JP3733753B2 - Hydrogen purification equipment - Google Patents

Hydrogen purification equipment Download PDF

Info

Publication number
JP3733753B2
JP3733753B2 JP21368498A JP21368498A JP3733753B2 JP 3733753 B2 JP3733753 B2 JP 3733753B2 JP 21368498 A JP21368498 A JP 21368498A JP 21368498 A JP21368498 A JP 21368498A JP 3733753 B2 JP3733753 B2 JP 3733753B2
Authority
JP
Japan
Prior art keywords
catalyst body
reformed gas
carbon monoxide
temperature
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21368498A
Other languages
Japanese (ja)
Other versions
JP2000044204A (en
Inventor
清 田口
猛 富澤
邦弘 鵜飼
公康 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21368498A priority Critical patent/JP3733753B2/en
Priority to KR1019990029899A priority patent/KR100320767B1/en
Priority to DE69902077T priority patent/DE69902077T2/en
Priority to EP99306008A priority patent/EP0976679B1/en
Priority to CNB991118642A priority patent/CN1205115C/en
Publication of JP2000044204A publication Critical patent/JP2000044204A/en
Application granted granted Critical
Publication of JP3733753B2 publication Critical patent/JP3733753B2/en
Priority to US11/456,027 priority patent/US7674445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池等の燃料に用いる水素を主成分とし、二酸化炭素と微量の一酸化炭素を含有する改質ガス中の一酸化炭素除去する水素精製装置に関する。
【0002】
【従来の技術】
燃料電池は水素源として、炭化水素もしくはアルコールの改質によって得られる改質ガスを用いる。燃料電池のうち、100℃以下の低温で動作する固体高分子型燃料電池は、電極に用いる白金触媒が改質ガスに含まれる一酸化炭素によって被毒される。白金触媒が被毒されると、燃料電池の発電効率が著しく低下するため、一酸化炭素を100ppm以下、好ましくは10ppm以下に除去する必要がある。そこで改質ガスに酸素含有ガスを混合し、一酸化炭素を選択的に酸化する触媒を用い、大過剰の水素中に含まれる微量の一酸化炭素を除去する方法がとられる。一酸化炭素を効率よく除去するためには、触媒を最適温度に保持する必要があるが、改質ガスは一酸化炭素選択酸化反応の最適温度よりも高温であるため、通常、一酸化炭素を選択酸化する触媒に供給する前に冷却し、最適温度に調節する必要があった。
【0003】
【発明が解決しようとする課題】
改質ガス中の一酸化炭素を選択酸化する反応では、酸素量を一酸化炭素量と同じか数倍程度とする。このとき、改質ガス中に多量に存在する水素の酸化に、酸素が消費されてしまうと、酸素不足の分だけ一酸化炭素が反応せずに排出される。このとき、反応温度が低温になるほど一酸化炭素の酸化に使用される酸素の割合は高くなる。しかし、一酸化炭素の酸化が可能な触媒活性化温度以下になると、一酸化炭素が反応せずに排出される。そこで、一酸化炭素が反応し、かつ水素の反応があまり起こらない温度領域に触媒温度を制御する必要がある。
【0004】
最も一酸化炭素を効率よく酸化できる温度は、一酸化炭素の反応が起こる低温限界の温度である。しかし、一酸化炭素の選択酸化触媒の温度制御を、供給する改質ガスもしくは触媒体の冷却のみでに制御した場合、わずかに温度が低下しただけで、膨大な一酸化炭素が排出される。このため、改質ガスの流量や触媒体の温度変動を考慮して、低温限界よりも数℃から数十℃程度高い温度領域で制御する。これにより従来の方法では、一酸化炭素酸化の選択率が低いものであった。
本発明は、このような水素精製装置の課題を考慮し、一酸化炭素を高い選択率で酸化除去でき、かつ温度制御が容易で安定に動作する水素精製装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
のため、本発明の水素精製装置は、水素ガスを主成分とし二酸化炭素と一酸化炭素とを含有する改質ガスの供給部と、前記改質ガスの供給部より供給される改質ガスに酸素含有ガスを供給する酸素含有ガスの供給部と、前記改質ガスの流れ方向に対して前記改質ガスの供給部と前記酸素含有ガスの供給部との下流側に触媒体を有する反応室と、前記改質ガスの流れ方向に対して前記触媒体の上流側に設けられ前記触媒体もしくは前記改質ガスを冷却する冷却手段と、前記反応室の外周部に前記冷却手段を通過する前の改質ガスの流路とを備え、前記改質ガスの流路を流れる前記改質ガスが、前記反応室の壁を介して前記触媒体の下流部を加熱することを特徴とする水素精製装置。
【0016】
【実施の形態】
上記の課題を解決するために、本発明の水素精製装置では、改質ガスの流れ方向に対して触媒体の上流側に触媒体もしくは改質ガスを冷却する手段を備えるとともに、触媒体の下流部を加熱する手段を有することを特徴としている。また、触媒体下流部の加熱に一酸化炭素と水素の酸化熱、もしくは冷却前の改質ガスを加熱に用いることを特徴としている。
【0017】
本発明によると、一酸化炭素選択酸化触媒を安定して動作させることができるとともに、温度制御が著しく容易になる。
【0018】
以下、本発明の実施の形態及び参考の形態について、図面を参照して説明する。
参考の形態1)
図1は本発明の第1の参考の形態である水素精製装置の構成略図である。図1において、1は触媒体、2は改質ガス入口、3は空気供給管、4は空気流量制御弁、5は冷却水供給管、6は冷却水量制御弁、7は熱交換器、8は加熱用ヒーター、9は反応室、10は改質ガス出口である。
【0019】
次に本参考の形態の動作と特性について説明する。燃料を水蒸気改質した場合、一酸化炭素濃度は反応温度が高くなるほど上昇する。メタノールの様に300℃以下で改質する場合には、一酸化炭素濃度は1%程度となるため、改質ガスを直接改質ガス入口2から導入する。一方、反応に600℃程度の温度を要するメタン、もしくは天然ガスの改質ガスは、水性ガスシフト反応の平衡から一酸化炭素を10%以上も含んでいるため、変成触媒により水蒸気と反応させ二酸化炭素と水素に転換し、このように一酸化炭素濃度を1%以下に低減してから、改質ガス入口2から導入する。
【0020】
改質ガス中の一酸化炭素を酸化するためには、空気供給管3より空気を導入し、触媒体1で反応させる。空気量が少ないと一酸化炭素が充分反応せず、逆に空気量が多いと水素の消費量が多くなるため、体積比で一酸化炭素の1〜3倍の酸素が含まれるように、空気流量制御弁4で供給する空気量を調節する。空気を混合した改質ガスは熱交換器7で触媒の活性化温度すなわち一酸化炭素への触媒活性が急減し始める温度、もしくはそれ以下まで冷却され、触媒体1に供給される。
【0021】
ここで、触媒体1には、白金をアルミナに担持したものをセラミックハニカムにコーティングして用いており、図2の様な特性を示す。すなわち、改質ガス中の一酸化炭素は水素よりも低温で反応するため、触媒温度を低温にするほど排出される一酸化炭素濃度が低下する。さらに温度を低下させると、触媒の活性化温度を下回るため、一酸化炭素も反応しなくなり、排出される一酸化炭素濃度は急増する。
【0022】
触媒体1の上流部を熱交換器7の冷却作用で触媒の活性化温度付近、もしくは活性化温度以下になるようにしており、下流部に行くに従って温度が上昇するように触媒体1の温度を制御してあるため、触媒体1上に、一酸化炭素が最も効率よく反応する温度の帯域を作ることができる。こうして、固体高分子型燃料電池の特性を低下させない濃度である数ppmレベルまで改質ガス中の一酸化炭素を低減することができる。このとき、改質ガスや冷却装置に多少の温度変動があっても一酸化炭素が最も効率よく反応する温度の帯域の位置が上流側もしくは下流側に移動するだけで、安定に一酸化炭素を除去することができる。
【0023】
参考の形態では、酸素含有ガスとして空気を用いたが、純酸素を用いると改質ガスの水素濃度の低下が窒素を含まない分だけ緩和され、後に接続する燃料電池の発電効率は上昇する。しかしながら、通常空気を用いた方がコスト的には有利である。
【0024】
また、本例では触媒体1の加熱に電気ヒーターを用いたが、一酸化炭素、及び水素の酸化熱を用いて、触媒体1の下流部の加熱手段としてもよい。触媒体1を通過する改質ガスの流量、空気の割合を調節し、一酸化炭素と水素の酸化熱を用いることによって、電気ヒーターなどを用いることなく、もしくは最小限のヒーター加熱で、触媒体1の温度分布を最適にすることができる。
【0025】
また、空気量に比例して、CO、水素の酸化熱が増えるので、空気量を調節することで、触媒体1の温度を適切な状態に保つこともでき、この方法で、より安定に触媒体1を機能させることができる。
【0026】
また、触媒体1の担体基材にコージェライトハニカムを用いたが、金属基材を用いてもよい。担体基材に金属基材を用いることによって、反応熱を速やかに逃がすことができるため、一酸化炭素と水素の酸化熱による温度上昇の抑制が可能である。従って、触媒体1の単位体積あたりの改質ガス処理量を上げることができるとともに、負荷変動による反応熱増減の影響も緩和され、安定な特性が得られる。
【0027】
(実施の形態
本発明の第の実施の形態について説明する。本例の水素精製装置は図3に示すように、管状の反応室18の内部にハニカム形状の触媒体11を設置し、反応室18の外側に改質ガスの流路を設け、触媒体11の下流部と接する改質ガス流路の壁面には熱交換用フィン20が設けてあるものであり、作用効果の大部分は参考の形態1と類似である。したがって異なる点を中心に本例を説明する。
【0028】
図3は本例の断面構成図である。触媒体11の下流部の周囲側壁に近接して熱交換用フィン20を設けることにより、触媒体11の下流部を加熱することができるとともに、改質ガスを冷却でき、熱交換器17での冷却が容易になる。また、改質ガスの流路が触媒体11を保温するため、触媒体11の中心部と外周部の温度分布が均一化され、効率よく一酸化炭素の酸化を行うことができる。また、触媒体11を通過する改質ガスと、熱交換器17を通過する前の改質ガスの流れが対向するように構成しているため、高温の改質ガスが触媒体1の下流部と熱交換し、冷却された改質ガスが触媒体上流部の側面を通過するため、触媒体1の上流部温度を低く、下流部温度を高くでき、一酸化炭素の選択酸化に対して最適な温度分布にすることができる。
【0029】
本例では、反応室18が1本である例を示したが、反応室18を複数設けることもできる。反応室18を複数設けることによって、改質ガスとの熱交換の効率を高めることができ、また、大容量化にも対応できるものである。
【0030】
参考の形態
本発明の第参考の形態である水素精製装置について説明する。本例は図4に示すように、管状の改質ガス流路の外周に反応室28を設け、反応室28の内部にハニカム形状の触媒体21を設置し、触媒体21の下流部と接する改質ガス流路の壁面には熱交換用フィン30が設けてあるものであり、作用効果の大部分は実施の形態と類似である。したがって異なる点を中心に本例を説明する。
【0031】
図4は本例の水素精製装置の断面構成図である。触媒体21の下流部と近接する改質ガス流路の壁面に熱交換用フィン30を設けることにより、触媒体21の下流部を加熱することができるとともに、改質ガスを冷却でき、熱交換器27での冷却が容易になる。また、改質ガスの流量を大きくする場合など、一酸化炭素と水素の酸化熱による温度上昇が大きい場合には、時として熱交換器による冷却だけでは不足する場合がある。反応室38の外周部から放熱させる構成とすることにより、触媒体21の温度上昇を抑制することができるため、改質ガスの流量を増加させて負荷を大きくした場合にも対応できるものである。
【0032】
参考の形態
本発明の第参考の形態について説明する。本例の水素精製装置は図5に示すように、反応室40の内部にハニカム形状の第一触媒体31と、第一触媒体31の下流側に第二触媒体32を設置するものであり、作用効果の大部分は参考の形態1と類似である。したがって異なる点を中心に本参考の形態を説明する。
【0033】
図5は本参考例の水素精製装置の断面構成図である。一酸化炭素選択触媒は触媒に含まれる貴金属種、担体の種類などによって機能する温度領域が異なる。第一触媒体31には高温用触媒を用い、第二触媒体32には低温用触媒を用いる。具体的には第一触媒体31に白金をゼオライトに担持したものを用い、第二触媒体32に白金をアルミナに担持したものを用いた。
【0034】
図6に示したように、第一触媒体31に用いている高温用触媒は、高温では一酸化炭素を高選択率で酸化し、低温では反応せず一酸化炭素とともに未反応の酸素を通過させる。したがって、高温では第二触媒体32に酸素が供給されないため、全く反応に関与しない。一方、低温では一酸化炭素と酸素が第一触媒体31を通過するため、第二触媒体32が主に機能し一酸化炭素を除去することができる。また、第二触媒体32での反応熱によって、第一触媒体31の下流部を加熱でき、第一触媒体31の温度分布を最適な状態にすることができる。このように、異なった温度領域で機能する複数の触媒体を配列することにより、広い温度範囲で触媒体を機能させることができるものである。
【0035】
本例では、2個のハニカム形状の触媒体を配列した例を示したが、3個以上の触媒体を配列してもよい。数多くの触媒体を配列することにより、広い温度範囲で効率よく一酸化炭素を除去することができる。
【0036】
また、第一触媒体31と第二触媒体32を分離せず、一体化した構成にしてもよい。一体構成することにより、特にペレット状の触媒体を用いたときに、装置への組み込みが容易になる。
【0037】
また、第二触媒体32に一酸化炭素を水素と反応させてメタン化する触媒を用いてもよい。第一触媒体31で酸素をすべて消費する温度に制御した場合、残留した一酸化炭素は、酸素が無いため第二触媒体32で酸化することはできない。第二触媒体32に一酸化炭素をメタン化する触媒を用いることにより、一酸化炭素を水素と反応させてメタンに転換することができる。また、一酸化炭素のメタン化反応は、一酸化炭素選択酸化反応よりも高温で進行しやすいため、本参考例のように第二触媒体の下流部に加熱用ヒーター39を設置することが好ましい。
【0038】
参考の形態
本発明の第参考の形態について説明する。本例の水素精製装置は図7に示すように、反応室62の内部にハニカム形状の第一触媒体51と、第一触媒体51の下流側に第二触媒体52を設置し、第一触媒体51と第二触媒体52の間に第二空気供給管55を設置したものであり、作用効果の大部分は参考の形態1と類似である。したがって異なる点を中心に本参考例を説明する。
【0039】
図7は本例の水素精製装置の断面構成図である。第一触媒体51には低温用触媒を用い、第二触媒体52には高温用触媒を用いる。第一触媒体51で反応による温度上昇が大きい場合、時として一酸化炭素酸化の選択性が低下する。このため、第二触媒体52と第二空気供給管55を設け、第一空気供給管54からの第一触媒体51への空気供給を減らし、第一触媒体51での温度上昇を抑制する。これによって、効率よく一酸化炭素を除去することができる。
【0040】
大部分の一酸化炭素は第一触媒体51で除去できる。しかし、空気供給量を減らすことによって、排出される一酸化炭素濃度が、空気供給量を減らさない場合に比べて多少増加する。このため、第二触媒体52に残った一酸化炭素に対応する量の空気を供給し、残りの一酸化炭素を除去する。第一触媒体51で温度上昇が抑制された分だけ一酸化炭素酸化の選択率は向上するため、第一触媒体51と第二触媒体52に対する必要な空気の総量は減少する。また、第二触媒体52への酸素含有ガスの供給量が少なく、酸化熱による温度上昇が小さいため、第二触媒体52を最適温度に保つには、加熱用ヒーター61で加熱する。このようにして、効率よく安定に一酸化炭素を除去することができる。
【0041】
本例では、第一触媒体51に低温用触媒を用い、第二触媒体52に高温用触媒を用いたが、逆に第一触媒体51に高温用触媒を用い、第二触媒体52に低温用触媒を用いてもよい。第一触媒体51に高温用触媒を用いることによって、熱交換器60における冷却負荷を減らすことができる。また、第二触媒体52に低温用触媒体を用いることによって、第一触媒体51から第二触媒体52の間での放熱による温度低下が大きい場合でも、一酸化炭素を効率よく除去することができる。
【0042】
以上、本発明について、メタン改質ガス、及びメタノール改質ガスを用いた水素精製装置に実施した例で説明したが、本発明はこれに限定されるものではないことは勿論である。すなわち、以下のような場合も本発明に含まれる。
【0043】
本実施の形態では、プロパン、ブタンなど、他の気体系炭化水素燃料でも、ガソリン、灯油などの液体系炭化水素燃料の改質ガスでもよい。
【0044】
また、触媒体には、主として白金をアルミナに担持したものを触媒として用いたが、一酸化炭素に対して選択的に酸化反応を行うことができる触媒であれば、ロジウム、ルテニウムなど、他の貴金属や、これらを複合化させた触媒、またはペロブスカイト構造をもつ遷移金属複合酸化物などを用いてもかまわない。また、アルミナの代わりにシリカアルミナやゼオライトなどを用いてもかまわない。また、場合によっては一酸化炭素を選択的にメタン化する触媒を用いてもよい。
【0045】
また、触媒体1の形状はハニカム形状としたが、改質ガスが効率よく触媒に接触し、圧力損失があまり大きくならない形状であれば、球状でもペレット状のものでもよい。
【0046】
また、改質ガスの冷却には水を流通させて熱交換させる方法を用いたが、温度によって必要であれば沸点の高いエチレングリコールのようなオイル状物質、もしくはこれらの混合液を流通させてもかまわない。また、改質部へ供給する気体を用い、改質原料ガスの予熱に用いてもかまわない。
【0047】
【実施例】
参考例1)
白金を担持したアルミナを直径50mm、長さ100mmのコージェライトハニカムにコーティングして触媒体1を作製した。この触媒体1を図1に示す水素精製装置の反応室9の中に設置し、一酸化炭素1%、二酸化炭素を15%、水蒸気15%、残りが水素である改質ガスを、改質ガス入口2より、毎分10リットルの流量で導入した。空気供給管からは、毎分1リットルの空気を供給した。この空気を混合させた改質ガスを、中に水を流通させた熱交換器7で100℃まで低下させ、触媒体1で反応させた。触媒体1の下流側は加熱用ヒーター8を用いて、150℃となるように設定した。触媒体1の温度分布を測定すると、上流部から下流部にかけて、ほぼ直線的に温度が上昇していた。触媒体1通過後の改質ガス出口10から排出される改質ガスの組成をガスクロマトグラフィで測定したところ、一酸化炭素濃度は5ppmであった。また、熱交換器7の中を流れる水の流量を変え、改質ガス温度を90℃、80℃と変化させたところ、一酸化炭素濃度はそれぞれ6ppm、9ppmとなった。また、加熱ヒーター8の設定温度を変え、触媒体1下流部の温度を140℃、160℃にしたところ、一酸化炭素濃度はそれぞれ4ppm、9ppmとなった。
【0048】
(実施例
参考例1で作製した触媒体を図3に示す反応室18内に設置し、改質ガスを改質ガス入口12より導入した。改質ガス入口12での改質ガス温度を測定したところ、200℃であった。熱交換用フィン20を通じて加熱された触媒体11下流部の温度を測定したところ、150℃であった。熱交換器17で改質ガスを100℃まで低下させ、触媒体11で反応させたところ、一酸化炭素濃度は5ppmであった。
【0049】
参考
図4に示すように、直径100mm、長さ100mmのコージェライトハニカムの中心に直径80mmの穴をくりぬいたものに、実施例1と同じく触媒をコーティングし、触媒体21を作製した。熱交換用フィン30を通じて加熱された触媒体11下流部の温度を測定したところ、150℃であった。熱交換器27で改質ガスを100℃まで低下させ、触媒体21で反応させたところ、一酸化炭素濃度は4ppmであった。
【0050】
参考
白金を担持したモルデナイトを直径50mm、長さ50mmのコージェライトハニカムにコーティングして第一触媒体31、白金を担持したアルミナを直径50mm、長さ50mmのコージェライトハニカムにコーティングして第二触媒体32をそれぞれ作製した。この第一触媒体31、第二触媒体32をそれぞれ図5に示すように反応室40内に設置した。改質ガスは熱交換器38で140℃まで冷却し、第二触媒体32の下流部を160℃になるように加熱用ヒーター39で制御した。第一触媒体31の下流部の温度を測定すると150℃であった。改質ガス出口41の一酸化炭素濃度を測定したところ、1ppmであった。
【0051】
参考
白金を担持したモルデナイトを直径50mm、長さ50mmのコージェライトハニカムにコーティングして第一触媒体51、白金を担持したアルミナを直径50mm、長さ50mmのコージェライトハニカムにコーティングして第二触媒体52をそれぞれ作製した。この第一触媒体51、第二触媒体52をそれぞれ図7に示すように反応室62内に設置した。改質ガスは熱交換器60で150℃まで冷却し、第二触媒体52の下流部を130℃になるように加熱用ヒーター61で制御した。第一触媒体51の下流部の温度は測定すると140℃、第二触媒体上流部の温度は100℃であった。改質ガス出口63の一酸化炭素濃度を測定したところ、2ppmであった。
【0052】
(比較例1)
実施例1において、加熱ヒーター8を取り去り、同じく改質ガスを改質ガス入口2より導入した。熱交換器7によって改質ガス温度を100℃まで低下させ、触媒体1で反応させた。触媒体1の温度分布を測定したところ、上流部が100℃で下流に行くに従って直線的に温度が低下し、最下流部温度は90℃であった。触媒体1通過後の改質ガス出口10から排出される改質ガスの組成をガスクロマトグラフィで測定したところ、2000ppmであった。また、熱交換器7の中を流れる水の流量を変え、改質ガス温度を90℃、110℃、120℃と変化させたところ、一酸化炭素濃度はそれぞれ5000ppm、200ppm、500ppmとなった。
【0053】
(比較例2)
実施例5において、加熱用ヒーター61を取り外したところ、第一触媒体51の下流部の温度は測定すると140℃、第二触媒体52上流部の温度は100℃、第二触媒体52下流部の温度は90℃であった。改質ガス出口63の一酸化炭素濃度を測定したところ、500ppmであった。
【0054】
【発明の効果】
以上述べたところから明らかなように、本発明によると、一酸化炭素選択酸化触媒を安定して動作させることができるとともに、温度制御が著しく容易になる。
【図面の簡単な説明】
【図1】 本発明の第1の参考の形態である水素精製装置の断面構成を示した図
【図2】 本発明の第1の参考の形態である水素精製装置における一酸化炭素選択酸化触媒の作動温度と触媒通過後の一酸化炭素濃度の関係を示した図
【図3】 本発明の第の実施の形態である水素精製装置の断面構成を示した図
【図4】 本発明の第参考の形態である水素精製装置の断面構成を示した図
【図5】 本発明の第参考の形態である水素精製装置の断面構成を示した図
【図6】 本発明の第参考の形態である水素精製装置における高温用触媒と低温用触媒の作動特性を示した図
【図7】 本発明の第参考の形態である水素精製装置の断面構成を示した図
【符号の説明】
1,11,21 触媒体
2,12,22,33,53 改質ガス入口
3,13,23,34 空気供給管
4,14,24,35 空気流量制御弁
5,15,25,36,58 冷却水供給管
6,16,26,37,59 冷却水量制御弁
7,17,27,38,60 熱交換器
8,39,61 加熱用ヒーター
9,18,28,40,62 反応室
10,19,29,41,63 改質ガス出口
20,30 熱交換用フィン
31,51 第一触媒体
32,52 第二触媒体
54 第一空気供給管
55 第二空気供給管
56 空気流量第一制御弁
57 空気流量第二制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen purifier for removing carbon monoxide in a reformed gas containing hydrogen used as a fuel for fuel cells or the like as a main component and containing carbon dioxide and a small amount of carbon monoxide.
[0002]
[Prior art]
Fuel cells use a reformed gas obtained by reforming hydrocarbons or alcohols as a hydrogen source. Among fuel cells, a polymer electrolyte fuel cell that operates at a low temperature of 100 ° C. or lower is poisoned by carbon monoxide in which the platinum catalyst used for the electrode is contained in the reformed gas. When the platinum catalyst is poisoned, the power generation efficiency of the fuel cell is remarkably lowered. Therefore, it is necessary to remove carbon monoxide to 100 ppm or less, preferably 10 ppm or less. Therefore, a method is used in which a small amount of carbon monoxide contained in a large excess of hydrogen is removed using a catalyst that selectively oxidizes carbon monoxide by mixing an oxygen-containing gas with the reformed gas. In order to remove carbon monoxide efficiently, it is necessary to keep the catalyst at the optimum temperature. However, since the reformed gas is higher than the optimum temperature for the carbon monoxide selective oxidation reaction, carbon monoxide is usually removed. Before feeding to the catalyst to be selectively oxidized, it had to be cooled and adjusted to an optimum temperature.
[0003]
[Problems to be solved by the invention]
In the reaction of selectively oxidizing carbon monoxide in the reformed gas, the amount of oxygen is made the same as the carbon monoxide amount or about several times. At this time, if oxygen is consumed in the oxidation of hydrogen present in a large amount in the reformed gas, carbon monoxide is discharged without reacting by the amount of oxygen shortage. At this time, the lower the reaction temperature, the higher the proportion of oxygen used for the oxidation of carbon monoxide. However, when the temperature is below the catalyst activation temperature at which carbon monoxide can be oxidized, carbon monoxide is discharged without reacting. Therefore, it is necessary to control the catalyst temperature within a temperature range where carbon monoxide reacts and hydrogen does not react so much.
[0004]
The temperature at which carbon monoxide can be most efficiently oxidized is the low temperature limit temperature at which the reaction of carbon monoxide occurs. However, when the temperature control of the selective oxidation catalyst for carbon monoxide is controlled only by cooling the supplied reformed gas or catalyst body, enormous amounts of carbon monoxide are discharged with only a slight decrease in temperature. For this reason, in consideration of the flow rate of the reformed gas and the temperature variation of the catalyst body, the temperature is controlled in a temperature range that is higher by about several degrees C. to several tens of degrees C. Thereby, in the conventional method, the selectivity of carbon monoxide oxidation was low.
An object of the present invention is to provide a hydrogen refining apparatus that can oxidize and remove carbon monoxide with high selectivity and that is easy to control temperature and operates stably.
[0005]
[Means for Solving the Problems]
For this reason, the hydrogen purification apparatus of the present invention, the reformed gas supplied and the supply of the reformed gas containing carbon dioxide and carbon monoxide as main components hydrogen gas, the supply of the reformed gas oxygen supply of oxygen-containing gas supplying containing gas, reaction with the medium touch on the downstream side of the supply portion of the oxygen containing gas and the supply of the reformed gas to the flow direction of the reformed gas to and the chamber, wherein provided for the flow direction of the reformed gas to the upstream side of the catalyst body, and cooling means for cooling said catalyst body or said reformed gas, the cooling means on the outer periphery of the reaction chamber and a flow path in front of the reformed gas passing through the reformed gas flowing in the flow path of the reformed gas, and Turkey to heat the downstream portion of the catalyst body through the walls of the reaction chamber Characteristic hydrogen purifier.
[0016]
Embodiment
In order to solve the above-described problems, the hydrogen purification apparatus of the present invention includes means for cooling the catalyst body or the reformed gas upstream of the catalyst body with respect to the flow direction of the reformed gas, and downstream of the catalyst body. It has the means to heat a part. Further, it is characterized in that the heat of oxidation of carbon monoxide and hydrogen or the reformed gas before cooling is used for heating the downstream portion of the catalyst body.
[0017]
According to the present invention, the carbon monoxide selective oxidation catalyst can be stably operated, and temperature control is remarkably facilitated.
[0018]
Embodiments and reference embodiments of the present invention will be described below with reference to the drawings.
( Reference form 1)
Figure 1 is a block schematic diagram of a first hydrogen purifier is a reference embodiment of the present invention. In FIG. 1, 1 is a catalyst body, 2 is a reformed gas inlet, 3 is an air supply pipe, 4 is an air flow control valve, 5 is a cooling water supply pipe, 6 is a cooling water amount control valve, 7 is a heat exchanger, 8 Is a heater, 9 is a reaction chamber, and 10 is a reformed gas outlet.
[0019]
Next will be described the operation and characteristics of the present reference embodiment. When the fuel is steam reformed, the carbon monoxide concentration increases as the reaction temperature increases. When reforming at 300 ° C. or lower like methanol, the carbon monoxide concentration is about 1%, so the reformed gas is introduced directly from the reformed gas inlet 2. On the other hand, methane, which requires a temperature of about 600 ° C. or a natural gas reformed gas, contains 10% or more of carbon monoxide due to the equilibrium of the water gas shift reaction. The carbon monoxide concentration is reduced to 1% or less in this way, and then introduced from the reformed gas inlet 2.
[0020]
In order to oxidize carbon monoxide in the reformed gas, air is introduced from the air supply pipe 3 and reacted with the catalyst body 1. If the amount of air is small, carbon monoxide does not react sufficiently, and conversely, if the amount of air is large, the amount of hydrogen consumed increases, so that the air contains 1 to 3 times as much oxygen as carbon monoxide by volume. The amount of air supplied by the flow control valve 4 is adjusted. The reformed gas mixed with air is cooled by the heat exchanger 7 to the activation temperature of the catalyst, that is, the temperature at which the catalytic activity toward carbon monoxide begins to decrease rapidly, or lower, and is supplied to the catalyst body 1.
[0021]
Here, the catalyst body 1 is formed by coating a ceramic honeycomb with platinum supported on alumina, and exhibits the characteristics as shown in FIG. That is, since carbon monoxide in the reformed gas reacts at a lower temperature than hydrogen, the concentration of discharged carbon monoxide decreases as the catalyst temperature is lowered. When the temperature is further lowered, the carbon monoxide does not react because the temperature falls below the activation temperature of the catalyst, and the concentration of carbon monoxide discharged increases rapidly.
[0022]
The upstream portion of the catalyst body 1 is set to be near or below the activation temperature of the catalyst by the cooling action of the heat exchanger 7, and the temperature of the catalyst body 1 is increased so that the temperature increases toward the downstream portion. Therefore, a temperature zone where carbon monoxide reacts most efficiently can be formed on the catalyst body 1. Thus, carbon monoxide in the reformed gas can be reduced to a level of several ppm, which is a concentration that does not deteriorate the characteristics of the polymer electrolyte fuel cell. At this time, even if there is some temperature fluctuation in the reformed gas or the cooling device, the position of the temperature zone where carbon monoxide reacts most efficiently moves to the upstream side or the downstream side, so that carbon monoxide can be stably added. Can be removed.
[0023]
In this reference embodiment, although air is used as the oxygen-containing gas, reduction of the hydrogen concentration of used when the reformed gas of pure oxygen is reduced by the amount of nitrogen-free, power generation efficiency of the fuel cell to be connected to a later raised . However, the use of normal air is advantageous in terms of cost.
[0024]
In this example, the electric heater is used to heat the catalyst body 1, but the heat of oxidation of carbon monoxide and hydrogen may be used as a heating means for the downstream portion of the catalyst body 1. By adjusting the flow rate of reformed gas passing through the catalyst body 1 and the ratio of air and using the oxidation heat of carbon monoxide and hydrogen, the catalyst body can be used without using an electric heater or the like or with minimal heater heating. The temperature distribution of 1 can be optimized.
[0025]
Further, since the heat of oxidation of CO and hydrogen increases in proportion to the amount of air, the temperature of the catalyst body 1 can be maintained at an appropriate state by adjusting the amount of air. The medium 1 can function.
[0026]
Further, although the cordierite honeycomb is used as the carrier substrate of the catalyst body 1, a metal substrate may be used. By using a metal base material for the carrier base material, the heat of reaction can be quickly released, so that the temperature rise due to the oxidation heat of carbon monoxide and hydrogen can be suppressed. Therefore, the reformed gas throughput per unit volume of the catalyst body 1 can be increased, and the influence of the reaction heat increase / decrease due to the load fluctuation is mitigated, and stable characteristics can be obtained.
[0027]
(Embodiment 1 )
A description will be given of a first embodiment of the present invention. As shown in FIG. 3, the hydrogen purification apparatus of this example has a honeycomb-shaped catalyst body 11 installed inside a tubular reaction chamber 18, a reformed gas flow path is provided outside the reaction chamber 18, and the catalyst body 11 the wall of the reformed gas flow channel in contact with the downstream portion of are those heat exchange fin 20 is provided, most of the effects and advantages are similar to embodiment 1 of reference. Therefore, this example will be described focusing on the different points.
[0028]
FIG. 3 is a cross-sectional configuration diagram of this example. By providing the heat exchange fins 20 in the vicinity of the peripheral side wall of the downstream portion of the catalyst body 11, the downstream portion of the catalyst body 11 can be heated and the reformed gas can be cooled. Cooling is easy. Further, since the reformed gas flow path keeps the catalyst body 11 warm, the temperature distribution in the central portion and the outer peripheral portion of the catalyst body 11 is made uniform, and carbon monoxide can be oxidized efficiently. In addition, since the reformed gas passing through the catalyst body 11 and the reformed gas flow before passing through the heat exchanger 17 are opposed to each other, the high-temperature reformed gas is downstream of the catalyst body 1. Since the cooled reformed gas passes through the side surface of the upstream part of the catalyst body, the temperature of the upstream part of the catalyst body 1 can be lowered and the downstream part temperature can be raised, which is optimal for selective oxidation of carbon monoxide. Temperature distribution can be achieved.
[0029]
In this example, an example in which there is one reaction chamber 18 is shown, but a plurality of reaction chambers 18 may be provided. By providing a plurality of reaction chambers 18, the efficiency of heat exchange with the reformed gas can be increased, and the capacity can be increased.
[0030]
( Reference form 2 )
A second hydrogen purifier in the form of a reference of the present invention will be described. In this example, as shown in FIG. 4, a reaction chamber 28 is provided on the outer periphery of the tubular reformed gas flow path, a honeycomb-shaped catalyst body 21 is installed inside the reaction chamber 28, and is in contact with the downstream portion of the catalyst body 21. A heat exchange fin 30 is provided on the wall surface of the reformed gas flow path, and most of the operational effects are similar to those of the first embodiment. Therefore, this example will be described focusing on the different points.
[0031]
FIG. 4 is a cross-sectional configuration diagram of the hydrogen purification apparatus of this example. By providing the heat exchange fins 30 on the wall of the reformed gas flow path adjacent to the downstream portion of the catalyst body 21, the downstream portion of the catalyst body 21 can be heated, the reformed gas can be cooled, and heat exchange can be performed. Cooling in the vessel 27 is facilitated. In addition, when the temperature rise due to the oxidation heat of carbon monoxide and hydrogen is large, such as when the flow rate of the reformed gas is increased, sometimes cooling by the heat exchanger alone may be insufficient. By adopting a structure in which heat is radiated from the outer peripheral portion of the reaction chamber 38, the temperature rise of the catalyst body 21 can be suppressed, so that it is possible to cope with an increase in the load by increasing the flow rate of the reformed gas. .
[0032]
( Reference form 3 )
A third reference embodiment of the present invention will be described. As shown in FIG. 5, the hydrogen purification apparatus of this example is configured to install a honeycomb-shaped first catalyst body 31 inside a reaction chamber 40 and a second catalyst body 32 downstream of the first catalyst body 31. Most of the functions and effects are similar to those of Reference Form 1. Therefore, the embodiment of this reference will be described focusing on the different points.
[0033]
FIG. 5 is a cross-sectional configuration diagram of the hydrogen purifier of this reference example. The temperature range in which the carbon monoxide selective catalyst functions varies depending on the type of noble metal contained in the catalyst, the type of support, and the like. A high temperature catalyst is used for the first catalyst body 31, and a low temperature catalyst is used for the second catalyst body 32. Specifically, the first catalyst body 31 using platinum supported on zeolite was used, and the second catalyst body 32 using platinum supported on alumina was used.
[0034]
As shown in FIG. 6, the high temperature catalyst used for the first catalyst body 31 oxidizes carbon monoxide with high selectivity at high temperatures, and does not react at low temperatures and passes unreacted oxygen together with carbon monoxide. Let Therefore, since oxygen is not supplied to the second catalyst body 32 at a high temperature, it does not participate in the reaction at all. On the other hand, since carbon monoxide and oxygen pass through the first catalyst body 31 at a low temperature, the second catalyst body 32 mainly functions and can remove carbon monoxide. Moreover, the downstream part of the 1st catalyst body 31 can be heated with the reaction heat in the 2nd catalyst body 32, and the temperature distribution of the 1st catalyst body 31 can be made into an optimal state. Thus, by arranging a plurality of catalyst bodies that function in different temperature ranges, the catalyst bodies can be made to function in a wide temperature range.
[0035]
In this example, an example in which two honeycomb-shaped catalyst bodies are arranged is shown, but three or more catalyst bodies may be arranged. By arranging a large number of catalyst bodies, carbon monoxide can be efficiently removed over a wide temperature range.
[0036]
Alternatively, the first catalyst body 31 and the second catalyst body 32 may be integrated without being separated. The integral configuration facilitates the incorporation into the apparatus, particularly when a pellet-shaped catalyst body is used.
[0037]
Alternatively, the second catalyst body 32 may be a catalyst that reacts carbon monoxide with hydrogen to methanate. When the first catalyst body 31 is controlled to a temperature at which all oxygen is consumed, the remaining carbon monoxide cannot be oxidized by the second catalyst body 32 because there is no oxygen. By using a catalyst for methanating carbon monoxide as the second catalyst body 32, carbon monoxide can be reacted with hydrogen to be converted to methane. Further, since the methanation reaction of carbon monoxide is more likely to proceed at a higher temperature than the carbon monoxide selective oxidation reaction, it is preferable to install a heater 39 in the downstream portion of the second catalyst body as in this reference example. .
[0038]
( Reference form 4 )
A fourth reference embodiment of the present invention will be described. As shown in FIG. 7, the hydrogen purification apparatus of this example includes a honeycomb-shaped first catalyst body 51 inside a reaction chamber 62 and a second catalyst body 52 on the downstream side of the first catalyst body 51. The second air supply pipe 55 is installed between the catalyst body 51 and the second catalyst body 52, and most of the operational effects are similar to those of the reference embodiment 1. Therefore, this reference example will be described focusing on the differences.
[0039]
FIG. 7 is a cross-sectional configuration diagram of the hydrogen purifier of this example. A low temperature catalyst is used for the first catalyst body 51, and a high temperature catalyst is used for the second catalyst body 52. When the temperature rise due to the reaction is large in the first catalyst body 51, the selectivity of carbon monoxide oxidation sometimes decreases. For this reason, the 2nd catalyst body 52 and the 2nd air supply pipe | tube 55 are provided, the air supply to the 1st catalyst body 51 from the 1st air supply pipe | tube 54 is reduced, and the temperature rise in the 1st catalyst body 51 is suppressed. . Thereby, carbon monoxide can be efficiently removed.
[0040]
Most of the carbon monoxide can be removed by the first catalyst body 51. However, by reducing the air supply amount, the concentration of carbon monoxide discharged increases somewhat compared to the case where the air supply amount is not reduced. For this reason, an amount of air corresponding to the carbon monoxide remaining in the second catalyst body 52 is supplied, and the remaining carbon monoxide is removed. Since the selectivity of carbon monoxide oxidation is improved by the amount by which the temperature increase is suppressed by the first catalyst body 51, the total amount of air required for the first catalyst body 51 and the second catalyst body 52 decreases. In addition, since the supply amount of the oxygen-containing gas to the second catalyst body 52 is small and the temperature rise due to oxidation heat is small, the heater 61 for heating is used to keep the second catalyst body 52 at the optimum temperature. In this way, carbon monoxide can be removed efficiently and stably.
[0041]
In this example, a low temperature catalyst is used for the first catalyst body 51 and a high temperature catalyst is used for the second catalyst body 52, but conversely, a high temperature catalyst is used for the first catalyst body 51, A low temperature catalyst may be used. By using the high temperature catalyst for the first catalyst body 51, the cooling load in the heat exchanger 60 can be reduced. Further, by using a low-temperature catalyst body for the second catalyst body 52, carbon monoxide can be efficiently removed even when the temperature drop due to heat radiation between the first catalyst body 51 and the second catalyst body 52 is large. Can do.
[0042]
As mentioned above, although this invention was demonstrated in the example implemented to the hydrogen purification apparatus using methane reformed gas and methanol reformed gas, of course, this invention is not limited to this. That is, the following cases are also included in the present invention.
[0043]
In the present embodiment, other gaseous hydrocarbon fuels such as propane and butane, or reformed gas of liquid hydrocarbon fuels such as gasoline and kerosene may be used.
[0044]
In addition, as the catalyst body, mainly platinum supported on alumina was used as a catalyst, but other catalysts such as rhodium and ruthenium can be used as long as they can selectively oxidize carbon monoxide. You may use a noble metal, the catalyst which compounded these, or the transition metal complex oxide which has a perovskite structure. Further, silica alumina or zeolite may be used instead of alumina. In some cases, a catalyst for selectively methanating carbon monoxide may be used.
[0045]
Further, although the shape of the catalyst body 1 is a honeycomb shape, it may be spherical or pellet-shaped as long as the reformed gas efficiently contacts the catalyst and the pressure loss does not increase so much.
[0046]
In addition, the reformed gas was cooled by using a method of circulating water to exchange heat, but if necessary depending on the temperature, an oily substance such as ethylene glycol having a high boiling point or a mixture thereof was circulated. It doesn't matter. Further, the gas supplied to the reforming section may be used for preheating the reforming raw material gas.
[0047]
【Example】
( Reference Example 1)
A catalyst body 1 was produced by coating platinum supporting alumina on a cordierite honeycomb having a diameter of 50 mm and a length of 100 mm. This catalyst body 1 is installed in the reaction chamber 9 of the hydrogen purification apparatus shown in FIG. 1 to reform the reformed gas, which is 1% carbon monoxide, 15% carbon dioxide, 15% water vapor, and the remainder hydrogen. The gas was introduced from the gas inlet 2 at a flow rate of 10 liters per minute. From the air supply pipe, 1 liter of air was supplied per minute. The reformed gas mixed with the air was lowered to 100 ° C. by the heat exchanger 7 in which water was circulated, and reacted with the catalyst body 1. The downstream side of the catalyst body 1 was set to 150 ° C. using a heater 8 for heating. When the temperature distribution of the catalyst body 1 was measured, the temperature rose almost linearly from the upstream portion to the downstream portion. When the composition of the reformed gas discharged from the reformed gas outlet 10 after passing through the catalyst body 1 was measured by gas chromatography, the carbon monoxide concentration was 5 ppm. Further, when the flow rate of water flowing through the heat exchanger 7 was changed and the reformed gas temperature was changed to 90 ° C. and 80 ° C., the carbon monoxide concentrations were 6 ppm and 9 ppm, respectively. Moreover, when the set temperature of the heater 8 was changed and the temperature of the downstream part of the catalyst body 1 was 140 ° C. and 160 ° C., the carbon monoxide concentrations were 4 ppm and 9 ppm, respectively.
[0048]
(Example 1 )
The catalyst body produced in Reference Example 1 was installed in the reaction chamber 18 shown in FIG. 3, and the reformed gas was introduced from the reformed gas inlet 12. The reformed gas temperature at the reformed gas inlet 12 was measured and found to be 200 ° C. It was 150 degreeC when the temperature of the downstream part of the catalyst body 11 heated through the heat exchange fin 20 was measured. When the reformed gas was lowered to 100 ° C. with the heat exchanger 17 and reacted with the catalyst body 11, the carbon monoxide concentration was 5 ppm.
[0049]
( Reference Example 2 )
As shown in FIG. 4, a catalyst body 21 was produced by coating a catalyst having a diameter of 100 mm and a length of 100 mm in which a hole having a diameter of 80 mm was hollowed out in the center as in Example 1. It was 150 degreeC when the temperature of the downstream part of the catalyst body 11 heated through the fin 30 for heat exchange was measured. When the reformed gas was lowered to 100 ° C. with the heat exchanger 27 and reacted with the catalyst body 21, the carbon monoxide concentration was 4 ppm.
[0050]
( Reference Example 3 )
A cordierite honeycomb having a diameter of 50 mm and a length of 50 mm is coated with a mordenite supporting platinum and the first catalyst body 31, and alumina supporting a platinum is coated on a cordierite honeycomb having a diameter of 50 mm and a length of 50 mm to form a second catalyst body. 32 were prepared. The first catalyst body 31 and the second catalyst body 32 were installed in the reaction chamber 40 as shown in FIG. The reformed gas was cooled to 140 ° C. by the heat exchanger 38, and the downstream portion of the second catalyst body 32 was controlled by the heater 39 so as to reach 160 ° C. It was 150 degreeC when the temperature of the downstream part of the 1st catalyst body 31 was measured. When the carbon monoxide concentration of the reformed gas outlet 41 was measured, it was 1 ppm.
[0051]
( Reference Example 4 )
The first catalyst body 51 is coated on a cordierite honeycomb having a diameter of 50 mm and a length of 50 mm by coating mordenite supporting platinum, and the second catalyst body is coated on a cordierite honeycomb having a diameter of 50 mm and a length of 50 mm by alumina supporting platinum. 52 were prepared. The first catalyst body 51 and the second catalyst body 52 were installed in the reaction chamber 62 as shown in FIG. The reformed gas was cooled to 150 ° C. by the heat exchanger 60 and controlled by the heater 61 so that the downstream portion of the second catalyst body 52 was 130 ° C. When the temperature of the downstream part of the 1st catalyst body 51 was measured, the temperature of the 2nd catalyst body upstream part was 100 degreeC. The carbon monoxide concentration of the reformed gas outlet 63 was measured and found to be 2 ppm.
[0052]
(Comparative Example 1)
In Example 1, the heater 8 was removed, and the reformed gas was similarly introduced from the reformed gas inlet 2. The reformed gas temperature was lowered to 100 ° C. by the heat exchanger 7 and reacted with the catalyst body 1. When the temperature distribution of the catalyst body 1 was measured, the temperature decreased linearly as the upstream portion went downstream at 100 ° C., and the most downstream portion temperature was 90 ° C. The composition of the reformed gas discharged from the reformed gas outlet 10 after passing through the catalyst body 1 was measured by gas chromatography and found to be 2000 ppm. Further, when the flow rate of water flowing through the heat exchanger 7 was changed and the reformed gas temperature was changed to 90 ° C., 110 ° C., and 120 ° C., the carbon monoxide concentrations were 5000 ppm, 200 ppm, and 500 ppm, respectively.
[0053]
(Comparative Example 2)
In Example 5, when the heater 61 for heating was removed, the temperature of the downstream part of the first catalyst body 51 was measured to be 140 ° C., the temperature of the upstream part of the second catalyst body 52 was 100 ° C., and the downstream part of the second catalyst body 52 The temperature of was 90 ° C. The carbon monoxide concentration of the reformed gas outlet 63 was measured and found to be 500 ppm.
[0054]
【The invention's effect】
As is clear from the above description, according to the present invention, the carbon monoxide selective oxidation catalyst can be stably operated, and temperature control is remarkably facilitated.
[Brief description of the drawings]
[1] first reference for the first reference carbon monoxide selective oxidation catalyst in the hydrogen purification unit in the form of Figure 2 shows the present invention showing a sectional structure of a hydrogen purifying apparatus in the form of the present invention Fig. 3 shows the relationship between the operating temperature of the catalyst and the concentration of carbon monoxide after passing through the catalyst. Fig. 3 shows the cross-sectional configuration of the hydrogen purifier according to the first embodiment of the present invention. The figure which showed the cross-sectional structure of the hydrogen refining apparatus which is a 2nd reference form. FIG. 5 The figure which showed the cross-sectional structure of the hydrogen refining apparatus which is the 3rd referential form of this invention. shows a cross sectional structure of a third reference for the fourth hydrogen purifier is a reference in the form of Figure 7 the invention showing the operating characteristics of the high temperature catalyst and low-temperature catalyst in the hydrogen purifier in the form Figure [Explanation of symbols]
1,11,21 Catalyst body 2,12,22,33,53 Reformed gas inlet 3,13,23,34 Air supply pipe 4,14,24,35 Air flow control valve 5,15,25,36,58 Cooling water supply pipe 6, 16, 26, 37, 59 Cooling water amount control valve 7, 17, 27, 38, 60 Heat exchanger 8, 39, 61 Heating heater 9, 18, 28, 40, 62 Reaction chamber 10, 19, 29, 41, 63 Reformed gas outlet 20, 30 Heat exchange fins 31, 51 First catalyst body 32, 52 Second catalyst body 54 First air supply pipe 55 Second air supply pipe 56 First control of air flow rate Valve 57 Air flow second control valve

Claims (1)

水素ガスを主成分とし二酸化炭素と一酸化炭素とを含有する改質ガスの供給部と、前記改質ガスの供給部より供給される改質ガスに酸素含有ガスを供給する酸素含有ガスの供給部と、前記改質ガスの流れ方向に対して前記改質ガスの供給部と前記酸素含有ガスの供給部との下流側に触媒体を有する反応室と、前記改質ガスの流れ方向に対して前記触媒体の上流側に設けられ前記触媒体もしくは前記改質ガスを冷却する冷却手段と、前記反応室の外周部に前記冷却手段を通過する前の改質ガスの流路とを備え、前記改質ガスの流路を流れる前記改質ガスが、前記反応室の壁を介して前記触媒体の下流部を加熱することを特徴とする水素精製装置。Supply portion of reformed gas mainly containing hydrogen gas and containing carbon dioxide and carbon monoxide, and supply of oxygen-containing gas for supplying oxygen-containing gas to the reformed gas supplied from the reformed gas supply portion a Department, a reaction chamber having a medium touch the downstream side of the supply portion of the oxygen-containing gas and the supply of the reformed gas to the flow direction of the reformed gas, to the flow direction of the reformed gas It provided upstream of the catalyst body Te, a cooling means for cooling said catalyst body or said reformed gas, a flow path in front of the reformed gas passing through the cooling means to the outer peripheral portion of said reaction chamber wherein the said reformed gas flowing in the flow path of the reformed gas, hydrogen purification device comprising a Turkey to heat the downstream portion of the catalyst body through the walls of the reaction chamber.
JP21368498A 1998-07-29 1998-07-29 Hydrogen purification equipment Expired - Lifetime JP3733753B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21368498A JP3733753B2 (en) 1998-07-29 1998-07-29 Hydrogen purification equipment
KR1019990029899A KR100320767B1 (en) 1998-07-29 1999-07-23 Hydrogen purifying apparatus
DE69902077T DE69902077T2 (en) 1998-07-29 1999-07-28 Device for purifying hydrogen
EP99306008A EP0976679B1 (en) 1998-07-29 1999-07-28 Hydrogen purifying apparatus
CNB991118642A CN1205115C (en) 1998-07-29 1999-07-29 Hydrogen refining apparatus
US11/456,027 US7674445B2 (en) 1998-07-29 2006-07-06 Method for purifying hydrogen in a reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21368498A JP3733753B2 (en) 1998-07-29 1998-07-29 Hydrogen purification equipment

Publications (2)

Publication Number Publication Date
JP2000044204A JP2000044204A (en) 2000-02-15
JP3733753B2 true JP3733753B2 (en) 2006-01-11

Family

ID=16643280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21368498A Expired - Lifetime JP3733753B2 (en) 1998-07-29 1998-07-29 Hydrogen purification equipment

Country Status (1)

Country Link
JP (1) JP3733753B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531092A (en) * 2000-04-14 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for selective oxidation of carbon monoxide
JP2002121008A (en) * 2000-10-10 2002-04-23 Mitsubishi Heavy Ind Ltd Method of removing carbon monoxide
JP4582976B2 (en) * 2001-09-28 2010-11-17 Jx日鉱日石エネルギー株式会社 Method and fuel cell system for reducing carbon monoxide concentration
EP1512461B1 (en) * 2002-03-28 2015-05-06 NGK Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
JP2005050629A (en) * 2003-07-28 2005-02-24 Ebara Ballard Corp Method and device for treating reformed gas and fuel cell power generation system
KR100857703B1 (en) * 2007-03-29 2008-09-08 삼성에스디아이 주식회사 Reaction vessel and reaction device
JP5121533B2 (en) * 2008-03-31 2013-01-16 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system using the same
JP6958464B2 (en) * 2018-04-11 2021-11-02 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
US11891302B2 (en) 2020-03-17 2024-02-06 Bayotech, Inc. Hydrogen generation systems

Also Published As

Publication number Publication date
JP2000044204A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
EP0985635B1 (en) Hydrogen generating apparatus
US7674445B2 (en) Method for purifying hydrogen in a reformed gas
CN100368753C (en) Apparatus and method for heating catalyst in allusion to compact fuel reprocessor start-up
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
AU2002226039A1 (en) Apparatus and method for heating catalyst for start-up of a compact fuel processor
WO2001047802A1 (en) Apparatus for forming hydrogen
JP3733753B2 (en) Hydrogen purification equipment
JP4089039B2 (en) Hydrogen purification equipment
JP2000178007A (en) Hydrogen purifier
JP2000351608A (en) Hydrogen-purifying apparatus
US7279142B2 (en) Hydrogen refining apparatus
US20040241509A1 (en) Hydrogen generator and fuel cell system
US7294157B2 (en) Carbon monoxide converter
JP5307322B2 (en) Fuel reforming system for solid oxide fuel cell
JP2002326803A (en) Hydrogen refining apparatus
JP4322519B2 (en) Catalytic reactor
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP2003081610A (en) Reforming apparatus
JP2005231965A (en) Carbon monoxide stripping device and fuel cell generating set
JP2000264603A (en) Hydrogen generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term