JP3735233B2 - Method for producing inorganic carbonized cured body - Google Patents

Method for producing inorganic carbonized cured body Download PDF

Info

Publication number
JP3735233B2
JP3735233B2 JP2000118157A JP2000118157A JP3735233B2 JP 3735233 B2 JP3735233 B2 JP 3735233B2 JP 2000118157 A JP2000118157 A JP 2000118157A JP 2000118157 A JP2000118157 A JP 2000118157A JP 3735233 B2 JP3735233 B2 JP 3735233B2
Authority
JP
Japan
Prior art keywords
carbonation
wollastonite
inorganic
water
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000118157A
Other languages
Japanese (ja)
Other versions
JP2001302295A (en
Inventor
高志 大杉
勝敏 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000118157A priority Critical patent/JP3735233B2/en
Publication of JP2001302295A publication Critical patent/JP2001302295A/en
Application granted granted Critical
Publication of JP3735233B2 publication Critical patent/JP3735233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組織の安定性に優れた無機炭酸化硬化体の製造方法に関する。
【0002】
【従来の技術】
従来、セメント硬化体の耐久性や強度を増進させる方法として、セメント硬化体を炭酸ガス雰囲気下にさらすことで、セメントの水和により生成した水酸化カルシウムを炭酸カルシウムに変化させ、セメント硬化体の細孔を埋めて強度を増進させる方法が試みられている。具体的には例えば、セメントの水和反応が活発化し始めた以降で炭酸ガス雰囲気中で養生を行うことにより、より炭酸化を進行させ緻密化させる方法が開示されている(特開平6−263562号公報)。
【0003】
しかし、上記方法では炭酸ガス雰囲気下の養生に長時間を必要とし、生産性が良くないという問題点が残されている他、材料に含有される水分量によっては、水分の存在が炭酸ガスの拡散を阻害して、内部まで炭酸化が進行しないといった問題が残されている。セメント硬化体の炭酸化物において内部に未反応の材料が残存した場合、長期における材料変質の要因となることが予想されるため、より高いレベルの安定性が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、上記問題を解決するためになされたものであり低圧で且つ、短時間の炭酸化処理で製造可能な組織安定性に優れた無機炭酸化硬化体の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、粉体粒度の体積分布において累積10%径が1μm以下、窒素吸着比表面積が1m2 /g以上であるウォラストナイトを水と混合し、賦形した後に、温度30〜200℃、圧力が、大気圧(0MPa)〜5MPaの条件で、炭酸化処理することを特徴とする無機炭酸化硬化体の製造方法である。
以下に、本発明を詳細に説明する。
【0006】
本発明で使用するウォラストナイトは、粉体粒度の体積分布において累積10%径が1μm以下のものを使用する。又、粉体粒度の体積分布とは、粉体の粒度分布を粒子の体積によって表した値であり、その累積10%径とは、粒径の小さいものから粒子全体積の10%に相当する粒子径である。累積10%径が1μmを越える場合は炭酸化処理における反応性が小さくなり、硬化体を形成するために長時間もしくは高い圧力を必要とする。
【0007】
また、本発明で使用するウォラストナイトは、窒素吸着比表面積が1m2 /g以上であり、より好ましくは2m2 /g以上である。比表面積が1m2 /g未満の場合には、炭酸化処理における反応性が低くなる。また、比表面積は大きければ大きいほど炭酸化処理は迅速に進めることが可能であるが、現実的には、製造上、1000m2 /g以下である。上記ウォラストナイトとは、CaSiO3 で表されるカルシウム珪酸塩鉱物であり、白色の繊維状又は塊状物として、天然に産出される。
【0008】
一般にその繊維状の形状を利用して、アスベスト代替等の補強部材として利用されているが、本発明におけるウォラストナイトは、特に繊維状である必要はなく、アスペクト比の小さいもので良く、一般に補強材として繊維状に粉砕する際に発生する残留物を利用することも出来る。
【0009】
本発明における炭酸化処理とは、ウォラストナイト成分が炭酸化されうる処理のことを意味する。この様な炭酸化処理としては例えば、気体状態の二酸化炭素を利用する方法が挙げられる。炭酸ガスの濃度は任意の濃度を利用して良いが、100%に近い濃度で処理することが炭酸化の効率という点で好ましい。炭酸化処理時の温度としては、30℃〜200℃の範囲内であることが好ましく、さらに好ましくは50℃〜200℃である。
【0010】
加温温度が、30℃より低いと炭酸化反応が充分に起こるには大きな時間を要し、逆に加温温度が、200℃より高いと炭酸化反応は迅速になるものの大きなエネルギーが必要となり、又、硬化体中の骨材等の添加物に有機系の強化繊維等が含まれる場合には、これら繊維等が熱劣化を起こしやすくなる。
【0011】
炭酸化処理時の圧力としては、大気圧(0MPa)〜5MPaの範囲内である。加圧圧力が5MPaを越えると炭酸化反応は進行するが、大きなエネルギーが必要となり設備の大型化という点から工業的な生産性が困難となる。一方、大気圧未満での炭酸化処理は、エネルギー消費や炭酸化反応進行の両面で効率的でない。尚、本発明において圧力とは絶対圧力ではなく、ゲージ圧をいう。
【0012】
上記炭酸化処理の時間としては特に限定されないが、5〜120分以内であることが好ましい。処理時間が5分より短いと、炭酸化反応が充分に起こらず成形体の保型強度が得られにくくなる。又、処理時間を120分より長くしても炭酸化の程度は大きく変化せず、余り効率的でない。
【0013】
本発明は、無機炭酸化硬化体を構成する材料として、ウォラストナイト以外の無機材料を含んでも良く、そのような無機材料としては例えば、セメント;珪砂、川砂等のセメントモルタル用骨材;炭酸カルシウム、珪藻土等の無機質充填材等が挙げられるが、賦形性をより向上させるという点でセメントが好ましい。
【0014】
さらに、本発明の無機炭酸化硬化体成分には、上記無機材料以外にも木片、パルプ等の天然繊維;ビニロン、ポリエステル、ナイロン等の合成樹脂繊維等が添加されても良い。
【0015】
上記セメントは、水和に伴い水酸化カルシウムが生成するセメントであれば、賦形体の炭酸化処理時の反応させることが可能であり、例えば、普通ポルトランドセメント、特殊ポルトランドセメント,アルミナセメント等を使用することが出来る。但し、非常に高いレベルの耐久性を得ることを目的として、完全炭酸化硬化体を製造する場合、セメントの添加量は少ない方が良く、ウォラストナイトに対し、1/3(重量%)以下の添加量であることが好ましい。
【0016】
上記ウォラストナイト単体、と、水は、所望の比率で混合される。混合方法については周知の混合装置により混練され、特に限定されない。また、賦形方法については例えば、圧縮成形法(脱水プレス等)、押出成形法等により所望の形状に賦形される。賦形に際しては賦形に最適な流動性が得られる配合が選択出来るが、粒子間に水分が十分に充填するほど水分が多いと炭酸化の進行を阻害する恐れがある。
【0017】
水の配合量は、ウォラストナイトの比表面積、形状、その他の添加物の種類、量によって大きく変化するが、一般的にウォラストナイト単体の場合、ウォラストナイトの重量の10〜100%の重量であることが好ましい。
水の配合量が100%の重量を越える場合は、賦形時に水が染み出す場合が有る。その場合には加圧もしくは吸引によって炭酸化処理時の水分量を適当にすることが出来る。また、水の配合量がウォラストナイトの重量の10%未満の場合には、二酸化炭素との反応が充分に起こらず炭酸化反応の効率が低下する。
【0018】
(作用)
ウォラストナイトはそれ自体、常圧での炭酸加速度が非常に小さく、水和性も殆どみられないため、通常のセメント材料おける残存未水和物と異なり、硬化体中に炭酸化せずに残存した場合でも長期の耐久性に悪影響を与えない。通常、このように反応性の低いウォラストナイトを硬化させるには高圧且つ長時間の反応が必要であるが、特定の粒度分布、比表面積を有するウォラストナイトを使用することにより炭酸化率を高めることが可能となり、生成した無機硬化体の機械物性を向上させることが可能となる。
【0019】
【発明の実施の形態】
(実施例1、2、比較例1)
表1に示した配合でウォラストナイト、水を混合し、ハンドプレレスを用いて、25MPaでプレスを行い直径15mm高さ30mmの円柱賦形体を得た。
その後、オートクレーブ中において表1に示す条件で炭酸化処理を行い、無機炭酸化硬化体を得た。
【0020】
(比較例2)
普通ポルトランドセメント100重量部、水20重量部を混合し、上記と同様の方法により、25MPaでプレスを行い直径15mm、高さ30mmの円柱賦形体を得た。その後、オートクレーブ中において表1に示した条件で炭酸化処理を行い、無機炭酸化硬化体を得た。
(比較例3)
比較例2と同様にして円柱賦形体を得た後、炭酸化処理をせずに室温で一週間養生し、無機硬化体を得た。
(比較例4)
実施例1と同様の配合と方法により円柱賦形体を得た後、1週間室温で養生したが、硬化体にはならずに乾燥して崩壊したため、試験は行わなかった。
実施例、及び比較例の硬化体について以下の試験を行い、その結果を表1に示した。
【0021】
[圧縮強度測定]
実施例1、2、及び比較例1〜4で得られた円柱状硬化体について、JIS A1108に準拠した圧縮試験を行い、圧縮強度を測定した。
【0022】
[組織溶解度測定]
実施例1、2、及び比較例1〜4で得られた円柱状硬化体について、粒径100μm以下に粉砕したもの1gにイオン交換水100gを注入し、5分間振とうした後、24時間放置した水溶液中のカルシウムイオン濃度をICP(誘導結合プラズマ発光分析)によって測定した。
【0023】
[フェノールフタレイン試験]
実施例1〜3、及び比較例1〜4で得られた円柱状硬化体について、1/2に切断し、切断面にフェノールフタレインエタノール溶液を滴下して中性化度を、以下のような評価項目に従って目視評価を行った。
A:変色(赤色)部分が認められない。
B:変色部分が断面積の20%未満。
C:変色部分が断面積の60%未満20%以上。
D:変色部分が断面積の60%以上。
[耐熱性試験]
実施例1、及び比較例3の円柱状硬化体について、600℃で30分加熱した後に、JIS A1108に準拠した圧縮試験を行い、圧縮強度を測定した。
【0024】
【表1】

Figure 0003735233
【0025】
表1から分かる通り、実施例1及び2では使用したウォラストナイトの比表面積と粒度分布、炭酸化処理条件が適当であるため、炭酸化処理によって、十分な初期強度を有する硬化体が得られている。これに対して、比較例1では使用したウォラストナイトの比表面積が小さく、粒度分布が適当でないことから、十分な炭酸化反応が進行せず硬化体としての強度が不十分なものとなった。
【0026】
また、比較例2のようにワラストナイト以外の材料、例えば普通ポルトランドセメントを使用して炭酸化を行った場合、十分な硬化体強度を得ることが出来ない。また、比較例3のように通常のセメント水和反応を利用した場合、硬化体強度は十分に得られるものの、溶出カルシウムイオン濃度が大きくなっている。
溶出カルシウムイオン濃度は、硬化体の組織が水に対する安定性を示しており、ウォラストナイトを使用した組織(実施例1及び2、比較例1)では非常に小さく、水に対して安定であることが示されている。
【0027】
同様に、ウォラストナイトを使用した組織ではフェノールフタレイン試験で変色がなく、二酸化炭素等によって変質を起こさない中性の組織であることが示されている。一方、比較例2及び3の硬化体はアルカリ性であり、炭酸化による組織の変化が懸念される。
【0028】
実施例1と比較例3の硬化体を使用した耐熱性試験では、ウォラストナイトを炭酸化して得られた組織と水和組織の耐熱安定性の違いが示されている。実施例1の硬化体が耐熱性試験後も外観、圧縮強度共に殆ど変化がなかったのに対して、比較例3の水和硬化体では耐熱性試験後の試料は直径が3%程度収縮して全体にクラックがみられ、圧縮強度も大幅に低下した。
【0029】
【発明の効果】
本発明の方法によれば、特定の比表面積、粒度分布を有するウォラストナイトを用いることで比較的、短時間で、低温、低圧のマイルドな条件下で目的の無機炭酸化硬化体を生産性良く得ることが出来る。このような方法により得られた、無機炭酸化硬化体は、ウォラストナイトとその炭酸化物より構成されるため、化学的に安定な構造であり、水や二酸化炭素による組織の変化が殆どないため長期の耐久性に優れた組織である。また、通常の水和組織と異なり組織中に水を含まないため、高い耐熱性を有している。従って、この様な高い耐久性を活かし、例えば住宅の外壁や瓦等の建築材料や土木建設材料のロングライフ化に寄与することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an inorganic carbonated cured body having excellent tissue stability.
[0002]
[Prior art]
Conventionally, as a method of improving the durability and strength of a hardened cementitious body, by exposing the hardened cementitious body to a carbon dioxide gas atmosphere, the calcium hydroxide generated by hydration of the cement is changed to calcium carbonate. Attempts have been made to increase the strength by filling the pores. Specifically, for example, a method is disclosed in which carbonation is further promoted and densified by performing curing in a carbon dioxide atmosphere after cement hydration starts to be activated (Japanese Patent Laid-Open No. Hei 6-263562). Issue gazette).
[0003]
However, the above method requires a long time for curing under a carbon dioxide atmosphere, and the problem that productivity is not good remains. Depending on the amount of moisture contained in the material, the presence of moisture may be The problem remains that the diffusion is inhibited and carbonation does not proceed to the inside. If unreacted material remains in the cementitious carbonate, it is expected to cause material deterioration in the long term, so a higher level of stability is desired.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing an inorganic carbonated cured product having excellent structure stability that can be produced by low-pressure and short-time carbonation treatment. And
[0005]
[Means for Solving the Problems]
In the present invention, wollastonite having a cumulative 10% diameter of 1 μm or less and a nitrogen adsorption specific surface area of 1 m 2 / g or more in a volume distribution of powder particle size is mixed with water and shaped, and then the temperature is 30 to 200 ° C. The method for producing an inorganic carbonated cured product, characterized in that the carbonation treatment is performed under a pressure of atmospheric pressure (0 MPa) to 5 MPa.
The present invention is described in detail below.
[0006]
The wollastonite used in the present invention has a cumulative 10% diameter of 1 μm or less in the volume distribution of the powder particle size. The volume distribution of the powder particle size is a value representing the particle size distribution of the powder by the volume of the particles, and the cumulative 10% diameter corresponds to 10% of the total particle volume from the smallest particle diameter. The particle size. When the cumulative 10% diameter exceeds 1 μm, the reactivity in the carbonation treatment becomes small, and a long time or a high pressure is required to form a cured product.
[0007]
Further, the wollastonite used in the present invention has a nitrogen adsorption specific surface area of 1 m 2 / g or more, more preferably 2 m 2 / g or more. When the specific surface area is less than 1 m 2 / g, the reactivity in the carbonation treatment is low. In addition, the larger the specific surface area, the faster the carbonation treatment can proceed, but in reality, it is 1000 m 2 / g or less in production. The wollastonite is a calcium silicate mineral represented by CaSiO 3 , and is naturally produced as a white fiber or lump.
[0008]
In general, the fibrous shape is used as a reinforcing member for asbestos substitution, etc., but the wollastonite in the present invention does not need to be particularly fibrous and may have a small aspect ratio. Residues generated when pulverized into a fibrous form can be used as a reinforcing material.
[0009]
The carbonation treatment in the present invention means a treatment in which the wollastonite component can be carbonated. An example of such a carbonation treatment is a method using carbon dioxide in a gaseous state. The concentration of carbon dioxide gas may be any concentration, but treatment at a concentration close to 100% is preferable in terms of carbonation efficiency. The temperature during the carbonation treatment is preferably in the range of 30 ° C to 200 ° C, more preferably 50 ° C to 200 ° C.
[0010]
If the heating temperature is lower than 30 ° C, it takes a long time for the carbonation reaction to occur sufficiently. Conversely, if the heating temperature is higher than 200 ° C, the carbonation reaction will be rapid, but a large amount of energy will be required. In addition, when an organic reinforcing fiber or the like is contained in an additive such as an aggregate in the cured body, the fiber or the like is likely to be thermally deteriorated.
[0011]
The pressure during the carbonation treatment is within the range of atmospheric pressure (0 MPa) to 5 MPa. When the pressurization pressure exceeds 5 MPa, the carbonation reaction proceeds, but large energy is required, and industrial productivity becomes difficult from the viewpoint of increasing the size of the equipment. On the other hand, carbonation treatment at less than atmospheric pressure is not efficient in terms of both energy consumption and carbonation reaction progress. In the present invention, the pressure is not an absolute pressure but a gauge pressure.
[0012]
The time for the carbonation treatment is not particularly limited, but is preferably within 5 to 120 minutes. When the treatment time is shorter than 5 minutes, the carbonation reaction does not occur sufficiently, and it becomes difficult to obtain the shape retention strength of the molded body. Also, even if the treatment time is longer than 120 minutes, the degree of carbonation does not change greatly and is not very efficient.
[0013]
The present invention may include an inorganic material other than wollastonite as a material constituting the inorganic carbonized cured body. Examples of such an inorganic material include cement; aggregate for cement mortar such as quartz sand and river sand; Examples thereof include inorganic fillers such as calcium and diatomaceous earth, and cement is preferable in terms of further improving the formability.
[0014]
Furthermore, in addition to the inorganic material, natural fibers such as wood chips and pulp; synthetic resin fibers such as vinylon, polyester, and nylon may be added to the inorganic carbonized cured body component of the present invention.
[0015]
If the cement is a cement that produces calcium hydroxide with hydration, it can be reacted during the carbonation treatment of the shaped body. For example, ordinary Portland cement, special Portland cement, alumina cement, etc. I can do it. However, when producing a fully carbonated cured product for the purpose of obtaining a very high level of durability, it is better that the amount of cement added is small, and it is 1/3 (wt%) or less of wollastonite. It is preferable that it is the addition amount of.
[0016]
The wollastonite simple substance and water are mixed in a desired ratio. The mixing method is not particularly limited and is kneaded by a known mixing apparatus. As for the shaping method, for example, it is shaped into a desired shape by a compression molding method (dehydration press or the like), an extrusion molding method or the like. In shaping, a composition that can obtain the optimal fluidity for shaping can be selected. However, if the moisture is so high that the particles are sufficiently filled with water, the progress of carbonation may be hindered.
[0017]
The blending amount of water varies greatly depending on the specific surface area of wollastonite, shape, and the type and amount of other additives. Generally, in the case of wollastonite alone, it is 10 to 100% of the weight of wollastonite. The weight is preferred.
If the amount of water exceeds 100% by weight, water may ooze out during shaping. In that case, the amount of water during the carbonation treatment can be made appropriate by pressurization or suction. Further, when the amount of water is less than 10% of the weight of wollastonite, the reaction with carbon dioxide does not occur sufficiently and the efficiency of the carbonation reaction decreases.
[0018]
(Function)
Wollastonite itself has a very low carbonic acid acceleration at normal pressure, and almost no hydration is observed, so unlike ordinary unhydrated cement materials, it does not carbonize in the cured product. Even if it remains, it does not adversely affect long-term durability. Usually, in order to cure such a low-reactivity wollastonite, a high-pressure and long-time reaction is required. By using wollastonite having a specific particle size distribution and specific surface area, the carbonation rate can be reduced. It becomes possible to improve, and it becomes possible to improve the mechanical property of the produced | generated inorganic hardening body.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(Examples 1 and 2 and Comparative Example 1)
Wollastonite and water were mixed according to the formulation shown in Table 1, and pressed at 25 MPa using a hand press to obtain a cylindrical shaped body having a diameter of 15 mm and a height of 30 mm.
Then, the carbonation process was performed on the conditions shown in Table 1 in the autoclave, and the inorganic carbonation hardening body was obtained.
[0020]
(Comparative Example 2)
100 parts by weight of ordinary Portland cement and 20 parts by weight of water were mixed and pressed at 25 MPa by the same method as above to obtain a cylindrical shaped body having a diameter of 15 mm and a height of 30 mm. Then, the carbonation process was performed on the conditions shown in Table 1 in the autoclave, and the inorganic carbonation hardening body was obtained.
(Comparative Example 3)
A cylindrical shaped product was obtained in the same manner as in Comparative Example 2, and then cured at room temperature for 1 week without carbonation treatment to obtain an inorganic cured product.
(Comparative Example 4)
After obtaining a cylindrical shaped product by the same composition and method as in Example 1, it was cured at room temperature for 1 week, but it did not become a cured product but was dried and disintegrated, so the test was not performed.
The following tests were performed on the cured bodies of Examples and Comparative Examples, and the results are shown in Table 1.
[0021]
[Compressive strength measurement]
The cylindrical cured bodies obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were subjected to a compression test based on JIS A1108, and the compression strength was measured.
[0022]
[Tissue solubility measurement]
About the cylindrical hardened bodies obtained in Examples 1 and 2 and Comparative Examples 1 to 4, 100 g of ion-exchanged water was poured into 1 g of the pulverized particles having a particle size of 100 μm or less, shaken for 5 minutes, and then left for 24 hours. The calcium ion concentration in the aqueous solution was measured by ICP (inductively coupled plasma emission spectrometry).
[0023]
[Phenolphthalein test]
About the cylindrical hardening body obtained in Examples 1-3 and Comparative Examples 1-4, it cut | disconnects to 1/2, the phenolphthalein ethanol solution is dripped at a cut surface, and neutralization degree is as follows. Visual evaluation was performed according to various evaluation items.
A: Discolored (red) part is not recognized.
B: The discolored portion is less than 20% of the cross-sectional area.
C: Discolored portion is less than 60% of cross-sectional area and 20% or more.
D: Discolored portion is 60% or more of the cross-sectional area.
[Heat resistance test]
About the column-shaped hardening body of Example 1 and Comparative Example 3, after heating at 600 degreeC for 30 minutes, the compression test based on JISA1108 was done, and the compression strength was measured.
[0024]
[Table 1]
Figure 0003735233
[0025]
As can be seen from Table 1, in Examples 1 and 2, the specific surface area and particle size distribution of the wollastonite used and the carbonation treatment conditions are appropriate, so that a cured product having sufficient initial strength can be obtained by the carbonation treatment. ing. On the other hand, since the specific surface area of the wollastonite used in Comparative Example 1 was small and the particle size distribution was not appropriate, sufficient carbonation reaction did not proceed and the strength as a cured product was insufficient. .
[0026]
Moreover, when carbonation is performed using a material other than wollastonite, for example, ordinary Portland cement as in Comparative Example 2, sufficient cured body strength cannot be obtained. In addition, when a normal cement hydration reaction is used as in Comparative Example 3, the strength of the cured body is sufficiently obtained, but the eluted calcium ion concentration is large.
The dissolved calcium ion concentration shows the stability of the hardened body to water, and the structure using wollastonite (Examples 1 and 2, Comparative Example 1) is very small and stable to water. It has been shown.
[0027]
Similarly, the structure using wollastonite has no discoloration in the phenolphthalein test, and is shown to be a neutral structure that does not deteriorate due to carbon dioxide or the like. On the other hand, the cured bodies of Comparative Examples 2 and 3 are alkaline, and there is a concern about the change of the structure due to carbonation.
[0028]
The heat resistance test using the cured bodies of Example 1 and Comparative Example 3 shows the difference in heat stability between the structure obtained by carbonating wollastonite and the hydrated structure. The cured body of Example 1 had almost no change in appearance and compressive strength even after the heat resistance test, whereas in the hydrated cured body of Comparative Example 3, the sample after the heat resistance test contracted by about 3% in diameter. As a result, cracks were observed and the compressive strength was greatly reduced.
[0029]
【The invention's effect】
According to the method of the present invention, by using wollastonite having a specific specific surface area and particle size distribution, the desired inorganic carbonated cured body can be produced in a relatively short time at low temperature and low pressure under mild conditions. You can get well. Since the inorganic carbonated cured product obtained by such a method is composed of wollastonite and its carbonate, it has a chemically stable structure, and there is almost no change in the structure due to water or carbon dioxide. It is a structure with excellent long-term durability. In addition, unlike a normal hydrated structure, the structure does not contain water and therefore has high heat resistance. Therefore, utilizing such high durability, for example, it is possible to contribute to a long life of building materials such as outer walls and tiles of houses and civil engineering materials.

Claims (1)

粉体粒度の体積分布において、累積10%径が1μm以下、窒素吸着比表面積が、1m2 /g以上であるウォラストナイトを、水と混合し、賦形した後に、温度が、30〜200℃、圧力が、大気圧(0MPa)〜5MPaの条件で炭酸化処理することを特徴とする無機炭酸化硬化体の製造方法。In the volume distribution of the powder particle size, wollastonite having a cumulative 10% diameter of 1 μm or less and a nitrogen adsorption specific surface area of 1 m 2 / g or more is mixed with water and shaped, and then the temperature is 30 to 200. A method for producing an inorganic carbonated cured product, characterized by subjecting to carbonation under conditions of ° C and pressure of atmospheric pressure (0 MPa) to 5 MPa.
JP2000118157A 2000-04-19 2000-04-19 Method for producing inorganic carbonized cured body Expired - Fee Related JP3735233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118157A JP3735233B2 (en) 2000-04-19 2000-04-19 Method for producing inorganic carbonized cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118157A JP3735233B2 (en) 2000-04-19 2000-04-19 Method for producing inorganic carbonized cured body

Publications (2)

Publication Number Publication Date
JP2001302295A JP2001302295A (en) 2001-10-31
JP3735233B2 true JP3735233B2 (en) 2006-01-18

Family

ID=18629349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118157A Expired - Fee Related JP3735233B2 (en) 2000-04-19 2000-04-19 Method for producing inorganic carbonized cured body

Country Status (1)

Country Link
JP (1) JP3735233B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA113844C2 (en) * 2011-03-05 2017-03-27 THE BINDING ELEMENT, THE BINDING MATRIX AND THE COMPOSITION MATERIAL HAVING THE BINDING ELEMENT AND THE METHOD OF MANUFACTURING THEREOF
EP2969998A4 (en) * 2013-03-13 2016-12-28 Solidia Technologies Inc Aerated composite materials, methods of production and uses thereof
US9221027B2 (en) * 2013-03-14 2015-12-29 Solidia Technologies, Inc. Curing systems for materials that consume carbon dioxide and method of use thereof
BR112016003767B1 (en) * 2013-08-21 2022-06-28 Solidia Technologies, Inc PROCESS FOR PRODUCING AN ARTICLE FROM AN AERED COMPOSITE MATERIAL
CA2926326C (en) 2013-10-04 2021-11-23 Solidia Technologies, Inc. Hollow-core articles and composite materials, methods of production and uses thereof
CN115432987A (en) * 2014-08-04 2022-12-06 索里迪亚科技公司 Carbonatable calcium silicate compositions and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125414A (en) * 1975-03-25 1976-11-01 Osaka Patsukingu Seizoushiyo K Manufacturing of silicaa calcium cabonate composite plastics
JPH05319876A (en) * 1992-05-22 1993-12-03 Asahi Chem Ind Co Ltd Method for recycling aerated lightweight concrete and material for recycle
JP3386225B2 (en) * 1993-03-04 2003-03-17 クリオン株式会社 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
JP3618123B2 (en) * 1994-09-12 2005-02-09 クリオン株式会社 Composite molded body of carbonated cured body and method for producing the same
JP2000007466A (en) * 1998-06-16 2000-01-11 Sekisui Chem Co Ltd Woody cement hardened body
JP3769446B2 (en) * 2000-03-29 2006-04-26 積水化学工業株式会社 Method for producing inorganic carbonized cured body
JP3749648B2 (en) * 2000-03-31 2006-03-01 積水化学工業株式会社 Carbonated cured body

Also Published As

Publication number Publication date
JP2001302295A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4473345B2 (en) Cement formulation
JP2006213559A (en) Method of manufacturing inorganic carbonated hardened body
JP3735233B2 (en) Method for producing inorganic carbonized cured body
JP3769446B2 (en) Method for producing inorganic carbonized cured body
JP2000203964A (en) Cement hardened material
JP4320182B2 (en) Carbonated cured body and method for producing the same
KR20100112800A (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
US20050011416A1 (en) Concrete thickener for thickening concrete article, said concrete article and process for producing same
JP5724188B2 (en) Concrete production method
US1782460A (en) Method of manufacturing porous building materials
KR101461190B1 (en) Self-Healing Tunnel Lining Concrete
JP3677325B2 (en) Method for producing dehydrated press molded body
JP3486363B2 (en) Molded body and molding method thereof
JP4285675B2 (en) Aggregate for hardened cement and hardened cement
JPH06263510A (en) Production of carbonated hardened body of calcium silicate
KR100883031B1 (en) A method for manufacuring masato-brick and masato-brick
JP2010064902A (en) Calcium carbonate molded body utilizing broken stone-broken powder, and method for producing the same
CN107555930A (en) One kind is high-strength, block water air entrained concrete building block and preparation method
KR920000153B1 (en) Concrete having high-strength and preparation method thereof
JP3589629B2 (en) Magnesium / calcium composition and method for producing the same
KR102612775B1 (en) Mortar and concrete composition using artificial marble sludge, and preparation method therefor
JP2005104791A (en) Method of manufacturing lightweight cellular concrete
KR100935467B1 (en) Vegetation block for concrete and manufacturing method thereof
JPS6335595B2 (en)
JP2005281087A (en) Method for producing building material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051021

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees