JP3735165B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3735165B2
JP3735165B2 JP24129696A JP24129696A JP3735165B2 JP 3735165 B2 JP3735165 B2 JP 3735165B2 JP 24129696 A JP24129696 A JP 24129696A JP 24129696 A JP24129696 A JP 24129696A JP 3735165 B2 JP3735165 B2 JP 3735165B2
Authority
JP
Japan
Prior art keywords
oil passage
tank
radiator
oil
transformer body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24129696A
Other languages
Japanese (ja)
Other versions
JPH1066342A (en
Inventor
浩司 奥田
修治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP24129696A priority Critical patent/JP3735165B2/en
Publication of JPH1066342A publication Critical patent/JPH1066342A/en
Application granted granted Critical
Publication of JP3735165B2 publication Critical patent/JP3735165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油冷式のインバータ、DC−DCコンバータ等の電力変換装置に関するものである。
【0002】
【従来の技術】
インバータ、DC−DCコンバータ等の電力変換装置の電気的な構成として、主に変圧器本体と半導体素子とがあり、変圧器本体は入力用変圧器本体と出力用変圧器本体とからなる。これらは使用時に発熱を伴うために、冷却する必要がある。また、高電圧で使用する場合、電気的に絶縁する必要がある。図5は、従来の電力変換装置を示す縦断面図である。同図において、1はタンク、2はタンク1の側壁に設けた放熱器、3はタンク1に充填された絶縁油、4aは入力用変圧器本体、4bは出力用変圧器本体、5は半導体素子、61は半導体素子5を着脱自在に取付けられる素子用放熱器である。なお、制御装置及び電気的接続は省略している。
【0003】
この従来例においては、入力用変圧器本体4a,出力用変圧器本体4b,半導体素子5及び素子用放熱器61を絶縁油3に侵漬させているので、入力用変圧器本体4a,出力用変圧器本体4b及び半導体素子5は、絶縁油3の自然対流により冷却される。
【0004】
図6は、従来の電力変換装置の他の例を示す縦断面図である。同図において、1はタンク、2は放熱器、3は絶縁油、4aは入力用変圧器本体、4bは出力用変圧器本体、5半導体素子、61は素子用放熱器である。7はタンク1の側壁外部に取付けられ、半導体素子5及び素子用放熱器61をタンク1の外部で収容するための箱体のカバー、7c,7dはそれぞれ箱体7の下部及び上部に設けられた吸込口及び吐出口、8は箱体7内の上部に設けられた冷却ファンである。なお、制御装置及び電気的接続は省略している。
【0005】
この従来例においては、入力用変圧器本体4a及び出力用変圧器本体4bは絶縁油3の自然対流により冷却され、他方、半導体素子5は、冷却用ファン8で吸引される冷却風が吸込口7c、素子用放熱器61、吐出口7dを経て外部へ排出されることにより冷却される。
【0006】
【発明が解決しようとする課題】
図5に示した従来の油冷式の電力変換装置では、半導体素子5が故障した場合、または定期的な点検を行う場合、タンク1の上部にネジ止めして取付けた図示しないカバーを取り外し、半導体素子5を油中から取り出さなければならないために、作業性が悪いという問題があった。
【0007】
そこで、従来の他の例として図6に示したように、変圧器本体に対して油冷式、半導体素子に対して強制風冷式の2つの方式を採用した電力変換装置が考えられるが、それぞれが別々に構成され、かつ冷却機能を有するようにしているために、冷却ファン8が必要となると共に、これを設置するための適当な大きさの空間容積が必要となり、装置が大型化し、かつ高価となる問題がある。さらに、冷却ファン8の寿命は入力用変圧器本体4a及び出力用変圧器本体4bと比べて著しく小さく、通常3〜5年であるために、定期的に取り替える必要があり、故障する前に点検しなければならないという問題がある。特に、屋外に設置した場合、冷却ファンの寿命がさらに短くなるという問題がある。
【0008】
本発明の目的は、半導体素子の故障時または点検時の繁雑な作業をなくし、しかも冷却ファンを用いなくても半導体素子の冷却を低下させることのない電力変換装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、入力用変圧器本体と出力用変圧器本体と半導体素子とを具備し、半導体素子を素子用放熱器に装着した電力変換装置に係わるものである。
【0010】
請求項1に記載の発明は、入力用変圧器本体と出力用変圧器本体とが絶縁油を充填したタンクに収容され、素子用放熱器をタンク外に配置すると共に、素子用放熱器に油道を設け、タンクの上部及び下部と油道とをそれぞれ接続する上部通油管及び下部通油管を配設し、タンクの側壁外部に取付けられ、素子用放熱器を収容すると共に、半導体素子の故障時または点検時に開閉される扉を有するカバーを設けたものである。
【0011】
これにより、半導体素子が素子用放熱器に装着されたままで、共に気中に露出した状態となり、また素子用放熱器の油道をタンク内の油が流通することになる。
【0012】
【発明の実施の形態】
図1は本発明に係る電力変換装置の一実施形態を示す縦断面図であり、素子用放熱器を1つのタンク内の油を用いて冷却する例を示している。同図において、1はタンク、2は放熱器、3は絶縁油、4aは入力用変圧器本体、4bは出力用変圧器本体、5は半導体素子で、従来例を示す図5及び図6と同様である。6は例えば内部に油道6cを形成した素子用放熱器、10は上部通油管、11は下部通油管、14はタンク1の側壁外部に取付けられ、半導体素子5を装着した素子用放熱器6を収容する箱体状のカバーであり、図示しない扉を有している。この扉は、半導体素子5の故障時または点検時に開閉される。
【0013】
本実施形態は、カバー14内のタンク1の側壁の上部及び下部にそれぞれ穴1c1,1c2を設けて、この穴にそれぞれ上部通油管10及び下部通油管11を溶接等により取付ける。上部通油管10及び下部通油管11の他端には、図示しないフランジ取付けられており、上部通油管10及び下部通油管11は、それぞれ素子用放熱器6の油道出口6c1及び油道入口6c2にフランジ結合され、タンク1と素子用放熱器6とが連結される。
【0014】
図2は本発明に適用する素子用放熱器の概略構成図である。素子用放熱器6はアルミまたは銅等からなり、半導体素子5を搭載して吸熱する吸熱部6eが形成され、また放熱部となる油道6cが例えば上下方向に貫通するように形成されており、油道6cは油道出口6c1及び油道入口6c2を有している。
【0015】
本実施形態においては、半導体素子5が素子用放熱器6に装着されたままで、共に気中に露出した状態となるので、半導体素子5の故障時または点検時の繁雑な作業が不要となり、半導体素子5を着脱する作業のみとなる。また、半導体素子5で発生した熱は、素子用放熱器6を介して油道6内の油に伝わり、暖められた油は油道出口6c1を出て上部通油管10内を上昇し、タンク1の上部に設けた穴1c1を通してタンク1に流れ込む。半導体素子5で暖められた油は、入力用変圧器本体4a及び出力用変圧器本体4bで発生した熱により暖められた油と共に放熱器2で冷却されながら放熱器2内を下方へ移動し、タンク1の下部からタンク1内に流れ込む。冷却された油の一部は、タンク1の下部に設けた穴1c2を出て、下部通油管11内を上昇し、油道入口6c2から油道6に流れ込む。このように油が自然対流するので、半導体素子5は従来と同様に冷却される。
【0016】
図3は本発明に係る電力変換装置の他の実施形態を示す縦断面図であり、素子用放熱器を2つのタンク内の油を用いて冷却する例を示している。同図において、2は放熱器、3は絶縁油、5は半導体素子で、従来例を示す図5及び図6と同様である。1aは第1のタンク、1bは第2のタンク、4aは第1のタンク1aに収容された入力用変圧器本体、4bは第2のタンク1bに収容された出力用変圧器本体、6は例えば内部に油道6c,6dを形成した素子用放熱器、10,12は上部通油管、11,13は下部通油管、14は両タンク1a,1b間の側壁外部に取付けられ、半導体素子5を装着した素子用放熱器6を収容する箱体状の共通カバーであり、図示しない扉を有している。この扉は、半導体素子5の故障時または点検時に開閉される。
【0017】
本実施形態は、カバー14内の第1のタンク1aの側壁の上部及び下部にそれぞれ穴1c1,1c2を設けて、この穴にそれぞれ上部通油管10及び下部通油管11を溶接等により取付ける。上部通油管10及び下部通油管11の他端には、図示しないフランジ取付けられており、上部通油管10及び下部通油管11は、それぞれ素子用放熱器6の油道出口6c1及び油道入口6c2にフランジ結合され、第1のタンク1aと素子用放熱器6とが連結される。
【0018】
また同様に、カバー14内の第2のタンク1bの側壁の上部及び下部にそれぞれ穴1d1,1d2を設けて、この穴にそれぞれ上部通油管12及び下部通油管13を溶接等により取付ける。上部通油管12及び下部通油管13の他端には、図示しないフランジ取付けられており、上部通油管12及び下部通油管13は、それぞれ素子用放熱器6の油道出口6d1及び油道入口6d2にフランジ結合され、第2のタンク1bと素子用放熱器6とが連結される。
【0019】
図4は本発明に適用する他の素子用放熱器の概略構成図である。半導体素子5を搭載して吸熱する吸熱部6eが形成され、また放熱部となる油道6c,6dが例えば上下方向に貫通するように形成されており、油道6cは油道出口6c1及び油道入口6c2を、油道6dは油道出口6d1及び油道入口6d2を有している。
【0020】
本実施形態においては、半導体素子5で発生した熱は、素子用放熱器6を介して油道6c内の油に伝わり、暖められた油は油道出口6c1を出て上部通油管10内を上昇し、タンク1aの上部に設けた穴1c1を通してタンク1に流れ込む。半導体素子5で暖められた油は、入力用変圧器本体4aで発生した熱により暖められた油と共に放熱器2で冷却されながら放熱器2内を下方へ移動し、タンク1aの下部からタンク1a内に流れ込む。冷却された油の一部は、タンク1aの下部に設けた穴1c2を出て、下部通油管11内を上昇し、油道入口6c2から油道6cに流れ込む。このように油が自然対流するので、半導体素子5は冷却される。
【0021】
また同様に、半導体素子5で発生した熱は、素子用放熱器6を介して油道6d内の油に伝わり、暖められた油は油道出口6d1を出て上部通油管12内を上昇し、タンク1bの上部に設けた穴1d1を通してタンク1bに流れ込む。半導体素子5で暖められた油は、出力用変圧器本体4bで発生した熱により暖められた油と共に放熱器2で冷却されながら放熱器2内を下方へ移動し、タンク1bの下部からタンク1b内に流れ込む。冷却された油の一部は、タンク1bの下部に設けた穴1d2を出て、下部通油管13内を上昇し、油道入口6d2から油道6dに流れ込む。
【0022】
上記の素子用放熱器6は両タンク1a,1b間に設けたが、両タンクを近接させて、両タンクの側壁に亘るようにカバー14を取付け、このカバー内に素子用放熱器を設けてもよく、この場合、小形化がより図られる。
【0023】
上記の各実施形態で用いる素子用放熱器6は、外部にフィンを設けてもよく、油道6c,6dにフィンを設けてもよく、また油道6cをハニカム状にしてもよい。さらに、内部に油道を形成する代わりに、アルミまたは銅等からなる通油管状の油道を外部に取付けてもよい。また、油道の数を多くしてもよく、この場合、一対の上部通油管及び下部通油管の数は、油道の数に対応させる。このようにすると、冷却効率を高めることができる。また、放熱器2の構造、寸法、数は、冷却程度に応じて最適に設計されている。さらに、従来例で用いた冷却ファンよりも寿命が遥かに長い送油ポンプを用いて強制冷却してもよい。
【0024】
上記の各実施形態で用いる半導体素子5は、IGBTと称されるもので、その内部と金属製の放熱部とは電気的に絶縁されるように、モジュール化されている。この半導体素子5を、タンク1または1a,1bと導通状態にある素子用放熱器6の吸熱部6eに直接取付けても、何ら問題は生じない。
【0025】
上記の半導体素子5は、IGBTに限定されるものではなく、内部と電気的に絶縁されていない素子を用いてもよく、この場合は、上部通油管及び下部通油管10,11,12,13を絶縁性のものにすればよい。
【0026】
【発明の効果】
以上のように、本発明によれば、半導体素子の故障時または点検時の繁雑な作業が不要となり、また装置の大型化が防止でき、かつ高価となることが防止できる。さらに、半導体素子の冷却を低下させることなく、冷却ファンを不要にすることができる。また、冷却ファンを用いないので、冷却ファンの点検作業が不要となり、しかも屋外に設置しても長寿命化が図られる。
【図面の簡単な説明】
【図1】本発明に係る電力変換装置の一実施形態を示す縦断面図である。
【図2】本発明に適用する素子用放熱器の概略構成図である。
【図3】本発明に係る電力変換装置の他の実施形態を示す縦断面図である。
【図4】本発明に適用する他の素子用放熱器の概略構成図である。
【図5】従来の電力変換装置を示す縦断面図である。
【図6】従来の電力変換装置の他の例を示す縦断面図である。
【符号の説明】
1,1a,1b タンク
3 絶縁油
4a 入力用変圧器本体
4b 出力用変圧器本体
5 半導体素子
6 素子用放熱器
6c,6d 油道
10,12 上部通油管
11,13 下部通油管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power converter such as an oil-cooled inverter or a DC-DC converter.
[0002]
[Prior art]
As an electrical configuration of a power conversion device such as an inverter or a DC-DC converter, there are mainly a transformer body and a semiconductor element, and the transformer body is composed of an input transformer body and an output transformer body. Since these generate heat during use, it is necessary to cool them. Moreover, when using at a high voltage, it is necessary to electrically insulate. FIG. 5 is a longitudinal sectional view showing a conventional power converter. In the figure, 1 is a tank, 2 is a radiator provided on the side wall of the tank 1, 3 is an insulating oil filled in the tank 1, 4a is an input transformer body, 4b is an output transformer body, and 5 is a semiconductor. An element 61 is an element radiator to which the semiconductor element 5 is detachably attached. Note that the control device and the electrical connection are omitted.
[0003]
In this conventional example, the input transformer body 4a, the output transformer body 4b, the semiconductor element 5 and the element radiator 61 are immersed in the insulating oil 3. Therefore, the input transformer body 4a and the output transformer body 4a are used. The transformer body 4 b and the semiconductor element 5 are cooled by natural convection of the insulating oil 3.
[0004]
FIG. 6 is a longitudinal sectional view showing another example of a conventional power converter. In the figure, 1 is a tank, 2 is a radiator, 3 is insulating oil, 4a is an input transformer body, 4b is an output transformer body, 5 semiconductor elements, and 61 is an element radiator. 7 is attached to the outside of the side wall of the tank 1, and a box cover for accommodating the semiconductor element 5 and the element radiator 61 outside the tank 1, and 7 c and 7 d are provided at the lower and upper parts of the box 7, respectively. A suction port and a discharge port 8 are cooling fans provided in the upper portion of the box 7. Note that the control device and the electrical connection are omitted.
[0005]
In this conventional example, the input transformer body 4 a and the output transformer body 4 b are cooled by natural convection of the insulating oil 3, while the semiconductor element 5 has a cooling air sucked by the cooling fan 8 for suction. It is cooled by being discharged to the outside through 7c, element radiator 61 and discharge port 7d.
[0006]
[Problems to be solved by the invention]
In the conventional oil-cooled power conversion apparatus shown in FIG. 5, when the semiconductor element 5 fails or when periodic inspection is performed, a cover (not shown) attached by screwing to the upper part of the tank 1 is removed, Since the semiconductor element 5 must be taken out from the oil, there is a problem that workability is poor.
[0007]
Therefore, as shown in FIG. 6 as another conventional example, a power conversion device adopting two methods of an oil cooling type for a transformer body and a forced air cooling type for a semiconductor element can be considered. Since each of them is configured separately and has a cooling function, the cooling fan 8 is required, and a space volume of an appropriate size for installing the cooling fan 8 is required. In addition, there is a problem that becomes expensive. Furthermore, the life of the cooling fan 8 is significantly smaller than that of the input transformer body 4a and the output transformer body 4b, and is usually 3 to 5 years. Therefore, it is necessary to replace it regularly and check it before it breaks down. There is a problem that must be done. In particular, when installed outdoors, there is a problem that the life of the cooling fan is further shortened.
[0008]
An object of the present invention is to provide a power conversion device that eliminates complicated operations at the time of failure or inspection of a semiconductor element and does not reduce the cooling of the semiconductor element without using a cooling fan.
[0009]
[Means for Solving the Problems]
The present invention relates to a power conversion device that includes an input transformer body, an output transformer body, and a semiconductor element, and the semiconductor element is mounted on an element radiator.
[0010]
According to the first aspect of the present invention, the input transformer body and the output transformer body are accommodated in a tank filled with insulating oil, the element radiator is disposed outside the tank, and the element radiator is oiled. provided the road, is disposed an upper communication oil pipe and the lower communication oil pipe connecting the upper and lower oil path of the tank, respectively, attached to the side wall outside of the tank, along with housing a radiator element, failure of the semiconductor devices A cover having a door that is opened and closed at the time of inspection or inspection is provided .
[0011]
As a result, the semiconductor element remains attached to the element radiator and is exposed to the air, and the oil in the tank flows through the oil passage of the element radiator.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view showing an embodiment of a power converter according to the present invention, and shows an example in which an element radiator is cooled using oil in one tank. In the same figure, 1 is a tank, 2 is a radiator, 3 is insulating oil, 4a is an input transformer body, 4b is an output transformer body, and 5 is a semiconductor element. It is the same. 6 is an element radiator having an oil passage 6 c formed therein, 10 is an upper oil passage pipe, 11 is a lower oil passage pipe, 14 is attached to the outside of the side wall of the tank 1, and the element radiator 6 having the semiconductor element 5 mounted thereon. Is a box-shaped cover that houses a door (not shown). This door is opened and closed when the semiconductor element 5 is broken or inspected.
[0013]
In this embodiment, holes 1c1 and 1c2 are provided in the upper and lower portions of the side wall of the tank 1 in the cover 14, and the upper oil passage pipe 10 and the lower oil passage pipe 11 are attached to these holes by welding or the like. A flange (not shown) is attached to the other ends of the upper oil passage pipe 10 and the lower oil passage pipe 11, and the upper oil passage pipe 10 and the lower oil passage pipe 11 are respectively an oil passage outlet 6c1 and an oil passage inlet 6c2 of the element radiator 6. The tank 1 and the element radiator 6 are connected to each other.
[0014]
FIG. 2 is a schematic configuration diagram of an element heat radiator applied to the present invention. The element radiator 6 is made of aluminum, copper, or the like, is formed with a heat absorbing portion 6e that absorbs heat by mounting the semiconductor element 5, and an oil passage 6c that becomes a heat radiating portion is formed so as to penetrate in the vertical direction, for example. The oil passage 6c has an oil passage outlet 6c1 and an oil passage inlet 6c2.
[0015]
In the present embodiment, since the semiconductor element 5 remains attached to the element heatsink 6 and is exposed to the air, complicated work at the time of failure or inspection of the semiconductor element 5 becomes unnecessary. Only the operation of attaching and detaching the element 5 is performed. The heat generated in the semiconductor element 5 is transferred to the oil in the oil passage 6 via the element radiator 6, and the warmed oil goes out of the oil passage outlet 6c1 and rises in the upper oil passage pipe 10 to the tank. 1 flows into the tank 1 through a hole 1c1 provided in the upper part of 1. The oil heated by the semiconductor element 5 moves downward in the radiator 2 while being cooled by the radiator 2 together with the oil heated by the heat generated by the input transformer body 4a and the output transformer body 4b. It flows into the tank 1 from the lower part of the tank 1. Part of the cooled oil exits through a hole 1c2 provided in the lower portion of the tank 1, rises in the lower oil passage 11 and flows into the oil passage 6 from the oil passage inlet 6c2. Since the oil naturally convects in this way, the semiconductor element 5 is cooled as in the conventional case.
[0016]
FIG. 3 is a longitudinal sectional view showing another embodiment of the power conversion device according to the present invention, and shows an example in which the element radiator is cooled using oil in two tanks. In the same figure, 2 is a heat radiator, 3 is insulating oil, 5 is a semiconductor element, which is the same as in FIGS. 5 and 6 showing the conventional example. 1a is a first tank, 1b is a second tank, 4a is an input transformer body housed in the first tank 1a, 4b is an output transformer body housed in the second tank 1b, 6 is For example, element radiators having oil passages 6c and 6d formed therein, 10 and 12 are upper oil passage pipes, 11 and 13 are lower oil passage pipes, and 14 is attached to the outside of the side wall between both tanks 1a and 1b. Is a box-shaped common cover for housing the element heatsink 6 to which is attached, and has a door (not shown). This door is opened and closed when the semiconductor element 5 is broken or inspected.
[0017]
In the present embodiment, holes 1c1 and 1c2 are respectively provided in the upper and lower portions of the side wall of the first tank 1a in the cover 14, and the upper oil passage pipe 10 and the lower oil passage pipe 11 are attached to these holes by welding or the like. A flange (not shown) is attached to the other ends of the upper oil passage pipe 10 and the lower oil passage pipe 11, and the upper oil passage pipe 10 and the lower oil passage pipe 11 are respectively an oil passage outlet 6c1 and an oil passage inlet 6c2 of the element radiator 6. The first tank 1a and the element radiator 6 are connected to each other.
[0018]
Similarly, holes 1d1 and 1d2 are provided in the upper and lower portions of the side wall of the second tank 1b in the cover 14, and the upper oil passage pipe 12 and the lower oil passage pipe 13 are attached to these holes by welding or the like. A flange (not shown) is attached to the other ends of the upper oil passage 12 and the lower oil passage 13. The upper oil passage 12 and the lower oil passage 13 are respectively connected to the oil passage outlet 6 d 1 and the oil passage inlet 6 d 2 of the element radiator 6. The second tank 1b and the element radiator 6 are connected to each other.
[0019]
FIG. 4 is a schematic configuration diagram of another element heat radiator applied to the present invention. A heat absorbing portion 6e that absorbs heat by mounting the semiconductor element 5 is formed, and oil passages 6c and 6d that serve as heat radiating portions are formed so as to penetrate, for example, in the vertical direction. The oil passage 6c includes the oil passage outlet 6c1 and the oil passage. The oil inlet 6c2 and the oil passage 6d have an oil passage outlet 6d1 and an oil passage inlet 6d2.
[0020]
In this embodiment, the heat generated in the semiconductor element 5 is transmitted to the oil in the oil passage 6c via the element radiator 6, and the warmed oil exits the oil passage outlet 6c1 and passes through the upper oil passage pipe 10. It rises and flows into the tank 1 through the hole 1c1 provided in the upper part of the tank 1a. The oil warmed by the semiconductor element 5 moves downward in the radiator 2 while being cooled by the radiator 2 together with the oil warmed by the heat generated by the input transformer body 4a, and from the lower part of the tank 1a to the tank 1a Flows in. Part of the cooled oil exits the hole 1c2 provided in the lower part of the tank 1a, rises in the lower oil passage pipe 11, and flows into the oil passage 6c from the oil passage inlet 6c2. Since the oil naturally convects in this way, the semiconductor element 5 is cooled.
[0021]
Similarly, the heat generated in the semiconductor element 5 is transmitted to the oil in the oil passage 6d through the element radiator 6, and the warmed oil exits the oil passage outlet 6d1 and rises in the upper oil passage 12. Then, it flows into the tank 1b through the hole 1d1 provided in the upper part of the tank 1b. The oil heated by the semiconductor element 5 moves downward in the radiator 2 while being cooled by the radiator 2 together with the oil heated by the heat generated in the output transformer body 4b, and from the lower part of the tank 1b to the tank 1b. Flows in. Part of the cooled oil exits the hole 1d2 provided in the lower portion of the tank 1b, rises in the lower oil passage 13 and flows into the oil passage 6d from the oil passage inlet 6d2.
[0022]
The element radiator 6 is provided between the tanks 1a and 1b. The cover 14 is attached so that both tanks are close to each other and the side walls of both tanks are provided, and the element radiator is provided in the cover. In this case, the size can be further reduced.
[0023]
The element radiator 6 used in each of the above embodiments may be provided with fins on the outside, fins may be provided on the oil passages 6c and 6d, and the oil passage 6c may be formed in a honeycomb shape. Furthermore, instead of forming an oil passage inside, an oil passage tubular oil passage made of aluminum, copper, or the like may be attached to the outside. Further, the number of oil passages may be increased. In this case, the number of the pair of upper oil passage pipes and lower oil passage pipes is made to correspond to the number of oil passages. If it does in this way, cooling efficiency can be raised. Further, the structure, dimensions, and number of the radiator 2 are optimally designed according to the degree of cooling. Furthermore, forced cooling may be performed using an oil feed pump having a life much longer than that of the cooling fan used in the conventional example.
[0024]
The semiconductor element 5 used in each of the above embodiments is called an IGBT, and is modularized so that the inside thereof and the metal heat dissipating part are electrically insulated. Even if the semiconductor element 5 is directly attached to the heat absorbing portion 6e of the element radiator 6 which is in conduction with the tank 1 or 1a, 1b, no problem occurs.
[0025]
The semiconductor element 5 is not limited to the IGBT, and an element that is not electrically insulated from the inside may be used. In this case, the upper oil passage pipe and the lower oil passage pipes 10, 11, 12, 13 are used. Can be made insulative.
[0026]
【The invention's effect】
As described above, according to the present invention, a complicated operation at the time of a failure or inspection of a semiconductor element is not required, and the enlargement of the apparatus can be prevented and the cost can be prevented. Furthermore, a cooling fan can be made unnecessary without reducing the cooling of the semiconductor element. Further, since no cooling fan is used, the inspection work for the cooling fan becomes unnecessary, and the life can be extended even when installed outdoors.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a power converter according to the present invention.
FIG. 2 is a schematic configuration diagram of an element heat radiator applied to the present invention.
FIG. 3 is a longitudinal sectional view showing another embodiment of the power conversion device according to the present invention.
FIG. 4 is a schematic configuration diagram of another element heat radiator applied to the present invention.
FIG. 5 is a longitudinal sectional view showing a conventional power converter.
FIG. 6 is a longitudinal sectional view showing another example of a conventional power converter.
[Explanation of symbols]
1, 1a, 1b Tank 3 Insulating oil 4a Input transformer body 4b Output transformer body 5 Semiconductor element 6 Element radiator 6c, 6d Oil passage 10, 12 Upper oil passage pipe 11, 13 Lower oil passage pipe

Claims (1)

入力用変圧器本体と出力用変圧器本体と半導体素子とを具備し、前記半導体素子を素子用放熱器に装着した電力変換装置において、
前記入力用変圧器本体と出力用変圧器本体とが絶縁油を充填したタンクに収容され、
前記素子用放熱器を前記タンク外に配置すると共に、前記素子用放熱器に油道を設け、 前記タンクの上部及び下部と前記油道とをそれぞれ接続する上部通油管及び下部通油管を配設し
前記タンクの側壁外部に取付けられ、前記素子用放熱器を収容すると共に、前記半導体素子の故障時または点検時に開閉される扉を有するカバーを設けた電力変換装置。
In a power conversion device comprising an input transformer body, an output transformer body, and a semiconductor element, and mounting the semiconductor element on an element radiator,
The input transformer body and the output transformer body are housed in a tank filled with insulating oil,
The element radiator is disposed outside the tank, and an oil passage is provided in the element radiator, and an upper oil passage pipe and a lower oil passage pipe are provided to connect the upper and lower parts of the tank and the oil passage, respectively. and,
A power converter provided with a cover that is attached to the outside of the side wall of the tank, accommodates the element radiator, and has a door that is opened and closed when the semiconductor element fails or is inspected .
JP24129696A 1996-08-23 1996-08-23 Power converter Expired - Lifetime JP3735165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24129696A JP3735165B2 (en) 1996-08-23 1996-08-23 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24129696A JP3735165B2 (en) 1996-08-23 1996-08-23 Power converter

Publications (2)

Publication Number Publication Date
JPH1066342A JPH1066342A (en) 1998-03-06
JP3735165B2 true JP3735165B2 (en) 2006-01-18

Family

ID=17072173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24129696A Expired - Lifetime JP3735165B2 (en) 1996-08-23 1996-08-23 Power converter

Country Status (1)

Country Link
JP (1) JP3735165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461003B2 (en) * 2004-11-29 2010-05-12 本田技研工業株式会社 Coil cooling structure
US20080307817A1 (en) * 2007-06-18 2008-12-18 General Electric Company System for integrated thermal management and method for the same

Also Published As

Publication number Publication date
JPH1066342A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP3594900B2 (en) Display integrated computer
KR920005988B1 (en) Inverter device
JP4980187B2 (en) Transformer panel
JP2008103576A (en) Motor controller
CN211017321U (en) Battery module
JP5783212B2 (en) Power supply
JP2007335518A (en) Container for storing electric apparatus for vehicle
JP4155234B2 (en) Arc welding control device
JP3367411B2 (en) Power converter
JP5926651B2 (en) DC-DC converter device and power converter device
JP4955986B2 (en) X-ray generator
JP2006174572A (en) Power converter
JP3735165B2 (en) Power converter
JP6187582B2 (en) Power converter
JPH09271178A (en) Power conversion equipment
JP3960189B2 (en) Power converter
JP4293269B2 (en) Cooler using refrigerant
CN111465258B (en) Thermally conductive insert for an electronic unit
JPH04364379A (en) Inverter
CN213185905U (en) Electric automobile dual control ware heat dissipation shell
JP2005317033A (en) Display device integrated computer, and cooling module used therein
JP6583513B2 (en) Power converter
JP2791270B2 (en) Semiconductor cooler
JP2002010624A (en) Power supply device
JP3244143U (en) power converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term