JP3728126B2 - Inspection method of protozoa - Google Patents

Inspection method of protozoa Download PDF

Info

Publication number
JP3728126B2
JP3728126B2 JP01606899A JP1606899A JP3728126B2 JP 3728126 B2 JP3728126 B2 JP 3728126B2 JP 01606899 A JP01606899 A JP 01606899A JP 1606899 A JP1606899 A JP 1606899A JP 3728126 B2 JP3728126 B2 JP 3728126B2
Authority
JP
Japan
Prior art keywords
antibody
protozoa
treatment reagent
primary treatment
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01606899A
Other languages
Japanese (ja)
Other versions
JP2000214168A (en
Inventor
敏朗 加藤
芳朗 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01606899A priority Critical patent/JP3728126B2/en
Publication of JP2000214168A publication Critical patent/JP2000214168A/en
Application granted granted Critical
Publication of JP3728126B2 publication Critical patent/JP3728126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水処理分野で実用可能な、クリプトスポリジウムやジアルジア等の原虫類の検査方法に関する。
本発明は、水処理分野で実用可能な、従来法の問題点を克服した、感染力のある原虫類の存在量を定量評価する検査方法に関する。
【0002】
【従来の技術】
最近、クリプトスポリジウムやジアルジア等の原虫による水系感染症の発生が上・下水道分野で大きな問題となっている(総説として例えば、保坂三継(1998)「水系原虫感染症−原因生物と流行発生−」,用水と廃水,第40巻,第2号,11頁;金子光美(1998)「原虫類やその他の病原性微生物の検出とその除去技術」,用水と廃水,第10巻,第4号,32頁など)。これらの原虫類は、環境中においてオーシストもしくはシストと呼ばれる胞子状の殻に包まれた形態で存在しているため、砂ろ過や塩素消毒といった従来の水処理法では防除しきれない。甚大な水系感染を未然に防ぐために、水処理プロセスにおける原虫類のモニタリングに基づく対策、もしくは、原虫類を確実に駆除できる新プロセスの開発などが強く求められている。
【0003】
クリプトスポリジウムのオーシストおよびジアルジアのシストの存在量を検査する方法として、染色法、免疫学的検査法、遺伝子検査法、動物実験法などがある。
染色法としては、細胞を色素で染色した後に光学顕微鏡で観察する方法(例えば、ギムザ染色、抗酸性染色など)や細胞をDAPI [4,6-diamidino-2-phenylindole] 、PI [propidium iodine] 、FITC [fluorescein isothiocyanate] 等の蛍光色素で染色した後に蛍光顕微鏡で観察する方法が挙げられる。これらは、微生物や原虫の種を問わず非特異的に細胞を染色し、顕微鏡観察で鑑別・計数する方法であり、混在する他種の細胞が明らかに形態や大きさの異なる場合には鑑別できるが、原虫類のうちの近縁種間の鑑別には熟練を要するため、一般に誤判定を招きやすい。
【0004】
免疫学的検査法としては、予め蛍光化合物で標識した抗体と細胞を反応させた後に、蛍光を発する細胞を蛍光顕微鏡で観察する方法や、フローサイトメーターを用いて粒子サイズ毎に分画して蛍光強度分布を計測する方法が挙げられる。あるいは、試料水中のオーシストを酵素抗体法で検出・定量する方法が挙げられる。これらはいずれも、所望のオーシストもしくはシストのみに特異的に結合する抗体を用いることによって、特異的に検出することができるといわれているが、空のオーシスト等を陽性と誤認しやすい、多量のオーシストを含む水試料が必要、分析に極めて高額な装置が必要など、操作性や定量性の点で満足のゆく検査方法とは言い難い。
【0005】
遺伝子検査法としては、オーシスト等を含む水試料から核酸を抽出し、所望の原虫類に特異的な遺伝子の塩基配列に基づいて調製したDNA断片を用いて検出する方法、抽出した核酸を鋳型として、所望の原虫類に特異的な遺伝子の塩基配列に基づいて調製したDNA断片セットをプライマーとしたポリメラーゼ連鎖反応(PCR)によって試験管内で増幅した遺伝子を検出する方法が挙げられる。これらの方法は、着目する遺伝子に十分配慮すれば所望の原虫類のみを特異的に検出することが可能であるが、遺伝子解析に関する専門知識を必要とする上に、操作が煩雑であり、所望の原虫類の存在は判定できても、定量的な評価や生死の判定が困難である。
【0006】
クリプトスポリジウムの生死を判別する方法として現在盛んに用いられている動物実験法は、小動物を用いた感染試験である(例えば、貫上ら(1998)「オゾンによるCryptosporidium オーシストの不活化」,第32回 日本水環境学会講演集,467頁)。クリプトスポリジウムのオーシストを含んだ水試料をマウスやラット等の小動物へ経口接種すると、感染能を保持しているオーシストの場合、小動物の腸管組織に寄生してクリプトスポリジウムが増殖するため、糞便中にオーシストが***される。糞便中からオーシストを精製し、前記した染色法や免疫学的検査法等でオーシストを定量・評価するという方法である。この方法は、前記した染色法や免疫学的検査法の問題点を抱えているばかりでなく、免疫不全等の性質のある特殊な小動物を用いる必要があること、1検体当たり少なくとも1匹の小動物が必要であること、オーシストを接種した後に継続して2〜3週間の間定期的に糞便を調査する必要があること、感染能を保持したオーシスト数が104 個を下回ると糞便中にオーシストが***されないため検査には多量のオーシストを必要とすること、などの欠点がある。
【0007】
ところで、薬学分野において、クリプトスポリジウムに対する抗生剤をスクリーニングする方法として、培養細胞を用いた接種試験方法が報告された(例えば、K. M. Woods etal. (1995) "Development of a microtitre ELISA to quantify development of Cryptosporidium parvum in vitro" FEMS Microbiol. Lett., vol.128, p89 )。この方法は、マルチプレートで培養した培養細胞に、クリプトスポリジウムのオーシストと薬効を調べたい薬剤とを混和した試料を添加して、所定時間接触させた後に新鮮な増殖培地と交換してから更に2日間培養を続ける。クリプトスポリジウムが細胞に感染すると、クリプトスポリジウムは細胞内で寄生・増殖するため、増殖したオーシストを酵素抗体法で検出・定量する方法である。報告によると、1試料当たり5×104 〜1×105 個のクリプトスポリジウム・オーシストが必要であるが、薬効を精度良く評価できると報告している。操作性、再現性、定量性の点で、従来汎用されている前記動物実験法よりは優れた方法といえるが、水処理分野へ適用しようとした場合、1試料当たり5×104 〜1×105 個のクリプトスポリジウム・オーシストを必要とする該方法は検出感度の点で問題が残る。
【0008】
【発明が解決しようとする課題】
従来知られている原虫類の検査方法は、前記したように、原虫類の鑑別に熟練を必要とする煩雑な方法、操作は簡便だが結果の正確さに欠く方法、原虫類の存在は検査できても生死の識別や感染力の有無までは評価できないなど問題点が多く、操作性、定量性、検出感度の点で満足のゆく方法がない。本発明においては、人体に対して問題となる感染力を保持した原虫類を簡便に定量評価する方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
原虫類に対する医薬品をスクリーニングするための方法として薬学分野で提案されている、動物培養細胞を用いた原虫類の検査方法に関して、細胞の培養条件、原虫類オーシストと培養細胞の接触条件、原虫類の検出試薬や反応条件等を最適化することによって、前記した動物実験では検出ができなかった原虫類濃度の水試料についても感度良く、定量的に判定できる。すなわち、前記した課題は以下の(1)〜(4)により解決できる。
【0010】
(1)被験水と培養細胞を接触さることによって被験水中の感染力のある原虫類を培養細胞に寄生させ、増殖した原虫類に、
(A)当該原虫に結合し、且つ蛍光色素化合物で標識した化合物からなる一次処理試薬を注入し、その後、蛍光分光光度計にて吸光度を測定して定量・評価する、
(B)当該原虫に結合し、且つ酵素蛋白質で標識した化合物からなる一次処理試薬を注入し、その後、発色操作した後、分光光度計にて吸光度を測定して定量・評価する、
又は、
(C)当該原虫に結合する化合物からなる一次処理試薬を注入し、次に、
a)当該一次処理試薬に結合し、且つ蛍光色素化合物で標識した化合物からなる二次処理試薬を注入し、その後、蛍光分光光度計にて吸光度を測定して定量・評価する、
若しくは、
b)当該一次処理試薬に結合し、且つ酵素蛋白質で標識した化合物からなる二次処理試薬を注入し、その後、発色操作した後、分光光度計にて吸光度を測定して定量・評価する、
ことを特徴とする原虫類の検査方法。
(2)原虫類の量を計測する酵素抗体法に用いる一次処理試薬と二次処理試薬の組合せとして、ビオチン化抗原虫抗体とペルオキシダーゼ架橋ストレプトアビジン、ビオチン化抗原虫抗体とペルオキシダーゼ架橋ストレプトアビジン・ビオチン複合体、ビオチン化抗原虫抗体とペルオキシダーゼ架橋抗ビオチン抗体、フルオレセイン化抗原虫抗体とペルオキシダーゼ架橋抗フルオレセイン抗体、非標識抗原虫抗体とペルオキシダーゼ架橋抗イムノグロブリン抗体の中から選ばれる化合物を用いることを特徴とする、前記の原虫類の検査方法。
(3)原虫類の量を計測する酵素抗体法に用いる一次処理試薬と二次処理試薬の組合せとして、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋ストレプトアビジン、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋ストレプトアビジン・ビオチン複合体、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋抗ビオチン抗体、フルオレセイン化抗原虫抗体とアルカリフォスファターゼ架橋抗フルオレセイン抗体、非標識抗原虫抗体とアルカリフォスファターゼ架橋抗イムノグロブリン抗体の中から選ばれる化合物を用いることを特徴とする、前記の原虫類の検査方法。
(4)原虫類の量を計測する蛍光抗体法に用いる一次処理試薬しくは二次処理試薬として、フルオレセイン、テキサスレッド又はそれらの誘導体で標識した化合物を用いることを特徴とする、前記の原虫類の検査方法。
【0011】
【発明の実施の形態】
まず、以下の記載に先立ち、用語の説明を行う。
・一次処理試薬:検査しようとする原虫に結合する性質を有する化合物。
・一次処理溶液:一次処理試薬を含有する溶液。
・二次処理試薬:一次処理試薬に結合する性質を有する化合物。
・二次処理溶液:二次処理試薬を含有する溶液。
・発色試薬:一次処理試薬もしくは二次処理試薬に付加した酵素蛋白質の活性によって呈色反応を起こしうる化合物。
・発色溶液:発色試薬を含有する溶液。
【0012】
つぎに、本発明における原虫類の検査方法のフローを図1に示し、以下に詳述する。
▲1▼ 培養細胞の前培養工程:後述の感染工程で必要な量の培養細胞を確保し、感染工程に供するための培養細胞を調製する工程である。培養細胞の種類は、検査しようとする原虫類が感染しうる細胞株であればよく、例えば、マウス由来BALB/3T33細胞株、ヒト由来のBT−549細胞株、ヒト由来のCaco−2細胞株、ヒト由来のHCT−8細胞株、ヒト由来のHT−29細胞株、ヒト由来のHs−700T細胞株、ヒト由来のHT−1080細胞株、ヒト由来のLS−174T細胞株、ヒト由来のRL59−2細胞株、ウシ由来のMDBK細胞株、イヌ由来のMDCK細胞株などを用いることができるが、ヒトに対して感染性があるクリプトスポリジウム・パルバムを検査する場合、ヒト由来の細胞株、例えばヒト腸管内細胞由来のHCT−8を用いれば、ヒトへの感染性を正しく評価できる。細胞を培養するための培地組成、培養温度、湿度、炭酸ガス濃度、培養時間等の培養条件は、用いようとする細胞株に応じて選定することができる。
【0013】
後述の感染工程で必要な量の培養細胞を確保するための細胞培養において用いる培養容器は、調製すべき培養細胞の量に応じて選定すればよく、培養容器表面への細胞の接着性を高めるためにゼラチン、ポリ−L−リジン、コラーゲン等で表面処理されていてもよい。増殖した培養細胞を常法に従って回収して、細胞数を計数した後に新鮮な培地液等で103 〜105 個/mlとなるように細胞濃度を調整し、1ウェルあたり103 〜105 個、好ましくは1×104 〜5×104 個となるようマルチプレートへ分注して、再び1〜3日程度培養して後述の感染工程に備える。マルチプレートのサイズや規格は、検出工程で用いようとする分光分析装置の規格に合わせて選定すれば良く、96穴マルチプレートを用いることが汎用的である。また、マルチプレートは容器表面への細胞の接着性を高めるためにゼラチン、ポリ−L−リジン、コラーゲン等で表面処理されていてもよい。
【0014】
▲2▼ 培養細胞への感染工程:マルチプレートで培養した後に各ウェルから培地液を除去して、原虫オーシスト濃度を測定したい水試料を分注して、所定時間培養し、原虫を培養細胞へ感染させる。水試料は、好ましくは、培養細胞用の培地を添加したり、培養細胞用の培地で希釈したり、遠心分離後に沈殿物を培養細胞用の培地に再懸濁させたりすることによって、溶媒を培養細胞用の培地に置換した方がよい。さらに、水試料中に雑菌の生存が懸念された場合には、抗菌剤、防黴剤等を添加することができる。オーシストを含んだ水試料を分注した後、前記した細胞培養条件下で30分〜3時間程度、好ましくは1〜2時間程度培養する。培養後に各ウェルから培地液を除去してから、細胞をリン酸緩衝液やハンクス平衡塩溶液等の緩衝液もしくは細胞培養用培地で1乃至数回洗浄する。続いて、オーシストを含まない新鮮な細胞培養用培地を所定量分注して、1〜3日間、好ましくは24〜48時間程度、細胞を培養する。雑菌の生存が懸念された場合には、抗菌剤、防黴剤等を培地に添加することができる。
【0015】
▲3▼ 検出工程:検出工程は、1)固定操作、2)ブロッキング操作、3)一次処理操作、4)二次処理操作、5)発色操作、6)分析操作、の6つの単位操作からなる。
固定操作は、検出工程中の培養細胞や原虫の剥離を防止し、検出に用いる試薬と原虫との接触性を高めるために、細胞を固定する工程であり、前工程で調製したマルチプレートの各ウェルから培地液を除去して、メタノール等の有機溶媒やホルマリンを添加した細胞固定液を分注し、5分から3時間、好ましくは1〜2時間、静置して細胞を固定する。
ブロッキング操作は、細胞やウェル内壁に対する一次処理試薬や二次処理試薬等の非特異的な吸着を防止する工程であり、固定液を除去し、ウェルをリン酸緩衝液やハンクス平衡塩溶液等の緩衝液もしくは細胞培養用培地で1乃至数回洗浄した後に、ブロッキング液を分注して、30分以上静置してから、ブロッキング液を除去する。ブロッキング液は、細胞培養用培地、もしくは、ウシ血清アルブミン等を溶解させた緩衝液等を用いることができる。さらに、ブロッキング液は、Tween20等の界面活性剤を含んでいても良い。前工程において、血清成分を含んだ細胞培養培地を用いた場合には、ブロッキング操作を省略することもできる。
【0016】
一次処理操作は、検査したい原虫を検出可能な試薬(すなわち一次処理試薬)を含んだ一次処理溶液で処理する工程であり、前記した固定操作後のウェル、もしくはブロッキング操作後のウェルに一次処理溶液を分注し、所定時間反応させた後に一次処理溶液を除去し、ウェルをリン酸緩衝液やハンクス平衡塩溶液等の緩衝液もしくは細胞培養用培地で1乃至数回洗浄する。一次処理試薬としては、ポリクローナル抗体、モノクローナル抗体、レクチン等を使用することができる。検査したい原虫を検出可能な一次処理試薬は、ビオチン、ストレプトアビジン、フルオレセイン、フルオレセインイソチオシアネート、アルカリフォスファターゼ、ペルオキシダーゼ等の化合物で標識されていてもよい。一次処理試薬を溶解させる溶媒としては、一次処理試薬を変性させることなく、原虫との結合を阻害せず、細胞やウェル内壁に対する一次処理試薬の非特異的な吸着を引き起こさない性質であればいかなる溶液も使用することができるが、前記したブロッキング液を用いることが簡便である。
【0017】
二次処理操作は、一次処理試薬のみでは後述する分析操作が不可能な場合について、一次処理試薬を検出可能な試薬(すなわち二次処理試薬)を含んだ溶液で処理する工程であり、前記した一次処理操作後のウェルに二次処理溶液を分注し、所定時間反応させた後に二次処理溶液を除去し、ウェルをリン酸緩衝液やハンクス平衡塩溶液等の緩衝液もしくは細胞培養用培地で1乃至数回洗浄する。二次処理試薬としては、一次処理試薬の性質に応じて選定すれば良く、一次処理試薬に対する抗体やプロテインA、プロテインG、ビオチン、ストレプトアビジンを使用することはできる。さらに、二次処理試薬の結合状態をその結合量に応じて可視化・定量するためには、フルオレセイン、フルオレセインイソチオシアネート等の蛍光色素化合物もしくはアルカリフォスファターゼ、ペルオキシダーゼ等の酵素蛋白質で標識した二次処理試薬を用いればよい。二次処理試薬を溶解させる溶媒としては、二次処理試薬を変性させることなく、一次処理試薬との結合を阻害せず、細胞やウェル内壁に対する二次処理試薬の非特異的な吸着を引き起こさない性質であればいかなる溶液も使用することができるが、前記したブロッキング液を用いることが簡便である。なお、一次処理試薬や二次処理試薬は独自に作成することもできるが、検査の再現性、特異性、汎用性等を鑑みた場合に、市販のビオチン化抗体を一次処理試薬とし、市販のストレプトアビジン−ペルオキシダーゼ複合体を二次処理試薬として用いることが好ましく、さらに、ストレプトアビジン−ビオチン−ペルオキシダーゼ複合体を二次処理試薬として用いれば検出感度を高めることもできる。
【0018】
発色操作は、検査したい原虫に対する一次処理試薬もしくは二次処理試薬の結合状態をその結合量に応じて可視化するための工程であり、前記した一次処理操作後のウェルもしくは二次処理操作後のウェルに発色溶液を分注し、所定時間反応させた後に、後述の分析操作に供する。但し、一次処理試薬もしくは二次処理試薬に付加した標識化合物が蛍光色素化合物であって、該蛍光色素化合物の発光強度を以て結合量を測定する場合には、該発色操作を省略することができる。発色溶液は、一次処理試薬もしくは二次処理試薬に付加した酵素蛋白質に応じて選定した基質(例えば、アルカリフォスファターゼに対してはONPP[o-nitrophenyl phosphate ]、PNPP[p-nitrophenyl phosphate ]等が挙げられ、ペルオキシダーゼに対してはABTS[2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid ]、OPD[o-phenylenediamine]、TMB[3,3',5,5'-tetramethylbenzidine]等が挙げられる)を所定の緩衝液に溶解したものを用いることができる。発色溶液を分注する前に、基質を添加していない緩衝液でウェルを洗浄するとよい。
分析操作は、前記した発色操作後のウェルにおける発色の程度を分光光度計もしくは蛍光分光光度計等の分析装置を用いて計測する工程であり、測定条件は発色の性質に応じて選定することができる。また、前記した発色操作を経ずに、一次処理試薬もしくは二次処理試薬に付加した標識化合物が蛍光色素化合物であって、該蛍光色素化合物の発光強度を以て結合量を測定する場合には、分析に至適な溶液をウェルに分注した後に、蛍光分光光度計等で計測すればよい。
【0019】
【実施例】
ヒト由来培養細胞HCT−8株(ATCC #CCL 244)を宿主細胞として原虫クリプトスポリジウム・パルバムを検査した。
0.2%重炭酸ナトリウム、10%ウマ血清、1mMピルビン酸ナトリウム、0.1g/Lカナマイシンを添加したRPMI1640培地からなる維持培地にて培養したHCT−8細胞をトリプシン処理で培養容器から回収し、細胞濃度が2.5×105 個/mLとなるように新鮮な増殖培地に懸濁して、予めゼラチンでコートした96穴マルチプレートに200μLずつ分注し、炭酸ガス培養器内で24時間培養した。培養後のマルチプレートの培地を除去し、クリプトスポリジウム懸濁液を各々100μlずつ分注し、炭酸ガス培養器内で90分間培養して、感染させた。クリプトスポリジウム懸濁液は、前記した維持培地に、葉酸(1mg/L)、p−アミノ安息香酸(4mg/L)、パントテン酸(2mg/L)、アスコルビン酸(35mg/L)を添加した増殖培地に、株式会社ベリタスより購入したクリプトスポリジウム・パルバムのオーシストを0〜50万個/mlの濃度範囲で懸濁した溶液を用いた。感染後の各ウェルより培地を除去し、リン酸緩衝液で2回洗浄した後、オーシストを含まない増殖培地を100μlずつ分注し、炭酸ガス培養器内で2日間培養した。
【0020】
培養後の各ウェルより培地を除去し、4%ホルマリンを添加したリン酸緩衝液からなる固定液を100μlずつ分注して、室温で2時間反応させて固定した。固定液を除去し、リン酸緩衝液で3回洗浄した後、1%ウシ血清アルブミンと0.002%Tween20を添加したリン酸緩衝液からなるブロッキング液を100μlずつ分注して、室温で1時間反応させてブロッキングした。ブロッキング液を除去し、一次処理溶液を33μlずつ分注して、室温で1時間反応させた。一次処理溶液は、米国Waterbone Inc.より購入したビオチン化抗体(商品名Aqua−Glo G/C Indirect)を前記したブロッキング液で20倍に希釈した溶液を用いた。反応後の各ウェルから一次処理溶液を除去し、リン酸緩衝液で3回洗浄した後、二次処理溶液を33μlずつ分注して、室温で1時間反応させた。二次処理溶液は、アマシャム株式会社より購入したストレプトアビジン−ペルオキシダーゼ複合体(商品名Streptoavidin−horseradish peroxidase complex)を前記したブロッキング液で400倍に希釈した溶液を用いた。反応後の各ウェルから二次処理溶液を除去し、リン酸緩衝液で3回洗浄し、過ホウ酸ナトリウム添加リン酸クエン酸緩衝液(Sigma)で1回洗浄した後、発色溶液を100μlずつ分注して、室温で1時間反応させて発色させた。発色溶液は、OPD[o-phenylenediamine dihydrochloride](Sigma)を発色試薬として0.4mg/mlとなるように過ホウ酸ナトリウム添加リン酸クエン酸緩衝液(Sigma)に溶解したものを用いた。発色反応後のマルチプレートは、マイクロプレートリーダー(バイオラド社製 モデル550)を用いて、波長595nmをリファレンスとして波長450nmの吸光度を測定した。
【0021】
結果を図2に示した。図2では、ウェルに添加したクリプトスポリジウム・オーシストの濃度を横軸として、各ウェルについての発色強度を示す吸光度を縦軸にプロットした。前記した実施例に関する結果を○印で示し、培養細胞が無いマルチプレートに関して同様の感染工程〜検出工程を行った結果を比較例として□印で示した。比較例においては、オーシストの濃度によらず吸光度が0.5で程度であったのに対して、実施例では、添加したオーシスト濃度に依存して吸光度の増加が認められた。但し、5万個のオーシストを添加した場合には吸光度の低下がみられ、これは培養細胞数に比較して添加したオーシスト数が多いために培養細胞のダメージが大きく、一部の細胞が死滅したことに起因すると考えられる。
本実施例の結果より、クリプトスポリジウム・オーシスト数が50〜5000個の範囲においてその添加濃度に応じた定量評価が可能であることが明らかである。本発明によれば、動物実験や培養細胞を用いた従来法において検出限界とされた104 個をはるかに凌駕した感度で検出することができる。
【0022】
【発明の効果】
本発明によれば、従来の顕微鏡観察では識別が困難であった原虫類のシストやオーシストの生死を識別することができる上に、動物実験や培養細胞を用いた従来法において検出限界とされた104 個よりも1桁から3桁低い数十から数千個の原虫類を極めて感度良く検出することができる。
本発明は原虫類の生死を識別することができるため、水処理プロセスや水処理装置における原虫類の除去性能ばかりでなく、原虫類の不活化の程度をも評価することができる。
【図面の簡単な説明】
【図1】本願における原虫類の検査方法の手順を示す図である。
【図2】クリプトスポリジウム・パルバムに関して本願の検査方法を用いて検出した実施例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for inspecting protozoa such as Cryptosporidium and Giardia, which can be practically used in the field of water treatment.
The present invention relates to a test method for quantitatively evaluating the abundance of infectious protozoa that overcomes the problems of conventional methods that can be used in the field of water treatment.
[0002]
[Prior art]
Recently, the occurrence of water-borne infections caused by protozoa such as Cryptosporidium and Giardia has become a major problem in the field of water supply and sewerage (for example, Mitsuyo Hosaka (1998) “Water-borne protozoan infections—causative organisms and outbreaks— "Water and waste water, Vol. 40, No. 2, p. 11; Mitsumi Kaneko (1998)" Detection and removal technology of protozoa and other pathogenic microorganisms ", Water and waste water, Vol. 10, No. 4 Issue, page 32). Since these protozoa are present in the form of spore-like shells called oocysts or cysts in the environment, they cannot be controlled by conventional water treatment methods such as sand filtration and chlorine disinfection. In order to prevent enormous waterborne infections, measures based on monitoring protozoa in water treatment processes or the development of new processes that can reliably remove protozoa are strongly required.
[0003]
Methods for examining the abundance of Cryptosporidium oocysts and Giardia cysts include staining methods, immunological test methods, genetic test methods, and animal experiment methods.
As staining methods, a method of observing with a light microscope after staining the cells with a dye (for example, Giemsa staining, acid staining, etc.) or cells with DAPI [4,6-diamidino-2-phenylindole], PI [propidium iodine] And a method of observing with a fluorescent microscope after staining with a fluorescent dye such as FITC [fluorescein isothiocyanate]. These are methods that stain cells non-specifically regardless of the species of microorganisms or protozoa, and identify and count them by microscopic observation. If the different types of mixed cells are clearly different in form and size, they are differentiated. However, discrimination between related species of protozoa requires skill, so that it is generally easy to make a mistake.
[0004]
Immunological examination methods include reacting cells labeled with fluorescent compounds in advance with cells and then observing fluorescent cells with a fluorescence microscope, or using a flow cytometer for fractionation by particle size. A method for measuring the fluorescence intensity distribution is mentioned. Alternatively, a method of detecting and quantifying oocysts in sample water by an enzyme antibody method can be mentioned. It is said that these can be specifically detected by using an antibody that specifically binds only to the desired oocyst or cyst, but a large amount of oocysts that are easily misidentified as positive A water sample containing oocysts is required, and an extremely expensive device is required for analysis, so it is difficult to say that the method is satisfactory in terms of operability and quantitativeness.
[0005]
As a genetic testing method, nucleic acid is extracted from a water sample containing oocysts and the like, and detected using a DNA fragment prepared based on the base sequence of a gene specific to the desired protozoa. Using the extracted nucleic acid as a template And a method of detecting a gene amplified in a test tube by polymerase chain reaction (PCR) using a DNA fragment set prepared based on a base sequence of a gene specific to a desired protozoan as a primer. These methods can specifically detect only the desired protozoa if sufficient consideration is given to the gene of interest. However, these methods require specialized knowledge on gene analysis and are complicated to operate. Although it is possible to determine the presence of protozoa, it is difficult to make a quantitative evaluation and determine whether it is alive or dead.
[0006]
The animal experiment method currently used actively as a method for discriminating whether Cryptosporidium is viable or not is an infection test using small animals (for example, Nukigami et al. (1998) “Inactivation of Cryptosporidium oocysts by ozone”, No. 32 Times The Water Environment Society of Japan, 467 pages). When a water sample containing cryptosporidium oocysts is orally inoculated to small animals such as mice and rats, in the case of oocysts that retain infectivity, cryptosporidium proliferates in the intestinal tissue of the small animals. Oocysts are excreted. In this method, oocysts are purified from the stool, and the oocysts are quantified and evaluated by the above-described staining method or immunological test method. This method not only has the problems of the staining method and immunological test method described above, but also requires the use of special small animals having properties such as immunodeficiency, and at least one small animal per specimen. It is necessary to check stool regularly for 2-3 weeks after inoculation with oocysts, and when the number of oocysts that maintain infectivity falls below 10 4 oocysts in stool However, since inspection is not excreted, there is a drawback that a large amount of oocyst is required for the inspection.
[0007]
By the way, in the pharmaceutical field, an inoculation test method using cultured cells has been reported as a method for screening an antibiotic against Cryptosporidium (for example, KM Woods etal. (1995) "Development of a microtitre ELISA to quantify development of Cryptosporidium"). parvum in vitro "FEMS Microbiol. Lett., vol.128, p89). In this method, a sample in which Cryptosporidium oocysts and a drug whose drug efficacy is desired to be mixed is added to cultured cells cultured on a multiplate, and after contacted for a predetermined time, the sample is replaced with a fresh growth medium. Continue culturing for days. When Cryptosporidium infects cells, Cryptosporidium parasitizes and proliferates in the cells. Therefore, it is a method of detecting and quantifying the proliferated oocysts by the enzyme antibody method. According to the report, 5 × 10 4 to 1 × 10 5 Cryptosporidium oocysts are required per sample, but it is reported that the drug efficacy can be evaluated with high accuracy. In terms of operability, reproducibility, and quantification, it can be said to be superior to the conventionally used animal experiment methods, but when applied to the water treatment field, 5 × 10 4 to 1 × per sample. The method requiring 10 5 Cryptosporidium oocysts remains problematic in terms of detection sensitivity.
[0008]
[Problems to be solved by the invention]
As described above, the known protozoan inspection methods are complicated methods that require skill to distinguish protozoa, methods that are simple in operation but lack in accuracy of results, and the presence of protozoa can be inspected. However, there are many problems such as life / death identification and infectivity cannot be evaluated, and there is no satisfactory method in terms of operability, quantitativeness, and detection sensitivity. An object of the present invention is to provide a simple and quantitative evaluation method for protozoa having infectivity that is problematic for the human body.
[0009]
[Means for Solving the Problems]
Regarding the method for testing protozoa using cultured animal cells, which has been proposed in the pharmaceutical field as a method for screening pharmaceuticals against protozoa, cell culture conditions, contact conditions between protozoan oocysts and cultured cells, protozoa By optimizing detection reagents, reaction conditions, etc., water samples with protozoan concentrations that could not be detected in the animal experiments described above can be quantitatively determined with high sensitivity. That is, the above-described problems can be solved by the following (1) to (4) .
[0010]
(1) Infecting protozoa with infectivity in test water by bringing the test water and cultured cells into contact with the cultured cells ,
(A) A primary treatment reagent consisting of a compound that binds to the protozoa and is labeled with a fluorescent dye compound is injected, and then the absorbance is measured with a fluorescence spectrophotometer to be quantitatively evaluated.
(B) A primary treatment reagent composed of a compound that binds to the protozoa and is labeled with an enzyme protein is injected, and after color development, the absorbance is measured with a spectrophotometer and quantified and evaluated.
Or
(C) injecting a primary treatment reagent comprising a compound that binds to the protozoa,
a) Injecting a secondary treatment reagent composed of a compound that binds to the primary treatment reagent and is labeled with a fluorescent dye compound, and then measures and evaluates the absorbance with a fluorescence spectrophotometer.
Or
b) A secondary treatment reagent composed of a compound that binds to the primary treatment reagent and is labeled with an enzyme protein is injected, and after color development, the absorbance is measured with a spectrophotometer and quantified and evaluated.
Protozoa inspection method characterized by that.
(2) Biotinylated antiprotozoal antibody and peroxidase-crosslinked streptavidin, biotinylated antiprotozoal antibody and peroxidase-crosslinked streptavidin / biotin as combinations of primary treatment reagent and secondary treatment reagent used in the enzyme antibody method for measuring the amount of protozoa A complex, biotinylated antiprotozoal antibody and peroxidase-crosslinked anti-biotin antibody, fluoresceinated antiprotozoal antibody and peroxidase-crosslinked anti-fluorescein antibody, unlabeled antiprotozoal antibody and peroxidase-crosslinked anti-immunoglobulin antibody are used. The method for inspecting protozoa as described above.
(3) Biotinylated antiprotozoal antibody and alkaline phosphatase cross-linked streptavidin, biotinylated anti-protozoal antibody and alkaline phosphatase cross-linked streptavidin as combinations of primary treatment reagent and secondary treatment reagent used in the enzyme antibody method for measuring the amount of protozoa・ Biotin complex, biotinylated antiprotozoal antibody and alkaline phosphatase cross-linked anti-biotin antibody, fluoresceinated anti-protozoal antibody and alkaline phosphatase cross-linked anti-fluorescein antibody, unlabeled anti-protozoal antibody and alkaline phosphatase cross-linked anti-immunoglobulin antibody The method for inspecting protozoa as described above , wherein
(4) as a secondary treatment reagents primary treatment reagent young properly used in the fluorescent antibody technique for measuring the amount of protozoa, which comprises using fluorescein, Texas Red or compounds labeled with their derivatives, the protozoa Inspection method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the following description, terms are explained.
Primary treatment reagent: A compound that has the property of binding to the protozoa to be examined.
Primary treatment solution: A solution containing a primary treatment reagent.
Secondary treatment reagent: A compound having the property of binding to the primary treatment reagent.
Secondary treatment solution: A solution containing a secondary treatment reagent.
Coloring reagent: A compound capable of causing a color reaction by the activity of the enzyme protein added to the primary processing reagent or the secondary processing reagent.
Coloring solution: A solution containing a coloring reagent.
[0012]
Next, the flow of the protozoan inspection method in the present invention is shown in FIG. 1 and described in detail below.
{Circle around (1)} Pre-culture process of cultured cells: This is a process for securing a necessary amount of cultured cells in the infection process described later and preparing cultured cells for use in the infection process. The type of cultured cells may be any cell line that can be infected by the protozoa to be tested. For example, mouse-derived BALB / 3T33 cell line, human-derived BT-549 cell line, human-derived Caco-2 cell line HCT-8 cell line derived from human, HT-29 cell line derived from human, Hs-700T cell line derived from human, HT-1080 cell line derived from human, LS-174T cell line derived from human, RL59 derived from human -2 cell line, bovine-derived MDBK cell line, canine-derived MDCK cell line, etc., but when testing Cryptosporidium parvum that is infectious to humans, If HCT-8 derived from human intestinal cells is used, human infectivity can be correctly evaluated. Culture conditions such as medium composition, culture temperature, humidity, carbon dioxide concentration, and culture time for culturing cells can be selected according to the cell line to be used.
[0013]
The culture vessel used in the cell culture for securing the necessary amount of cultured cells in the infection process described later may be selected according to the amount of cultured cells to be prepared, and the adhesion of the cells to the surface of the culture vessel is increased. Therefore, it may be surface-treated with gelatin, poly-L-lysine, collagen or the like. The proliferated cultured cells were recovered according to a conventional method, the cell concentration was adjusted to fresh medium solution and the like after counting a cell number becomes 10 3 to 10 5 cells / ml, 10 3 to 10 5 per well Individual, preferably 1 × 10 4 to 5 × 10 4, are dispensed into multiplates and cultured again for about 1 to 3 days to prepare for the infection step described below. The size and standard of the multiplate may be selected according to the standard of the spectroscopic analyzer to be used in the detection process, and it is general to use a 96-hole multiplate. In addition, the multiplate may be surface-treated with gelatin, poly-L-lysine, collagen or the like in order to enhance the adhesion of cells to the surface of the container.
[0014]
(2) Infection process to cultured cells: After culturing on a multi-plate, remove the medium solution from each well, dispense a water sample whose protozoan oocyst concentration is to be measured, and culture for a predetermined time. Infect. The water sample is preferably prepared by adding a medium for cultured cells, diluting with a medium for cultured cells, or resuspending the precipitate in the medium for cultured cells after centrifugation. It is better to replace with a culture medium for cultured cells. Furthermore, when there is a concern about the survival of germs in the water sample, an antibacterial agent, an antifungal agent and the like can be added. After dispensing a water sample containing oocysts, the cells are cultured for about 30 minutes to 3 hours, preferably about 1 to 2 hours under the above-described cell culture conditions. After the culture, the medium solution is removed from each well, and then the cells are washed once or several times with a buffer solution such as a phosphate buffer or Hanks balanced salt solution or a cell culture medium. Subsequently, a predetermined amount of fresh cell culture medium not containing oocysts is dispensed, and the cells are cultured for 1 to 3 days, preferably about 24 to 48 hours. When there is a concern about the survival of various bacteria, antibacterial agents, antifungal agents, and the like can be added to the medium.
[0015]
(3) Detection process: The detection process consists of six unit operations: 1) fixing operation, 2) blocking operation, 3) primary processing operation, 4) secondary processing operation, 5) color development operation, and 6) analysis operation. .
Fixing operation is a process of fixing cells in order to prevent detachment of cultured cells and protozoa during the detection process and to improve the contact between the reagent used for detection and the protozoa. Each of the multiplates prepared in the previous process is fixed. The medium solution is removed from the well, and a cell fixing solution to which an organic solvent such as methanol or formalin is added is dispensed, and the cells are fixed by allowing to stand for 5 minutes to 3 hours, preferably 1 to 2 hours.
Blocking operation is a process to prevent non-specific adsorption of primary treatment reagents and secondary treatment reagents to cells and inner walls of the wells, removing the fixative and removing the wells with phosphate buffer, Hanks balanced salt solution, etc. After washing once or several times with a buffer solution or a cell culture medium, the blocking solution is dispensed and allowed to stand for 30 minutes or more, and then the blocking solution is removed. As the blocking solution, a cell culture medium or a buffer solution in which bovine serum albumin or the like is dissolved can be used. Furthermore, the blocking liquid may contain a surfactant such as Tween20. In the previous step, when a cell culture medium containing a serum component is used, the blocking operation can be omitted.
[0016]
The primary treatment operation is a step of treating a protozoan to be examined with a primary treatment solution containing a detectable reagent (ie, a primary treatment reagent). The primary treatment solution is placed in the well after the fixing operation or the well after the blocking operation. After the reaction for a predetermined time, the primary treatment solution is removed, and the wells are washed once or several times with a buffer solution such as a phosphate buffer solution or Hank's balanced salt solution or a cell culture medium. As the primary treatment reagent, a polyclonal antibody, a monoclonal antibody, a lectin or the like can be used. The primary treatment reagent capable of detecting the protozoa to be examined may be labeled with a compound such as biotin, streptavidin, fluorescein, fluorescein isothiocyanate, alkaline phosphatase, and peroxidase. Any solvent that dissolves the primary treatment reagent can be used as long as it does not denature the primary treatment reagent, does not inhibit protozoa binding, and does not cause non-specific adsorption of the primary treatment reagent to the inner walls of cells or wells. Although a solution can also be used, it is convenient to use the above-described blocking solution.
[0017]
The secondary treatment operation is a step of treating the primary treatment reagent with a solution containing a detectable reagent (that is, the secondary treatment reagent) when the analysis operation described later is impossible only with the primary treatment reagent. The secondary treatment solution is dispensed into the well after the primary treatment operation, and after reacting for a predetermined time, the secondary treatment solution is removed, and the well is buffered with a phosphate buffer, Hanks balanced salt solution, or a cell culture medium. Wash one to several times. The secondary treatment reagent may be selected according to the nature of the primary treatment reagent, and antibodies against the primary treatment reagent, protein A, protein G, biotin, and streptavidin can be used. Furthermore, in order to visualize and quantify the binding state of the secondary treatment reagent according to the binding amount, a secondary treatment reagent labeled with a fluorescent dye compound such as fluorescein or fluorescein isothiocyanate or an enzyme protein such as alkaline phosphatase or peroxidase. May be used. As a solvent for dissolving the secondary treatment reagent, it does not denature the secondary treatment reagent, does not inhibit the binding with the primary treatment reagent, and does not cause nonspecific adsorption of the secondary treatment reagent to the inner walls of cells and wells. Any solution can be used as long as it has properties, but it is convenient to use the blocking solution described above. Although the primary treatment reagent and the secondary treatment reagent can be prepared independently, when considering the reproducibility, specificity, versatility, etc. of the test, a commercially available biotinylated antibody is used as the primary treatment reagent, Streptavidin-peroxidase complex is preferably used as a secondary treatment reagent, and detection sensitivity can be increased by using streptavidin-biotin-peroxidase complex as a secondary treatment reagent.
[0018]
The coloring operation is a step for visualizing the binding state of the primary processing reagent or the secondary processing reagent to the protozoa to be examined according to the amount of binding, and the well after the primary processing operation or the well after the secondary processing operation. After the coloring solution is dispensed and reacted for a predetermined time, it is subjected to the analysis operation described later. However, when the labeling compound added to the primary treatment reagent or the secondary treatment reagent is a fluorescent dye compound, and the binding amount is measured by the emission intensity of the fluorescent dye compound, the coloring operation can be omitted. The coloring solution includes a substrate selected according to the enzyme protein added to the primary processing reagent or the secondary processing reagent (for example, for alkaline phosphatase, ONPP [o-nitrophenyl phosphate], PNPP [p-nitrophenyl phosphate], etc.). For peroxidase, ABTS [2,2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid], OPD [o-phenylenediamine], TMB [3,3 ′, 5,5′-tetramethylbenzidine] Etc.) may be used in a predetermined buffer solution, and the wells may be washed with a buffer solution to which no substrate is added before dispensing the coloring solution.
The analytical operation is a step of measuring the degree of color development in the well after the color development operation described above using an analyzer such as a spectrophotometer or a fluorescence spectrophotometer, and the measurement conditions can be selected according to the nature of the color development. it can. In addition, when the labeling compound added to the primary treatment reagent or the secondary treatment reagent is a fluorescent dye compound without the above-described color development operation, and the binding amount is measured by the emission intensity of the fluorescent dye compound, analysis is performed. After the optimal solution is dispensed to the wells, measurement may be performed with a fluorescence spectrophotometer or the like.
[0019]
【Example】
Protozoan Cryptosporidium parvum was examined using human-derived cultured cell HCT-8 strain (ATCC #CCL 244) as a host cell.
HCT-8 cells cultured in a maintenance medium consisting of RPMI1640 medium supplemented with 0.2% sodium bicarbonate, 10% horse serum, 1 mM sodium pyruvate, 0.1 g / L kanamycin were recovered from the culture vessel by trypsin treatment. Suspend in a fresh growth medium so that the cell concentration becomes 2.5 × 10 5 cells / mL, dispense 200 μL each in a 96-well multiplate pre-coated with gelatin, and in a carbon dioxide incubator for 24 hours Cultured. After culturing, the medium of the multiplate was removed, and 100 μl each of the Cryptosporidium suspension was dispensed and cultured for 90 minutes in a carbon dioxide incubator for infection. Cryptosporidium suspension was grown by adding folic acid (1 mg / L), p-aminobenzoic acid (4 mg / L), pantothenic acid (2 mg / L), ascorbic acid (35 mg / L) to the maintenance medium described above. In the medium, a solution in which oocysts of Cryptosporidium parvum purchased from Veritas Co., Ltd. were suspended in a concentration range of 0 to 500,000 pieces / ml was used. After removing the medium from each well after infection and washing twice with a phosphate buffer, 100 μl of a growth medium not containing oocysts was dispensed and cultured for 2 days in a carbon dioxide incubator.
[0020]
The culture medium was removed from each well after culturing, and 100 μl of a fixative solution consisting of a phosphate buffer added with 4% formalin was dispensed and fixed at room temperature for 2 hours. After removing the fixative and washing 3 times with phosphate buffer, 100 μl of blocking solution consisting of phosphate buffer with 1% bovine serum albumin and 0.002% Tween 20 added was dispensed at room temperature. The reaction was allowed to proceed for blocking. The blocking solution was removed, 33 μl of the primary treatment solution was dispensed and reacted at room temperature for 1 hour. Primary treatment solutions are available from Waterbone Inc., USA. A solution obtained by diluting a biotinylated antibody (trade name Aqua-Glo G / C Indirect) purchased more than 20 times with the above blocking solution was used. After removing the primary treatment solution from each well after the reaction and washing with a phosphate buffer solution three times, 33 μl of the secondary treatment solution was dispensed and reacted at room temperature for 1 hour. As the secondary treatment solution, a solution obtained by diluting a streptavidin-peroxidase complex (trade name Streptavidin-horseradish peroxidase complex) purchased from Amersham Co., Ltd. 400 times with the above blocking solution was used. The secondary treatment solution was removed from each well after the reaction, washed 3 times with phosphate buffer, washed once with sodium perborate-added phosphate citrate buffer (Sigma), and then 100 μl of the coloring solution Dispensing and reacting at room temperature for 1 hour to develop color. The coloring solution used was OPD [o-phenylenediamine dihydrochloride] (Sigma) dissolved in sodium perborate-added phosphate citrate buffer (Sigma) to a concentration of 0.4 mg / ml. The multiplate after the color development reaction was measured for absorbance at a wavelength of 450 nm using a microplate reader (Biorad model 550) with a wavelength of 595 nm as a reference.
[0021]
The results are shown in FIG. In FIG. 2, the horizontal axis represents the concentration of Cryptosporidium oocyst added to the well, and the vertical axis represents the absorbance indicating the color intensity for each well. The results regarding the above-described examples are indicated by ◯, and the results of performing the same infection process to detection process for the multiplate without cultured cells are indicated by □ as a comparative example. In the comparative example, the absorbance was about 0.5 regardless of the oocyst concentration, whereas in the example, an increase in absorbance was observed depending on the added oocyst concentration. However, when 50,000 oocysts were added, the absorbance decreased. This was because the number of oocysts added was larger than the number of cultured cells, and the cultured cells were damaged, and some cells were killed. It is thought that it originates in having done.
From the result of the present Example, it is clear that quantitative evaluation according to the addition concentration is possible in the range of Cryptosporidium oocyst number from 50 to 5000. According to the present invention, it is possible to detect with a sensitivity far exceeding 10 4 which was the detection limit in the conventional methods using animal experiments and cultured cells.
[0022]
【The invention's effect】
According to the present invention, it is possible to discriminate the life and death of protozoan cysts and oocysts that were difficult to identify by conventional microscopic observation, and in addition, the detection limit was set in animal experiments and conventional methods using cultured cells. Several tens to thousands of protozoa, which are 1 to 3 digits lower than 10 4, can be detected with extremely high sensitivity.
Since the present invention can discriminate the life and death of protozoa, it is possible to evaluate not only the performance of protozoa removal in a water treatment process or water treatment apparatus, but also the degree of inactivation of protozoa.
[Brief description of the drawings]
FIG. 1 is a diagram showing a procedure of a protozoan inspection method in the present application.
FIG. 2 is a diagram showing an example in which Cryptosporidium parvum is detected by using the inspection method of the present application.

Claims (4)

被験水と培養細胞を接触さることによって被験水中の感染力のある原虫類を培養細胞に寄生させ、増殖した原虫類に、
(A)当該原虫に結合し、且つ蛍光色素化合物で標識した化合物からなる一次処理試薬を注入し、その後、蛍光分光光度計にて吸光度を測定して定量・評価する、
(B)当該原虫に結合し、且つ酵素蛋白質で標識した化合物からなる一次処理試薬を注入し、その後、発色操作した後、分光光度計にて吸光度を測定して定量・評価する、
又は、
(C)当該原虫に結合する化合物からなる一次処理試薬を注入し、次に、
a)当該一次処理試薬に結合し、且つ蛍光色素化合物で標識した化合物からなる二次処理試薬を注入し、その後、蛍光分光光度計にて吸光度を測定して定量・評価する、
若しくは、
b)当該一次処理試薬に結合し、且つ酵素蛋白質で標識した化合物からなる二次処理試薬を注入し、その後、発色操作した後、分光光度計にて吸光度を測定して定量・評価する、
ことを特徴とする原虫類の検査方法。
Infecting protozoa with infectivity in test water by bringing the test water and cultured cells into contact with the cultured cells ,
(A) A primary treatment reagent consisting of a compound that binds to the protozoa and is labeled with a fluorescent dye compound is injected, and then the absorbance is measured with a fluorescence spectrophotometer to be quantitatively evaluated.
(B) A primary treatment reagent composed of a compound that binds to the protozoa and is labeled with an enzyme protein is injected, and after color development, the absorbance is measured with a spectrophotometer and quantified and evaluated.
Or
(C) injecting a primary treatment reagent comprising a compound that binds to the protozoa,
a) Injecting a secondary treatment reagent composed of a compound that binds to the primary treatment reagent and is labeled with a fluorescent dye compound, and then measures and evaluates the absorbance with a fluorescence spectrophotometer.
Or
b) A secondary treatment reagent composed of a compound that binds to the primary treatment reagent and is labeled with an enzyme protein is injected, and after color development, the absorbance is measured with a spectrophotometer and quantified and evaluated.
Protozoa inspection method characterized by that.
原虫類の量を計測する酵素抗体法に用いる一次処理試薬と二次処理試薬の組合せとして、ビオチン化抗原虫抗体とペルオキシダーゼ架橋ストレプトアビジン、ビオチン化抗原虫抗体とペルオキシダーゼ架橋ストレプトアビジン・ビオチン複合体、ビオチン化抗原虫抗体とペルオキシダーゼ架橋抗ビオチン抗体、フルオレセイン化抗原虫抗体とペルオキシダーゼ架橋抗フルオレセイン抗体、非標識抗原虫抗体とペルオキシダーゼ架橋抗イムノグロブリン抗体の中から選ばれる化合物を用いることを特徴とする、請求項1に記載の方法。Biotinylated antiprotozoal antibody and peroxidase-crosslinked streptavidin, biotinylated antiprotozoal antibody and peroxidase-crosslinked streptavidin / biotin complex, as a combination of primary treatment reagent and secondary treatment reagent used in the enzyme antibody method for measuring the amount of protozoa, A biotinylated antiprotozoal antibody and peroxidase-crosslinked anti-biotin antibody, a fluoresceinated antiprotozoal antibody and peroxidase-crosslinked anti-fluorescein antibody, a compound selected from an unlabeled antiprotozoal antibody and a peroxidase-crosslinked antiimmunoglobulin antibody , The method of claim 1. 原虫類の量を計測する酵素抗体法に用いる一次処理試薬と二次処理試薬の組合せとして、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋ストレプトアビジン、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋ストレプトアビジン・ビオチン複合体、ビオチン化抗原虫抗体とアルカリフォスファターゼ架橋抗ビオチン抗体、フルオレセイン化抗原虫抗体とアルカリフォスファターゼ架橋抗フルオレセイン抗体、非標識抗原虫抗体とアルカリフォスファターゼ架橋抗イムノグロブリン抗体の中から選ばれる化合物を用いることを特徴とする、請求項1に記載の方法。Biotinylated antiprotozoal antibody and alkaline phosphatase cross-linked streptavidin, biotinylated anti-protozoal antibody and alkaline phosphatase cross-linked streptavidin / biotin complex as combinations of primary treatment reagent and secondary treatment reagent used in enzyme antibody method to measure the amount of protozoa Body, biotinylated antiprotozoal antibody and alkaline phosphatase cross-linked anti-biotin antibody, fluoresceinated anti-protozoal antibody and alkaline phosphatase cross-linked anti-fluorescein antibody, unlabeled anti-protozoal antibody and alkaline phosphatase cross-linked anti-immunoglobulin antibody wherein the method of claim 1. 原虫類の量を計測する蛍光抗体法に用いる一次処理試薬しくは二次処理試薬として、フルオレセイン、テキサスレッド又はそれらの誘導体で標識した化合物を用いることを特徴とする、請求項1に記載の方法。As primary treatment reagent young properly secondary processing reagents used in the fluorescent antibody technique for measuring the amount of protozoa, fluorescein, which comprises using a Texas red or labeled compounds their derivatives, according to claim 1 Method.
JP01606899A 1999-01-25 1999-01-25 Inspection method of protozoa Expired - Fee Related JP3728126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01606899A JP3728126B2 (en) 1999-01-25 1999-01-25 Inspection method of protozoa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01606899A JP3728126B2 (en) 1999-01-25 1999-01-25 Inspection method of protozoa

Publications (2)

Publication Number Publication Date
JP2000214168A JP2000214168A (en) 2000-08-04
JP3728126B2 true JP3728126B2 (en) 2005-12-21

Family

ID=11906265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01606899A Expired - Fee Related JP3728126B2 (en) 1999-01-25 1999-01-25 Inspection method of protozoa

Country Status (1)

Country Link
JP (1) JP3728126B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115090B2 (en) * 2001-01-10 2008-07-09 新日本製鐵株式会社 How to deactivate protozoa
JP5299945B2 (en) * 2008-02-11 2013-09-25 国立大学法人東北大学 Protozoa infectivity evaluation method using mouse intestinal cells

Also Published As

Publication number Publication date
JP2000214168A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
US20230077406A1 (en) Rapid detection of replicating cells
US9933341B2 (en) Sample preparation for flow cytometry
CN101587043B (en) Integrated method for enriching and detecting rare cell in biological fluid sample
CA2869472C (en) Sample preparation for flow cytometry
JP2006510002A (en) Assays for detecting or quantifying bacterial or viral pathogens and contaminants
JP2004505245A (en) Spatial resolution enzyme-linked assay
CN111164218A (en) Method for determining the concentration of intact microorganisms in a sample
WO2022020733A3 (en) System and methods for detection of pathogenic viruses
JP3728126B2 (en) Inspection method of protozoa
JP2020500307A (en) Ultrasonic detection of virus and virus-like particles
Cobo et al. Diagnostic approaches for viruses and prions in stem cell banks
CN112858243B (en) Method for visually monitoring cytochrome c in living cell and evaluating vomitoxin cytotoxicity
CN107656059A (en) A kind of Fluorescent detector for p53 albumen and its preparation method and application
KR100723574B1 (en) Quantification analysis methods of classic swine fever virus using novel probe and its reagent
Maurya et al. Novel approaches for detecting water-associated pathogens
JP3615810B2 (en) Bacteria detection method and detection apparatus
JP4197797B2 (en) Inspection method of oocyst concentration of Cryptosporidium
JP2006042677A (en) Method for detecting microbial cell
Logue et al. Rapid microbiological methods in food diagnostics
JP2002221524A (en) Growth activity evaluation method for protozoa
Tumlam et al. Advances in diagnostic techniques by using new tools
Lewis Rapid Label-Free Detection of Pathogens by Local pH Modulation
JP2008109883A (en) Method for detecting foreign material discharge activity of cell specimen and utilization thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees