JP3718348B2 - 高強度高靱性圧延形鋼とその製造方法 - Google Patents

高強度高靱性圧延形鋼とその製造方法 Download PDF

Info

Publication number
JP3718348B2
JP3718348B2 JP21753798A JP21753798A JP3718348B2 JP 3718348 B2 JP3718348 B2 JP 3718348B2 JP 21753798 A JP21753798 A JP 21753798A JP 21753798 A JP21753798 A JP 21753798A JP 3718348 B2 JP3718348 B2 JP 3718348B2
Authority
JP
Japan
Prior art keywords
less
rolling
strength
mpa
limited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21753798A
Other languages
English (en)
Other versions
JP2000054060A (ja
Inventor
広一 山本
寛哲 佐藤
卓 吉田
博一 杉山
博行 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21753798A priority Critical patent/JP3718348B2/ja
Priority to US09/509,956 priority patent/US6364967B1/en
Priority to DE69911732T priority patent/DE69911732T2/de
Priority to PCT/JP1999/004078 priority patent/WO2000006789A1/ja
Priority to EP99933158A priority patent/EP1026275B1/en
Publication of JP2000054060A publication Critical patent/JP2000054060A/ja
Application granted granted Critical
Publication of JP3718348B2 publication Critical patent/JP3718348B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建造物の構造部材として用いられる靱性の優れた高張力圧延形鋼およびその製造方法に係わるものである。
【0002】
【従来の技術】
建築物の超高層化、安全基準の厳格化などから、柱用に用いられる鋼材、例えば特に板厚の大きなサイズのH形鋼(以下、極厚H形鋼と称す)には、一層の高強度化、高靱性化、低降伏比化が求められている。このような要求特性を満たすために、従来は圧延終了後に焼準処理などの熱処理を施すことが行われた。熱処理の付加はエネルギーコストと生産効率の低下など大幅なコスト上昇を招き、経済性に問題があった。この問題を解決するために、高性能の材質特性が得られるような新しい合金設計による鋳片と製造法の開発が必要となった。
【0003】
一般に、フランジを有する形鋼、例えばH形鋼をユニバーサル圧延により製造すると、圧延造形上からの圧延条件(温度、圧下率)の制限およびその形状の特異性からウエブ、フランジ、フィレットの各部位で圧延仕上げ温度、圧下率、冷却速度に差を生じる。その結果、部位間に強度、延性、靱性のバラツキが発生し、例えば溶接構造用圧延鋼材(JIS G3106)等の規準に満たない部位が生じる。特に極厚H形鋼を連続鋳造鋳片を素材として圧延製造する場合には、連続鋳造設備での製造可能な鋳片最大厚みに限界があり、造形に必要な十分な鋳片断面積が得られないため、その圧延は低圧下比圧延となる。さらに、圧延造形により製品の寸法精度を得るために高温圧延を指向するので板厚の厚いフランジ部は高温圧延となり、圧延終了後の鋼材冷却も徐冷となる。その結果、ミクロ組織は粗粒化し、強度・靱性が低下する。
【0004】
圧延プロセスでの組織微細化法として、TMCP(Thermo−Mechanical−Controll Process)があるが、形鋼圧延では、圧延条件に制限があるので、鋼板でのTMCPのような低温・大圧下圧延の適用は困難である。また、厚鋼板分野ではVNの析出効果を利用し高強度・高靱性鋼を製造する、例えば特公昭62−50548号公報、特公昭62−54862号公報の技術が提案されている。しかし、これらの方法を590MPa 級の製造に適用した場合には、高濃度の固溶Nを含有することから、生成するベイナイト組織内に高炭素島状マルテンサイト(以降M*と称する)を生成し、靱性が著しく低下して規格値をクリアーすることは困難であるという問題があった。また、特開平10−147835号公報においては、低炭素化−低窒素化とNb,V,Moの微量添加および、Ti酸化物およびTiNの微細分散による組織微細化へ加え、加速冷却型制御圧延による高強度・圧延形鋼の製造法が提案されているが、低C化とTMCPの採用による製造コストの上昇や製造工程の複雑化を招いている。
【0005】
【発明が解決しようとする課題】
前記の問題を解決するためには、圧延形鋼においてM*生成量の少ない低炭素ベイナイトを生成させ組織を微細化する必要がある。それには圧延加熱時のγ粒径を細粒化するために製鋼過程において、鋳片中に予めTi−Oを微細晶出させ、これを核にTiNを微細析出させ、加えて、低炭素化するために、微量で高強度が得られるマイクロアロイの微量添加した鋳片を製造する必要がある。また、H形鋼のフランジとウェブの結合部のフィレット部はCC鋳片の中心偏析帯と一致し、この偏析帯内のMnSは圧延により著しく延伸する。ここでの高濃度の元素偏析帯と延伸MnSは板厚方向の絞り値・靱性を著しく低下させ、さらに溶接時にラメラティア割れを生じさせる場合もあり、この有害な作用を持つMnSの生成を阻止することも大きな課題である。このように、従来の技術では目的の信頼性の高い高強度・高靱性の圧延形鋼をオンラインで製造し安価に提供することは困難である。
【0006】
本発明は、従来の焼準処理などの熱処理を施すことなく、低コストで高張力圧延形鋼の製造を可能とし、建造物の構造部材に用いる高強度で靱性の優れた590MPa 級圧延形鋼およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の特徴は従来の発想とは異なり、Tiを添加し、これにより生成させた微細Ti酸化物とTiNの微細分散およびマイクロアロイの添加による低炭素ベイナイト組織の生成とによる組織の微細化により高強度でかつ高靱性の圧延形鋼を実現した点にある。
【0008】
加えて採用したTMCPの特徴は厚鋼板で実施されている大圧下圧延に代わる形鋼圧延での軽圧下の熱間圧延においても効率的に組織の細粒化が可能なように圧延パス間で水冷し、圧延と水冷を繰り返す方法にある。
本発明は、M*含有量の少ない低炭素ベイナイトの微細組織が得られる鋳片を鋳造し、この鋳片を用い、形鋼圧延において効率的なTMCPを行い高強度かつ高靱性を有する形鋼を製造することを特徴としている。
【0009】
その鋳片は、製鋼過程において、圧延加熱時のγ細粒化を目的に、鋳片内にTi添加により微細Ti−Oの晶出とTiNを微細分散させ、加えて、圧延後の組織内のM*低減を狙い、強度と靱性を確保する合金元素を添加し、さらに極低B化を行ない製造する。
次いで、この鋳片を圧延造形し形鋼を製造するが、この圧延形鋼圧延プロセスでは、熱間圧延パス間で鋼材を水冷することにより、鋼材の表層部と内部に温度差を与え、軽圧下条件下においても、より高温の鋼材内部への圧下浸透を高め、γ粒内でのベイナイト生成核となる加工転位を導入し、その生成核を増加させる。加えて、圧延後のγ/α変態温度域を冷却制御することにより、その核生成させたベイナイトの成長を抑制する方法によればミクロ組織の微細化ができ、高能率で製造コストの安価な制御圧延形鋼の製造が可能であると言う知見に基づき前記課題を解決したもので、その要旨とするところは、以下のとおりである。
【0010】
(1)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ni:0.1〜2.0%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、かつミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトからなり、該高炭素島状マルテンサイトの面積率が5%以下であることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
【0011】
(2)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、かつミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトからなり、該高炭素島状マルテンサイトの面積率が5%以下であることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
【0012】
(3)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ni:0.1〜2.0%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、
▲1▼ 圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上圧延加工をおこなうこと、
▲2▼ 圧延工程で形鋼のフランジ表面を700℃以下にまで水冷し復熱過程で圧延する水冷・圧延サイクルを1回以上おこなうこと、
▲3▼ 圧延終了後に形鋼のフランジ平均温度が0.1℃〜5℃/sの範囲内の冷却速度で700〜400℃の温度域に冷却した後に放冷すること、
▲4▼ 形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却すること、の少なくとも単独もしくは複数の方法を組み合わせることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼の製造方法。
【0013】
(4)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%
のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該当不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、
▲1▼ 圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上圧延加工をおこなうこと、
▲2▼ 圧延工程で形鋼のフランジ表面を700℃以下にまで水冷し復熱過程で圧延する水冷・圧延サイクルを1回以上おこなうこと、
▲3▼ 圧延終了後に形鋼のフランジ平均温度が0.1℃〜5℃/sの範囲内の冷却速度で700〜400℃の温度域に冷却した後に放冷すること、
▲4▼ 形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却すること、の少なくとも単独もしくは複数の方法を組み合わせることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼の製造方法。
【0014】
(5)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ni:0.1〜2.0%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
を含み、残部がFeおよび不可避不純物からなり、該当不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、板厚が15〜80mmの範囲内かつ板厚比が0.5〜2.0の範囲内で2種以上の板を組み合わせた断面形状を熱間圧延で製造することを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
【0015】
(6)重量%で、
C:0.02〜0.06%、
Si:0.05〜0.25%、
Mn:1.2〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.025%、
Nb:0.01〜0.10%、
V:0.04〜0.10%、
N:0.004〜0.009%、
O:0.002〜0.004%、
およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該当不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、板厚が15〜80mmの範囲内かつ板厚比が0.5〜2.0の範囲内で2種以上の板を組み合わせた断面形状を熱間圧延で製造することを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
【0016】
【発明の実施の形態】
以下、本発明について詳細に説明する。
鋼の高強度化は▲1▼フェライト結晶の微細化、▲2▼合金元素による固溶体強化、硬化相による分散強化、▲3▼微細析出物による析出強化等によって達成される。また、高靱性化は、▲4▼結晶の微細化、▲5▼母相(フェライト)の固溶N,Cの低減、▲6▼破壊の発生起点となる硬化相の高炭素マルテンサイト及び粗大な酸化物、析出物の低減と微小化等により達成される。
【0017】
一般的には鋼の高強度化により靱性は低下し、高強度化と高靱性化は相反する対処が必要である。両者を同時に満たす冶金因子は唯一、結晶の微細化である。本発明の特徴は、製鋼工程における、Mg添加による微細Mg酸化物とTiNの分散およびマイクロアロイング合金設計に基づく低炭素ベイナイト組織化による組織微細化により高強度・高靱性化を達成するものである。
【0018】
加えて本発明では、熱間圧延工程において、熱間圧延パス間でフランジ表面を水冷し、その復熱時に圧延する工程を繰り返すことによりフランジの板厚中心部に圧下浸透効果を付与し、この部位においてもTMCPによる組織微細化効果を高め、この組織微細化によりH形鋼の各部位における母材の機械特性を向上させるとともにバラツキを低減し均質化を達成するものである。
【0019】
以下に本発明形鋼の成分範囲と制御条件の限定理由について述べる。
まず、Cは鋼を強化するために添加するもので、0.02%未満では構造用鋼として必要な強度が得られず、また、0.06%を超える添加では、母材靱性、耐溶接割れ性、溶接熱影響部(以下HAZと略記)靱性などを著しく低下させるので、下限を0.02%、上限を0.06%とした。
【0020】
次に、Siは母材の強度確保、溶鋼の予備脱酸などに必要であるが、0.25%を超えると母材およびHAZの硬化組織中に高炭素島状マルテンサイトを生成し、母材および溶接継手部靱性を著しく低下させる。また、0.05%未満では溶鋼の予備脱酸が十分にできないためSi含有量を0.05〜0.25%の範囲に限定した。
【0021】
Mnは母材の強度確保には1.2%以上の添加が必要であるが、母材および溶接部の靱性、割れ性などに対する許容濃度から上限を2.0%とした。
Cuはα温度域での保持および緩冷却によりα相中の転位上にCu相を析出し、その析出硬化により母材の常温強度を増加させる。ただし、このα中でのCu相の析出は0.3%未満ではα中でのCuの固溶限内であり、析出が生じないためCu析出による強化は得られない。また1.2%以上ではその析出強化は飽和するのでCu0.3〜1.2%に限定した。
【0022】
Niは母材の強靱性を高める極めて有効な元素である。この効果の発現にはNi含有量は0.1%以上が必要である。しかし、2.0%を超える添加は合金コストを増加させ経済的でないので上限を2.0%とした。
TiはTiNを析出し、固溶Nを低減することによりM*の生成を制御する。また、微細析出したTiNはγ相の微細化にも寄与する。これらのTiの作用により組織を微細化し強度・靱性を向上させる。従って、0.005%未満ではTiNの析出量が不足し、これらの効果を発現し得ないためTi量の下限値を0.005%とした。しかし、0.025%を超えると過剰なTiはTiCを析出し、その析出硬化により母材および溶接熱影響部の靱性を劣化させるため0.025%以下に制限した。
【0023】
Nbは焼入性を上昇させ強度を増加させる目的で添加している。この効果の発現には、Nb含有量は0.01%以上が必要である。しかし0.10%超では、Nb炭窒化物の析出量が増加し固溶Nbとしての効果が飽和するので0.10%以下に制限した。
Vは微量添加により圧延組織を微細化でき、バナジン炭窒化物の析出により強化することから低合金化でき溶接特性を向上できる。この効果の発現には、V含有量は0.04%以上が必要である。しかしながら、Vの過剰な添加は溶接部の硬化や、母材の高降伏点化をもたらすので、含有量の上限をV:0.10%とした。
【0024】
Nはα中に固溶し、強度を上昇させるが、上部ベイナイト組織では、M*を生成し、靱性を劣化させるので、固溶Nはできるだけ低減する必要がある。しかし、本発明でのNはTiと化合させ鋼中にTiNを微細析出させ、固溶Nを低減させた上で、TiNによる結晶の粒成長を抑制し組織微細化効果を発揮させる目的で添加している。従って、この効果の発現には、N量が0.004%未満ではTiNの析出量が不足し、0.009%超では析出量は十分となるが、粗大なTiNが析出し、靱性を損ねるのでN:0.004〜0.009%に限定した。
【0025】
O(酸素)はTi−Oの生成に不可欠であり、それには0.002%を超える含有が必要であるが、0.004%を超えて含有すると、生成するTi−O粒子は粗大化し、靱性を低下させるため、O含有量を0.002〜0.004%に限定した。
不可避不純物として含有するP,Sについては、それらの量を特に限定しないが凝固偏析による溶接割れ、靱性低下の原因となるので、極力低減すべきでありP,S量はそれぞれ0.002%未満に制限することが望ましい。
【0026】
Bは微量添加で焼入性を上昇させ強度増加に寄与する。しかし、0.0003%超のBを含有すると上部ベイナイト組織中にM*を生成し靱性を著しく低下させることが判明したので、Bはむしろ不純物として0.0003%以下に制限した。
Alを0.005%以下としたのは、Alは強力な脱酸元素であり、0.005%超の含有では、Ti−Oの生成が阻害され、微細な分散ができないため、Alも不純物として0.005%以下に制限した。
【0027】
更に、本発明による形鋼の鋼種によっては、以上の元素に加えて、母材強度の上昇、および母材の靱性向上の目的で、Cr,Ni,Mo,MgおよびCaのうちの少なくとも1種を含有することができる。
Crは焼入性の向上により、母材の強化に有効である。この効果の発現にはCr含有量は0.1%以上が必要である。しかし1.0%を超える過剰の添加は、靱性および硬化性の観点から有害となるため、上限を1.0%とした。
【0028】
Moは母材強度の確保に有効な元素である。この効果の発現には、Mo含有量は0.05%以上が必要である。しかし0.4%超では、Mo炭化物(Mo2 C)を析出し固溶Moとしての焼入性向上効果が飽和するので0.4%以下に制限した。
Mg添加に使用するMg合金はSi−Mg−AlおよびNi−Mgである。Mg合金を用いた理由は合金化によりMg含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制し、添加時の安全性の確保とMgの歩留を向上させるためである。Mgを0.0005〜0.005%に限定するのは、Mgも強力な脱酸元素であり、晶出したMg酸化物は溶鋼中で容易に浮上分離されるため0.005%を超えて添加しても、これ以上は歩留まらないため上限を0.005%とした。また、0.0005%未満では目的のMg系酸化物の分散密度が不足するため下限を0.0005%とした。なお、ここでのMg系酸化物は、主にMgOと表記しているが、電子顕微鏡解析などによると、この酸化物はTi、微量のAlおよび不純物として含まれているCaなどとの複合酸化物を形成している。
【0029】
Caを0.001〜0.003%に限定する理由は、Caが強力な脱酸元素であり、晶出するCa酸化物は溶鋼中で容易に浮上しスラグとして分離されるため、0.003%を超えて添加しても、これ以上は歩留まらないため、上限を0.003%とした。また0.001%未満では目的のCa分散密度が不足するため下限を0.001%とした。
【0030】
本発明の圧延形鋼は、590MPa (60kgf/mm2 )級の引張強さと靱性とを同時に確保するために、ミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトから成り、該高炭素島状マルテンサイトの面積率が5%以下であるミクロ組織を有することが必要である。
【0031】
ミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトからなり、該高炭素島状マルテンサイトの面積率が5%以下としたのは、ベイナイト面積率、高炭素島状マルテンサイト面積率のいずれかが当該上限値を超える場合、靱性が劣化するため当該上限値以下の濃度範囲に限定した。
【0032】
上記のミクロ組織は、本発明の方法によって実現できる。すなわち、上記の化学組成を有する鋳片を1100〜1300℃の温度域に再加熱する。この温度域に再加熱温度を限定したのは、熱間加工による形鋼の製造には塑性変形を容易にするため1100℃以上の加熱が必要であり、且つV,Nbなどの元素を十分に固溶させる必要があるため再加熱温度の下限を1100℃とした。その上限は加熱炉の性能、経済性から1300℃した。
【0033】
上述のように加熱された鋳片は、
▲1▼ 圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上圧延加工をおこなうこと、
▲2▼ 圧延工程で形鋼のフランジ表面を700℃以下にまで水冷し復熱過程で圧延する水冷・圧延サイクルを1回以上おこなうこと、
▲3▼ 圧延終了後に形鋼のフランジ平均温度が0.1℃〜5℃/sの範囲内の冷却速度で700〜400℃の温度域に冷却した後に放冷すること、
▲4▼ 形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却すること、の少なくとも単独もしくは複数工程を組み合わせて製造することが好ましい。
【0034】
先ず、▲1▼として、上記のように加熱された鋳片は圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上の圧延加工を行う必要がある。すなわち、フランジの圧延平均温度が950℃以下で総圧下量が10%以上になるように圧延する理由は、これ以上での温度での圧下は制御圧延による細粒化効果は期待できず、また、950℃以下の温度での総圧下量が10%以下ではその細粒化効果が小さいためである。
【0035】
次に、▲2▼として、熱間圧延のパス間で水冷し、圧延中に、フランジ表面温度を700℃以下に水冷により冷却し、次の圧延パス間の復熱過程で圧延する水冷・圧延サイクルを1回以上行うとしたのは、圧延パス間の水冷により、フランジの表層部と内部とに温度差を付与し、軽圧下条件においても内部への加工歪みを浸透させるためと、水冷により短時間で低温圧延を実現させTMCPを効率的に行うためである。フランジ表面温度を700℃以下に冷却した後、復熱過程で圧延するのは、仕上げ圧延後の加速冷却による表面の焼入れ硬化を抑制し軟化させるために行うものである。その理由はフランジ表面温度を700℃以下に冷却すれば一旦γ/α変態温度を切り、次の圧延までに表層部は復熱昇温し、圧延はγ/αの二相共存温度域での加工となり、γ細粒化と加工された微細αとの混合組織を形成する。これにより表層部の焼入性を著しく低減でき、加速冷却により生じる表面層の硬化を防止できるからである。
【0036】
更に▲3▼として、圧延終了後、引続き、0.1〜5℃/sの冷却速度で700〜400℃まで冷却し放冷するとしたのは、加速冷却によりフェライトの核生成・粒成長抑制およびベイナイト組織を微細化し高強度・高靱性を得るためである。次いで、加速冷却を700〜400℃で停止するのは、700℃を超える温度で停止した場合には、表層部の一部がArl点以上となりγ相を残存し、このγ相が、共存するフェライトを核にフェライト変態し、さらにフェライトが成長し粗粒化するため加速冷却の停止温度を700℃以下とした。また、400℃未満の冷却では、その後の放冷中にベイナイト相のラス間に生成する高炭素マルテンサイトが、冷却中にセメンタイトを析出することにより分解できず、硬化相として存在することになる。この高炭素マルテンサイトは脆性破壊の起点として作用し、靱性低下の原因となる。これらの理由により、加速冷却の停止温度を700〜400℃に限定した。
【0037】
また、▲4▼として形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却するとしたのは、一旦冷却した鋼材に500℃程度まで温度制御が可能な熱処理炉で加熱保持することにより実施することができるからである。
この製造方法を実施する理由は、圧延ままの状態でミクロ組織中に存在する高炭素島状マルテンサイトに再度400〜500℃まで熱を加えることにより、当該素島状マルテンサイト中のCをマトリクス中へ拡散させ島状マルテンサイトを分解させるためである。これにより島状マルテンサイトの面積率を低減し、靱性を向上させることが可能となる。
【0038】
実際の形鋼の製造においては、▲2▼の製造方法を採用することが好ましい。それは、▲2▼の工程が最も能率的かつ低コストで全サイズをカバーすることが可能であるからである。▲1▼,▲3▼の製造方法は、生産効率を害するものの、その機械特性を向上させる意味においては効果的である。また▲4▼はオフラインを目的とした工程であり、▲1▼,▲2▼,▲3▼のいずれかの工程を採用しなくても、目的とする製品を得ることができる工程である。
【0039】
また、本発明による形鋼は、板厚か15〜80mmの範囲内で、かつ板厚比が0.5〜2.0の範囲内で2種以上の板を組み合わせた断面形状を熱間圧延で製造することを規定している理由は、柱用に用いられる鋼材には主として板厚の大きなサイズのH形鋼が採用されることから、最大の板厚みを80mmまでとした。80mmを超える板厚みを持つ鋼材は、溶接時に多層盛り回数が極めて大きくなり施工性が低下する。板厚の下限値を15mmとしたのは、柱材として必要強度が確保できるのは板厚15mmからであり、それ未満では必要強度を満足させることができないためである。加えて板厚比を0.5〜2.0に限定したのは、以下の2つの理由による。H形鋼を熱間圧延で製造する場合、フランジ/ウェブの板厚比が2.0を越える場合、延伸比差によるウェブ座層現象や熱間圧延後の冷却速度差に起因するウェブの塑性変形により、ウェブが波打ち状の形状に変形するいわゆるウェブ波と呼ばれる形状不良が発生するため板厚比の上限値を2.0とした。一方、建築構造物のH柱−梁接合部の変形を抑制させるためには、H柱のウエブの板厚が重要な要素であり、現状ではダブラープレートと称する鋼板で補強されて使用されている実態と変形防止の観点からウエブの板厚がフランジの板厚以上ある厚み比構成のH柱が求められていること、板厚比が0.5未満の場合は前述したウエブ波のメカニズムと同様な現象でフランジの波打ちによる形状不良が発生するため、板厚比の下限値を0.5とした。
【0040】
なお、本発明でいう板厚比とは、フランジ/ウエブの板厚比、もしくはウエブ/フランジの板厚比のいずれでもよい。
【0041】
【実施例】
試作形鋼は転炉溶製し、合金を添加後、予備脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti,Mg合金を順次添加し、連続鋳造により250〜300mm厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷却帯の水量と鋳片の引き抜き速度の選択により制御した。該鋳片を1300℃で加熱し、粗圧延工程の図示は省略するが、図1に示す、ユニバーサル圧延装着列でH形鋼に圧延した。圧延パス間水冷は中間ユニバーサル圧延機4の前後に水冷装置5aを設け、フランジ外側面のスプレー冷却とリバース圧延の繰り返しにより行い、圧延後の加速冷却は仕上げユニバーサル圧延機6て圧延し、水冷により冷却した。また、必要により鋼種によっては、圧延終了後にその後面に設置した冷却装置5bでフランジ外側面をスプレー冷却した。
【0042】
機械特性は図2に示す、フランジ2の板厚t2の中心部(1/2t2)でフランジ幅全長(B)の1/4,1/2幅(1/4B,1/2B)から、採集した試験片を用い求めた。なお、これらの箇所についての特性を求めたのは、フランジ1/4F部はH形鋼の平均的な機械特性を示し、フランジ1/2F部はその特性が最も低下するので、これらの2箇所によりH形鋼の機械試験特性を代表できると判断したためである。
【0043】
表1に、本発明鋼の化学成分値を示した。
表2には、表1に示す本発明鋼の製造方法、それらのH形鋼の機械試験特性値、ベイナイト、M*の面積を示す。なお、圧延加熱温度を1300℃に揃えたのは、一般的に加熱温度の低下によりγ粒は細粒化し、機械試験特性を向上させることは周知であり、高温加熱条件では機械特性の最低値を示すと推定され、この値がそれ以下の加熱温度での機械試験特性を代表できると判断したためである。
【0044】
表2に示したように、本発明により製造された圧延形鋼はいずれも引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギー47J以上の機械的性質を示した。
【0045】
【表1】
Figure 0003718348
【0046】
【表2】
Figure 0003718348
【0047】
【発明の効果】
本発明による合金設計された鋳片と制御圧延法を適用した圧延形鋼は機械試験特性の最も保証しにくいフランジ板厚1/2、幅1/2部においても十分な強度を有し、優れた靱性を持つ形鋼の製造が可能となり、大型鋼構造物の信頼性の向上、安全性の確保、経済性等の産業上の効果は極めて顕著なものである。
【図面の簡単な説明】
【図1】図1は、本発明法を実施する装置配置例の略図である。
【図2】図2は、H形鋼の断面形状および機械試験片の採取位置を示す図である。
【符号の説明】
1…H形鋼
2…フランジ
3…ウェブ
4…中間圧延機
5a…中間圧延機前後面の水冷装置
5b…仕上げ圧延機後面冷却装置
6…仕上げ圧延機

Claims (6)

  1. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ni:0.1〜2.0%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003以下およびAl含有量を0.005%以下に制限した化学組成を有し、かつミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトからなり、該高炭素島状マルテンサイトの面積率が5%以下であることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
  2. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、かつミクロ組織中のベイナイトの面積率が40%以内で、残部がフェライト・パーライトおよび高炭素島状マルテンサイトからなり、該高炭素島状マルテンサイトの面積率が5%以下であることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
  3. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ni:0.1〜2.0%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、
    ▲1▼ 圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上圧延加工をおこなうこと、
    ▲2▼ 圧延工程で形鋼のフランジ表面を700℃以下にまで水冷し復熱過程で圧延する水冷・圧延サイクルを1回以上おこなうこと、
    ▲3▼ 圧延終了後に形鋼のフランジ平均温度が0.1℃〜5℃/sの範囲内の冷却速度で700〜400℃の温度域に冷却した後に放冷すること、
    ▲4▼ 形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却すること、の少なくとも単独もしくは複数の方法を組み合わせることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼の製造方法。
  4. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、
    ▲1▼ 圧延工程で形鋼のフランジ表面温度が950℃以下で厚み比にして10%以上圧延加工をおこなうこと、
    ▲2▼ 圧延工程で形鋼のフランジ表面を700℃以下にまで水冷し復熱過程で圧延する水冷・圧延サイクルを1回以上おこなうこと、
    ▲3▼ 圧延終了後に形鋼のフランジ平均温度が0.1℃〜5℃/sの範囲内の冷却速度で700〜400℃の温度域に冷却した後に放冷すること、
    ▲4▼ 形鋼のフランジ平均温度が400℃以下まで一旦冷却された後、400〜500℃の温度域まで再び加熱し、15分〜5時間保定し、再度冷却すること、の少なくとも単独もしくは複数の方法を組み合わせることを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼の製造方法。
  5. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ni:0.1〜2.0%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、板厚が15〜80mmの範囲内かつ板厚比が0.5〜2.0の範囲内で2種以上の板を組み合わせた断面形状を熱間圧延で製造することを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
  6. 重量%で、
    C:0.02〜0.06%、
    Si:0.05〜0.25%、
    Mn:1.2〜2.0%、
    Cu:0.3〜1.2%、
    Ti:0.005〜0.025%、
    Nb:0.01〜0.10%、
    V:0.04〜0.10%、
    N:0.004〜0.009%、
    O:0.002〜0.004%、
    およびCr:0.1〜1.0%,Ni:0.1〜2.0%,Mo:0.05〜0.40%,Mg:0.0005〜0.0050%,Ca:0.001〜0.003%のうちいずれか1種または2種以上を含み、残部がFeおよび不可避不純物からなり、該不純物のうちBを0.0003%以下およびAl含有量を0.005%以下に制限した化学組成を有し、板厚が15〜80mmの範囲内かつ板厚比が0.5〜2.0の範囲内で2種以上の板を組み合わせた断面形状を熱間圧延で製造することを特徴とする引張強度590MPa 以上、降伏強度または0.2%耐力440MPa 以上、0℃でのシャルピー衝撃吸収エネルギーが47J以上の機械特性を有する高強度高靱性圧延形鋼。
JP21753798A 1998-07-31 1998-07-31 高強度高靱性圧延形鋼とその製造方法 Expired - Fee Related JP3718348B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21753798A JP3718348B2 (ja) 1998-07-31 1998-07-31 高強度高靱性圧延形鋼とその製造方法
US09/509,956 US6364967B1 (en) 1998-07-31 1999-07-29 High-strength, high-toughness rolled shape steel and method of producing the same
DE69911732T DE69911732T2 (de) 1998-07-31 1999-07-29 Hochfester, hochzaeher gewalzter stahl und verfahren zu dessen herstellung
PCT/JP1999/004078 WO2000006789A1 (fr) 1998-07-31 1999-07-29 Acier profile lamine a resistance et tenacite elevees et procede de production correspondant
EP99933158A EP1026275B1 (en) 1998-07-31 1999-07-29 High-strength, high-toughness rolled shape steel and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21753798A JP3718348B2 (ja) 1998-07-31 1998-07-31 高強度高靱性圧延形鋼とその製造方法

Publications (2)

Publication Number Publication Date
JP2000054060A JP2000054060A (ja) 2000-02-22
JP3718348B2 true JP3718348B2 (ja) 2005-11-24

Family

ID=16705816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21753798A Expired - Fee Related JP3718348B2 (ja) 1998-07-31 1998-07-31 高強度高靱性圧延形鋼とその製造方法

Country Status (5)

Country Link
US (1) US6364967B1 (ja)
EP (1) EP1026275B1 (ja)
JP (1) JP3718348B2 (ja)
DE (1) DE69911732T2 (ja)
WO (1) WO2000006789A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
EP1325966B1 (en) * 2000-09-12 2009-04-01 JFE Steel Corporation Super-high strength cold-rolled steel sheet and method for production thereof
JP4317499B2 (ja) * 2003-10-03 2009-08-19 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる引張強さ570MPa級以上の高張力鋼板およびその製造方法
JP4954507B2 (ja) * 2004-07-28 2012-06-20 新日本製鐵株式会社 耐火性に優れたh形鋼およびその製造方法
JP2006063443A (ja) * 2004-07-28 2006-03-09 Nippon Steel Corp 耐火性に優れたh形鋼およびその製造方法
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
JP4226626B2 (ja) 2005-11-09 2009-02-18 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる、板厚中心部も含めて降伏応力450MPa以上かつ引張強さ570MPa以上の高張力鋼板およびその製造方法
JP4648843B2 (ja) * 2006-01-27 2011-03-09 新日本製鐵株式会社 耐火性に優れたh形鋼およびその製造方法
JP4072191B1 (ja) * 2006-09-04 2008-04-09 新日本製鐵株式会社 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP4309946B2 (ja) * 2007-03-05 2009-08-05 新日本製鐵株式会社 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
EP2143813A4 (en) * 2007-04-06 2015-09-30 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL HAVING EXCELLENT HIGH TEMPERATURE RESISTANCE AND TENACITY, AND PRODUCTION PROCESS
WO2010013358A1 (ja) * 2008-07-30 2010-02-04 新日本製鐵株式会社 靭性、溶接性に優れた高強度厚鋼材及び高強度極厚h形鋼とそれらの製造方法
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
US20120186191A1 (en) * 2009-07-09 2012-07-26 Tadayoshi Okada Rolled h-section steel
WO2011052095A1 (ja) * 2009-10-28 2011-05-05 新日本製鐵株式会社 強度、延性の良好なラインパイプ用鋼板およびその製造方法
JP4855553B2 (ja) * 2009-11-27 2012-01-18 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
KR101167389B1 (ko) 2010-02-26 2012-07-19 현대제철 주식회사 구조용 강재 및 그 제조방법
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
WO2014080818A1 (ja) 2012-11-26 2014-05-30 新日鐵住金株式会社 H形鋼及びその製造方法
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP6281326B2 (ja) * 2014-03-06 2018-02-21 新日鐵住金株式会社 鋼の連続鋳造方法
WO2015159793A1 (ja) 2014-04-15 2015-10-22 新日鐵住金株式会社 H形鋼及びその製造方法
JP6354572B2 (ja) * 2014-10-27 2018-07-11 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP6276163B2 (ja) * 2014-10-31 2018-02-07 株式会社神戸製鋼所 高強度鋼板
CN114574762B (zh) * 2022-03-04 2022-11-08 马鞍山钢铁股份有限公司 一种在高废钢比下冶炼的高强韧耐蚀水下采油树阀体用钢及其热处理方法和生产方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579841B2 (ja) * 1991-03-08 1997-02-12 新日本製鐵株式会社 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JPH06254862A (ja) 1992-04-22 1994-09-13 Janome Sewing Mach Co Ltd セラミツク型の製造方法
JPH06250548A (ja) 1993-02-24 1994-09-09 Star Micronics Co Ltd 加熱定着装置
JPH07252586A (ja) * 1994-01-21 1995-10-03 Nippon Steel Corp 多層盛溶接熱影響部のctodおよび大入熱溶接熱影響部靭性に優れた溶接構造用鋼
JP3262972B2 (ja) * 1995-07-31 2002-03-04 新日本製鐵株式会社 低降伏比を有する低温靭性に優れた溶接性高強度鋼
JP3397271B2 (ja) * 1995-04-14 2003-04-14 新日本製鐵株式会社 耐火用圧延形鋼およびその製造方法
JP3064865B2 (ja) * 1995-05-26 2000-07-12 住友金属工業株式会社 耐hic性の優れた高強度高靱性鋼の製造法
US5743972A (en) * 1995-08-29 1998-04-28 Kawasaki Steel Corporation Heavy-wall structural steel and method
JP3507259B2 (ja) * 1996-11-15 2004-03-15 新日本製鐵株式会社 590MPa級圧延形鋼およびその製造方法
JP3507258B2 (ja) 1996-11-15 2004-03-15 新日本製鐵株式会社 590MPa級圧延形鋼およびその製造方法

Also Published As

Publication number Publication date
EP1026275A1 (en) 2000-08-09
EP1026275A4 (en) 2001-01-17
DE69911732T2 (de) 2004-08-05
WO2000006789A1 (fr) 2000-02-10
DE69911732D1 (de) 2003-11-06
US6364967B1 (en) 2002-04-02
JP2000054060A (ja) 2000-02-22
EP1026275B1 (en) 2003-10-01

Similar Documents

Publication Publication Date Title
JP3718348B2 (ja) 高強度高靱性圧延形鋼とその製造方法
JP4464486B2 (ja) 高強度高靱性圧延形鋼とその製造方法
JP3507258B2 (ja) 590MPa級圧延形鋼およびその製造方法
JP2607796B2 (ja) 靭性の優れた低合金圧延形鋼の製造方法
JP3507259B2 (ja) 590MPa級圧延形鋼およびその製造方法
JP3412997B2 (ja) 高張力圧延鋼材及びその製造方法
JP3397271B2 (ja) 耐火用圧延形鋼およびその製造方法
JP6295632B2 (ja) 靭性に優れた高強度h形鋼
JPH10204572A (ja) 700℃耐火圧延形鋼およびその製造方法
JP3181448B2 (ja) 含酸化物分散鋳片及びその鋳片による靱性の優れた圧延形鋼の製造方法
JP2953919B2 (ja) 高靱性高強度鋼用鋳片及びその鋳片による圧延形鋼の製造方法
JP3241199B2 (ja) 酸化物粒子分散鋳片及びその鋳片を素材とする靭性の優れた圧延形鋼の製造方法
JP3403300B2 (ja) 590MPa級圧延形鋼およびその製造方法
JP3285732B2 (ja) 耐火用圧延形鋼およびその製造方法
JP3107697B2 (ja) 強度・靱性および溶接性の優れたフランジを有する形鋼の製造方法
JP3426425B2 (ja) 耐火圧延形鋼用鋳片およびそれを素材とする耐火用圧延形鋼の製造方法
JP2543282B2 (ja) 靭性の優れた制御圧延形鋼の製造方法
JP3107698B2 (ja) 強度・靱性および耐火性の優れたフランジを有する形鋼の製造方法
JP3107695B2 (ja) 強度・靱性および溶接性の優れたフランジを有する形鋼の製造方法
JP3426433B2 (ja) 高張力圧延鋼材及びその製造方法
JPH09111397A (ja) 590N/mm2級形鋼用鋳片及びそれを素材とする高張力圧延形鋼の製造方法
JPH0776725A (ja) 靭性の優れた形鋼の製造方法
JPH05132716A (ja) 靭性の優れた圧延形鋼の製造方法
JPH10204573A (ja) 700℃耐火圧延形鋼およびその製造方法
JPH0776724A (ja) 靭性の優れた形鋼の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees