JP3731361B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP3731361B2
JP3731361B2 JP36981898A JP36981898A JP3731361B2 JP 3731361 B2 JP3731361 B2 JP 3731361B2 JP 36981898 A JP36981898 A JP 36981898A JP 36981898 A JP36981898 A JP 36981898A JP 3731361 B2 JP3731361 B2 JP 3731361B2
Authority
JP
Japan
Prior art keywords
coke
blast furnace
reduction rate
ratio
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36981898A
Other languages
Japanese (ja)
Other versions
JP2000192153A (en
Inventor
登 坂本
達郎 有山
英俊 野田
孝一 市川
友男 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36981898A priority Critical patent/JP3731361B2/en
Publication of JP2000192153A publication Critical patent/JP2000192153A/en
Application granted granted Critical
Publication of JP3731361B2 publication Critical patent/JP3731361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉原料として使用される焼結鉱の製造方法に関する。
【0002】
【従来の技術】
従来から高炉原料として、粉鉄鉱石、媒溶材、および粉コークス等を混合し、造粒した後、焼結することにより得られる焼結鉱が用いられている。
【0003】
このような焼結鉱に関して、従来、原料配合や造粒工程を調整して通気性を改善することや、擬似粒子の表面に粉コークスを付着させて燃焼性を良好にすること、配合原料や擬似粒子の構造を調整して燃料効率を高めること等、種々の試みがなされている。
【0004】
例えば、特公平08−9739号公報には、高炉に直接装入できない粗粒の粉コークスを高炉燃料として使用するために、粗粒粉コークスを核として内在させた焼成塊成鉱の製造方法が開示されている。
【0005】
この技術は、粉鉄鉱石に媒溶材と粉コークスを配合して混合・造粒して、粗粒粉コークスを核として内在させた生ペレットを作り、この生ペレットに粉コークスを被覆し、得られた生ペレットを無端移動グレート式焼結炉で焼成することにより焼成塊成鉱を製造する。生ペレットの核として内在させる粗粒粉コークスには塊コークス製造過程で発生する粉コークスのうち粒径が1〜3mmの小粒コークスを使用する。生ペレットの焼成過程では、核の粗粒粉コークスは燃焼することなく残り、この塊成鉱を高炉に装入すると塊成鉱が高炉内で還元、溶融され、粗粒粉コークスが燃焼するので、その分に見合った塊コークス原単位を低減できる。すなわち、塊成鉱の原料に対する粗粒粉コークスの配合割合を10wt.%とすれば、高炉の塊コークス原単位を約10%低減することができる。
【0006】
また、焼結鉱の性状は高炉操業に直接影響を及ぼすため、焼結鉱の性状を制御することにより高炉操業を制御することも試みられている。例えば、特開平04−210432号公報には、粉鉱石に5〜20wt.%の粉コークス・無煙炭を配合造粒して内層とし、また、粉鉱石、副原および2〜5wt.%の粉コークス・無煙炭を混合コーティングして外層とし、このようにして2層構造の擬似粒子を形成し、この擬似粒子を焼結原料の一部として混合・造粒したのち焼結機で焼結して半還元焼結鉱を製造する方法が開示されている。この場合、焼結過程で擬似粒子の外層から生成する融液と内層の粉コークスや無煙炭中の固形炭素との直接還元により焼結鉱の一部が還元される。
【0007】
また、この公報には、他の態様として粉コークス・無煙炭を予め擬似粒子化し、この擬似粒子にAlを2.0wt.%以上含む粉鉱石や副原料等でコーティングして2層擬似粒子とし、この2層擬似粒子をその他の主原料、副原料、スケール、粉コークス、無煙炭とともに1次ミキサー、2次ミキサーで混合・造粒して焼結機に装入する方法も開示されている。
【0008】
いずれの擬似粒子形態であっても、焼結遇程で生成する融液が内層の粉コークス・無煙炭中の固形炭素により直接還元される際に吸熱反応が起こり、このため通常発生する焼結ベッド下層部の熱剰が防止され、焼結ベッドの通気性が良くなるので焼結生産率や焼結鉱品質が改善される。一方、高炉で使用した場合には、高炉の燃料比、出銑比が改善される。
【0009】
ところで、従来の高炉操業では、高炉発生ガスの発熱量(潜熱)は主に燃料比と相関があり、一般には燃料比が高ければ高炉発生ガスの発熱量も高く、また、燃料比が低ければ高炉発生ガスの発熱量も低くなる。しかし、高炉発生ガスを製鉄所内で加熱炉等の燃料として使用する場合、高炉の燃料比が変動しても高炉発生ガスの発熱量は変動しないことが望ましい。さらには、高炉の燃料比を一定に維持したまま高炉発生ガスの発熱量を高くする等、高炉の燃料比と無関係に高炉発生ガスの発熱量を制御できる技術があれば、さらに好ましい。
【0010】
また最近、CO削滅が社会的ニーズであり、そのため、鉄鋼業においても高炉操業の燃料比の低減、すなわち高炉発生ガス量の低減が求められている。しかし、製鉄所内で高炉発生ガスを燃料として使用する観点からすれば、燃料比の低減は高炉発生ガスの発熱量低下に繋がるので好ましくない。したがって、この場合も高炉の燃料比と無関係に高炉発生ガスの発熱量を制御する技術が必要になる。
【0011】
このように、高炉の燃料比と無関係に高炉発生ガスの発熱量を制御するためには、焼結鉱の性状を制御することが考えられるが、このようなことを考慮した技術は未だ提案されていない。すなわち、上記特公平08−9739号公報に開示された技術では、単に高炉の塊コークスの原単位を低減するにすぎず、また、特開平04−210432号公報に開示された技術は、高炉の燃料比を低減させて高炉出銑比を向上させるものにすぎない。
【0012】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、高炉の燃料比に依存せずに高炉発生ガスの発熱量を制御することができる焼結鉱の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、高炉の燃料比に依存せずに高炉発生ガスの発熱量を制御するために、総括物質熱収支を基にしたリスト線図を種々検討した結果、高炉へ装入する焼結鉱の還元率を変化させることにより、高炉の燃料比に依存せずに高炉発生ガスの発熱量を制御することができることを見出した。
【0014】
この総括物質熱収支を基にしたリスト線図の検討の結果、例えば、高炉へ装入する焼結鉱の還元率を20%以上30%未満(酸化鉄の還元前の状態をFeとした時のFeOまでの還元状態)とすれば、高炉の燃料比を一定にしたまま高炉発生ガスの発熱量を焼結鉱の予備還元率にほぼ比例して変化させることが可能であり、また、高炉へ装入する焼結鉱の還元率を30%以上90%未満とすれば、高炉発生ガスの発熱量を一定に維持したまま燃料比を変化させることが可能であると推定された。
【0015】
このように、高炉の燃料比に依存せずに高炉発生ガスの発熱量を制御するためには、焼結鉱の還元率を20%から90%未満の広範囲で自由にコントロール可能な製造方法が必要である。
【0016】
しかしながら、上記特開平04−210432号公報に開示された技術の半還元焼結鉱の製造方法には以下の問題点があって、焼結鉱の還元率を20%から90%未満の広範囲で自由にコントロールすることができない。すなわち、この公報に記載された半還元焼結鉱の製造方法では、擬似粒子が2層構造であって内層に直接還元用の粉コークス・無煙炭を配置するものの、外層に燃料用の粉コークス・無煙炭を配合する際に、燃料の粉コークス・無煙炭が粉鉱石や副原と混合した状態で配合されるため、燃焼性が悪く、その結果還元率のコントロール性も悪い。また、還元率を20%以上90%未満の広い範囲で制御するには、目標還元率に応じた粉コークス・無煙炭の量を定める必要があるが、この技術には粉コークス・無煙炭の量と達成還元率の関係が明示されていないため、還元率の制御性を有するとは言えない。
【0017】
また、還元率が20%以上30%未満では焼結鉱中の酸化鉄はFeOの状態まで還元されるが、粉鉱石中のSiO含有量が高いと(1)式の反応が生じて低融点・難還元性のファイヤライトが生成し易くなるため、高炉での被還元性が悪化し、リスト線図で規定されるシャフト効率(FeO〜Fe還元平衡への到達度)が悪化する。その結果、炉頂ガス潜熱は上昇するものの燃料比も上昇するといった問題を引き起こす。
2FeO+SiO(脈石)→2FeO・SiO(ファイヤライト)…(1)
【0018】
また、上記特公平08−9739号公報に記載されている焼成塊成鉱の製造方法は、粒コークスを核として内在させた生ペレットを作り、この生ペレットに粉コークスを被覆し、得られた生ペレットを無端移動グレート式焼結炉で焼成する製造方法であるが、成品焼結鉱の内部に未燃焼の粗粒粉コークスを残し、この未燃焼のコークスを高炉内で燃焼させることにより高炉での塊コークスの量を減らすことを期待している。したがって、成品焼結鉱中に粉コークスが多量に残るため、成品焼結鉱の強度が低下したり、焼結機後段にある破砕・冷却工程で発火してコンベアを焼損する等の問題がある。また、結果として成品焼結鉱が予備還元されているとしても粒コークスの粒径や量および生ペレットを被覆するための粉コークスの粒径や量といった還元率の制御方法および達成し得る還元率が不明である。
【0019】
このようなことから、本発明者らは、焼結鉱の還元率を20%から90%の広範囲で自由にコントロール可能な製造方法を検討した結果、核、内層、最外層の3層構造からなる擬似粒子において、燃料である微粉コークスを最外層に配合することで粉コークスの燃焼効率を高め、核として配合される粗粒粉コークスとの量比を適切に定めることにより到達還元率が制御され、さらに、これにより到達還元率の制御性が格段に高まることを見出した。
0020
本発明はこのような知見に基づいてなされたものであり、無端移動グレート式焼結機で焼成する焼結鉱の製造方法であって、少なくとも、配合原料中のSiO 含有量を6wt.%以下に調整する工程と、前記配合原料に粒子径が1mm〜10mmに調整された固体燃料(A)を所定量混合して造粒物とする1次造粒工程と、前記造粒物に粒子径が5mm以下に調整された固体燃料(B)の所定量を混合して造粒し、固体燃料(B)により被覆された擬似粒子とする2次造粒工程とを備え、混合原料1tに対する体燃料(A)と固体燃料(B)の重量の和の割合が4.5wt.%〜30.0wt.%で、かつ、固体燃料(A)と固体燃料(B)の重量の比(A)/(B)の値を0.8以上2.5以下とすることを特徴とする焼結鉱の製造方法を提供する。
0021
なお、既存の還元塊成鉱は主に電気炉原料であって、還元率は95%以上と高く、電気炉では溶解だけが行われて還元はされない。その製造プロセスは例えばシャフト炉タイプではミドレックスプロセス、Hyl−IIIプロセス、またロータリーキルンタイプではSL/RNプロセス等である。しかし、これらのプロセスの生産量は焼結プロセス等に比べると相対的に低いうえ、成品塊成鉱の強度等も低いものであって高炉原料には適さない。
0022
本発明では、高炉の高炉発生ガスの発熱量を燃料比と無関係に制御することを目的としており、高炉装入原料の予備還元率を変化させようとする場合には、通常の焼結鉱或いはペレット並みの生産率、成品強度、粒度、被還元性等の物理的、冶金的性状が維持されることが必要である。しかし、高炉で最終還元が行われるので還元率も95%以上である必要はない。
0023
【発明の実施の形態】
以下、本発明について具体的に説明する。
まず、本発明者らが物質総括熱収支を基にしたリスト線図から理論的に得た推察、すなわち、高炉装入原料の還元率を変化させることにより、高炉の燃料比と無関係に高炉発生ガスの発熱量を制御し得るとの推察について、図面に基づいて説明する。図1は高炉内部のガス温度分布を示すグラフ、図2は酸化鉄の還元平衡と実際の炉内ガス組成と酸化鉄酸化度の関係を示すグラフである。
0024
図1では、高炉内部のガス温度は炉頂部で約150〜200℃、羽口先で2000〜2400℃である。また、シャフト部にはいわゆる熱保存帯と称するほぼ1000℃一定の温度領域が存在する。この熱保存帯では酸化鉄はFeO〜Fe還元平衡から僅かにずれたガス組成および還元段階で存在する。
0025
図2において、上段の横軸は高炉のガスの酸化度(換言すれば、炭素原子に対する酸素原子比O/C)である。ガスの酸化度は高炉下部でガス組成がCOのみの場合は1であり、ガスが酸化鉄を還元しながら上部に移行して最終的に全量CO(+N)となった場合は2である。この結果はガス中にHおよびHOが含有されても還元平衡図に多少の変化が現れる以外は基本的な考え方は同じである。一方、縦軸は鉄原子に対する酸素原子比(O/Fe)を示す。最も酸化度の高いFeの酸化度は1.5であり、Feでは1.33、FeOでは1.05である。
0026
図2の下段は酸化鉄のCOによる還元平衡図である。横軸は上述と同様ガスの酸化度を表し、縦軸は還元平衡温度を表す。図1より熱保存帯の温度を1000℃とした場合、図2の下段よりこの温度におけるFe〜FeO還元平衡時のガス酸化度(O/C)が求められる。鉱石(FeO)の酸化度が1.05であるから図2の上段のW点が求まる。
0027
一方、酸化度1.5の鉱石を炉頂より装入した場合、直線P−P(以下操作線と称す)に沿って鉱石の酸化度およびガスの酸化度が変化する。高炉の燃料比はこの直線の勾配(C/Fe)で決定される。高炉の操業が理想的に行われ、還元平衡に到達している場合には、この直線はW点に接しており燃料比は最小値をとるが、実際の高炉では酸化鉄の還元は平衡よりずれるため操作線はW点を通らず、例えばP点を通る。ここで直線P−Wと直線P−Pの長さの比(P−W)/(P−P)は高炉の還元衡到達度を表し、シャフト効率と称されるものである。通常、高炉のシャフト効率は0.90〜0.95程度である。
0028
高炉原料として本発明の予備還元焼結鉱を使用した場合、高炉装入時の酸化鉄の酸化度は1.5より低いから、図2のPに代わってPT”になる。これにより、ガス組成(酸化度)も低下し、その結果Bガス発熱量が上昇する。ただし、この場合は直線P−Pの勾配は変化しないので燃料比は原則的には変化しない。
0029
また、還元率が30%を超える場合は、W点の縦座標は1.05より低いW’点に移行する。シャフト効率一定と仮定すると、操作線はシャフト効率(P−P/P−W’)が一定となるP1’点を通ることになり、その結果操作線の勾配は小さくなり燃料比は低下する。ただし、この場合はガスの酸化度の低下はないので高炉発生ガス発熱量は変化しないと推察される。
0030
すなわち、還元率が30%未満(FeO還元段階まで)ではその還元率に応じて高炉発生ガスの酸化度が低下し、その結果高炉発生ガスの発熱量が向上する。ただし、高炉の燃料比低減、その結果としての炭酸ガス発生量の削減はできない。しかし、高炉発生ガスを製鉄所内で加熱炉等の燃料として使用する場合、高炉発生ガスの発熱量が向上するため製鉄所の総エネルギー消費量を削減することが可能となる。なお還元率が20%未満では高炉発生ガス発熱量の上昇効果が少ない。
0031
一方、還元率が30%以上(FeOと一部金属鉄が存在する還元段階)では還元率に応じ高炉の燃料比の低減、およびその結果として炭酸ガス発生量の削減が可能となる。すなわち、一貫製鉄所のエネルギー多消費部門である高炉のエネルギー消費量を削減し、以て炭酸ガス発生量を抑制する効果が期待される。但しこの場合は高炉発生ガスの酸化度低下(発熱量の上昇)は期待できない。したがって、本発明では、焼結過程での還元率を20%以上30%未満、または30%以上90%未満としている。本発明では焼結鉱の還元率を90%未満とするが、その理由は、通常の焼結機では還元率を90%以上とするのは困難であり、また達成されたとしてもヤードで保管する際に再酸化するなどの問題があるためである。なお、固体燃料の割合を適度なものとする観点からは、還元率が70%以下が好ましい。
0032
本発明は、このように、焼結鉱の焼結過程において還元率20%以上90%未満の間で制御し、高炉に装入することにより、高炉の燃料比にかかわらず、高炉ガスの発熱量を制御可能にするものである。このような焼結鉱は、具体的には、核、内層、最外層の3層構造からなる擬似粒子を用い、核として配合された粗粒粉コークスが、焼結過程で内層から生成する融液を還元することにより還元される。また、燃料である微粉コークスを最外層に配合することで粉コークスの燃焼効率を高め、核として配合される粗粒粉コークスとの量比を適切に定めることにより到達還元率が制御され、さらに、これにより到達還元率の制御性が格段に高まる。
0033
以下、このような焼結鉱の製造方法について説明する。図3は本発明を実施するためのプロセスフローを示す工程図である。図3において、1は通常の焼結原料ホッパ、2は返鉱ホッパ、3は媒溶剤ホッパ、4は粗粒粉コークスホッパである。5は1次ドラムミキサ、6はディスクペレタイザ、7は微粉コークスホッパ、10はシャトルコンベア、11は無端移動グレート式焼成炉、12は点火炉である。
0034
以上の設備において、各ホッパから焼結原料、媒溶剤および粗粒粉コークスを所定量切り出しドラムミキサ5に供給し、水を添加しながら混合する。つづいて、前記混合原料をディスクペレタイザ6に供給し、水を添加しながら造粒する。この時、粗粒粉コークスを核とした生ペレットが形成される。次に、ディスクペレタイザ6で造粒した生ペレットを2次ドラムミキサ8に供給し、水および粉コークスホッパ7から切り出した粉コークスを添加しながら混合する。この混合により、表面に粉コークスが被覆された粒径が2〜20mmの擬似粒子ができる。粉コークス被覆の擬似粒子をシャトルコンベア10を介して焼成炉11に装入し、点火炉12で装入原料層表面に点火、下向きに空気を吸引して焼成する。なお、原料条件に応じ1次ドラムミキサ5で造粒が充分行われる場合は、ディスクペレタイザー6による造粒工程を省略しても良い。
0035
図4は、本発明の製造遇程で得られる3層構造の擬似粒子の断面図である。13は擬似粒子の核を形成する粗粒粉コークス、14は粉鉱石、返鉱、媒溶剤の混合物から形成される内層、15は微粉コークスからなる最外層である。なお、一般には複数銘柄の粉鉱石と雑鉄源と副原料との混合物を新原料と呼び、新原料に返鉱を加えたものを配合原料と呼ぶ。副原料には媒溶剤および生石灰等のバインダーが含まれる。また、配合原料に固体燃料を加えたものを混合原料と呼ぶ。
0036
本発明では、配合原料中のSiO含有量を6wt.%以下に調整する。これは、配合原料中に6wt.%を超えるSiOが含有されていると焼成過程で上記(1)式に示す反応により多量のファイヤライトが生成するが、このファイヤライトは高炉内で1000℃以下の塊伏帯では難還元性を示して還元停滞を引き起こし、また、1000℃以上の軟化・溶融帯では多量の低融点スラグを発生して軟化・溶融帯の溶け落ち性伏を悪化させ、高炉燃料比低減の障害となるからである。
0037
媒溶剤としては、通常生石灰が望ましいが、消石灰、ベントナイトの他、微粉末スラグ、ポルトランドセメント等でも良い。
0038
固体燃料としては、粒および微粒の粉コークスのほか無煙炭、石炭、チャー、石油コークス等でも代替が可能である。ここでは、便宜上粉コークスを例として説明する。
0039
粗粒の粉コークスは、1次ミキサーによる混合・造粒過程で核として機能し、粗粒粉コークスの周りに原の粉鉱石や媒溶剤が付着し造粒される。また、焼結過程では擬似粒子の内部より還元を起こさせ、かつ還元組織の再酸化を抑制する。そのため、粗粒粉コークス粒径は1mm以上10mm未満、望ましくは3〜8mmが効果的である。粒径が1mm以下では造粒工程で核として機能せず、粗粒粉コークスを核としてその周囲に焼結原料が付着した造粒物が形成されにくい。したがって、本発明が意図するような擬似粒子内部からの還元も不十分になる。また、10mm以上では焼結後の成品塊成鉱中に炭材が多量に残りグレートの後の破砕、冷却工程で発火しコンベヤーの焼損や、成塊成鉱強度の低下等を引き起こす。
0040
被覆用の微粉コークスは焼成に必要な熱量を供給するための燃料である。燃焼効率を高めるために擬似粒子表層部に微粉コークスを被覆する。その際に擬似粒子表層部に均一かつ強固な被覆層を形成することが重要である。また、微粉コークス量の変化が発熱量に直接反映されるため熱量コントロール性に優れる。粉コークス粒径は小さい程良く、上限は5mm、望ましくは1mm以下とすることが望ましい。
0041
また、目標とする還元率を達成するためには、混合原料中の粉コークスの割合を所定の値に設定する必要がある。還元率と混合原料中の粉コークスの割合との相関は、製造所毎の諸条件によって異なるので、それぞれの製造所毎で求めればよい。例えば、還元率の目標値を20%以上30%未満の範囲に設定する場合、混合原料中の粉コークスの割合を4.5wt.%から8.5wt.%の範囲で変化させて還元率と混合原料中の粉コークスの割合との相関を求め、その相関に基づいて混合原料中の粉コークスの割合を決定する。
0042
なお、混合原料中の粉コークスの割合が4.5wt.%未満では成品焼結鉱中のFeO含有量が10〜15wt.%程度にしかならず、高炉発生ガス発熱量の向上には殆ど効果がない。一方、粉コークス量が8.5wt.%超では高炉発生ガス発熱量は飽和してしまう。
0043
同様に、還元率を30%以上90%未満の範囲に設定する場合は、混合原料中の固体燃料の割合を8.5wt.%から30wt.%の範囲で変化させて相関を求めればよい。粉コークスの割合が30.0wt.%を超えると粉コークスの燃焼時間が著しく長くなるため焼結鉱の生産率が悪化したり、焼結ベッドヘの供給熱量が過剰になってベッド内での融体生成量が著しく増える結果、ベッドの通気性が悪化する。
0044
添加する粉コークス量は、前述のように、混合原に対する割合であるコークス比で表してもよく、また、焼結生産量1トン当たりのコークス原単位で表してもよい。以下の関係式を利用して、コークス比とコークス原単位の間で換算が可能である。
コークス原単位(kg/t)={コークス比(%)×(新原料使用量(kg/t)+返鉱使用量(kg/t))}/(新原料使用量(kg/t)×焼結歩留(%))×1000
0045
一般的な焼結機の焼結歩留は約91.0%、新原料使用量は1110kg/t、返鉱使用量は200kg/tであるので、コークス比4.5%はコークス原単位58kg/tに換算される。
0046
したがって、同様に上記の範囲でコークス原単位を変化させて還元率とコークス原単位の相関を求め、目標とする還元率に対するコークス原単位を定めることができる。
0047
また、還元率の範囲がいずれであっても、固体燃料中の内装(核)用粗粒粉コークス量と外装(被覆)用微粉コークス量の割合(内外装比率=内装量/外装量)を0.8以上とすることが好ましい。固体燃料の内外装比率が0.8以下では擬似粒子内部から還元する還元能力が不足する。また、核として配合する粉コークスが少なくなる分、外装比率が高くなるため前記の場合と同様に燃焼熱が過剰となり生産率が低下する。また、固体燃料の内外装比率は2.5以下が好ましい。
0048
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
本発明を実施するに際し、図3に示した造粒工程にしたがって擬似粒子を製造し、この擬似粒子を試験鍋で焼成する方法で、本発明の還元率およびの制御性を確認した。なお、説明の便宜上、還元率が30%未満(FeOまでの還元)の焼結鉱をL型焼結鉱、また、還元率が30%以上90%未満の焼結鉱をH型焼結鉱とに区別し、この実施例1ではL型焼結鉱について、また、後述する実施例2ではH型焼結鉱について説明する。
0049
本実施例では、L型焼結鉱を試験鍋で焼成するに当たり、使用した配合原料の化学組成および粒度を表1に示した。配合原料中のSiO含有量は4.63wt.%とした。なお、この配合原には返鉱が15wt.%とバインダーとして生石灰が2.5wt.%配合されている。また、固体燃料は、内装(核)用に粒径3〜5mmの粗粒粉コークスと外装(被覆)用に粒径3mm以下に調整した微粉コークスを使用した。
0050
まず、配合原料と所定量の粗粒粉コークスとに適当量の水分を添加しながら1次ドラムミキサ(内径4.4m、有効長さ15m)で混合・造粒した。つづいて、1次ドラムミキサの造粒物を2次ドラムミキサ(内径5.0m、有効長さ18m)に供給し、必要に応じて加えるべき残りの水分と、また、所定量の微粉コークスとを添加して混合し造粒した。これよりコークス添加量が4.5wt.%未満では還元率に改善が見られないこと、内外装比率が0.8未満では同一粉コークス添加量でも還元率の改善効果が少ないことが明らかである。
0051
擬似粒子は表2に示したように、固体燃料を配合原料の4.5wt.%〜8.5wt.%の範囲で変化させてL1〜L5の5種類製造した。なお、固体燃料中の内装(核)用粗粒粉コークスと外装(被覆)用微粉コークスの割合(内外装比率=内装量/外装量)は、0.8以上1.4以下の範囲で適宜変化させた。
0052
また、比較例として固体燃料を配合原料の4.5wt.%以下としたL6および固体燃料の内外装比率を0.8未満としたL7も併せて製造した。
0053
製造した擬似粒子L1〜L7は、いずれも2次ドラムミキサ出口の粒径が2〜20mmで中心に粗粒粉コークスの核を有し、最外が微粉コークスである3層構造の擬似粒子であった。なお、表1に示した粒度の焼結原は微粉原が少ないので1次ドラムミキサだけで造粒が充分可能であるため、ディスクペレタイザによる造粒工程を省略した。
0054
次に、擬似粒子L1〜L7を試験鍋にて焼成し、それぞれ還元率を測定した。還元率の測定結果は表2に示したとおりである。なお、試験鍋による焼成条件は、ポット径が300mmφ、原料深さが450mm、吸引負圧が1000mmAq、点火時間が90秒であった。
0055
図5は、L1〜L7の還元率測定結果を固体燃料の量(コークス添加量)に対してプロットしたグラフである。図5から、L型焼結鉱では粉コークス添加量が4.5wt.%〜8.5wt.%の範囲で還元率は、ほぼ20%〜30%となり粉コークス添加量と還元率が概略比例関係にあることが確認された。また、固体燃料の内外装比率が0.8以上であれ固体燃料の量と還元率の相関性が向上する、すなわち、還元率の制御性が向上することも確認された。
0056
【表1】

Figure 0003731361
0057
【表2】
Figure 0003731361
0058
(実施例2)
本実施例ではH型焼結鉱について説明する。使用した配合原の化学組成および粒度を表3に示した。配合原料中のSiO含有量は3.93wt.%とした。なお、この配合原料には返鉱が15wt.%とバインダーとして生石灰が2.5wt.%配合されている。また、固体燃料は、内装(核)用に粒径5〜8mmの粒コークスと外装(被覆)用に粒径1mm以下に調整した微粉コークスを使用した。
0059
まず、配合原と粗粒粉コークスとに適当量の水分を添加しながら1次ドラムミキサ(内径4.4m、有効長さ15m)で混合・造粒した。さらに、1次ドラムミキサの造粒物をディスクペレタイザ(直径7.5m、深さ0.5m)で造粒した。これは、表3に示した粒度の配合原料は微粉原料が多く、1次ドラムミキサだけでは造粒が不十分であるので、ディスクペレタイザによる造粒工程を加えたためである。
0060
ディスクペレタイザーの造粒物を2次ドラムミキサ(内径5.0m、有効長さ18m)に供給し、必要に応じて加えるべき残りの水分と、粒径1mm以下に調整された微粉コークスとを添加して混合し造粒した。
0061
擬似粒子は表4に示したように、固体燃料を配合原料の8.5wt.%〜30.0wt.%の範囲で変化させてH1〜H6の6種類製造した。なお、固体燃料中の内装(核)用粗粒粉コークスと外装(被覆)用微粉コークスの割合(内外装比率=内装量/外装量)は、1.0以上2.5以下の範囲で適宜変化させた。
0062
また、比較例として固体燃料を配合原の30.0wt.%以上としたH7および固体燃料の内外装比率を0.8未満としたH8も併せて製造した。製造された擬似粒子は、L型の場合と同様に、いずれも3層構造の擬似粒子であった。
0063
次に、擬似粒子H1〜H8を試験鍋で焼成し、還元率を測定した。その結果を表4に示した。なお、試験鍋による焼成条件はL型の場合と同じである。
0064
図6は、焼結鉱H1〜H8の還元率測定結果を固体燃料の量(コークス添加量)に対してプロットしたグラフである。図6から、H型焼結鉱では粉コークス添加量が8.5wt.%〜30.0wt.%の範囲で還元率は、ほぼ30%〜90%となり粉コークス添加量と還元率が概略比例関係にあることが確認された。
0065
また、H型焼結鉱の場合にも、固体燃料の内外装比率が0.8以上であれば還元率の制御性が向上することも確認された。
0066
【表3】
Figure 0003731361
0067
【表4】
Figure 0003731361
0068
なお、上記実施例1および実施例2では試験鍋による焼成であるため、固体燃料の割合を配合原料に対して4.5wt.%〜8.5wt.%および8.5wt.%〜30.0wt.%としたが、実際の焼結機で焼成した場合の固体燃料原単位を前述した方法で求めると、概略それぞれ56〜106kg/t成品焼結、および106〜373kg/t成品焼結となる。ただし、固体燃料の割合が30.0wt.%は実際の焼結鉱製造プロセスを考慮すると高すぎるため、還元率が30%以上90%未満の範囲内では、還元率70%以下が好ましい。
0069
また、記載しなかったが実施例1および実施例2では、その他高炉原料として焼結鉱が維持すべき条件についても満足できるものであった。
0070
【発明の効果】
本発明によれば、焼結鉱の還元率を20%以上30%未満とすることにより、高炉の燃料比を一定に維持したまま高炉発生ガスの発熱量を変化させ得る。また、焼結鉱の還元率を30%以上90%未満とすることにより、高炉発生ガスの発熱量を一定に維持したまま燃料比を変化させ得る。したがって、高炉の燃料比に依存せず、高炉発生ガスの発熱量を制御することができる。また、本発明によれば、還元率の制御性に優れた焼結鉱の製造方法が得られる。本発明の製造方法によって得られた予備還元焼結鉱は還元率が20%〜30%の範囲でも、焼結過程でファイヤライトの生成が抑制されるので、焼結性の悪化、および、高炉での被還元性の悪化がない。また、成品焼結鉱中に未燃焼の粉コークスが残らず、成焼結鉱の強度低下および破砕・冷却工程での発火によるコンベヤ焼損という問題もない。
【図面の簡単な説明】
【図1】 高炉内のガス温度分布の図。
【図2】 酸化鉄の還元平衡と高炉内ガス酸化度と酸化鉄酸化度の関係を示す図。
【図3】 本発明の焼結鉱の製造方法におけるプロセスフローを示す工程図。
【図4】 本発明によって得られた3層構造の擬似粒子の断面図。
【図5】 本発明の実施例1における固体燃料割合(コークス添加量)と還元率との関係を示すグラフ。
【図6】 本発明の実施例2における固体燃料割合(コークス添加量)と還元率との関係を示すグラフ。
【符号の説明】
1……焼結原料ホッパ
2……返鉱ホッパ
3……媒溶剤ホッパ
4……粗粒粉コークスホッパ
5……1次ドラムミキサ
6……ディスクペレタイザ
7……微粉コークスホッパ
10……シャトルコンベア
11……無端移動グレート式焼成炉
12……点火炉[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a sintered ore used as a blast furnace raw material.Manufacturing methodAbout.
[0002]
[Prior art]
  Conventionally, as a blast furnace raw material, a sintered ore obtained by mixing and granulating powdered iron ore, a solvent medium, powdered coke and the like, and then sintering has been used.
[0003]
  With regard to such sintered ore, conventionally, adjusting the raw material blending and granulation process to improve air permeability, adhering powder coke to the surface of the pseudo particles to improve combustibility, Various attempts have been made to improve the fuel efficiency by adjusting the structure of the pseudo particles.
[0004]
  For example, Japanese Patent Publication No. 08-9739 discloses a method for producing a calcined agglomerate in which coarse-grained coke is used as a core in order to use coarse-grained coke that cannot be charged directly into the blast furnace. It is disclosed.
[0005]
  This technology combines powdered iron ore with a medium and powdered coke, mixes and granulates to produce raw pellets with coarse powdered coke as the core, and coats the raw pellets with powdered coke. A fired agglomerate is produced by firing the green pellets obtained in an endless moving great-type sintering furnace. As the coarse-grained coke that is contained as the core of the raw pellet, small-sized coke having a particle diameter of 1 to 3 mm is used among the powdered coke generated in the lump coke production process. During the firing process of raw pellets, the core coarse coke remains without burning, and when this agglomerate is charged into the blast furnace, the agglomerate is reduced and melted in the blast furnace, and the coarse coke is burned. , It is possible to reduce the lump coke intensity per unit. That is, the blending ratio of the coarse-grained coke to the raw material of the agglomerated mineral is 10 wt. %, The blast furnace lump coke intensity can be reduced by about 10%.
[0006]
  In addition, since the properties of sintered ore directly affect blast furnace operation, attempts have been made to control blast furnace operation by controlling the properties of sintered ore. For example, in Japanese Patent Laid-Open No. 04-210432, 5 to 20 wt. % Granulated coke and anthracite and granulated into an inner layer.FeeAnd 2-5 wt. % Coke and anthracite are mixed and coated to form an outer layer. In this way, pseudo-particles having a two-layer structure are formed, and the pseudo-particles are mixed and granulated as part of the sintering raw material, and then sintered in a sintering machine. As a result, a method for producing a semi-reduced sintered ore is disclosed. In this case, a part of the sintered ore is reduced by direct reduction of the melt generated from the outer layer of the pseudo particles during the sintering process and the solid carbon in the inner layer of powder coke and anthracite.
[0007]
  In addition, in this publication, as another aspect, powder coke and anthracite are pseudo-particled in advance, and the pseudo particles are mixed with Al.2O32.0 wt. 2% pseudo particles by coating with powdered ore containing 2% or more and auxiliary materials, etc., and mixing these two layer pseudo particles together with other main raw materials, auxiliary raw materials, scale, powder coke, anthracite in primary mixer and secondary mixer. A method of granulating and charging into a sintering machine is also disclosed.
[0008]
  Regardless of the quasi-particle form, an endothermic reaction occurs when the melt produced in the sintering process is directly reduced by the solid carbon in the powdered coke and anthracite of the inner layer. Lower layer heatExcessiveSurplus is prevented and the air permeability of the sintered bed is improved, so that the sintering production rate and sintered ore quality are improved. On the other hand, when used in a blast furnace, the fuel ratio and output ratio of the blast furnace are improved.
[0009]
  By the way, in the conventional blast furnace operation, the calorific value (latent heat) of the blast furnace generated gas is mainly correlated with the fuel ratio. Generally, the higher the fuel ratio, the higher the calorific value of the blast furnace generated gas, and the lower the fuel ratio. The calorific value of the blast furnace gas is also reduced. However, when the blast furnace generated gas is used as a fuel for a heating furnace or the like in the steelworks, it is desirable that the amount of heat generated by the blast furnace generated gas does not vary even if the fuel ratio of the blast furnace varies. Furthermore, it is more preferable if there is a technique capable of controlling the heat generation amount of the blast furnace generated gas irrespective of the fuel ratio of the blast furnace, such as increasing the heat generation amount of the blast furnace generated gas while keeping the fuel ratio of the blast furnace constant.
[0010]
  Recently, CO2Elimination is a social need, and therefore the steel industry is also required to reduce the fuel ratio of blast furnace operation, that is, reduce the amount of gas generated in the blast furnace. However, from the viewpoint of using the blast furnace generated gas as fuel in the ironworks, a reduction in the fuel ratio is not preferable because it leads to a decrease in the amount of heat generated by the blast furnace generated gas. Therefore, in this case as well, a technique for controlling the calorific value of the gas generated in the blast furnace regardless of the fuel ratio of the blast furnace is required.
[0011]
  Thus, in order to control the calorific value of the blast furnace generated gas regardless of the fuel ratio of the blast furnace, it is conceivable to control the properties of the sintered ore. However, a technology that takes this into account has not yet been proposed. Not. In other words, the technique disclosed in the above Japanese Patent Publication No. 08-9739 merely reduces the basic unit of blast furnace coke, and the technique disclosed in Japanese Patent Application Laid-Open No. 04-210432 It is only what improves the blast furnace output ratio by reducing the fuel ratio.
[0012]
[Problems to be solved by the invention]
  The present invention has been made in view of such circumstances, and is capable of controlling the calorific value of the gas generated in the blast furnace without depending on the fuel ratio of the blast furnace.Manufacturing methodThe purpose is to provide.
[0013]
[Means for Solving the Problems]
  In order to control the calorific value of the gas generated in the blast furnace without depending on the fuel ratio of the blast furnace, the present inventors have studied various list diagrams based on the overall material heat balance, and as a result, OreReduction rateIt was found that the amount of heat generated by the blast furnace generated gas can be controlled without depending on the fuel ratio of the blast furnace.
[0014]
  As a result of the examination of the list diagram based on this general mass heat balance, for example, of the sintered ore charged into the blast furnaceReduction rate20% or more and less than 30% (the state before reduction of iron oxide is Fe2O3Up to FeOReduced state), The calorific value of the gas generated in the blast furnace can be changed almost in proportion to the pre-reduction rate of the sintered ore while keeping the fuel ratio of the blast furnace constant. MiningReduction rateIt is estimated that the fuel ratio can be changed while maintaining the calorific value of the gas generated in the blast furnace to be constant if the value is 30% or more and less than 90%.
[0015]
  Thus, in order to control the calorific value of blast furnace generated gas without depending on the fuel ratio of the blast furnace,Reduction rateThere is a need for a production method that can be freely controlled over a wide range from 20% to less than 90%.
[0016]
  However, the method for producing a semi-reduced sintered ore of the technique disclosed in Japanese Patent Laid-Open No. 04-210432 has the following problems,Reduction rateCannot be freely controlled over a wide range of 20% to less than 90%. That is, in the method for producing a semi-reduced sintered ore described in this publication, the pseudo particles have a two-layer structure, and powder coke and anthracite for direct reduction are arranged in the inner layer, but powder coke for fuel is used in the outer layer. When blending anthracite, the fuel coke and anthracite are used as pulverized ore and by-products.FeeAs a result, the flammability is poor.Reduction rateThe controllability is poor. Also,Reduction rateTo control the amount of pulverized coke and anthracite according to the target reduction rate, this technology requires the amount of pulverized coke and anthracite and the achieved reduction rate. Because the relationship is not explicitly statedReduction rateIt cannot be said that it has the controllability.
[0017]
  Also,Reduction rateIs 20% or more and less than 30%, the iron oxide in the sintered ore is reduced to the state of FeO.2If the content is high, the reaction of the formula (1) occurs, and it becomes easy to generate low melting point / refractory firelite, so that the reducibility in the blast furnace deteriorates, and the shaft efficiency (defined by the list diagram) (Obtainment degree to FeO to Fe reduction equilibrium) deteriorates. As a result, although the furnace top gas latent heat increases, the fuel ratio also increases.
  2FeO + SiO2(Gangue) → 2FeO · SiO2(Firelight) ... (1)
[0018]
  Moreover, the manufacturing method of the calcined agglomerated mineral described in the above Japanese Patent Publication No. 08-9739 is as follows.CoarseIt is a production method in which raw pellets containing grain coke as a core are made, this raw pellet is coated with powdered coke, and the obtained raw pellets are fired in an endless moving great-type sintering furnace. It is expected to reduce the amount of coke in the blast furnace by leaving unburned coarse coke in the interior and burning the unburned coke in the blast furnace. Therefore, since a large amount of coke powder remains in the sintered product ore, there is a problem that the strength of the product sintered ore is reduced, or the conveyor is burnt out by firing in the crushing / cooling process at the later stage of the sintering machine. . As a result, even if the product sinter is pre-reducedCoarseThe particle size and amount of grain coke and the particle size and amount of powder coke to coat raw pelletsReduction rateControl method and can be achievedReduction rateIs unknown.
[0019]
  Because of this, the present inventorsReduction rateAs a result of studying a manufacturing method that can be freely controlled over a wide range from 20% to 90%, by blending fine coke as a fuel in the outermost layer in a pseudo particle having a three-layer structure of the core, inner layer, and outermost layer The ultimate reduction rate is controlled by increasing the combustion efficiency of the fine coke and appropriately determining the quantity ratio with the coarse-grained coke that is blended as the core, and this further increases the controllability of the ultimate reduction rate. I found it.
[0020]
  The present invention has been made on the basis of such findings, and is a method for producing sintered ore that is fired by an endless moving great-type sintering machine, and includes at least SiO in the blended raw material. 2 The content is 6 wt. A primary granulation step in which a predetermined amount of a solid fuel (A) having a particle diameter adjusted to 1 mm to 10 mm is mixed with the blended raw material to obtain a granulated product, and the granulated product A secondary granulation step of mixing and granulating a predetermined amount of the solid fuel (B) whose particle diameter is adjusted to 5 mm or less to form pseudo particles coated with the solid fuel (B),For mixed raw material 1tSolidThe ratio of the sum of the weights of the body fuel (A) and the solid fuel (B) is 4.5 wt. % To 30.0 wt. %, And the ratio of the weight (A) / (B) of the solid fuel (A) to the solid fuel (B) is 0.8 or more.2.5 or lessA method for producing a sintered ore is provided.
[0021]
  The existing reduced agglomerates are mainly raw materials for electric furnaces, and the reduction rate is as high as 95% or more. In an electric furnace, only melting is performed and no reduction is performed. The manufacturing process is, for example, the Midrex process and the Hyl-III process for the shaft furnace type, and the SL / RN process for the rotary kiln type. However, the production amount of these processes is relatively low as compared with the sintering process and the like, and the strength of the product agglomerate is low, so it is not suitable for a blast furnace raw material.
[0022]
  The present invention aims to control the calorific value of the blast furnace generated gas of the blast furnace regardless of the fuel ratio, and when trying to change the preliminary reduction rate of the blast furnace charging raw material, It is necessary to maintain physical and metallurgical properties such as the production rate, product strength, particle size, reducibility and the like of pellets. However, because the final reduction is done in the blast furnaceReduction rateNeed not be more than 95%.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be specifically described.
  First, the inventor obtained theoretically from the list diagram based on the general mass heat balance, that is, the blast furnace charging raw materialReduction rateThe assumption that the amount of heat generated by the blast furnace-generated gas can be controlled regardless of the fuel ratio of the blast furnace will be described with reference to the drawings. FIG. 1 is a graph showing the gas temperature distribution inside the blast furnace, and FIG. 2 is a graph showing the relationship between the reduction equilibrium of iron oxide, the actual gas composition in the furnace, and the degree of oxidation of iron oxide.
[0024]
  In FIG. 1, the gas temperature inside the blast furnace is about 150-200 ° C. at the top of the furnace and 2000-2400 ° C. at the tuyere. In addition, the shaft portion has a constant temperature region of approximately 1000 ° C. called a so-called heat storage zone. In this heat preservation zone, iron oxide exists in a gas composition and a reduction stage slightly deviating from the FeO-Fe reduction equilibrium.
[0025]
  In FIG. 2, the upper horizontal axis represents the degree of oxidation of the gas in the blast furnace (in other words, the oxygen atomic ratio O / C with respect to carbon atoms). The degree of oxidation of the gas is 1 when the gas composition is only CO at the bottom of the blast furnace, and the gas moves to the top while reducing the iron oxide, and finally the total amount of CO2(+ N2) Is 2. This result shows that H in the gas2And H2Even if O is contained, the basic idea is the same except that a slight change appears in the reduction equilibrium diagram. On the other hand, the vertical axis represents the oxygen atom ratio (O / Fe) to iron atoms. Fe with the highest degree of oxidation2O3The degree of oxidation of Fe is 1.5 and Fe3O4Is 1.33, and FeO is 1.05.
[0026]
  The lower part of FIG. 2 is a reduction equilibrium diagram of iron oxide by CO. The horizontal axis represents the degree of gas oxidation as described above, and the vertical axis represents the reduction equilibrium temperature. When the temperature of the heat preservation zone is 1000 ° C. from FIG. 1, the degree of gas oxidation (O / C) at the Fe-FeO reduction equilibrium at this temperature is obtained from the lower stage of FIG. Since the oxidation degree of the ore (FeO) is 1.05, the upper W point in FIG. 2 is obtained.
[0027]
  On the other hand, when charging ore with an oxidation degree of 1.5 from the top of the furnace, the straight line PT-PBThe oxidation degree of the ore and the oxidation degree of the gas change along (hereinafter referred to as the operation line). The fuel ratio of the blast furnace is determined by this linear gradient (C / Fe). When the operation of the blast furnace is ideally performed and the reduction equilibrium is reached, this straight line is in contact with the W point and the fuel ratio takes the minimum value. However, in the actual blast furnace, the reduction of iron oxide is more than the equilibrium. The operation line does not pass through the W point due to deviation, for example, P1Go through the point. Where straight line P0-W and straight line P0-P1Length ratio (P0-W) / (P0-P1) Reduction of blast furnaceflatIt represents the degree of achievement and is called shaft efficiency. Usually, the shaft efficiency of a blast furnace is about 0.90 to 0.95.
[0028]
  When the pre-reduced sintered ore of the present invention is used as the blast furnace raw material, the oxidation degree of iron oxide at the time of charging the blast furnace is lower than 1.5.TP on behalf ofT ”become. As a result, the gas composition (oxidation degree) also decreases, and as a result, the B gas heating value increases. However, in this case, straight line PT-PBSince the gradient of the fuel does not change, the fuel ratio does not change in principle.
[0029]
  Also,Reduction rateIs over 30%, the ordinate of the W point shifts to a W 'point lower than 1.05. Assuming that the shaft efficiency is constant, the operating line is the shaft efficiency (P0-P1/ P0-W ') is constant P1 'As a result, the gradient of the operation line becomes smaller and the fuel ratio decreases. However, in this case, it is presumed that the amount of heat generated by the blast furnace gas does not change because there is no decrease in the degree of gas oxidation.
[0030]
  That is,Reduction rateIs less than 30% (up to the FeO reduction stage)Reduction rateAccordingly, the degree of oxidation of the blast furnace generated gas decreases, and as a result, the heat generation amount of the blast furnace generated gas is improved. However, the fuel ratio of the blast furnace cannot be reduced, and as a result, the amount of carbon dioxide generated cannot be reduced. However, when the blast furnace generated gas is used as fuel for a heating furnace or the like in the steel works, the calorific value of the blast furnace generated gas is improved, so that the total energy consumption of the steel works can be reduced. In additionReduction rateIf it is less than 20%, the effect of increasing the amount of heat generated by the blast furnace gas is small.
[0031]
  on the other hand,Reduction rateIs more than 30% (reduction stage in which FeO and some metallic iron exist)Reduction rateAccordingly, the fuel ratio of the blast furnace can be reduced, and as a result, the amount of carbon dioxide generated can be reduced. In other words, it is expected that the energy consumption of the blast furnace, which is a high energy consumption department of the integrated steelworks, is reduced, and the carbon dioxide generation amount is suppressed. However, in this case, a decrease in the degree of oxidation of the gas generated in the blast furnace (an increase in the calorific value) cannot be expected. Therefore, in the present invention, in the sintering processReduction rateIs 20% or more and less than 30%, or 30% or more and less than 90%. In the present invention, the sintered oreReduction rateThe reason is less than 90% because the usual sintering machineReduction rateThis is because it is difficult to achieve 90% or more, and even if it is achieved, there are problems such as reoxidation when stored in the yard. From the viewpoint of making the ratio of solid fuel moderate,Reduction rateIs preferably 70% or less.
[0032]
  In this way, the present invention in the sintering process of sintered oreReduction rateBy controlling between 20% and less than 90% and charging the blast furnace, the calorific value of the blast furnace gas can be controlled regardless of the fuel ratio of the blast furnace. Specifically, such a sintered ore uses pseudo particles having a three-layer structure of a core, an inner layer, and an outermost layer. Coarse powder coke blended as a core is melted from the inner layer during the sintering process. It is reduced by reducing the liquid. Also, by adding fine coke as fuel to the outermost layer, the combustion efficiency of the powder coke is increased, and the ultimate reduction rate is controlled by appropriately determining the amount ratio with the coarse powder coke blended as the core, As a result, the controllability of the ultimate reduction rate is remarkably increased.
[0033]
  Hereinafter, a method for producing such a sintered ore will be described. FIG. 3 is a process diagram showing a process flow for carrying out the present invention. In FIG. 3, 1 is a normal sintering raw material hopper, 2 is a return hopper, 3 is a solvent hopper, and 4 is a coarse-grained coke hopper. 5 is a primary drum mixer, 6 is a disk pelletizer, 7 is a fine coke hopper, 10 is a shuttle conveyor, 11 is an endless moving great type firing furnace, and 12 is an ignition furnace.
[0034]
  In the above equipment, a predetermined amount of a sintering raw material, a medium solvent, and coarse-grained coke are supplied from each hopper to the drum mixer 5 and mixed while adding water. Subsequently, the mixed raw material is supplied to the disk pelletizer 6 and granulated while adding water. At this time, raw pellets having coarse-grained coke as a core are formed. Next, the raw pellets granulated by the disk pelletizer 6 are supplied to the secondary drum mixer 8 and mixed while adding water and the powder coke cut out from the powder coke hopper 7. By this mixing, pseudo particles having a particle diameter of 2 to 20 mm whose surface is coated with powdered coke are formed. Pseudo particles coated with powder coke are charged into the firing furnace 11 via the shuttle conveyor 10, and the ignition raw material layer is ignited by the ignition furnace 12 and baked by sucking air downward. If granulation is sufficiently performed by the primary drum mixer 5 according to the raw material conditions, the granulation step by the disk pelletizer 6 may be omitted.
[0035]
  FIG. 4 is a cross-sectional view of a pseudo particle having a three-layer structure obtained by the manufacturing process of the present invention. 13 is a coarse-grained coke that forms nuclei of pseudo-particles, 14 is an inner layer formed from a mixture of fine ore, return mineral, and solvent, and 15 is an outermost layer composed of finely ground coke. In general, a mixture of multiple brands of powdered ore, miscellaneous iron sources, and auxiliary materials is called a new raw material, and a mixture of the new raw material with return ore is called a blended raw material. The auxiliary raw materials include a solvent such as a solvent medium and quicklime. Moreover, what added the solid fuel to the mixing | blending raw material is called mixed raw material.
[0036]
  In the present invention, SiO in the blended raw material2The content is 6 wt. Adjust to% or less. This is 6 wt. SiO exceeding%2In the calcination process, a large amount of firelite is produced by the reaction shown in the above formula (1). This is because a large amount of low melting point slag is generated in the softening / melting zone at 1000 ° C. or higher, which deteriorates the softening / melting zone melting property and becomes an obstacle to reducing the blast furnace fuel ratio.
[0037]
  As a solvent medium, quick lime is usually desirable, but fine powder slag, Portland cement, etc. may be used in addition to slaked lime and bentonite.
[0038]
  As solid fuel,CoarseIn addition to fine and fine powder coke, anthracite, coal, char, petroleum coke, etc. can be substituted. Here, for convenience, powder coke will be described as an example.
[0039]
  Coarse powder coke functions as a core in the mixing and granulation process by the primary mixer,FeeThe powder ore and medium solvent adhere and granulate. Further, in the sintering process, reduction is caused from the inside of the pseudo particles, and reoxidation of the reduced structure is suppressed. Therefore, the coarse-grained coke particle size is 1 mm or more and less than 10 mm, desirably 3 to 8 mm. When the particle size is 1 mm or less, it does not function as a nucleus in the granulation step, and it is difficult to form a granulated product with coarse powder coke as a nucleus and a sintered raw material attached around it. Therefore, the reduction from the inside of the pseudo particle as intended by the present invention is also insufficient. In addition, if it is 10 mm or more, a large amount of carbon remains in the agglomerated ore after sintering.GoodsIt causes a decrease in agglomerate strength.
[0040]
  The fine coke for coating is a fuel for supplying the amount of heat necessary for firing. In order to increase the combustion efficiency, the fine particle coke is coated on the surface portion of the pseudo particle. In that case, it is important to form a uniform and strong coating layer on the surface layer of the pseudo particle. In addition, since the change in the amount of fine coke is directly reflected in the calorific value, the heat quantity controllability is excellent. The smaller the powder coke particle size, the better. The upper limit is 5 mm, preferably 1 mm or less.
[0041]
  Also targetReduction rateIn order to achieve the above, it is necessary to set the ratio of the powder coke in the mixed raw material to a predetermined value.Reduction rateAnd the ratio of the powder coke in the mixed raw material differ depending on various conditions at each manufacturing site, and therefore may be obtained for each manufacturing site. For example,Reduction rateWhen the target value of 20% or more and less than 30% is set, the ratio of the powder coke in the mixed raw material is 4.5 wt. % To 8.5 wt. In the range of%Reduction rateAnd the ratio of the powder coke in the mixed raw material are obtained, and the ratio of the powder coke in the mixed raw material is determined based on the correlation.
[0042]
  In addition, the ratio of the powder coke in the mixed raw material is 4.5 wt. %, The FeO content in the product sintered ore is 10 to 15 wt. %, Which is almost ineffective for improving the heat generation amount of gas generated in the blast furnace. On the other hand, the amount of powder coke is 8.5 wt. If it exceeds%, the heat generated by the blast furnace gas will be saturated.
[0043]
  Similarly,Reduction rateIn the range of 30% or more and less than 90%, the ratio of the solid fuel in the mixed raw material is 8.5 wt. % To 30 wt. What is necessary is just to obtain | require a correlation in the range of%. The ratio of the powder coke is 30.0 wt. If the amount exceeds 50%, the combustion time of the powdered coke will become extremely long, so the production rate of sintered ore will deteriorate and the amount of heat supplied to the sintering bed will be reduced.excessAs a result, the amount of melt produced in the bed is remarkably increased, so that the air permeability of the bed is deteriorated.
[0044]
  As described above, the amount of powder coke to be addedFeeIt may be expressed as a coke ratio that is a ratio to the above, or may be expressed as a coke basic unit per ton of sintered production. Conversion can be made between the coke ratio and the basic unit of coke by using the following relational expression.
Coke unit (kg / t) = {Coke ratio (%) × (New raw material usage (kg / t) + Returning consumption (kg / t))} / (New raw material usage (kg / t) × Sintering yield (%)) x 1000
[0045]
  Since the sintering yield of a general sintering machine is about 91.0%, the amount of new raw materials used is 1110 kg / t, and the amount of returned ore used is 200 kg / t, the coke ratio of 4.5% is a coke basic unit of 58 kg. Converted to / t.
[0046]
  Therefore, change the coke intensity in the above range as well.Reduction rateFind the target and the correlation between basic unit of coke and targetReduction rateCoke intensity can be determined.
[0047]
  Also,Reduction rateThe ratio of the amount of coarse-grained coke for interior (core) and the amount of fine coke for exterior (coating) in the solid fuel (internal / external ratio = interior / external quantity) is 0.8 or more. It is preferable that When the solid / interior ratio of the solid fuel is 0.8 or less, the reducing ability to reduce from the inside of the pseudo particles is insufficient. In addition, the amount of powdered coke to be blended as the core is reduced, so that the exterior ratio is increased.Further, the interior / exterior ratio of the solid fuel is preferably 2.5 or less.
[0048]
【Example】
  Examples of the present invention will be described below.
  Example 1
  In carrying out the present invention, pseudo particles are produced according to the granulation process shown in FIG. 3, and the pseudo particles are fired in a test pan.Reduction rateandSoThe controllability of was confirmed. For convenience of explanation,Reduction rateIs an L-type sinter, or less than 30% (reduction to FeO),Reduction rateIs distinguished from H-type sintered ore in Example 1, L-type sintered ore is described in Example 1, and H-type sintered ore is described in Example 2 described later. .
[0049]
  In this example, Table 1 shows the chemical composition and particle size of the blended raw materials used when firing the L-type sintered ore in a test pan. SiO in compounding materials2The content is 4.63 wt. %. This compounding raw materialFeeHas a return of 15 wt. % And quick lime 2.5 wt. % Is blended. As the solid fuel, coarse powder coke having a particle diameter of 3 to 5 mm for the interior (core) and fine coke adjusted to a particle diameter of 3 mm or less for the exterior (coating) were used.
[0050]
  First, mixing and granulating with a primary drum mixer (inner diameter 4.4 m, effective length 15 m) while adding an appropriate amount of water to the blended raw material and a predetermined amount of coarse-grained coke. Next, the granulated material of the primary drum mixer is supplied to the secondary drum mixer (inner diameter: 5.0 m, effective length: 18 m), and the remaining water to be added as necessary and a predetermined amount of fine coke are added. And mixed and granulated. From this, the amount of coke added is 4.5 wt. Less than%Reduction rateNo improvement is seen, and if the interior / exterior ratio is less than 0.8,Reduction rateIt is clear that there is little improvement effect.
[0051]
  As shown in Table 2, the quasi-particles consist of 4.5 wt. % To 8.5 wt. %, 5 types of L1 to L5 were produced. In addition, the ratio of the coarse powder coke for interior (core) and fine coke for exterior (coating) in solid fuel (internal / external ratio = interior amount / exterior amount) is suitably in the range of 0.8 to 1.4. Changed.
[0052]
  In addition, as a comparative example, solid fuel was added at 4.5 wt. % L6 and L7 having a solid fuel inner / outer ratio of less than 0.8 were also produced.
[0053]
  The produced pseudo particles L1 to L7 all have a particle diameter of 2 to 20 mm at the outlet of the secondary drum mixer and have a core of coarse powder coke at the center.layerIs fine cokeis thereIt was a three-layer pseudo particle. In addition, the sintering raw material of the particle size shown in Table 1FeeIs fine powder fieldFeeTherefore, the granulation process using a disk pelletizer is omitted because the granulation is sufficiently possible with only the primary drum mixer.
[0054]
  Next, the pseudo particles L1 to L7 are fired in a test pan,Reduction rateWas measured.Reduction rateThe measurement results are as shown in Table 2. The firing conditions with the test pan were a pot diameter of 300 mmφ, a raw material depth of 450 mm, a suction negative pressure of 1000 mmAq, and an ignition time of 90 seconds.
[0055]
  FIG. 5 shows L1 to L7.Reduction rateIt is the graph which plotted the measurement result with respect to the quantity (coke addition amount) of the solid fuel. From FIG. 5, the powder coke addition amount is 4.5 wt. % To 8.5 wt. In the range of%Reduction rateIs almost 20% to 30% and the amount of powder coke addedReduction rateIt was confirmed that there is a roughly proportional relationship. Also, if the solid / interior ratio of solid fuel is 0.8 or moreIfWith the amount of solid fuelReduction rateCorrelation is improved, that is,Reduction rateIt has also been confirmed that the controllability is improved.
[0056]
[Table 1]
Figure 0003731361
[0057]
[Table 2]
Figure 0003731361
[0058]
  (Example 2)
  In this example, an H-type sintered ore will be described. The ingredients usedFeeTable 3 shows the chemical composition and particle size. SiO in compounding materials2The content is 3.93 wt. %. This blended raw material contains 15 wt. % And quick lime 2.5 wt. % Is blended. Solid fuel has a particle size of 5-8mm for interior (core).CoarseFine coke adjusted to a particle size of 1 mm or less for grain coke and exterior (coating) was used.
[0059]
  First, the ingredientsFeeThe mixture was granulated with a primary drum mixer (inner diameter 4.4 m, effective length 15 m) while adding an appropriate amount of water to the coke and coarse-grained coke. Further, the granulated product of the primary drum mixer was granulated with a disk pelletizer (diameter 7.5 m, depth 0.5 m). This is because the blended raw materials having the particle sizes shown in Table 3 are fine powder raw materials, and granulation is insufficient with only the primary drum mixer, and therefore, a granulation step by a disk pelletizer is added.
[0060]
  The granulated product of the disk pelletizer is supplied to a secondary drum mixer (inner diameter: 5.0 m, effective length: 18 m), and the remaining moisture to be added as necessary and fine coke adjusted to a particle size of 1 mm or less are added. And mixed and granulated.
[0061]
  As shown in Table 4, the quasi-particles consisted of 8.5 wt. % To 30.0 wt. 6 kinds of H1 to H6 were produced with the range of%. In addition, the ratio of the coarse powder coke for interior (core) and fine coke for exterior (coating) in the solid fuel (internal / external ratio = interior quantity / outer quantity) is suitably in the range of 1.0 to 2.5. Changed.
[0062]
  In addition, as a comparative example, solid fuelFee30.0 wt. % H7 and H8 having a solid fuel inner / outer ratio of less than 0.8 were also produced. The manufactured pseudo particles were all pseudo particles having a three-layer structure, as in the case of the L type.
[0063]
  Next, the pseudo particles H1 to H8 are fired in a test pan,Reduction rateWas measured. The results are shown in Table 4. In addition, the baking conditions by a test pan are the same as the case of L type.
[0064]
  FIG. 6 shows sintered ores H1 to H8.Reduction rateIt is the graph which plotted the measurement result with respect to the quantity (coke addition amount) of the solid fuel. From FIG. 6, the powder coke addition amount is 8.5 wt. % To 30.0 wt. In the range of%Reduction rateIs almost 30% ~ 90%Reduction rateIt was confirmed that there is a roughly proportional relationship.
[0065]
  Also in the case of H-type sintered ore, if the internal / external ratio of the solid fuel is 0.8 or moreReduction rateIt has also been confirmed that the controllability is improved.
[0066]
[Table 3]
Figure 0003731361
[0067]
[Table 4]
Figure 0003731361
[0068]
  In Example 1 and Example 2 above, since firing is performed in a test pan, the ratio of the solid fuel is 4.5 wt. % To 8.5 wt. % And 8.5 wt. % To 30.0 wt. However, when the solid fuel intensity in the case of firing with an actual sintering machine is determined by the above-described method, it is approximately 56 to 106 kg / t product sintering and 106 to 373 kg / t product sintering, respectively. However, the solid fuel ratio is 30.0 wt. % Is too high in view of the actual sinter production process, so that the reduction rate is preferably 70% or less within the range of 30% or more and less than 90%.
[0069]
  Moreover, although not described, in Example 1 and Example 2, the conditions that the sintered ore should maintain as other blast furnace raw materials were satisfactory.
[0070]
【The invention's effect】
  According to the present invention, the sintered oreReduction rateBy setting the ratio to 20% or more and less than 30%, the calorific value of the gas generated in the blast furnace can be changed while maintaining the fuel ratio of the blast furnace constant. Also of sintered oreReduction rateBy setting the ratio to 30% or more and less than 90%, the fuel ratio can be changed while the calorific value of the gas generated in the blast furnace is kept constant. Therefore, the calorific value of the gas generated in the blast furnace can be controlled without depending on the fuel ratio of the blast furnace. Moreover, according to the present invention,Reduction rateA method for producing a sintered ore having excellent controllability is obtained. The pre-reduced sintered ore obtained by the production method of the present invention suppresses the formation of firelite during the sintering process even when the reduction rate is in the range of 20% to 30%. There is no deterioration of reducibility in In addition, there is no unburned powder coke left in the sintered product ore.GoodsThere is no problem of conveyor burnout due to reduced strength of sintered ore and ignition in crushing and cooling processes.
[Brief description of the drawings]
FIG. 1 is a diagram of gas temperature distribution in a blast furnace.
FIG. 2 is a graph showing the relationship between iron oxide reduction equilibrium, blast furnace gas oxidation degree, and iron oxide oxidation degree.
FIG. 3 is a process diagram showing a process flow in the method for producing a sintered ore according to the present invention.
FIG. 4 is a cross-sectional view of a three-layered pseudo particle obtained by the present invention.
FIG. 5 shows the solid fuel ratio (coke addition amount) in Example 1 of the present invention.Reduction rateThe graph which shows the relationship.
FIG. 6 shows the ratio of solid fuel (coke addition amount) in Example 2 of the present invention.Reduction rateThe graph which shows the relationship.
[Explanation of symbols]
1 ... Sintering raw material hopper
2 ... Returning hopper
3 ... Solvent hopper
4 ... Coarse coke hopper
5 …… Primary drum mixer
6 ... Disc pelletizer
7: Fine coke hopper
10 …… Shuttle conveyor
11 …… Endless moving great type firing furnace
12 ... Ignition furnace

Claims (1)

無端移動グレート式焼結機で焼成する焼結鉱の製造方法であって、少なくとも、配合原料中のSiO 含有量を6wt.%以下に調整する工程と、前記配合原料に粒子径が1mm〜10mmに調整された固体燃料(A)を所定量混合して造粒物とする1次造粒工程と、前記造粒物に粒子径が5mm以下に調整された固体燃料(B)の所定量を混合して造粒し、固体燃料(B)により被覆された擬似粒子とする2次造粒工程とを備え、混合原料1tに対する体燃料(A)と固体燃料(B)の重量の和の割合が4.5wt.%〜30.0wt.%で、かつ、固体燃料(A)と固体燃料(B)の重量の比(A)/(B)の値を0.8以上2.5以下とすることを特徴とする焼結鉱の製造方法。 A method for producing a sintered ore fired by an endless moving great-type sintering machine, wherein at least the SiO 2 content in the blended raw material is 6 wt. A primary granulation step in which a predetermined amount of a solid fuel (A) having a particle diameter adjusted to 1 mm to 10 mm is mixed with the blended raw material to obtain a granulated product, and the granulated product A secondary granulation step of mixing and granulating a predetermined amount of the solid fuel (B) whose particle diameter is adjusted to 5 mm or less to form pseudo particles covered with the solid fuel (B), and a mixed raw material 1t the proportion of the sum of the weight of the solid body fuel to (a) and solid fuel (B) is 4.5 wt. % To 30.0 wt. %, And the ratio of the weight ratio (A) / (B) between the solid fuel (A) and the solid fuel (B) is 0.8 or more and 2.5 or less. Method.
JP36981898A 1998-12-25 1998-12-25 Method for producing sintered ore Expired - Fee Related JP3731361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36981898A JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36981898A JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005229831A Division JP4529838B2 (en) 2005-08-08 2005-08-08 Sinter ore and blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2000192153A JP2000192153A (en) 2000-07-11
JP3731361B2 true JP3731361B2 (en) 2006-01-05

Family

ID=18495395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36981898A Expired - Fee Related JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP3731361B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821076B1 (en) * 2001-11-02 2008-04-08 주식회사 포스코 A method of iron ore sintering using anthracite and coke as fuel
CN101300366B (en) * 2005-10-31 2011-01-05 杰富意钢铁株式会社 Method for producing sintered ore and sintering machine therefor
JP5021492B2 (en) * 2005-12-02 2012-09-05 協材興業株式会社 Method for granulating sintered raw material and method for producing sintered ore
JP5146572B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5146573B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5051317B1 (en) * 2010-07-30 2012-10-17 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5821362B2 (en) * 2010-07-30 2015-11-24 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
CN104204242B (en) * 2012-03-22 2016-08-24 杰富意钢铁株式会社 The method of adjustment of sintering deposit raw material powder and sintering deposit raw material powder
JP6677135B2 (en) * 2016-09-14 2020-04-08 日本製鉄株式会社 Granulation method of raw materials for sintering
JP6885386B2 (en) * 2017-12-26 2021-06-16 Jfeスチール株式会社 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
CN114350936A (en) * 2021-12-15 2022-04-15 包头钢铁(集团)有限责任公司 Method for reducing sintering solid fuel consumption by controlling fuel granularity

Also Published As

Publication number Publication date
JP2000192153A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP4167101B2 (en) Production of granular metallic iron
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
US20110024681A1 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP3731361B2 (en) Method for producing sintered ore
US3938987A (en) Process for preparing a smelter furnace charge composition
JP4529838B2 (en) Sinter ore and blast furnace operation method
JPH08134516A (en) Operation of blast furnace
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JPH02228428A (en) Charging material for blast furnace and its production
JP3840891B2 (en) High-grade fired agglomerate for iron making and method for producing the same
JP2003301205A (en) Method for charging blast furnace material
JP3395554B2 (en) Sinter production method
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP2003129141A (en) Sintered ore for blast furnace and manufacturing method therefor
JP3829516B2 (en) Blast furnace operation method
JP3718604B2 (en) Blast furnace raw material charging method
CA1204943A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material
JP2001262241A (en) Method for producing sintered ore containing carbon
JPH0583620B2 (en)
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JP3485787B2 (en) How to charge raw materials for blast furnace
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP3651270B2 (en) Blast furnace operation method using low SiO2 sintered ore
JP2002226904A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees