JP3722752B2 - 符号分割多重接続通信システムの符号化装置及び方法 - Google Patents

符号分割多重接続通信システムの符号化装置及び方法 Download PDF

Info

Publication number
JP3722752B2
JP3722752B2 JP2001569991A JP2001569991A JP3722752B2 JP 3722752 B2 JP3722752 B2 JP 3722752B2 JP 2001569991 A JP2001569991 A JP 2001569991A JP 2001569991 A JP2001569991 A JP 2001569991A JP 3722752 B2 JP3722752 B2 JP 3722752B2
Authority
JP
Japan
Prior art keywords
symbols
symbol
code
repeated
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001569991A
Other languages
English (en)
Other versions
JP2003528530A (ja
Inventor
ジェ−ヨル・キム
ヒュン−ウー・イ
スン−ヨン・ユン
ヒー−ウォン・カン
ホ−キュ・チョイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2003528530A publication Critical patent/JP2003528530A/ja
Application granted granted Critical
Publication of JP3722752B2 publication Critical patent/JP3722752B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Dc Digital Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は通信システムの符号化装置及び方法に関したもので、特に符号分割多重接続(CDMA)通信システムの符号化装置及び方法に関する。
【0002】
【従来の技術】
最近、符号分割多重接続(Code Division Multiple Access)方式の移動通信システム(以下、“CDMAシステム”)で高速フレームの伝送をできるようにする各種の研究がなされている。高速フレーム伝送のためのチャネル構造を有するシステムが、いわゆる“HDR(High Data Rate)システム”である。
前記HDRシステムはデータフレームを固定されたデータ伝送率に伝送するか、可変的なデータ伝送率に伝送する。可変的な伝送率に伝送されるサービスはサービス中にデータ伝送率が変わることができるので、各サービスフレームの伝送率により決定される各種フレームの構造(符号率、反復回数など)を受信側に知らせるべきである。
【0003】
このように各サービスのため使用するフレームの伝送速度が相異なる場合に、現在伝送されているフレームの構造を知らせる役割をすることが“伝送率可変指示者情報(RRI: Reverse Rate Indicator)”である。このようなRRIによりそれぞれの伝送率によるサービスが正しく遂行されるようになる。前記RRIの使用例が図1に示されている。
【0004】
図1は従来技術が適用されるCDMAシステムの端末機の送信器構成を示すもので、一例にHDRシステムの端末機の送信器構成を示す。ここでは伝送フレームが16スロットであり、一つのスロットでRRIを伝送するため16個の符号化されたシンボルが伝送される場合、即ち、一つのフレームに256個の符号化されたシンボルが伝送される場合を例に挙げて説明する。
【0005】
前記図1を参照すると、符号器100はRRI情報ビットを符号化し、符号化されたシンボルを出力する。“0”と“1”に表現される3ビットのRRI情報ビットが符号器100に入力される場合、前記符号器100は前記RRI情報ビットを(8、3)直交符号し、“0”と“1”に表現される8シンボルの符号化されたシンボルを出力する。反復器110は前記符号器100で出力される符号化されたシンボルを32回反復し、総32×8=256個の反復されたシンボルを出力する。信号変換器120は前記反復シンボルを入力し、“0”であるシンボルは“1”に、“1”であるシンボルは“−1”に変換して出力する。前記信号変換器120により信号変換されたシンボルは乗算器135に入力される。前記乗算器135は前記信号変換器120から出力されたシンボルに長さ4である0番目ウォルシュ符号の信号変換されたチップ(+1、+1、+1、+1)を乗算する。前記乗算器135によりシンボルは拡散(Spreading)された後、チップ(chip)単位に出力される。前記チップ単位のシンボルはマルチプレクサ140に入力された後、その他の信号1及びその他の信号2と時間的にマルチプレクシングされた後に出力される。この時、その他の信号1、2はデータ伝送率制御(DRC:Data Rate Control)情報になることができる。前記マルチプレクサ140からの出力信号I'とデータ信号Q'は共に複素拡散器150に入力される。前記複素拡散器150は前記信号I'及び信号Q'とPN(Pesudo Noise)拡散符号PNI及びPNQを複素乗算して出力する。即ち、前記複素拡散器150は入力信号(I'+jQ' )とPN拡散符号(PNI+jPNQ)を乗算し、実数成分信号Iと虚数成分信号Qを出力する。基底帯域ろ波器160及び165のそれぞれは、前記実数成分信号Iと虚数成分信号Qを基底帯域でろ波(フィルタリング)する。乗算器170及び175のそれぞれは、前記基底帯域ろ波された実数成分信号Iと虚数成分信号Qにそれぞれ搬送波cos(2πfct)とsin(2πfct)を乗算する。合算器180は前記乗算結果を合算した後に送信信号として出力する。
【0006】
図2は従来技術が適用されるHDRCDMAシステムの基地局受信器の構成を示す図であり、前記図1に示された送信器の構造に対応する。ここでは送信器から伝送されたフレームが16スロットであり、一つのスロットでRRIを伝送するため16個の符号化されたシンボルが伝送された場合、即ち一つのフレームに256個の符号化されたシンボルが伝送された場合に対応する受信器の動作を例にして説明する。
【0007】
前記図2を参照すると、乗算器270及び乗算器275は入力信号に搬送波cos(2πfct)及びsin(2πfct)をそれぞれ乗算する。整合フィルタ260及び265は前記乗算器270、275の乗算結果を整合フィルタリングし、整合フィルタリング信号I、Qを出力する。複素逆拡散器250は前記整合フィルタ260、265のフィルタリング結果信号I、Qを逆拡散した後、I'信号及びQ'信号を出力する。デマルチプレクサ240は前記I'信号を時間的にデマルチプレクシングし、RRI出力のための信号と、その他の信号1、その他の信号2に分離出力する。累積器235は前記RRI信号を4チップずつ累積した後に256個のシンボルを出力する。前記累積器235により累積されたシンボルはシンボル累積器210に入力される。前記シンボル累積器210は図1に示された一つのシンボルを32回反復する反復器110に対応する構成要素である。復号器200は前記図1の符号器100に対応する構成要素であり、前記シンボル累積器210から出力される8個のシンボルを復号化し、RRI情報ビットを出力する。前記符号器100に(8、3)直交符号器を使用する場合、前記復号器200は逆アダマール変換(Inverse Fast Hadamard Transform)を使用することができる。
【0008】
上述したような、RRIの値はサービスの組み合わせによって3ビット(7種類の組み合わせ)の基本型に表現され0〜7種類の組み合わせを表現することができる。前記RRIの値は受信端で各サービスのフレームを解釈するため、必ず必要な情報であるので、伝送誤りが発生すると、受信端で各サービスのフレームを正しく解釈することができない。従って伝送中に誤りが発生するとしても受信端でRRIの伝送中に発生する誤りを訂正することができるように、前記RRIの値は誤り訂正符号(Error Correction Code)により符号化されることが一般的である。
【0009】
図3は図1に示されたようなHDRシステムに使用され得る符号器100を構成する従来技術による符号化装置の一例を示す図であり、3ビットに表現される入力情報であるRRIの値それぞれに対して誤り訂正符号化した後に出力される符号語が示されている。一例に、前記符号器100は一連のRRI値と、このRRI値それぞれに対して誤り訂正符号化した結果である符号語を貯蔵するメモリに具現されることができる。
【0010】
前記図3に示したように、0〜7(000〜111)間のRRI値は3ビットに表現され、(8、3)直交符号器300は前記RRI値を符号化して8シンボルのRRI符号語に出力する。即ち前記図3に示された符号器100の入力情報ビットは3ビットのRRI値に表現され、各RRI値によってメモリ(または、その他の貯蔵装置)に貯蔵されている長さ8の符号が選択される。前記直交符号器300の符号間最短距離は4である。前記直交符号器300から出力される符号が前記図1の反復器110を通じて32回反復されると、総(256、3)符号観点で最短距離は4×32=128である。
【0011】
一方、一般的に2進線形符号(Binary Linear Codes)の誤り訂正能力は2進線形符号の各符号間最短距離によって決定されるが、最適符号(optimal code)になるための2進線形符号の入力値と出力値による符号間の最短距離に対しては文献“An Updated Table of Minimum-Distance Bounds for Binary Linear Codes”(A.E.Brouwer and Tom Verhoeff, IEEE Transactions on information Theory, VOL39, NO.2, MARCH 1993)に詳細に開示されている。
【0012】
一例に、伝送される入力情報(例:RRIの値)が3ビットであり、符号化される値が256ビットと仮定する時、前記文献で要求する最適符号の各符号間の最短距離は146である。しかし前記符号語は符号間最短距離が128であるので、誤り訂正方式符号化は最適符号を有しない。前記誤り訂正方式符号化で最適符号を有しないと、同一のチャネル環境で前記伝送情報の誤り確率が高くなる。また、前記伝送情報の誤りが発生してデータフレームの伝送率を誤判断しデータフレームを復号化すると、データフレームのエラー率は増加するようになる。従って、伝送情報を符号化する誤り訂正符号器は誤り率を最小化することが重要である。
【0013】
【発明が解決しようとする課題】
本発明は上述した従来の問題点を解決するためのもので、本発明の目的は、HDRのようなCDMA方式の通信システムで、情報(例:RRI)を符号化/復号化する装置及び方法を提供することにある。
本発明の他の目的は、HDRのようなCDMA方式の通信システムで、同一のチャネル環境で伝送情報(例:RRI)の誤り確率を低減する符号化/復号化装置及び方法を提供することにある。
本発明のさらに他の目的は、HDRのようなCDMA方式の通信システムで、データフレームの可変的な伝送率を正確に判断できるようにする符号化/復号化装置及び方法を提供することにある。
【0014】
【課題を解決するための手段】
前記目的を達成するための本発明の符号化装置は、kビットの列を有する入力情報を符号化して(2k−1)より大きな長さNを有する符号語を発生するためのものである。前記符号器は前記入力情報を(r、k)(ここで、r=2k−1)シンプレックス符号を使用して符号化し、長さrを有する符号化されたシンボルの列を発生する。前記反復器は前記符号化されたシンボルの列をt回
【数4】
Figure 0003722752
反復する。前記穿孔器は前記t回反復されたシンボルから長さNになるように、発生される各種符号語の最小ハミング距離が最大となるよう定められたA箇所 ( ここで、A=rt−N ) の穿孔位置の穿孔を行う。前記穿孔されるシンボルは前記反復されたシンボル内で均等に分布されることもでき、前記t番目の反復されたシンボル中で決定されることもできる。
【0015】
【発明の実施の形態】
以下、本発明の望ましい実施形態を添付図を参照しつつ詳細に説明する。下記の発明において、本発明の要旨のみを明瞭にする目的で、関連した公知機能又は構成に関する具体的な説明は省略する。
先ず、本発明はCDMAシステムで伝送情報を符号化するための最適符号を生成するためのもので、特に、HDRシステムで伝送されるフレームの構造を知らせる役割をするRRI情報ビットを符号化することに関するものである。本発明では、図3の(8、3)直交符号を使用するものではなく、(7、3)穿孔された直交符号を使用する。
【0016】
本発明の理解を助けるため、誤り訂正符号と誤り訂正性能間の関係を説明すると、次のようである。線形誤り訂正符号(Linear Error Correcting Code)の性能は、誤り訂正符号の符号語(codeword)のハミング距離(Hamming distance)分布により測定される。前記ハミング距離はそれぞれの符号語で“0”ではないシンボルの個数を意味する。例えば、符号語が“0111”であると、この符号語に含まれた1の個数、即ちハミング距離は3である。この時、各種符号語のハミング距離の値中、一番小さい値は最小距離(minimum distance)と言われる。線形誤り訂正符号(Linear Error Correcting Code)において、前記最小距離が大きいほど誤り訂正性能が優秀であるとは、“The Theory of Error-Correcting Codes”、F.J.Macwilliams、N.J.A.Sloane、North-Hollandに開示されたように公知の事実である。
【0017】
先ず、図3に示された従来技術による(8、3)直交符号を使用する場合と、本発明による(7、3)穿孔された直交符号を使用する場合において、符号語のハミング距離及び最小距離を説明する。(8、3)直交符号を使用する場合に入力ビット、符号語及びハミング距離間の関係が下記表1に示されている。
【表1】
Figure 0003722752
【0018】
前記表1から分かるように、すべての符号語の一番目の列はすべて“0”にハミング距離に影響を与えない。従って、前記のような(8、3)符号を32回反復すると、一番目の列の反復された32シンボルはハミング距離に影響を与えないようになって最適のハミング距離を獲得できない。
一方、前記(8、3)符号語の一番目列を穿孔した(7、3)符号語を32×8=256になるように反復すると、最適のハミング距離を有する符号を獲得することができる。下記表2は前記穿孔した(7、3)符号の符号語とハミング距離及びこれに対応する入力ビット間の関係を示す。
【表2】
Figure 0003722752
【0019】
次に、長さ32である符号語を例に挙げて従来技術と本発明を比較する。参考的に、理論上に(32、3)符号として最適の最小距離は18である。長さ32である符号語は前記(8、3)符号を4回反復すると、下記表3のような結果が得られる。
【表3】
Figure 0003722752
【0020】
前記表3から分かるように、(8、3)直交符号を4回反復すると、太字に表示された全部“0”である列(即ち、反復された符号語の一番目列)が4回発生するが、これはハミング距離に影響を与えない。従って、最小距離は前記表3から分かるように16であり、これは最小距離観点で最適と見ることができない。
【0021】
下記の表4は(8、3)直交符号の全部0である列を穿孔した(7、3)符号を5回反復し、5番目の反復中、太字及び下線に表示された3個の列を穿孔して長さ32である符号の符号語を示す。このように行と列に配列された集合である直交符号中で0番列、即ち全部“0”である列を除去した符号が、いわゆるシンプレックス符号(Simplex Code)である。言い換えれば、前記シンプレックス符号は(2k、k)である直交符号(または、first order Reed-Muller符号)で全部“0”である一番目の列を除去した符号であり、(2k−1、k)長さを有する符号である。例えば、前記シンプレックス符号には前記(7、3)符号以外に(3、2)符号、(15、4)符号、(31、5)符号、(63、6)符号、(127、7)符号、(255、8)符号などがある。
【0022】
【表4】
Figure 0003722752
【0023】
前記表4から分かるように、直交符号の全部“0”である列を穿孔した(7、3)符号を反復すると、最小距離18である符号を生成することができる。実際に前記表4で穿孔されるシンボル列の位置によって前記符号語のハミング距離の分布は変わる。しかし、前記表4の穿孔位置は一番優秀な性能を示す位置である。また、前記表4から分かるように、穿孔した(7、3)符号の5番目反復部分の1、2、3番目列を穿孔した。前記符号語は穿孔した(7、3)符号を反復したので、5番目の反復部分の1番目の列の代わり、他の反復部分の1番目の列を穿孔しても同一のハミング距離分布を有する。例えば、穿孔した(7、3)符号の5番目反復部分の1、2、3番目の列の代わり7×0+1=1、7×2+2=16、7×4+3=31番目の列を穿孔しても前記のようなハミング距離分布を有する。
【0024】
上述したように、本発明は(7,3)穿孔された直交符号であるシンプレックス符号を反復することにより最適符号を生成する方法と、このような方法を利用してRRIビットのような入力情報を伝送するCDMAシステムで前記入力情報を符号化/復号化する最適の符号化装置及び復号化装置を提供するためのものである。上述した説明では、3ビットのRRIを符号化する時、(8,3)符号中でハミング距離に影響を与えない0のビット値を有する列が穿孔された(7,3)符号を使用し、前記(7,3)符号を予め設定された長さ32の符号語シンボルを発生させるため5回反復し、前記反復された符号語シンボル中で3個のシンボルを穿孔することに説明した。
【0025】
実際に、N>2kである(N、k)符号器において、長さ2kである直交符号を反復する方法は、符号語シンボルの中でハミング距離に影響を与えない0を含むため、ハミング距離分布上での優秀性を失うようになる。特に、N>k・2kである場合には、(N、k)符号器として(7、3)穿孔された直交符号を反復することにより最適符号を生成する方法が(8、3)直交符号を反復する方法より最小距離観点で優秀である。また、前記符号の長さを示すNが7の倍数ではない場合、(7、3)穿孔された直交符号を反復した後に穿孔すべきであり、穿孔位置に従って性能が変わる。
【0026】
例えば、Nを7で除算した余りが1である場合、N/7+1だけ反復した後、相異なる6個の符号シンボルを穿孔すると、(N、3)符号として最適の符号になる。Nを7に分けた余りが2である場合、N/7+1だけ反復した後、相異なる5個の符号シンボルを穿孔すると、(N、3)符号として最適の符号になる。Nを7に分けた余りが5である場合、N/7+1だけ反復した後、相異なる2個の符号シンボルを穿孔すると、(N、3)符号として最適の符号になる。Nを7に分けた余りが6である場合、N/7+1だけ反復した後、1個の符号シンボルを穿孔すると、(N、3)符号として最適の符号になる。
【0027】
しかし、Nを7で除算した余りが3、または4である場合には、符号シンボルの穿孔位置は次のように決定される。Nを7で除算した余りが3である場合、先ずN/7+1だけ反復した後、1は001、2は010、3は011、4は100、5は101、6は110、7は111のように2進数に表現する。7個の2進表現をそれぞれの桁が座標になる3次元ベクトル(vector)に考える時、一次独立(linearly independent)である3個の元素を除外した余りの4元素を穿孔すると、最適の符号が得られる。例えば、1=001、2=010、4=100の場合は、3個の数を桁別に2進加算した和が0ではないので一次独立になる。そのため、前記のような1、2、4番位置を除外した余り3、5、6、7番位置の符号シンボルを穿孔すると、最適の(N、3)符号が獲得される。
【0028】
Nを7で除算した余りが4である場合、先ず前記直交符号をN/7+1だけ反復した後、1は001、2は010、3は011、4は100、5は101、6は110、7は111のように2進数に表現する。7個の2進表現をそれぞれの桁が座標になる3次元ベクトル(vector)に考える時、一次独立(linearly independent)である3個の元素と前記3個の元素を2進加算して得られる元素を除外した余りの4元素を穿孔すると、最適の符号が獲得される。例えば、1=001、2=010、4=100の場合は3個の数を桁別にそれぞれ2進加算した和が0ではないので一次独立になる。また、前記のような1、2、4番位置と前記1=001、2=010、4=100を桁別に2進加算すると、7=111が得られる。そのため、前記1、2、4、7番位置を除外した余り3、5、6番位置の符号シンボルを穿孔すると、最適の(N、3)符号が獲得される。
【0029】
上述した方法は(7,3)穿孔された符号、即ちシンプレックス符号を使用する場合のみ可能である。実際に(N,3)符号の符号語を予め決定された順序通り配列して見ると、それぞれの列は長さ23=8である直交符号になる。そして、長さ23=8であり、少なくとも一つの1を有する直交符号は7個があるが、(N、3)符号は前記のような長さ23=8であり、少なくとも一つの1を有する直交符号を(N−1)回配列した形態を有する。従って、Nが7以上になる時、0ではない直交符号中の所定直交符号を2度以上使用するようになる。また、前記のような特定の直交符号のみを反復使用すると、最適性を失うようになる。従って、特定符号の反復性を与えられた長さ内で最小化し、7個の直交符号の反復を均等にするためには、(7、3)穿孔された符号を使用すべきである。前記のように反復及び穿孔することにより、最適の(N、3)符号を生成することができる。
【0030】
一方、(6、3)、または(5、3)穿孔された符号を使用すると、どのような方法に反復及び穿孔しても最適の符号を獲得できない。これは、(6、3)、または(5、3)穿孔された符号の場合は、7個の符号中の一部符号のみを反復するためである。
以上、(7,3)穿孔された直交符号を反復することにより最適符号を生成する方法と、このような方法を利用してCDMAシステムでRRIビットを符号化/復号化する最適の符号化装置及び復号化装置に対して説明した。しかし、本発明はRRIのビット数が変わる場合にも適用されることができ、またRRIの代わり他の情報を符号化する場合にも適用されることができる。例えば、kビットの列を有する入力情報を符号化して(2k−1)より大きな長さNを有する符号語を発生すると仮定する時、前記入力情報は(r、k)シンプレックス符号を使用して符号化され、長さrを有する符号化されたシンボルの列が発生される。ここで、r=2k−1である。前記符号化されたシンボルの列はt回反復される。ここで、
【数5】
Figure 0003722752
である。前記t回反復されたシンボルに対しては長さNになるようにA回穿孔が遂行される。ここでA=rt−Nである。前記穿孔されるシンボルは前記反復されたシンボル内で均等に分布されることもでき、前記t番目反復されたシンボルの中で決定されることもできる。
【0031】
下記では本発明の原理に従ってRRIビットを伝送するCDMAシステムでのRRI符号化装置及び復号化装置の例に対して説明する。しかし、本発明は前記RRIビットを符号化する場合以外に他の情報を符号化する場合にも同一に適用されることができることに注意すべきである。図4及び図5はそれぞれ本発明の一実施形態によるRRI符号化装置及びRRI復号化装置の構成図である。また図4及び図5に示したように符号化装置及び復号化装置を構成する場合に対応して、図1に示されたような従来技術が適用される端末機の送信器は図6に示したように構成され、図2に示されたような従来技術が適用される基地局の受信器は図7に示したように構成される。即ち、本発明による符号化装置を収容する端末機の送信器は、図6に示したように図1に示された反復器110を除去して構成することができ、本発明による復号化装置を収容する基地局の送信器は、図7に示したように図2に示されたシンボル累積器210を除去して構成することができる。下記で本発明による符号化/復号化装置は第1実施形態及び第2実施形態に区分され説明される。第1実施形態は伝送フレームが16スロットに構成される場合(伝送フレームが26.76ms単位である場合)に本発明を適用した例であり、第2実施形態は伝送フレームが12スロットに構成される場合(伝送フレームが20ms単位である場合)に本発明を適用した例である。
【0032】
第1実施形態
第1実施形態はHDRシステムで一つの伝送フレームが16スロットに構成される場合に該当する。この時、一つのスロットにはRRI情報を伝送するために16個の符号語シンボルが伝送され、一つのフレームには16×16=256個の符号語シンボルが伝送される。第1実施形態では最適の(256、3)符号生成方法及び前記(256、3)符号を使用してRRIを符号化する装置が説明される。より具体的に説明すると、第1実施形態では前記穿孔した(7、3)符号を37回反復することによって生成される7×37=259シンボルの中で最小距離が最適になる位置のシンボルを穿孔することにより、(256、3)符号を生成する動作が説明される。最小距離が最適になる位置のシンボル、即ち穿孔されるシンボルは、下記の表5のように7×37=259個のシンボルの中で太字及び下線に表示された1、128、255番目位置の3個のシンボルである。穿孔のためのシンボルの位置を決定する動作を一般化された式に示すと、n1×7+1、n2×7+2、n3×7+3(ただ、0≦n1、n2、n3≦36であり、n1、n2、n3は反復ブロックの数字である)のように表現されることができる。下記表5での穿孔位置1、128、255のそれぞれは、前記一般化式でn1=0、n2=18、n3=36である場合に決定される。
【0033】
【表5】
Figure 0003722752
【0034】
前記表5で太字及び下線に表示した位置のシンボルを穿孔すると、前記(256、3)符号の最小距離は(4×36)+2=146に最適の符号を示す。
前記表5で太字及び下線に表示した位置のシンボルは上述したように穿孔されるシンボルである。穿孔されるシンボルの最小距離は次のようである。前記一般式n1×7+1、n2×7+2、n3×7+3(ただ、0≦n1、n2、n3≦36)で、n1、n2、n3値に関わりなく穿孔されるシンボルは常に同一の最小距離を有するようになる。一例に、最小距離を簡単に計算するためにn1、n2、n3を36とする時、前記(7、3)符号を37回反復すると、37番目の反復ブロックで7個のシンボル中、1番目、2番目、3番目の3個のシンボルは穿孔され、穿孔されるシンボルを除外した余り3個のシンボル(4番目のシンボル、5番目のシンボル、6番目のシンボル、7番目のシンボル)のみが残る。この時、(7、3)符号は最小距離が4であり、前記37番目の反復ブロックで7個のシンボル中、1番目、2番目、3番目の3個のシンボルを除外した余り4個のシンボルのみに構成される時、シンボル間の最小距離は2であるので、(256、3)符号の最小距離は(4×36)+2=146であり、このような(256、3)符号は最適の符号を示す。前記(256、3)符号を使用してRRIを符号化する装置と、この符号化装置を含む送信器及び前記送信器に対応する受信器を説明すると、次のようである。
【0035】
今、“0”と“1”に表現される3ビットのRRI情報ビットが図6の符号器600に入力されると仮定する。本発明によると、前記符号器600は図4に示したように構成される。
図4は本発明の実施形態による符号化装置の構成を示す図であり、図6に示されたような端末機内の送信器の符号器600を構成する。
【0036】
前記図4を参照すると、符号語発生器400は3ビットのRRI情報ビットを前記表2のような(7、3)穿孔された直交符号により符号化し、7個の符号シンボルを出力する。シンボル反復器410は前記出力された符号シンボルを36回反復し、259個の反復されたシンボルを出力する。シンボル穿孔器420は前記反復された259個のシンボルを入力し、1、(7×18)+2=128、(7×37)+3=255番目のシンボルを穿孔して256シンボルのみを出力する。前記符号器600のシンボル穿孔器420で出力される符号シンボルは図6の信号変換器620に入力される。
【0037】
図6を参照すると、信号変換器620は前記符号シンボル中“0”であるシンボルは“1”に、“1”であるシンボルは“−1”に変換する。前記信号変換されたシンボルは乗算器635に印加される。前記乗算器635は前記信号変換器620から出力されたシンボルに長さ4である0番目ウォルシュ符号の信号変換されたチップ(+1、+1、+1、+1)を乗算する。前記乗算器635によりシンボルは拡散(Spreading)された後、チップ(chip)単位に出力される。前記チップ単位のシンボルはマルチプレクサ640に入力された後、その他の信号1及びその他の信号2と時間的にマルチプレクシングされた後に出力される。この時、その他の信号はデータ伝送率制御(DRC:Data Rate Control)情報になることができる。前記マルチプレクサ640の出力信号I'はデータ信号Q'と共に複素拡散器150に入力される。前記複素拡散器650は前記信号I'及び信号Q'と、PN(Pseudo Noise)拡散符号PNI及びPNQを複素上でかけて出力する。即ち、前記複素拡散器650は入力信号(I'+jQ')とPN拡散符号(PNI+jPNQ)を乗算し、実数成分信号Iと虚数成分信号Qを出力する。基底帯域ろ波器660及び665のそれぞれは、前記実数成分信号Iと虚数成分信号Qを基底帯域でろ波(フィルタリング)する。乗算器670及び675のそれぞれは、前記基底帯域ろ波された実数成分信号Iと虚数成分信号Qにそれぞれ搬送波cos(2πfct)とsin(2πfct)を乗算する。合算器680は前記乗算結果を合算した後に送信信号として出力する。
【0038】
図7は前記図4に示された符号器を含む送信器から出力された伝送信号を受信する受信器の構成図である。
前記図7を参照すると、乗算器770及び乗算器775は入力信号にcos(2πfct)とsin(2πfct)をそれぞれかける。整合フィルタ760及び765のそれぞれは、前記乗算器770と775の乗算結果を整合フィルタリングした後、整合フィルタリング結果信号I、Qを出力する。複素逆拡散器750は前記整合フィルタ760、765によるフィルタリング結果信号I、Qを逆拡散した後、I'成分信号及びQ'成分信号を出力する。デマルチプレクサ740は前記I'成分信号を時間的にデマルチプレクシングし、RRI出力のための信号と、その他の信号1、その他の信号2に分離出力する。累積器735は前記RRI信号を4チップずつ累積した後に256個のシンボルを出力する。前記復号器700は図6の符号器600に対応して復号化動作を遂行し、前記累積器735から受信されるシンボルを復号する。
【0039】
図5は本発明による復号化装置の構成を示す図であり、図7に示されたような基地局内の受信器の復号器700を構成する。
前記図5を参照すると、256個のシンボルが入力されると、前記図4のシンボル反復器410及びシンボル穿孔器420に対応するシンボル累積器500は前記入力された256個のシンボルを累積して7個のシンボルを出力する。ゼロ(0、zero)挿入器510は前記7個のシンボルを入力し、入力された7個の信号の前に“0”を挿入することにより、ウォルシュ符号形態の8個のシンボルを出力する。例えば、ゼロ挿入器510に7個のシンボルc1、c2、c3、c4、c5、c6、c7が入力される場合、前記シンボル列の真っ先に0が挿入され、0、c1、c2、c3、c4、c5、c6、c7のような8個のシンボル列が出力される。逆アダマール変換器(IFHT:Inverse Fast Hadamard Transformer)520は前記8個のシンボルを逆アダマール変換して復号化し、復号化されたビットを出力する。
【0040】
第2実施形態
第2実施形態はHDRシステムでの伝送フレームが12スロット(slots)に構成される場合に該当する。この時、一つのスロットにはRRI情報を伝送するために16個の符号シンボルが伝送され、一つのフレームには12×16=192個のシンボルが伝送される。本発明の第2実施形態では最適の(192、3)符号生成方法及び前記(192、3)符号を使用してRRIを符号化する装置が説明される。より具体的に説明すると、第2実施形態では前記穿孔した(7、3)符号を28回反復させることによって生成される7×28=196シンボルの中で、最小距離が最適になる位置のシンボルを穿孔することにより(192、3)符号を生成する動作が説明される。最小距離が最適になる位置のシンボル、即ち穿孔されるシンボルは、下記表6のように7×28=196個のシンボルの中で太字及び下線に表示された3、54、104、154番目位置の4個のシンボルである。穿孔のためのシンボルの位置を決定する動作を一般化された式に示すと、n1×7+3、n2×7+5、n3×7+6、n4×7+7(ただ、0≦n1、n2、n3、n4≦27であり、n1、n2、n3、n4は反復ブロックの数字である)のように表現されることができる。前記表6での穿孔位置3、54、104、154のそれぞれは、n1=0、n2=7、n3=14、n4=21である場合にそれぞれ決定される。
【0041】
【表6】
Figure 0003722752
【0042】
前記表6で太字及び下線に表示した位置のシンボルは、上述したように穿孔されるシンボルである。穿孔されるシンボルの最小距離は次のようである。前記一般式n1×7+3、n2×7+5、n3×7+6、n4×7+7(ただ、0≦n1、n2、n3、n4≦27)でn1、n2、n3、n4値に相関なし穿孔されるシンボルは、常に同一の最小距離を有するようになる。一例に、最小距離を簡単に計算するためにn1、n2、n3、n4を27とする時、前記(7、3)符号を27回反復すると、27番目の反復ブロックで7個のシンボル中に3番目、5番目、6番目、7番目の4個のシンボルは穿孔され、その他の3個のシンボル(1番目シンボル、2番目シンボル、4番目シンボル)のみが残る。この時、(7、3)符号の最小距離は4であり、前記27番目の反復ブロックで、3番目、5番目、6番目、7番目の4個のシンボルを除外した余り3個のシンボル間の最小距離は1であるので、(192、3)符号の最小距離は(4×27)+1=109であり、このような(192、3)符号は最適の符号である。前記(192、3)符号を使用してRRIを符号化する装置と、この符号化装置を含む送信器及び前記送信器に対応する受信器に対して説明すると、次のようである。
【0043】
今、“0”と“1”に表現される3ビットのRRI情報ビットが図6の符号器600に入力されると仮定する。本発明によると、前記符号器600は図4に示したように構成される。
図4は本発明の実施形態による符号化装置の構成を示す図であり、図6に示された端末機内の送信器の符号器600を構成する。
【0044】
前記図4を参照すると、3ビットのRRI情報ビットは符号語発生器400に入力され、前記符号語発生器400は前記表2のような(7、3)穿孔された直交符号により符号化され7個の符号シンボルを出力する。シンボル反復器410は前記出力された符号シンボルを27回反復し、196個の反復されたシンボルを出力する。シンボル穿孔器420は前記反復された196個のシンボルを入力し、3番目(=(7×0)+3)、54番目(=(7×7)+5)、104番目(=(7×14)+6)、154番目(=(7×21)+7)シンボルを穿孔して192個のシンボルのみを出力する。前記192個の符号シンボルは図6の信号変換器620に入力される。
【0045】
図6を参照すると、前記信号変換器620は前記符号シンボル中“0”であるシンボルは“1”に、“1”であるシンボルは“−1”に変換する。前記信号変換されたシンボルは乗算器635に印加される。前記乗算器635は前記信号変換器620から出力されたシンボルに長さ4である0番目ウォルシュ符号の信号変換されたチップ(+1、+1、+1、+1)を乗算する。前記乗算器635によりシンボルは拡散(Spreading)された後にチップ(chip)単位に出力される。前記チップ単位のシンボルはマルチプレクサ640に入力された後、その他の信号1及びその他の信号2と時間的にマルチプレクシングされた後に出力される。この時、その他の信号1及び2はデータ伝送率制御(DRC:Data Rate Control)情報になることができる。前記マルチプレクサ640の出力信号I'とデータ信号Q'は共に複素拡散器650に入力される。前記複素拡散器650は前記信号I'及び信号Q'をPN(Pseudo Noise)拡散符号PNI及びPNQと複素乗算して出力する。即ち前記複素拡散器650は入力信号(I'+jQ')とPN拡散符号(PNI+jPNQ)を乗算し、実数成分信号Iと虚数成分信号Qを出力する。基底帯域ろ波器660及び665のそれぞれは、前記実数成分信号Iと虚数成分信号Qを基底帯域でろ波(フィルタリング)する。乗算器670及び675のそれぞれは、前記基底帯域ろ波された実数成分信号Iと虚数成分信号Qにそれぞれ搬送波cos(2πfct)とsin(2πfct)を乗算する。前記合算器680は前記乗算結果を合算した後に送信信号として出力する。
【0046】
図7は前記図4に示された符号器を含む送信器から出力された伝送信号を受信する受信器の構造図である。
前記図7を参照すると、乗算器770及び乗算器775は入力信号にcos(2πfct)及びsin(2πfct)をそれぞれ乗算する。整合フィルタ760及び765のそれぞれは、前記乗算器770、775の乗算結果をフィルタリングして整合フィルタリングされた信号I及びQを出力する。複素逆拡散器750は前記信号I及びQを逆拡散して、I’成分信号及びQ’成分信号を出力する。デマルチプレクサ740は前記I’成分信号を時間的にデマルチプレクシングし、RRI出力のための信号と、その他の信号1と、その他の信号2に分離出力する。累積器735は前記RRI信号を4チップずつ累積した後に192個のシンボルを出力する。前記復号器700は図6の符号器600に対応して復号化動作を遂行し、前記累積器735から受信されるシンボルを復号する。
【0047】
図5は本発明による復号化装置の構成を示す図であり、図7に示された基地局内の受信器の復号器700を構成する。
前記図5を参照すると、192個のシンボルが入力されると、前記図4のシンボル反復器410及びシンボル穿孔器420に対応するシンボル累積器500は前記入力された192個のシンボルを累積して7個のシンボルを出力する。ゼロ(0、zero)挿入器510は前記7個のシンボルを入力し、入力された7個の信号の真っ先に“0”を挿入することにより、ウォルシュ符号形態の8個のシンボルを出力する。例えば、ゼロ挿入器510に7個のシンボルc1、c2、c3、c4、c5、c6、c7が入力される場合、前記シンボル列の真っ先に0が挿入され0、c1、c2、c3、c4、c5、c6、c7のような8個のシンボル列が出力される。逆アダマール変換器(IFHT:Inverse Fast Hadamard Transformer)520は前記8個のシンボルを逆アダマール変換して復号化し、復号化されたビットを出力する。
【0048】
【発明の効果】
上述したように本発明は、符号分割多重接続通信システムで伝送フレームの伝送速度を示すRRIのような情報を符号化する時、誤り訂正符号器の性能を決定する最小距離を最大化することにより性能を向上させる効果がある。
以上、本発明の実施例を添付図面を参照して説明したが、本発明はこの特定の実施例に限るものでなく、各種の変形及び修正が本発明の範囲を逸脱しない限り、該当分野における通常の知識を持つ者により可能なのは明らかである。
【図面の簡単な説明】
【図1】 従来技術によるCDMAシステムの端末機の送信器構成を示す図である。
【図2】 従来技術によるCDMAシステムの基地局の受信器構成を示す図である。
【図3】 従来技術による(8、3)直交符号器における伝送率可変指示情報(RRI)と符号語シンボル間の対応関係を示す図である。
【図4】 本発明の実施形態による符号化装置の構成を示す図である。
【図5】 本発明の実施形態による復号化装置の構成を示す図である。
【図6】 本発明が適用されるCDMAシステムの端末機の送信器構成を示す図である。
【図7】 本発明が適用されるCDMAシステムの基地局の受信器構成を示す図である。

Claims (15)

  1. kビットの列を有する入力情報を符号化して(2k−1)より大きな長さNを有する符号語を発生する方法において、
    前記入力情報を(r、k)(ここでr=2k−1)シンプレックス符号を使用して符号化し、長さrを有する符号化されたシンボルの列を発生する過程と、
    前記符号化されたシンボルの列をt回
    Figure 0003722752
    反復する過程と、
    前記t回反復されたシンボルから長さNになるように、発生される各種符号語の最小ハミング距離が最大となるよう定められたA箇所 ( ここで、A=rt−N ) の穿孔位置の穿孔を行う過程と
    を含むことを特徴とする前記方法。
  2. 前記穿孔されるシンボルは、前記反復されたシンボル内で均等に分布されることを特徴とする請求項1に記載の前記方法。
  3. 前記穿孔されるシンボルは、前記反復されたシンボルの中でt番目反復されたシンボルの中で決定されることを特徴とする請求項1に記載の前記方法。
  4. kビットの列を有する入力情報を符号化して(2k−1)より大きな長さNを有する符号語を発生する装置において、
    前記入力情報を(r、k)(ここでr=2k−1)シンプレックス符号を使用して符号化し、長さrを有する符号化されたシンボルの列を発生する符号器と、
    前記符号化されたシンボルの列をt回
    Figure 0003722752
    反復する反復器と、
    前記t回反復されたシンボルから長さNになるように、発生される各種符号語の最小ハミング距離が最大となるよう定められたA箇所 ( ここで、A=rt−N ) の穿孔位置の穿孔を行う穿孔器と
    を含むことを特徴とする前記装置。
  5. 前記穿孔されるシンボルは、前記反復されたシンボル内で均等に分布されることを特徴とする請求項4に記載の前記装置。
  6. 前記穿孔されるシンボルは、前記反復されたシンボルの中でt番目の反復されたシンボルの中で決定されることを特徴とする請求項4に記載の前記装置。
  7. 入力情報を(7、3)シンプレックス符号を使用して符号化し、長さ7を有する符号化されたシンボルの列を発生する過程と、
    前記符号化されたシンボルの列をt回
    Figure 0003722752
    反復する過程と、
    7の倍数ではない長さNを有する符号語シンボルを出力するため、前記反復されたシンボルを予め設定された穿孔パターンによって、発生される各種符号語の最小ハミング距離が最大となるよう定められたA箇所 ( ここで、A=rt−N ) の穿孔位置の穿孔を行う過程と
    を含むことを特徴とする符号化方法。
  8. 前記穿孔パターンは、前記Nを7で除算した余りが1である場合、前記反復されたシンボルの中で任意の6個のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  9. 前記穿孔パターンは、前記Nを7で除算した余りが2である場合、前記反復されたシンボルの中で任意の5個のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  10. 前記穿孔パターンは、前記Nを7で除算した余りが3である場合、前記反復されたシンボルの中でt番目の反復周期内の3番目、5番目、6番目及び7番目のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  11. 前記穿孔パターンは、前記Nを7で除算した余りが4である場合、前記反復されたシンボルの中でt番目の反復周期内の3番目、5番目及び6番目のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  12. 前記穿孔パターンは、前記Nを7で除算した余りが5である場合、前記反復されたシンボルの中で任意の2個のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  13. 前記穿孔パターンは、前記Nを7で除算した余りが6である場合、前記反復されたシンボルの中で任意の1個のシンボルを穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  14. 前記穿孔パターンは、前記Nを7で除算した余りが3である場合、前記反復されたシンボルの中で(n1×7+3)番目のシンボル、(n2×7+5)番目のシンボル、(n3×7+6)番目のシンボル及び(n4×7+7)番目のシンボル(ここで、0≦n1、n2、n3、n4≦(t−1))を穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
  15. 前記穿孔パターンは、前記Nを7で除算した余りが4である場合、前記反復されたシンボルの中で(n1×7+1)番目のシンボル、(n2×7+2)番目のシンボル及び(n3×7+3)番目のシンボル(ここで、0≦n1、n2、n3≦(t−1))を穿孔するためのパターンであることを特徴とする請求項7に記載の前記方法。
JP2001569991A 2000-03-21 2001-03-21 符号分割多重接続通信システムの符号化装置及び方法 Expired - Lifetime JP3722752B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR2000-14355 2000-03-21
KR20000014355 2000-03-21
KR2000-38399 2000-07-05
KR20000038399 2000-07-05
PCT/KR2001/000444 WO2001071936A1 (en) 2000-03-21 2001-03-21 Encoding apparatus and method in cdma communication system

Publications (2)

Publication Number Publication Date
JP2003528530A JP2003528530A (ja) 2003-09-24
JP3722752B2 true JP3722752B2 (ja) 2005-11-30

Family

ID=36500566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001569991A Expired - Lifetime JP3722752B2 (ja) 2000-03-21 2001-03-21 符号分割多重接続通信システムの符号化装置及び方法

Country Status (11)

Country Link
US (1) US7065700B2 (ja)
EP (1) EP1266459B1 (ja)
JP (1) JP3722752B2 (ja)
KR (1) KR100393616B1 (ja)
CN (1) CN1284306C (ja)
AU (2) AU2001244764B2 (ja)
BR (2) BR0109489A (ja)
CA (1) CA2403622C (ja)
DE (1) DE60115866T2 (ja)
RU (1) RU2236087C2 (ja)
WO (1) WO2001071936A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917603B2 (en) * 2000-01-20 2005-07-12 Nortel Networks Limited Servicing multiple high speed data users in shared packets of a high speed wireless channel
AU2001252744B2 (en) * 2000-04-21 2004-11-04 Samsung Electronics Co., Ltd Flexible data rate matching apparatus and method in a data communication system
KR100800787B1 (ko) * 2000-06-03 2008-02-01 삼성전자주식회사 데이터 통신 시스템을 위한 가변 데이터 전송율 정합 방법및 장치
KR20030019572A (ko) * 2000-07-13 2003-03-06 콸콤 인코포레이티드 최대거리 블록 코딩 방법
CN1179489C (zh) * 2000-10-06 2004-12-08 三星电子株式会社 用于利用单工码产生(n,3)码和(n,4)码的装置和方法
KR100450968B1 (ko) * 2001-06-27 2004-10-02 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 데이터 송/수신장치 및 방법
KR100834662B1 (ko) * 2001-11-21 2008-06-02 삼성전자주식회사 부호분할 다중접속 이동통신시스템에서의 부호화 장치 및 방법
KR100879942B1 (ko) * 2002-02-16 2009-01-22 엘지전자 주식회사 채널품질지시자 코딩을 위한 기저수열 생성방법
AU2003233501A1 (en) * 2002-05-15 2003-12-02 Thomson Licensing S.A. Ofdm equalizer filter with shared multiplier
KR100493094B1 (ko) * 2002-09-17 2005-06-02 삼성전자주식회사 이동통신 시스템의 채널 부호화 및 복호화를 위한심볼천공 방법
US7729232B2 (en) * 2006-02-01 2010-06-01 Lg Electronics Inc. Method of transmitting and receiving data using superposition modulation in a wireless communication system
US7934137B2 (en) * 2006-02-06 2011-04-26 Qualcomm Incorporated Message remapping and encoding
KR101311634B1 (ko) 2006-10-09 2013-09-26 엘지전자 주식회사 무선 통신 시스템의 부호어 생성 방법
KR20080035424A (ko) * 2006-10-19 2008-04-23 엘지전자 주식회사 데이터 전송 방법
CA2706519A1 (en) * 2008-02-11 2009-08-20 Zte U.S.A., Inc. Method and system for joint encoding multiple independent information messages
CN107431575B (zh) * 2015-02-17 2021-03-02 马维尔亚洲私人有限公司 用于phy数据单元传输的方法和设备
KR101776267B1 (ko) * 2015-02-24 2017-09-07 삼성전자주식회사 송신 장치 및 그의 리피티션 방법
US10367595B1 (en) * 2018-04-18 2019-07-30 Huawei Technologies Co., Ltd. Apparatus and receiver for receiving RF analog signals

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844922A (en) * 1993-02-22 1998-12-01 Qualcomm Incorporated High rate trellis coding and decoding method and apparatus
US5383219A (en) * 1993-11-22 1995-01-17 Qualcomm Incorporated Fast forward link power control in a code division multiple access system
US5511082A (en) * 1994-05-10 1996-04-23 General Instrument Corporation Of Delaware Punctured convolutional encoder
US5657325A (en) * 1995-03-31 1997-08-12 Lucent Technologies Inc. Transmitter and method for transmitting information packets with incremental redundancy
US5883899A (en) 1995-05-01 1999-03-16 Telefonaktiebolaget Lm Ericsson Code-rate increased compressed mode DS-CDMA systems and methods
US5691992A (en) * 1995-10-12 1997-11-25 Ericsson Inc. Punctured coding system for providing unequal error protection in a digital communication system
KR0155319B1 (ko) * 1995-11-08 1998-11-16 양승택 3/5 컨볼루션 코드를 갖는 PCS용 5MHz 광대역 CDMA 채널구조
KR19990003242A (ko) * 1997-06-25 1999-01-15 윤종용 구조적 펀처드 길쌈부호 부호와 및 복호기
KR100387078B1 (ko) * 1997-07-30 2003-10-22 삼성전자주식회사 대역확산통신시스템의심볼천공및복구장치및방법
US5909454A (en) * 1998-01-20 1999-06-01 General Instrument Corporation Intermediate rate applications of punctured convolutional codes for 8PSK trellis modulation over satellite channels
KR100299148B1 (ko) 1998-03-14 2001-09-26 윤종용 부호분할다중접속 통신시스템에서 서로 다른 프레임 길이를갖는메시지를 인터믹스하여 송수신하는 장치 및 방법
GB9814960D0 (en) * 1998-07-10 1998-09-09 Koninkl Philips Electronics Nv Coding device and communication system using the same
US6014411A (en) * 1998-10-29 2000-01-11 The Aerospace Corporation Repetitive turbo coding communication method
KR100315708B1 (ko) * 1998-12-31 2002-02-28 윤종용 이동통신시스템에서터보인코더의펑처링장치및방법
KR100295760B1 (ko) * 1998-12-31 2001-09-06 윤종용 디지털시스템의길쌈부호처리장치및방법
US6587446B2 (en) * 1999-02-11 2003-07-01 Qualcomm Incorporated Handoff in a wireless communication system
CA2266283C (en) * 1999-03-19 2006-07-11 Wen Tong Data interleaver and method of interleaving data
US7058086B2 (en) * 1999-05-26 2006-06-06 Xm Satellite Radio Inc. Method and apparatus for concatenated convolutional encoding and interleaving
US6385752B1 (en) * 1999-06-01 2002-05-07 Nortel Networks Limited Method and apparatus for puncturing a convolutionally encoded bit stream
KR100407942B1 (ko) * 1999-11-19 2003-12-01 엘지전자 주식회사 이동통신 시스템에서 전송 포맷 조합 지시자를 전송하는 방법
US6604216B1 (en) * 1999-12-10 2003-08-05 Telefonaktiebolaget Lm Ericsson Telecommunications system and method for supporting an incremental redundancy error handling scheme using available gross rate channels
US6614850B1 (en) * 2000-07-07 2003-09-02 Qualcomm, Incorporated Method and apparatus for puncturing code symbols in a communications system
US20030012372A1 (en) 2001-04-25 2003-01-16 Cheng Siu Lung System and method for joint encryption and error-correcting coding

Also Published As

Publication number Publication date
US20020010893A1 (en) 2002-01-24
JP2003528530A (ja) 2003-09-24
RU2002125446A (ru) 2004-02-10
EP1266459A4 (en) 2003-05-28
CN1284306C (zh) 2006-11-08
WO2001071936A1 (en) 2001-09-27
CA2403622C (en) 2008-02-19
AU2001244764B2 (en) 2004-09-30
AU4476401A (en) 2001-10-03
EP1266459B1 (en) 2005-12-14
DE60115866D1 (de) 2006-01-19
RU2236087C2 (ru) 2004-09-10
CN1419747A (zh) 2003-05-21
BRPI0109489B1 (pt) 2019-02-12
KR20010100829A (ko) 2001-11-14
EP1266459A1 (en) 2002-12-18
CA2403622A1 (en) 2001-09-27
US7065700B2 (en) 2006-06-20
BR0109489A (pt) 2002-12-10
KR100393616B1 (ko) 2003-08-02
DE60115866T2 (de) 2006-06-14

Similar Documents

Publication Publication Date Title
JP3722752B2 (ja) 符号分割多重接続通信システムの符号化装置及び方法
JP3993093B2 (ja) 移動通信システムにおける伝送率情報の符号化及び復号化を行う装置及び方法
JP3987508B2 (ja) 通信システムの伝送率情報復号化装置及び方法
JP3454815B1 (ja) 符号分割多元接続移動通信システムのためのチャンネル符号化/復号化装置及び方法
JP3860123B2 (ja) 符号分割多重接続移動通信システムにおける符号化及び復号化装置及び方法
AU2001244764A1 (en) Encoding apparatus and method in CDMA communication system
JP3782995B2 (ja) 符号分割多重接続移動通信システムでの符号化/復号化装置及び方法
KR100421165B1 (ko) 통신시스템에서 블록부호 발생 장치 및 방법
KR100464364B1 (ko) 부호분할다중접속 이동통신시스템에서 부호화 및 복호화장치 및 방법
RU2233540C2 (ru) Устройство и способ преобразования в символы бит указателя tfci для режима жесткого разбиения в системе мобильной связи cdma

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040713

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Ref document number: 3722752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term