JP3736117B2 - インバータ溶接機 - Google Patents

インバータ溶接機 Download PDF

Info

Publication number
JP3736117B2
JP3736117B2 JP12611098A JP12611098A JP3736117B2 JP 3736117 B2 JP3736117 B2 JP 3736117B2 JP 12611098 A JP12611098 A JP 12611098A JP 12611098 A JP12611098 A JP 12611098A JP 3736117 B2 JP3736117 B2 JP 3736117B2
Authority
JP
Japan
Prior art keywords
welding
current
pulse width
value
command current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12611098A
Other languages
English (en)
Other versions
JPH11320117A (ja
Inventor
晋一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12611098A priority Critical patent/JP3736117B2/ja
Publication of JPH11320117A publication Critical patent/JPH11320117A/ja
Application granted granted Critical
Publication of JP3736117B2 publication Critical patent/JP3736117B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ制御されるインバータ溶接機に関する。
【0002】
【従来の技術】
例えば、自動車部品などの溶接に使用される溶接機として、インバータ制御される溶接機(インバータ溶接機)が知られている。インバータ溶接機は、商用の三相を電源とし、応答が高速であること、小型、軽量であること、電力消費量が比較的少ないことなどの特長を有する溶接機である。
【0003】
このようなインバータ溶接機は、以下のように動作するものである。
すなわち、インバータ溶接機では、図10(A)にVで示す商用周波数の三相交流を一次整流器により直流に変換し、スイッチング素子を用いたインバータ回路に入力している。インバータ回路は、入力した直流を高周波の交流に変換する。
【0004】
また、インバータ回路には、後述する制御回路から一定の周期、一定のパルス幅の溶接指令電流Pが入力される。インバータ回路は、高周波の交流電圧を溶接指令電流Pがオンしている間だけ出力する。出力された高周波の交流電圧は、その後、変圧器に印加されて溶接に適した低電圧、大電流の交流に変換され、再度二次整流器で直流電流に変換され、図10(B)に示す溶接電流として溶接ガンに供給される。
【0005】
なお、溶接指令電流Pとは、インバータ回路に溶接電流を出力するタイミングを指示する電流で、インバータ溶接の制御では、インバータ溶接機が溶接を開始する以前に予め変圧器や被溶接部材といった負荷に応じて溶接電流Pのパルス幅を調整し、設定値通りの溶接電流が得られる交流が生成されるようにしている。そして、従来の三相用インバータ溶接機の電源入力端子の3つのうち、2つを商用の単相交流電源に接続すると溶接電流を生成できる(図10(C))。
【0006】
【発明が解決しようとする課題】
しかしながら、以上の方法で変換された単相の溶接電流には、図10(D)に示すように溶接電流に商用単相電源と同じ周期の脈動が表れることが知られている。溶接電流の脈動が大きくなると、溶接部分の温度上昇が不安定になってスパッタリングなどが発生して溶接性が悪化する。
【0007】
溶接電流の脈動は、特に商用電源が単相電源である場合に大きくなる。このため、インバータ溶接機は、3相電源の設備がない工場では使用しにくい装置であった。
【0008】
本発明は、このような点に鑑みて行なわれたものであり、単相電源を用いながら良好な溶接性が得られるインバータ溶接機を提供することを目的とする。
【0009】
【課題を解決するための手段】
以上の課題を解決するため、本発明は、以下のように構成される。
すなわち、請求項1の記載の発明は、溶接ガン部に溶接電流を供給するインバータ回路と、単相交流電源から供給されて前記インバータ回路に印加される交流電圧値を検出する電圧検出手段と、前記電圧検出手段で検出された前記交流電圧値が、予め設定された複数の電圧レベル範囲のうちのいずれの範囲に該当する状態であるかを判断し、検出された前記交流電圧値が該当すると判断された電圧レベル範囲ごとにパルス状の溶接指令電流のパルス幅を決定する溶接指令電流決定部と、前記溶接指令電流決定部で決定されたパルス幅の前記溶接指令電流を前記インバータ回路に供給する溶接指令電流供給手段と、を有することを特徴とするものである。
また、請求項2に記載の発明は、前記溶接指令電流決定部は、前記溶接指令電流の設定値に基づいて基準溶接電流パルス幅を決定すると共に、前記交流電圧値が該当すると判断された前記電圧レベル範囲に対応して前記溶接電流の補正値を求め、事前に測定された前記溶接電流と前記溶接指令電流のパルス幅との関係に前記補正値を代入することによって、パルス幅補正量を決定し、前記基準溶接電流パルス幅に前記パルス幅補正量を加算して前記溶接指令電流のパルス幅を決定することを特徴とするものである。
【0010】
このように構成することによって、三相交流電源の設備がない場所でもインバータ溶接機を使用することができ、インバータ溶接機の使い勝手が向上する。また、高速応答、小型軽量、省電力などの利点を有するインバータ溶接機がより汎用的に使用されるようになり、様々な生産現場での溶接がより良好に行なわれるようになる。
また、このように構成することによって、溶接電流の変動が低減されるようにインバータ回路に入力する交流電圧の値に応じたパルス幅の溶接指令電流が決定される。よって、交流電圧値の位相による脈動によらず常に一定の溶接電流が得られ、溶接される部分の温度上昇が脈動の影響を受けずに溶接性が向上し、所望の溶接条件を安定に得ることができる。
さらに、このように構成することによって、溶接指令電流決定部で処理される溶接指令電流のパルス幅のデータ数を少なくすることができ、溶接指令電流決定部をより簡易な構成とすることができる。
【0013】
また、請求項3記載の発明は、さらに、インバータ回路から出力される交流電流値を検出する電流検出手段を有し、当該電流検出手段によって検出された交流電流値は、前記溶接指令電流決定部にフィードバックされ、前記溶接指令電流決定部は、さらに、フィードバックされた交流電流値に基づいて前記パルス幅補正量を変動させることを特徴とするものである。
【0014】
このように構成することによって、交流電圧の値により決定された溶接指令電流に応じて出力される溶接電流の値をフィードバックし、さらに高精度に溶接指令電流を決定することができる。よって、よりいっそう交流電圧値の位相による脈動によらず常に一定の溶接電流が得られ、溶接される部分の温度上昇が脈動の影響を受けずに溶接性が向上する。
【0019】
【発明の効果】
請求項1記載の発明によれば、三相交流電源の設備の有無によらずインバータ溶接機を使用することが可能となり、インバータ溶接機の使い勝手を向上することができる。また、高速応答、小型軽量、省電力などの利点を有するインバータ溶接機がより汎用的に使用されるようになり、様々な生産現場で行なわれる溶接の溶接性を高めることができる。さらに、交流電圧値の位相による脈動によらず常に一定の溶接電流が得られ、溶接される部分の温度上昇が脈動の影響を受けることを防いで溶接性を向上させることができる。また、溶接指令電流決定部で処理される溶接指令電流のパルス幅のデータ数を少なくすることができ、溶接指令電流決定部をより簡易に構成することができる。
【0020】
また、請求項2記載の発明によれば、接続される負荷の特性に合わせて溶接指令電流のパルス幅を修正する機能を有し、負荷の違いを吸収していつでも一定の溶接電流を出力することができる。
【0021】
また、請求項3記載の発明は、インバータ回路から出力される溶接電流の値をフィードバックし、さらに高精度に溶接指令電流を決定することができる。よって、よりいっそう交流電圧値の位相による脈動によらず常に一定の溶接電流が得られ、溶接される部分の温度上昇が脈動の影響を受けることを防いで溶接性を向上させることができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施の形態を図面を用いて説明する。
【0025】
図1は、本実施の形態のインバータ溶接機の概略構成を説明するブロック図である。また、図2は、図1の構成中で入出力される電流、電圧を説明する図である。
図示したインバータ溶接機は、溶接の全般的な制御を行なう溶接制御装置20と、溶接制御装置20の制御によって溶接を実行する溶接実行部30とを有している。溶接実行部30は、単相交流電源2と、整流器4、整流器10と、インバータ回路6と、変圧器8と、溶接ガン12とを有し、インバータ回路6の直前には電圧計1が、また直後には電流計3が設けられている。
【0026】
電圧計1、電流計3は、それぞれインバータ回路6の入力電圧と出力電流とを検出し、この検出値を溶接制御装置20に出力している。インバータ制御回路6の入力電圧は単相交流電源2で出力される電圧(電源電圧)を反映することから、電源電圧は、溶接制御装置20に常時監視されるようになる。
【0027】
溶接実行部30では、単相交流電源2から図2(A)に示す電源電圧V1を有する単相交流が出力される。出力された交流は、整流器4で直流V3に変換され、インバータ回路6に入力して、電源よりも高周波の交流が出力される。
【0028】
一方、整流器4から出力された直流の電圧の値は、インバータ回路6に入力する前に電圧計1で測定され、溶接制御装置20に入力する。溶接制御装置20は、電圧計1で測定された電圧の値に基づいて溶接指令電流Pを決定する。本実施の形態の溶接指令電流Pは、予め設定されたパルス幅がすべて同一の溶接指令電流Pを電源電圧V1に応じて補正して生成される。この補正は、電源電圧の絶対値が小さいほど溶接指令電流Pのパルス幅が広くなるように行なわれており、この結果、図2(B)に示したようにそれぞれ異なるパルス幅を有する3種類のパルスp1,p2,p3を含む溶接指令電流P´が設定される。
なお、この溶接指令電流の補正については、後に詳細に説明する。
【0029】
さらに溶接制御装置20は、設定された溶接指令電流P´がオンしている(0でない)タイミングでインバータ回路6を動作させる。この結果、インバータ回路6からは溶接指令電流P´のオンされている時間だけ高周波交流(その電圧を図2(A)で交流電圧V2として示す)が発生する。インバータ回路6で出力された高周波交流は、変圧器8で低電圧、大電流の交流に変換された後に整流器10で直流の溶接電流Ia(図2(C))に整流されて溶接ガン12に供給される。
【0030】
なお、インバータ6から出力された高周波交流の電流値は、電流計3で検出されて溶接制御装置20にフィードバックされる。溶接制御装置20では、電流計3で検出された電流値より交流の脈動を検出し、この脈動を抑えるように溶接指令電流の補正処理をさらに調整する。
【0031】
このようにして補正された溶接指令電流に基づいて生成された溶接電流Iaは、図2(C)に示したように比較的脈動が小さく、安定した直流電流となる。
【0032】
次に、溶接指令電流Pを補正する方法について具体的に説明する。
本実施の形態の溶接指令電流のパルス幅は、以下の式(1)によって決定される。
【0033】
f(I0 )+g(r(V)) …(1)
I0 :溶接電流の設定値
V:電源電圧
式(1)中の負荷対応パルス値修正関数fは、溶接の負荷に応じて溶接指令電流のパルス幅を変更するための関数であって、従来の溶接指令電流の決定にも使用されていた関数である。
【0034】
すなわち、一般的なインバータ溶接機は、溶接電流の設定値に対応する実際の出力電流値の精度を向上させるため、溶接の運転以前に負荷と接続して予め溶接指令電流のパルス幅と溶接指令電流値との関係を測定しておく機能を持つ。負荷対応パルス値修正関数fは、この関係を表す関数であり、従来のインバータ溶接機の溶接指令電流は、全てのパルスが負荷対応パルス値修正関数fで決定されたパルス幅を持つように設定される。
【0035】
本実施の形態は、このような負荷対応パルス値修正関数fを基に溶接電流の脈動を補正するように行なわれるもので、式(1)中の脈動補正関数rは、溶接電流の脈動を抑えるように電源電圧の変動に合わせて溶接電流を修正する関数で、負荷対応脈動補正値修正関数gは、溶接時の負荷を考慮して溶接電流の補正量からパルス幅の補正量を決定する関数である。すなわち、式(1)の負荷対応脈動補正値修正値g(r(V))は、負荷対応パルス値修正関数fで決定されたパルス幅を補正する補正項となる。
【0036】
図3は、図1、図2で示した溶接制御装置20をより詳細に説明するブロック図である。なお、溶接制御装置20は、式(1)により溶接指令電流を決定するものである。
溶接制御装置20は、時計21と、A/D変換ユニット23と、演算装置25と、記憶装置27とを有しており、例えばマイコンなどを用いて構成されている。A/D変換ユニット23は、電圧計1、電流計3から出力されるアナログ値を溶接制御装置20で処理できるようにディジタル変換するものである。演算装置25は、A/D変換ユニット23で変換された電圧値、電流値に基づいて溶接指令電流のパルス幅を算出するもので、記憶装置27は、演算装置25で行なう演算に必要なデータが記憶されたものである。
【0037】
A/D変換された直流の電圧値は、A/D変換ユニット23から演算装置25に入力する。演算装置25では、この電圧値の変動タイミングを算定し、算定した値を通電開始の前に予め測定され、記憶装置27に記憶されている電源電圧の位相φと比較して、入力された電源電圧の位相を判定する。
【0038】
また、時計21は、溶接制御装置20の制御開始と共に計時を開始しており、一定の時間間隔で計時した時間を演算装置25に出力している。演算装置25は、
V=V0 sin(2πωt+φ) …(2)
V0 :電源電圧のピーク値(既知)
ω: 電源電圧の周波数(既知)
に時計21から入力する時間tと、記憶装置27に記憶されている電源電圧の位相φとを代入し、現在の電源電圧Vの値(電圧レベル)を判定する。
【0039】
次に、判定した電源電圧の電圧値Vに応じた溶接電流の補正量である脈動補正値r(V)を算出する。
以下に、溶接制御装置20で行なわれる脈動補正値r(V)の算出方法を、具体的に説明する。
図4は、記憶装置27に記憶されている脈動補正値r(V)の算出に用いるデータを説明する図であって、図4(A)は、電源電圧Vを判定するためのグラフ、図4(B)は、図4(A)で判定された電源電圧に応じて補正量を決定するための表である。
【0040】
図4(A)のグラフは、縦軸には電源電圧を、横軸には時間を取って既知の電源電圧波形を示している。グラフの縦軸には、電圧Vの絶対値に応じて下限1、下限2、下限3の3つの電圧レベルの範囲が設定されている。演算装置25では、先ず判定した電圧Vを図4(A)のグラフに照合し、電圧Vが設定された下限1ないし下限3のいずれかの範囲に該当するか判断する。そして、例えば電圧Vが下限2以下の値であった場合には、図4(B)の表から「下限2オーバー」に該当する溶接電流の脈動補正値r(V)を求める。
【0041】
なお、溶接電流の脈動補正値r(V)とは、具体的には電源電圧Vがであるときに出力される溶接電流Iaと設定値I0 との差分を補うように決定された電流の値である。本実施の形態では、電源電圧が下限1を上回る範囲に該当する場合に出力される溶接電流Iaと設定値I0 との差が最も小さく、下限3の範囲に該当する場合に出力される溶接電流Iaと設定値I0 との差が最も大きい。したがって、電源電圧Vが「下限1オーバー」に該当する場合に最も脈動補正値r(V)が小さくなり(補正量小)、電源電圧Vが「下限3オーバー」に該当する場合に最も脈動補正値r(V)が大きくなる(補正量大)。また、電源電圧Vが下限1以上であった場合、溶接電流は補正されない。
【0042】
次に、以下の処理によって、溶接電流Iaを脈動補正値r(V)だけ補正するために必要な溶接指令電流のパルス幅の補正量を求める。
【0043】
先ず、演算装置25の負荷対応脈動補正g(r(V))演算で、溶接時の負荷に応じて溶接電流と溶接指令電流のパルス幅との関係を求める。
図5は、負荷対応脈動補正g(r(V))演算を説明する図である。この演算は、いわゆる2点補正と呼ばれる処理で、溶接機の運転に先立って溶接制御装置20を負荷と接続し、溶接指令電流のパルス幅を変えて2回通電して溶接電流を測定する。そして、この測定結果を縦軸に溶接指令電流のパルス幅、横軸に溶接電流をとった図5のグラフ中に測定値1、測定値2として記入すると、図示するように溶接指令電流のパルス幅と溶接電流との関係が一時関数(g(I)=αI+β)として求められる。この一時関数に脈動補正値r(V)を代入することによって、溶接指令電流のパルス幅の補正値が求められる。
【0044】
なお、本実施の形態でいう負荷とは、溶接制御装置20から見た負荷、すなわち、2次ケーブル、インバータトランス、溶接ガン、被溶接部材を指す。同じ溶接制御装置であっても接続される負荷が変わると溶接指令電流のパルス幅に対する溶接電流が異なる。よって、負荷の特性に合わせて溶接指令電流のパルス幅を修正する機能は、負荷の違いを吸収していつでも一定の溶接電流を出力するためのものである。
【0045】
ところで、補正が加えられる以前の溶接指令電流のパルス幅もまた、一時関数g(I)=αI+βによって決定される。つまり、負荷対応パルス値修正関数fと負荷対応脈動補正値修正関数gとは同じ関数であって、一次関数g(I)=αI+βのIに溶接電流の設定値I0 を代入することにより補正以前の溶接指令電流のパルス幅が決定される。ここで決定された溶接指令電流のパルス幅は、記憶装置27に記憶される。
【0046】
先の処理で求めたパルス幅の補正値は、溶接指令パルス幅補正f(I)+g(r(V))演算で記憶装置27に記憶された溶接指令電流のパルス幅を補正する。以上の処理で補正された溶接指令電流のパルス幅は、出力ユニット16を介してインバータ回路6に出力される。
【0047】
インバータ回路6から出力された溶接電流Iaの値は、電流計3で検出されてA/D変換され、再び演算装置25にフィードバックされる。演算装置25は、フィードバックされた溶接電流Iaの脈動を検出し、脈動を抑えるように脈動補正値r(V)を求めるための脈動補正関数を修正することから、脈動補正値r(V)の値は、溶接通電中であっても電源の周波数に応じて変動する。よって、脈動補正値r(V)の値を変数とする負荷対応脈動補正値修正値g(r(V))の値も変動することになる。
【0048】
図6ないし図9は、本実施の形態で行なう処理を説明するフローチャートである。図6は、インバータ溶接機の溶接運転に先だって単相交流電源2で出力された電圧の位相φを測定するための処理を説明するフローチャートであり、また、図7は、負荷に応じて修正関数を決定する処理を説明するフローチャートである。また、図8は、インバータ溶接機の全体的な処理を説明するフローチャートである。さらに図9は、溶接指令電流のパルス幅の補正値を算出する処理を説明するフローチャートである。
【0049】
本実施の形態では、作業者は、図7のように溶接制御装置20を補正モードに設定し(S11)、2次ケーブル、溶接ガン12、被溶接部材といった負荷に通電して溶接電流を測定し、少なくとも2点の測定点を求めて補正に必要なパラメータを測定する(S12)。また、溶接制御装置20は、通電処理を行なわないときには図6のように電源電圧を測定し(S1)、この変動のタイミングを算定(S2)する。この処理から電源電圧の位相φを判定し、判定結果を記憶装置27に記憶させておく。
【0050】
次にステップ12で測定されたパラメータから図5に示した一次関数g(I)=αI+βを求め、負荷対応パルス値修正関数f、負荷対応脈動補正値修正関数gを決定する(S13)。決定された負荷対応パルス値修正関数f、負荷対応脈動補正値修正関数gは、記憶装置27に記憶される。以上の処理が終了すると、溶接制御装置20は、補正モードを解除する(S14)。なお、以上のステップ11からステップ14の処理は、溶接制御装置20を負荷と接続した後であって溶接運転の開始以前に1回実施される。
【0051】
次に、溶接制御装置20は、図8に示すように通電を開始して溶接指令電流のパルス幅を算出する(S21)。この算出は、一般の溶接制御装置にも備えられている機能であり、アップスロープ、クールタイム等の予め設定された波形パターンに基づいて算出されるものであっても良いし、図5のグラフに示す一次関数の電流値に溶接電流の設定値I0 を代入することによって算出されるものであっても良い。
【0052】
次に、ステップ11で算出された溶接指令電流のパルス幅を補正する補正値算出サブルーチンに入る(S22)。
このサブルーチンは、図9に示すように電源電圧のレベルVを式(2)によって判定すると共に(S31)図4(A)のグラフに対照し、電源電圧Vが下限1、下限2、下限3のいずれの範囲内にあるか判断する。そして、さらに電源電圧Vに該当する範囲に対応する補正量を図4(B)の表で判断することによって脈動補正値r(V)を算出する(S32)。
【0053】
次に、ステップ22で算出された脈動補正値r(V)を図5のグラフに示す一次関数の電流値に代入することによって負荷対応脈動補正演算を行ない、負荷対応脈動補正値修正値g(r(V))を算出する(S33)。さらにステップ23で算出された負荷対応脈動補正値修正値g(r(V))をステップ11で算出された溶接指令電流のパルス幅に加えて補正が加えられた溶接指令電流のパルス幅を決定することによりパルス幅補正の処理を行ない(S34)、図7のフローチャートに戻る。
【0054】
上記した処理によって指令電流のパルス幅の補正が終了すると、補正されたパルス幅の指令電流を出力ユニット23経由でインバータ回路6に出力する(S23)。そして溶接のための通電が完了したか(溶接が終了したか)を判断し(S24)、完了していない場合には次のパルスを出力する時刻か否かを時計21による計時時間から判断する(S25)。次のパルスを出力する時間であった場合には、再びこの時刻の単相交流電源2から出力される電圧に応じてステップ11以下の処理を実行する。
【0055】
以上説明した本実施の形態は、三相交流電源の設備がない場所でもインバータ溶接機を使用することができ、インバータ溶接機の使い勝手を向上させることができる。また、高速応答、小型軽量、省電力などの利点を有するインバータ溶接機がより汎用的に使用されるようになり、様々な生産現場で溶接性の向上に寄与することができる。
【0056】
また、本実施の形態は、単相交流電源2で出力される交流に応じて溶接指令電流を補正することができる。また、補正された高周波交流の電圧値を溶接制御装置20にフィードバックすることによって溶接制御装置20で行なわれる溶接指令電流の補正をいっそう高精度なものにすることができる。よって、溶接ガン12から出力される溶接電流の脈動が小さくなるために通電中の溶接部位の温度上昇が脈動の影響を受けず、溶接性が向上する。また、力率が上昇して電力効率が上昇する。
【0057】
また、負荷に対応して脈動補正の修正を行なうことで負荷の変化にかかわらず脈動補正の精度を向上し、より滑らかな直流の溶接電流の出力を可能にすることができる。
【0058】
また、本実施の形態は、溶接ガン12から出力される直流電流が設定値と一致し、溶接条件を安定させると共に所望の溶接条件を実現することができる。
【0059】
また、本実施の形態は、溶接指令電流のパルス幅を補正することによって簡易に溶接ガン12から出力される直流電流の値を所望量補正することができる。よって、溶接ガン12から出力される直流電流の値の補正処理を簡易なものにすることができる。
【0060】
また、本実施の形態は、溶接電流の補正量の設定数を少なくすることができ、溶接制御装置20の構成を簡易化することができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態のインバータ溶接機の概略構成を説明するブロック図である。
【図2】 図1の構成中で入出力される電流、電圧を説明する図であって、(A)は、電源電圧を説明する図、(B)は、溶接指令電流を例示する図、(C)は、溶接電流を説明する図である。
【図3】 図1、図2で示した溶接制御装置をより詳細に説明するブロック図である。
【図4】 本発明の一実施の形態の記憶装置に記憶されている脈動補正値の算出に用いるデータを説明する図であって、(A)は、電源電圧を判定するためのグラフ、(B)は、(A)で判定された電源電圧に応じて補正量を決定するための表である。
【図5】 本発明の一実施の形態の負荷対応脈動補正値修正関数を求める演算を説明する図である。
【図6】 本発明の一実施の形態の処理を説明するフローチャートである。
【図7】 本発明の一実施の形態の処理を説明するフローチャートである。
【図8】 本発明の一実施の形態の処理を説明するフローチャートである。
【図9】 本発明の一実施の形態の処理を説明するフローチャートである。
【図10】 従来のインバータ溶接機の処理を説明する図であって、(A)は、商用周波数の三相交流を説明する図、(B)は、(A)に示した三相交流によって生成された溶接電流を説明する図、(C)は、商用の単相交流を説明する図、(D)は、(C)に示した単相交流によって生成された溶接電流を説明する図である。
【符号の説明】
1…電圧計
2…単相交流電源
3…電流計
4,10…整流器
6…インバータ回路
12…溶接ガン
20…溶接制御装置
21…時計
25…演算装置
27…記憶装置
30…溶接実行部

Claims (3)

  1. 溶接ガン部に溶接電流を供給するインバータ回路と、
    単相交流電源から供給されて前記インバータ回路に印加される交流電圧値を検出する電圧検出手段と、
    前記電圧検出手段で検出された前記交流電圧値が、予め設定された複数の電圧レベル範囲のうちのいずれの範囲に該当する状態であるかを判断し、検出された前記交流電圧値が該当すると判断された電圧レベル範囲ごとにパルス状の溶接指令電流のパルス幅を決定する溶接指令電流決定部と、
    前記溶接指令電流決定部で決定されたパルス幅の前記溶接指令電流を前記インバータ回路に供給する溶接指令電流供給手段と、を有することを特徴とするインバータ溶接機。
  2. 前記溶接指令電流決定部は、前記溶接指令電流の設定値に基づいて基準溶接電流パルス幅を決定すると共に、前記交流電圧値が該当すると判断された前記電圧レベル範囲に対応して前記溶接電流の補正値を求め、事前に測定された前記溶接電流と前記溶接指令電流のパルス幅との関係に前記補正値を代入することによって、パルス幅補正量を決定し、前記基準溶接電流パルス幅に前記パルス幅補正量を加算して前記溶接指令電流のパルス幅を決定することを特徴とする請求項1に記載のインバータ溶接機。
  3. さらに、インバータ回路から出力される交流電流値を検出する電流検出手段を有し、当該電流検出手段によって検出された交流電流値は、前記溶接指令電流決定部にフィードバックされ、
    前記溶接指令電流決定部は、さらに、フィードバックされた交流電流値に基づいて前記パルス幅補正量を変動させることを特徴とする請求項2に記載のインバータ溶接機。
JP12611098A 1998-05-08 1998-05-08 インバータ溶接機 Expired - Fee Related JP3736117B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611098A JP3736117B2 (ja) 1998-05-08 1998-05-08 インバータ溶接機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611098A JP3736117B2 (ja) 1998-05-08 1998-05-08 インバータ溶接機

Publications (2)

Publication Number Publication Date
JPH11320117A JPH11320117A (ja) 1999-11-24
JP3736117B2 true JP3736117B2 (ja) 2006-01-18

Family

ID=14926882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611098A Expired - Fee Related JP3736117B2 (ja) 1998-05-08 1998-05-08 インバータ溶接機

Country Status (1)

Country Link
JP (1) JP3736117B2 (ja)

Also Published As

Publication number Publication date
JPH11320117A (ja) 1999-11-24

Similar Documents

Publication Publication Date Title
US9737950B2 (en) Welding power supply with digital controller
EP2437909B1 (en) Welding power supply for and method of determining during welding a weld cable inductance
JP4115704B2 (ja) アーク溶接プロセスの制御方法およびその方法を要する溶接機
US20020167300A1 (en) Method for measuring phase current for inverter control apparatus using single current sensor and apparatus therefor
JP3231705B2 (ja) アーク加工用電源装置
JP5579570B2 (ja) 溶接用電源装置
JP3736117B2 (ja) インバータ溶接機
JP2012187595A (ja) 溶接用電源装置
KR100650611B1 (ko) 저항용접제어방법 및 장치
JP2012157198A (ja) 溶接用電源装置及び溶接機
JPH11179559A (ja) 単相インバータ溶接機の制御装置
JPH064191B2 (ja) 消耗電極式アーク溶接用電源の出力制御方法
JP7403111B2 (ja) 電力変換装置
EP3702085B1 (en) Inverter power source device
KR100443167B1 (ko) 인버터식 저항용접 전원장치
JP2003245774A (ja) 消耗電極アーク溶接方法及びアーク溶接装置及びアーク溶接ロボット
JPH10285998A (ja) 同期機の励磁制御装置および交流電気信号検出装置
JPH04300076A (ja) 抵抗溶接制御方法及び装置
JPS63117686A (ja) 直流電動機可変速制御装置の軽負荷補償方法
JPH08215845A (ja) アーク溶接方法およびアーク溶接ロボット
JP2000123965A (ja) 誘導加熱調理器
JPH05104255A (ja) 直流抵抗溶接機の溶接電流制御方法および装置
JPH05104254A (ja) 直流抵抗溶接機の溶接電流制御方法および装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees