculation of the flying object, control information is calculated, and steering is controlled. The flying body is guided toward the target by flying body dynamics according to the control amount, such as changing the direction of the course and propelling, etc., and fly toward the target by repeating these series of processes. .
[0006]
[Problems to be solved by the invention]
In the conventional flying object guidance device described above, the target observation information and the flying object observation information are obtained by observing the flying object that guides the flying object and the guidance object by a single control sensor. Guide the ginger. In this method, the accuracy for guiding the flying object depends on the control sensor, the target, the relative position of the flying object, the environment where the control sensor is placed, such as geographical conditions, etc. The accuracy for guiding is also affected. The observation information of the control sensor adds an element that degrades the accuracy of observation noise and the like to the true value of the information of the observation target, resulting in an observation error, and the observation error increases as the distance between the control sensor and the observation target increases. . In other words, the accuracy of the observation information becomes worse as the distance between the control sensor and the observation target increases, that is, the accuracy for guiding the flying object is the distance between the target of the guidance and the control sensor that controls the guidance. The bigger it gets, the worse it gets. Furthermore, the time required for observing the guidance target and the flying object to be guided and the time required for transmitting information necessary for guiding the flying object, such as guidance error information, from the control sensor to the flying object are As the distance between the target and the flying object to be guided increases, the distance increases proportionally, and the transmission frequency of information necessary for guidance such as guidance error information transmitted to the flying object to be guided decreases. In other words, since the information given to the flying object decreases, the accuracy for guiding the flying object deteriorates. Therefore, if the size of the guidance target is extremely small, it is moving at ultra-high speed, high-precision guidance is required, and the target is located at a very long distance, the guidance It was not possible to guide the flying object to reach the target.
[0007]
The present invention provides highly accurate guidance of the flying object by providing high-frequency and highly accurate guidance information to the flying object to be guided even when the target as described above is located at a very long distance. The purpose is to do.
[0008]
[Means for Solving the Problems]
The flying object guidance device of the present invention is a fixed installation on the ground or target information necessary for guidance including the observation error of the sensor that has been acquired by a single control sensor in the past, or guided vehicle information, etc. Means that are mounted on a mobile body such as a ship, an aircraft, or a satellite, and that are obtained by observation from various directions and various positions using a plurality of sensors such as radar and light wave sensors that measure radio waves or light waves, etc. To reduce the observation error contained in the information, and to fuse the acquired information into a single target information and flying object information, and to provide guidance information by performing flying object guidance calculation with the fused information Measures the flying attitude of the flying object to be guided, provides the flying attitude information, and calculates the flying object from the guidance information and flying attitude information. If, based on the output of the control calculator to control the flying object, and a means for inducing a flying object to the target.
[0009]
The flying object guidance apparatus of the present invention is a means for obtaining navigation information transmitted from a ground navigation information transmitting station or a navigation satellite, and a means for measuring flying object measurement information such as the position and speed of the flying object. And means for comparing the flying object information provided from a plurality of sensors and the flying object measurement information, and estimating and calculating an observation error estimation amount of the sensor included in the target information provided from the plurality of sensors; And means for performing weighting in proportion to the estimated amount of observation error on a plurality of pieces of information provided from a plurality of sensors when fusing the target information, and fusing the information into one piece of information.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1A shows the configuration of a flying object guidance apparatus according to Embodiment 1 of the present invention, where T is a target, 1 is a target measuring means for acquiring information such as a target position and speed, 2 is information fusion means for fusing a plurality of information, 3 is guidance calculation means, 4 is control calculation means, 5 is propulsion of the flying object, 6 is aerodynamic characteristics as a result of control such as propulsion and steering of the flying object Flying mechanics, 7 is flying attitude measurement means, 8 is flying space movement based on 6 flying mechanics results, 9 is flying to obtain information such as flying object position and velocity. A measuring means, N is navigation information, 10 is a position measuring means for measuring information such as the position and velocity of the flying object by receiving information emitted from N in the flying object, and 11 is obtained by 9. Compare the information with the information of the same time obtained in 10, and the difference An observation error estimating means for estimating calculating the measurement error amount included in information of al 1.
[0011]
Next, the operation will be described. When the flying object is guided toward the target T, target observation information such as the position and speed of the target T is obtained by the target measuring means 1 of a plurality of sensors, and the flying object positions and speeds to be guided are guided. A plurality of pieces of glaze observation information are acquired by the flying object measuring means 9 of a plurality of sensors. At the same time, the guided flying body measures the position by the position measuring means 10 by receiving the navigation information N transmitted from the ground navigation information transmitting station or the navigation satellite, and the position, velocity, etc. of the flying body. The flying object measurement information is obtained, and the estimated observation error is calculated from the difference by comparing the flying object observation information and the flying object measurement information at the same time. The observation error included in the target observation information is estimated from the distance ratio, the time difference between the flying object observation information and the target observation information, and the characteristics of the observation sensor. The target observation information and the flying object observation information are combined with the plurality of target observation information described above, the estimated observation error included therein, the plurality of flying object observation information, and the flying object measurement information described above by the information fusion means 2. The reliability of each information is calculated from the observation error and the estimated observation error, and the information is fused by weighted average of each information based on it, and the target information and the flying object information are greatly reduced. . Based on them, the guidance calculation means 3 for obtaining the guidance error of the flying object course to be guided performs guidance calculation, and the information from the guidance calculation means 3 and the information from the attitude measurement means 7 for measuring the flying attitude of the flying object. On the basis of the above, control calculation is performed by the flying object control calculation means 4, and control such as steering is performed. As a result, the flying object performs the flying object space motion 8 such as change of the course direction or propulsion by the flying object mechanics 6 corresponding to the state such as propulsion and steering. By repeating these series of processes, high-precision flying object guidance is realized based on high-precision guidance information toward the target.
[0012]
FIG. 1 (b) is a diagram schematically showing the means of FIG. 1 showing the configuration of the apparatus according to the first embodiment of the present invention, divided into the equipment involved in them, and T is for guiding the target, M Flying objects, S1 to S3 indicate sensors for obtaining observation information of the target T and the flying object M using radio waves or light waves as a measuring means, N is navigation information, and 1 is a plurality of sensors such as S1 to S3. Target measurement means by target observation of the above, 2 is information fusion means of information received by the flying object, 3 is guidance calculation means, 4 is control calculation means, 7 is attitude measurement means, 9 is a plurality of sensors such as S1 to S3 described above Flying object measurement means by flying object observation, 10 is position measurement means for measuring the position, velocity, etc. of the flying object M by receiving navigation information N, 11 is the output of 10 position measurement and 9 flight Each sensor S from the output of the body measuring means Is an observation error estimation means for estimating an observation error included in the observation information of S3, 101 is observation of the target T by the sensors S1 to S3, 102 is target observation information acquired by the target measurement 1, and information fusion 2 is used to Target information and flying object information obtained by fusing the observation information of the sensors S1 to S3 and the estimated observation error by the observation error estimating means 11, 104 is the guidance error information of the flying object M calculated by the guidance calculating means 3 105 is the flying attitude information of the flying object M measured by the attitude measuring means 7, 106 is the observation of the flying object M by the sensors S1 to S3, and 107 is the flying object acquired by the flying object measuring means 9. Observation information, 108 is navigation information transmitted from a ground navigation information transmitting station or navigation satellite, 109 is information on flying object measurement by the position measuring means 10, 10 is a target observation information estimation error included in the observation information of each sensor S1~S3 calculated by observing estimating means 11.
[0013]
Next, the function sharing and operation of each equipment will be described. Target observation 101 is performed by a plurality of sensors S1 to S3 using the target T as radio wave or light wave measurement means, and target observation information 102 is acquired by the target measurement means 1 with each sensor, transmitted to the flying object M, and then fly The body M receives these pieces of information. At this time, the quantity of S1 to S3 is not limited to three, and can be realized by sensors installed in or mounted on various moving bodies such as vehicles, ships, aircrafts, or satellites, and S1 is on the ground. , S2 is an example of a radar mounted on a ship, and S3 is an example of a radar mounted on an aircraft. At the same time, the flying object observation 106 is performed with the same sensor, and the flying object observation information 107 is acquired by the flying object measuring means 9, transmitted to the flying object M, and received by the flying object M. In addition, the flying object M receives the navigation information N transmitted from the ground navigation information transmitting station or the navigation satellite in parallel, and the flying object measurement is performed by the position measuring means 10 realized by the flying object position measuring circuit. Information 109 is acquired. The flying object measurement information 109 and the flying object observation information 107 received by the flying object M are compared by the observation error estimation 11 realized by the observation error estimation circuit, and the target observation information estimation error 110 is obtained from the difference. To do.
[0014]
A plurality of target observation information 102 and flying object observation information 107 transmitted from the sensors S1 to S3 and received by the flying object M are realized by the target information fusion circuit and the flying object information fusion circuit together with the target observation information 110. The target information and the flying object information 103 which are merged into one by the information fusion means 7 and greatly reduce the observation error are output. The guidance error information 104 of the flying object M is output by the guidance calculation means 3 realized by the guidance calculation circuit on the flying object M as input information. At the same time, the flying attitude is measured by the attitude measuring means 7 realized by the flying object attitude measuring circuit, and the flying attitude information 105 is acquired. The flying object control calculation circuit is realized by the flying object control calculation circuit, the control calculation means 4 performs the calculation calculation of the flying object by using the guidance error information 104 and the flying attitude information 105 as input, and calculates the control information. Control of steering etc. is performed by this. The flying object is guided toward the target by flying body dynamics according to the control amount, such as changing the direction of the course and propelling, etc., and repeating this series of processing greatly reduces the observation error. High-precision guidance is performed with high-precision guidance information, and let's fly toward the target.
[0015]
【The invention's effect】
As described above, according to the present invention, the target information and the flying object information to be guided can be obtained from a plurality of sensors, so that the information can be updated at a high frequency, and from various positions and various directions. By merging the observed information, the observation error contained in the acquired target information and flying object information is reduced, and highly accurate guidance information is provided.
[0016]
Further, the position information of the flying object is measured from the navigation information, and the observation error amount included in the target information from each sensor is calculated by comparing and estimating the flying object information of each sensor. By using this for fusion, it is possible to provide more accurate guidance information, that is, there is an effect that the guidance can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration in a first embodiment of a flying object guiding apparatus according to the present invention.
FIG. 2 is a diagram showing a configuration of a conventional flying object guiding apparatus.
[Explanation of symbols]
T target, M flying object, S control sensor, S1 sensor 1, S2 sensor 2 S3 sensor 3, N navigation information, 1 target measurement means, 2 information fusion means, 3 guidance calculation means, 4 control calculation means, 5 flight Body propulsion, 6 flying body dynamics, 7 attitude measuring means, 8 flying body spatial motion, 9 flying body measuring means, 10 position measuring means, 11 observation error estimating means, 101 target observation, 102 target observation information, 103 Target information and flying object information, 104 guidance error information, 105 flying attitude information, 106 flying object observation, 107 flying object observation information, 108 navigation information, 109 flying object measurement information, 110 target observation information estimation error.

Claims (2)

地上に固定設置、若しくは移動体に搭載され、観測誤差を含む一つの目標及び飛しょう体の位置、速度等の目標観測情報及び飛しょう体観測情報を取得する複数のセンサと、上記複数のセンサにより取得された目標及び飛しょう体観測情報を入力して情報融合を行うことにより、上記目標観測情報に含まれる観測誤差を低減させた目標情報を出力とする目標情報融合回路と、上記複数のセンサにより取得した飛しょう体観測情報を入力として情報融合を行うことにより、上記飛しょう体観測情報に含まれる観測誤差を低減させた飛しょう体情報を出力とする飛しょう体情報融合回路と、上記目標情報融合回路及び上記飛しょう体情報融合回路の出力から上記飛しょう体の誘導計算を行い、誘導誤差情報を出力する誘導計算回路と、上記飛しょう体の飛しょう姿勢を測定し、飛しょう体姿勢情報を出力する飛しょう体姿勢測定回路と、上記誘導計算回路及び上記飛しょう体姿勢測定回路の出力から上記飛しょう体の制御計算を行い、飛しょう体制御情報を出力する飛しょう体制御計算回路と、上記飛しょう体制御情報に基づき、上記飛しょう体の飛しょう制御を行う飛しょう体制御装置とを具備したことを特徴とする飛しょう体誘導装置。A plurality of sensors that are fixedly installed on the ground or mounted on a moving body, and that acquire target observation information such as the position and speed of a single target, including flying errors, and flying object observation information, and the plurality of sensors A target information fusion circuit that outputs target information with reduced observation errors included in the target observation information by inputting the target and flying object observation information acquired by Flying object information fusion circuit that outputs flying object information with reduced observation errors included in the flying object observation information by performing information fusion with the flying object observation information acquired by the sensor as input, A guidance calculation circuit that performs guidance calculation of the flying object from the outputs of the target information fusion circuit and the flying object information fusion circuit and outputs guidance error information, and the flying information The flying object attitude measurement circuit that measures the flying attitude of the body and outputs the flying object attitude information, the control calculation of the flying object from the output of the guidance calculation circuit and the flying object attitude measurement circuit, A flying object control circuit that outputs flying object control information, and a flying object control device that controls the flying object based on the flying object control information. Gypsum induction device. 地上航法情報発信局又は航法衛星等から発信される航法情報を取得し、上記飛しょう体の位置、速度等を計測し、上記飛しょう体の位置、速度等からなる飛しょう体計測情報を出力する飛しょう***置計測回路と、上記飛しょう体観測情報と上記飛しょう***置計測回路の出力とを比較し、上記目標観測情報に含まれる上記各センサの観測誤差量を推定計算し、上記各センサによる各目標観測情報の推定誤差を上記目標情報融合回路に出力する観測誤差推定回路とを設け、上記目標情報融合回路は上記推定誤差により、目標情報融合時の可変重み付けを行い、情報融合処理を行う手段を有することを特徴とする請求項1記載の飛しょう体誘導装置。Obtain navigation information transmitted from a ground navigation information transmitting station or navigation satellite, measure the position and speed of the above-mentioned flying object, and output the flying object measurement information consisting of the position and speed of the above-mentioned flying object Comparing the flying object position measuring circuit, the flying object observation information and the output of the flying object position measuring circuit, estimating and calculating the observation error amount of each sensor included in the target observation information, An observation error estimation circuit that outputs an estimation error of each target observation information by each sensor to the target information fusion circuit, and the target information fusion circuit performs variable weighting at the time of target information fusion based on the estimation error, and information fusion 2. The flying object guiding apparatus according to claim 1, further comprising means for performing processing.
JP06982797A 1997-03-24 1997-03-24 Flying object guidance device Expired - Fee Related JP3738521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06982797A JP3738521B2 (en) 1997-03-24 1997-03-24 Flying object guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06982797A JP3738521B2 (en) 1997-03-24 1997-03-24 Flying object guidance device

Publications (2)

Publication Number Publication Date
JPH10267596A JPH10267596A (en) 1998-10-09
JP3738521B2 true JP3738521B2 (en) 2006-01-25

Family

ID=13413996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06982797A Expired - Fee Related JP3738521B2 (en) 1997-03-24 1997-03-24 Flying object guidance device

Country Status (1)

Country Link
JP (1) JP3738521B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044841B1 (en) * 2009-03-02 2011-10-25 Lockheed Martin Corporation Geometry and sensitivity weighted dynamic multi-sensor selection system and method
CN104412877B (en) * 2013-09-10 2017-07-18 中国兵器科学研究院 It is a kind of to collect the full-automatic rocket system that radar detection and integration are sowed
JP6696723B2 (en) * 2014-10-21 2020-05-20 株式会社小松製作所 Position measuring system and speed measuring system
CN105066794B (en) * 2015-07-30 2016-08-17 中国科学院长春光学精密机械与物理研究所 A kind of airborne miniature missile Navigation, Guidance and Control integral system
JP6739378B2 (en) * 2017-03-10 2020-08-12 三菱電機株式会社 Navigation system and navigation method
JP7060646B2 (en) * 2020-04-23 2022-04-26 株式会社小松製作所 Position measurement system and speed measurement system

Also Published As

Publication number Publication date
JPH10267596A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US11036237B2 (en) Radar-based system and method for real-time simultaneous localization and mapping
US6398155B1 (en) Method and system for determining the pointing direction of a body in flight
US4613867A (en) Passive ranging of an airborne emitter by a single non-maneuvering or stationary sensor
RU2439608C1 (en) Monopulse detection and homing radar system
JP2010060303A (en) Positioning apparatus
US7193556B1 (en) System and method for the measurement of full relative position and orientation of objects
JP3738521B2 (en) Flying object guidance device
CN114510076A (en) Target collaborative detection and guidance integrated method and system based on unscented transformation
CN112445230B (en) High-dynamic aircraft multi-mode guidance system and guidance method under large-span complex environment
US4558323A (en) Passive ranging of an airborne emitter by a single sensor
RU2660159C1 (en) Method of side-looking airborne radar determination of aircraft demolition angle
JP5326982B2 (en) Position measuring method and position measuring apparatus
WO2017150323A1 (en) Location estimation system
RU2229671C1 (en) Method for guidance of flight vehicles on ground objects
RU2290681C1 (en) Complex of onboard equipment of systems for controlling unmanned aircraft
GB2072988A (en) A surface navigation system for air and/or sea-going craft
JPH1183398A (en) Guided flying body
JPS5990112A (en) Automatic pilot device
JPH1159599A (en) Attitude controller
RU2221728C1 (en) Ship motion automatic control equipment
RU2262649C1 (en) Method of guidance of flying vehicles at radio radiation sources in two-position passive radar system
Sotnikov et al. Calculating method of error calculations of the object coordination by means of conducting platform free inertial navigation systems of an unmanned aerial vehicle
JPH0367594B2 (en)
RU2818856C1 (en) Device for measuring parameters of radio signals of a spatially distributed system of radio transmitters using an unmanned aerial vehicle
JP3528316B2 (en) Flying body equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees