JP3717353B2 - Water storage block and rainwater storage structure using the same - Google Patents

Water storage block and rainwater storage structure using the same Download PDF

Info

Publication number
JP3717353B2
JP3717353B2 JP30018599A JP30018599A JP3717353B2 JP 3717353 B2 JP3717353 B2 JP 3717353B2 JP 30018599 A JP30018599 A JP 30018599A JP 30018599 A JP30018599 A JP 30018599A JP 3717353 B2 JP3717353 B2 JP 3717353B2
Authority
JP
Japan
Prior art keywords
water storage
water
wall
block
storage block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30018599A
Other languages
Japanese (ja)
Other versions
JP2001115508A (en
Inventor
鐵穂 小谷
Original Assignee
株式会社環境企画二十一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30018599A priority Critical patent/JP3717353B2/en
Application filed by 株式会社環境企画二十一 filed Critical 株式会社環境企画二十一
Priority to SG200206881A priority patent/SG121746A1/en
Priority to US09/869,024 priority patent/US6626609B1/en
Priority to KR1020017007904A priority patent/KR20010099883A/en
Priority to CNB008023697A priority patent/CN1152992C/en
Priority to PCT/JP2000/002359 priority patent/WO2001029332A1/en
Priority to TW089106856A priority patent/TW482844B/en
Publication of JP2001115508A publication Critical patent/JP2001115508A/en
Application granted granted Critical
Publication of JP3717353B2 publication Critical patent/JP3717353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Landscapes

  • Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貯水ブロックとこれを用いた雨水貯留構造物に関し、詳しくは、土中などに埋設されて内部に雨水を貯水可能な貯水ブロックとこれを用いた雨水貯留構造物に関する。
【0002】
【従来の技術】
近年の急速な土地開発、道路の舗装化などに伴い、建築物の設置面積の増加や、舗装道路の占める面積画増加し、必然的に土の露出した土地が減少することから、雨水は地中に浸透することなく、排水路などを通して下水路や河川に排出される。その結果、(1)地下水の減少や枯渇に伴う地盤沈下、(2)地表からの水分蒸発に伴う気化熱による熱の除去が阻害されて生じるヒートアイランド現象の発生、(3)梅雨時、台風シーズンなどにおける豪雨発生により、雨水が一気に下水路や河川に流入することによる下水路や河川の氾濫、あるいは洪水の発生、(4)これらの事態が頻発することによる下水路や河川の補修、拡張や整備の工事の発生に伴う経済的負担の増加、などの問題が生じていた。
【0003】
そこで、かかる問題を解決すべく雨水を貯留する施設の開発、施工が実施されている。これには、次のような施設が開発されている。(1)遮水材層として鉄筋コンクリート製の槽を形成し、この槽内に80%程度の空洞を有する一辺1m以上のコンクリートブロックを積み重ねて収容し、上部に蓋体層を設ける共に更に上部に土層を設けて公園などにする(コンクリートユニット工法)、(2)遮水材層として防水シートを使用して槽を形成し、この槽内に95%程度の空洞を有する角錐状のポリプロピレン製籠状中空ブロックを積み重ねて収容することにより貯水層を形成し、上部に蓋体層を設ける共に更に上部に土層を設ける工法、等である。
【0004】
ところが、コンクリートユニット工法はコンクリートブロックが高重量であるため、遮水材層を強固にする(例えば、鉄筋コンクリート製にする等)必要があり、工事期間も長くなって全体に施工費用が嵩むことと、工事に重機を使用する必要があることから工事スペースを広くする必要があり、雨水貯留能力が限定されたものになる等の問題がある。
【0005】
他方、ポリプロピレン製籠状中空ブロックを積み重ねて収容する工法は、ポリプロピレン自体の強度が高くないため、貯水能力を高めるべく埋設深さを大きくして、ポリプロピレン製ブロックを積み重ねることに限界があり(3m以上の積層は難しい)、大きな容量の貯水施設を設けることは困難である。しかも、ポリプロピレンは微生物による劣化も生じ易く、耐久性に問題があった。
【0006】
かかる問題点を解消するものとして、硬質のポリスチレン製発泡体(発泡スチロール)ブロック(以下、単に「ブロック」ということがある)を用いる工法が開発された。このブロック20は、図6に示すように、略正方柱形をした外形を備え、内部が直線状の仕切り壁23に囲まれた4つの略正方柱形をした空洞21を有していると共に、側壁25の底部にブロックどうしを通水状態にするためスリット22が、各辺に2個所形成されて構成されている。そして、これらのブロック20の側壁25が互いに接触されて広い貯水面積が確保されると共に、仕切り壁23の交点に固定金具24が取り付けられて、下層に位置するブロック20の上面に同様のブロック20が積み重ねられて、高さ方向にも大容量の貯水を確保可能なブロック積層体が出来上がるようになっている。
【0007】
これら各ブロックの積層体の下部には、図示はしないが、ゴム製の遮水シートが敷設される。つまり、ブロックの設置に先立って、掘削された貯水ピット内に遮水シートが敷設され、その上に上記積層体ブロックが設置される。その後は、同様に透水性を有する蓋体により上部開口面が被覆され、更に土などが盛られて雨水貯留構造物が完成する。
【0008】
この雨水貯留構造物は、ブロックを発泡スチロールにより構成するため、軽量で工事が行い易く、それでいて強度が高いため、積層高さを高くできて大容量の貯水ができ、しかも微生物による劣化も少ないため、耐久性に優れた雨水構造物となっている。
【0009】
【発明が解決しようとする課題】
しかしながら、図6に示すブロックは、土中に埋設された際に、側面からの土圧に対して十分な強度を保持しているとは言えず、土圧がかかる場所での使用に対しては、土圧に晒される側面に撓みが生じて損傷を受けたり、あるいは破壊したりする等の問題があった。従って、土中深くブロックを設置して貯水量を多くしようとした場合、ピット内に設置を終了して埋め戻す際に、側壁部分を十分に締め固めることができない。そこで、土圧を低減するため土の掘削断面を、その表面は広く内部ほど狭くなるような逆梯形にして、傾斜した法面に沿ってブロックを組み立てるといった配慮が必要となり、実際の施工においては、雨水の貯留能力に限界を設けざるをえなかった。
【0010】
そこで、本発明の目的は、土中深く埋設され、側面に強い土圧を受ける場合であっても、容易に撓まず、従って損傷を受けたり破壊したりし難くでき、それでいて硬質ポリスチレン製発泡体ブロックの有する利点を維持可能なため、大容量の貯水能力を達成可能な貯水ブロックとこれを用いた雨水貯留構造物を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は各請求項記載の発明により達成される。すなわち、本発明に係る貯水ブロックの特徴構成は、略正方柱形の四隅を上下方向に面取りした八角柱形をなす外壁形状を有すると共に、内側に貯水可能な空洞を備え、土中に埋設可能な硬質樹脂発泡体製の貯水ブロックであって、前記多角柱形を構成する外壁の一面にかかる面圧を受け止める外壁面支持部と、この外壁面支持部に続き前記面圧を分散可能な斜方支持部とを有することにある。
【0012】
この構成によれば、土中深く埋設して貯水ブロックの側方から強い土圧を受けたとしても、多角柱形を構成する外壁の一面にかかる面圧を受け止める外壁面支持部が、まず強い抵抗を示し、更に大きな土圧に対しては、前記外壁面支持部に続く斜方支持部が土圧を効果的に分散させて弱めるので、ブロックの側壁が撓み難くなり、損傷を受けたり破壊したりし難くできる。従って、掘削断面を表面側が広くなるように傾斜させ、その法面に沿ってブロックを組み立てる配慮は必ずしも必要ではなくなり、貯水能力を大きくすることができる。しかも、ブロックが硬質樹脂発泡体製であるので軽量であり、多段の積層をしても強度的な問題がなく、工事も楽であり、施工工費を高騰させることがない。その結果、硬質ポリスチレン製発泡体ブロックの有する利点を維持可能であるのみならず、大容量の貯水能力を達成可能なブロックを提供することができた。
しかも、面取りされた隅部以外の辺どうしを互いに接触させることにより、多数のブロックを平面的に安定して配置でき、しかも隅部どうしで空洞を形成できることから、空隙率を大きくすることができて貯水量を増大することができる。
【0013】
前記空洞が複数に区画された空洞からなり、少なくとも前記斜方支持部に囲まれた空洞を有することが好ましい。
【0014】
この構成によれば、空洞を取り囲む壁部が多く形成され、上部からの土圧に対して強い抵抗をもたらすと共に、斜方支持部に囲まれた空洞を囲む壁部を通して側方からの土圧を効果的に分散できて都合がよい。
【0015】
前記外壁形状が、各辺の端部が外に凸となる円弧状に形成されていると共に、前記空洞の内壁隅部が、円弧状に形成されていることが好ましい。
【0016】
この構成によれば、各辺の端部が外に凸となる円弧状に形成されていることから、各辺端部での応力集中を回避でき耐久性を高めることができて都合がよい。しかも、空洞の内壁隅部が円弧状に形成されているので、ややもすれば、応力集中の生じ易い隅部での応力分散を実現できて、耐久性に一層すぐれたものてなる。
【0019】
前記硬質樹脂発泡体が、少なくとも20倍以上の発泡倍率を有する発泡スチロールからなることが好ましい。
【0020】
この構成によれば、軽量かつ原料コストを低く抑えることができ、しかも積層が容易で地中深く掘削したピット内でも、多段に積層でき、従って、貯水能力を高めることができて都合がよい。
【0021】
更に、本発明に係る雨水貯留構造物の特徴構成は、地面凹部に配置されている遮水材層と、この遮水材層上に設置される請求項1〜5のいずれか1の貯水ブロックと、この貯水ブロックの上部に配置される透水性の蓋体層とを備えたことにある。
【0022】
この構成によれば、土中深く埋設され、側面に強い土圧を受ける場合であっても、容易に撓まず、損傷を受けたり破壊したりし難くできる。それでいて、硬質ポリスチレン製発泡体ブロックの有する利点を維持可能なため、大容量の貯水能力を達成可能な雨水貯留構造物を提供できる。この場合、貯水ブロックの多数個を互いに接するようにして配置すると共に、上方にも多数層に積み重ねて大容量の雨水貯留構造物を形成することもできるし、単一あるいは数個を組み合わせることによっても雨水貯留構造物を形成することができる。
【0023】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して詳細に説明する。図1(a)は本実施形態に係る貯水ブロックの平面構造を示し、図1(b)は貯水ブロックの正面構造を示す。図2は貯水ブロックを平面的かつ部分的に積層した例を示す。この貯水ブロック1は、硬質樹脂発泡体の一例である発泡スチロール製からなり、略正方柱形の各4隅を上下方向にわたって面取りした八角柱形をしていて、4つの幅広の外壁面1aと、これら外壁面1aとつながるやや狭幅の隅面1bとから外壁が形成されている。これら外壁面1aと隅面1bとが交わる各辺1cは、尖鋭な突状を形成することなく丸味を持った外に凸となる円弧状に形成されていることが好ましい。外力によるこの部分での応力集中を回避できるからである。貯水ブロック1を、図2に一部示すように積み重ねる場合は、貯水ブロック1どうしが簡単にずれたりしないように、図示はしないが、図6に示したような固定金具で固定するようになっている。尚、貯水ブロック1の積層方法として、図2では上下の貯水ブロックをずらすことなく積み重ねたが、上下の貯水ブロックの空洞2bと空洞2cとが重なるように、斜め方向にずらして重ねて連通させるようにしてもよい。
【0024】
貯水ブロック1を構成する外壁の内部には、貯水可能な区画された複数の空洞2が形成されている。これら空洞2は、中心部の比較的大きい略四角柱形をした第1空洞2aと、この第1空洞2aの各辺に沿って形成され、各辺と各隅面1bとの間に、第1空洞2aの各辺と各隅面1bに沿って狭幅に形成されている4つの第2空洞2bとを有する。そして、これら第1、第2空洞2a,2bを取り囲む壁部が、貯水ブロック1に作用する外力からの補強効果を発揮する。つまり、各外壁面1aの略中央部からこの外壁面1aと略直角をなす方向に内側に向けて延設されると共に、隣接する第2空洞2bどうしに挟まれた壁部が外壁面支持部3を構成し、更に、この外壁面支持部3から、第2空洞2bと第1空洞2aとに囲まれた壁部が斜方支持部4を構成しており、外壁面1aに外力が作用した場合、その外力は外壁面支持部3によって支えられるので、外壁面1aは容易に撓むことがない。一層大きな外力が外壁面1aに作用した場合にも、その外力は外壁面支持部3によって支持されると共に、この外壁面支持部3に続く斜方支持部4が効果的に外力を2方向に分散するので、この場合でも外壁面1aは容易に撓まず強い抵抗を発揮する。従って、貯水ブロック1の複数個から構成される貯水槽は、損傷を受けたり破壊したりせず、大きな貯水能を保持することができることになる。尚、上記したいずれの空洞2a,2bも、共にその内壁隅部が凹弧状に成形されていて、応力集中が生じ易い尖鋭な端部が形成されないようになっている。
【0025】
更に、複数の貯水ブロック1を平面的に配置した場合、内側には貯水ブロック1どうしに囲まれた空洞2cが形成される。つまり、貯水ブロック1の隅面1bに囲まれた空洞2cが形成され、空隙率を高くして貯水量を大きくすることができるようになっている。
【0026】
貯水ブロック1の各隅面1bの略中央上部および底部、並びにその延長上の壁部に、各空洞2どうしを連通する断面略半円状の透孔5が各1個形成されていて、特定の空洞にのみ貯水されるのを回避して、互いの空洞2間の水位を同一にできるようになっている。貯水ブロック1を積み重ねた場合、図2にみるように、略半円状の透孔5は重ねられた上下の貯水ブロック1によって、断面略円形の管状になる。もっとも、透孔5は、他の形状、例えばスリット状に構成して上下の貯水ブロック1を積み重ねた場合に長孔状の透孔となるようにしてもよいし、楕円形になるように形成してもよいが、本実施形態のように、断面略円形の管状に構成すると、外力に対する抵抗が大きく強度的に優れ、かつ内周面での応力集中を確実に回避できて好ましい。又、図1、2では透孔を、各隅面1bの略中央上部および底部に各1個形成した例を示したが、その個数、形成位置はこれに限定されるものではなく、複数個形成してもよいし、各隅面1bの略中央部以外の位置に形成されていてもよい。
【0027】
【実施例】
ゴム製の遮水シートを土中ピット内に敷設し、その上に図1に示す形状をした発泡倍率30倍の発泡スチロール製の八角形ブロックを16個配置して、同様の条件で図6に示す従来のブロックを配置した場合と比較しながら貯水能を求めた。そのときのブロックのサイズは、1m×1m角×0.25m(高さ)であって、外壁面を構成する一辺の長さ0.5m、外壁面支持部の厚み0.15m、斜方支持部その他の壁面厚み0.075mである。
【0028】
その結果、上下方向からの圧縮強さ(N/m2 )(5%歪時)はいずれも1×105 以上であったが、側方での圧縮強度は本実施形態のブロックの場合、従来例の略2倍の耐圧強度を示した。又、貯水率(%)は本実施形態のブロックの場合、単位体積当たり63%であるのに対して、従来例の場合は50%であった。
【0029】
このように、本実施形態のブロックであると、従来例のブロックに比べて、側方からの耐圧力が高く、しかも高い貯水率を達成できるのである。
【0030】
次に、本実施形態の貯水ブロック1を用いて雨水貯留構造物を土中に構築した例を、図3、4を参照して説明する。
【0031】
図3は、土中に構築した雨水貯留構造物の断面構造を示す。この雨水貯留構造物は、側面の傾斜角度が45度となるように掘削された地面の掘削面に沿って設けられていて、底面約6m×6m、深さ約4m、側面が底面から約45度の角度にて拡開形成され、上面は縦、横が夫々約12mの正方形に形成されていて、全体として逆角錐台状をしている。もっとも、この傾斜面(法面)の形成は必ずしも必要ではない。この雨水貯留構造物は、有機繊維不織布とアスファルト系物質の厚さ4mmの複合体シート(商品名カスタムNT、日新特殊建設社製)を遮水材層とする遮水シート層8と、最下層に配置した透水性発泡スチロール製ボード層9と、内部に空洞2を有する多数の貯水ブロック1を積層した貯水槽6と、この貯水槽6の上方に配置される2段の透水性発泡スチロール製ボードからなる層11とこの層11の上方に配置される透水性シート13からなる蓋体層17等と、から構成されている。更に、この蓋体層17の上層には、砕石層32、砂利層31、覆土層15がこの順に配置された表面層7を有する。
【0032】
更に、この雨水貯留構造物においては、消火栓あるいはポンプ18が取り付けられていて、貯留した雨水を随時汲みだし可能に構成されていて、防火用水、非常用の生活用水、公園の散水用などとして使用できるようになっている。雨水貯留構造物が道路のように周囲より土盛りして高く設置されている場合には、ポンプに代えてバルブ等の放水手段を設置することも可能である。消火栓あるいはポンプ18の下部に接続されている配管は、上記した第2空洞2bを貫通した位置に配設することができる。又、遮水シート層8の外側は、敷砂層10を設けることが好ましい。
【0033】
遮水シート層8は、透水性発泡スチロール製ボードからなる層11と貯水ブロック1により形成される貯水層6の上端程度にまで施工すればよく、掘削した周囲の土部に固定される。このような遮水シート層8の固定は、周囲の土地をこの固定部近辺において広く掘削してから遮水シート層8を敷設し、その端部を例えば垂木41とアンカーピン43等を用いて固定し、ついで所定の貯水ブロック1と透水性発泡スチロール製ボードからなる層11を施工し、さらにその上方に透水シート13を敷設して適宜固定することにより行われる。
【0034】
図4は、舗装道路の下部に雨水貯留浸透層を設けた、別の雨水貯留構造物の例を示す。舗装道路は舗装路面51、その下層に覆土層15並びに蓋体層17としてコンクリート床板52が設けられ、その下に貯水ブロック1を配設した貯水層6、そして遮水シート8が設けられている。なお、コンクリート床板52の荷重を均一分散して受けるため、この例においては、コンクリート床板52の下層として通常の発泡スチロール製ブロック層57が設置されている。路肩には集水ます53が配置されていて、この集水ます53の底部に設けられている通水孔55から、雨水が貯水層6に浸透するようになっている。
【0035】
近年、透水性の舗装工法が開発されており、このような透水性の舗装路面を使用する場合は、通水孔55を備えた集水ます53を設けることなく、図3に示すような透水性の蓋体を使用することができる。
【0036】
図4に示す舗装道路下部の雨水貯留浸透層の形状は、基本的に図3に例示したものと同じであり、舗装を行った車道は幅約7mであった。もっとも、本実施形態の雨水貯留構造物は、更に広幅あるいは狭幅の車道に対しても適用可能であり、又、雨水貯留浸透層は、路面の長さ方向に連続して形成してもよく、間欠的に設けてもよい。
【0037】
舗装された車道の両側には、植え込みと歩道が形成されており、歩道の表面層は、透水性舗装層59が設けられている。その下層は、図3に示した例と同様に、上方から覆土層15、砂利層31、砕石層32が設けられていて、蓋体層として透水性シート層と透水性発泡スチロール製ボードからなる層11とが設けられて、車道の雨水、歩道の雨水を共に貯水層6に導き貯留可能になっている。
【0038】
〔別実施の形態〕
(1) 外壁面1aと隅面1bとが交わる辺1cを、図5に示すように、外壁面1aを幾分長くした張出状に形成し、張出部分の内側1dを凹弧状になるように形成してもよい。このようにすると、貯水ブロック1どうしを接触させて多数を配置する場合に、外壁面1aの接触面積が増加する分、移動に対する抵抗が大きくなって、全体構造が変形し難くなると共に、辺1cでの応力集中も回避できて都合がよい。
【0039】
(2) 貯水ブロックの空隙率を高めるため、更に、外壁を構成する各隅部を切欠いた構成にしてもよい。このようにすると、複数個の貯水ブロックを互いに並設、あるいは積層して貯水層を構成した場合に、各隅部に形成された切欠部分に囲まれる空洞が形成され、空隙率が高くなって貯水量を増やすことができる。
【0040】
(3) 上記実施形態では、貯水槽を構成する樹脂として発泡スチロールを用いた例を示したが、これに限定されることなく、硬質ポリウレタン発泡体樹脂、その他各種発泡体樹脂を用いてもよい。又、発泡体樹脂として、超臨界状態にある炭酸ガス等を樹脂に含浸させ、これを発泡させて1〜30μm径の微細な発泡半径と高い強度とを有するものを使用してもよい。この場合には、土圧に対する抵抗を一層高めることができて都合がよい。
【0041】
(4) 本発明の貯水ブロックは、本来の雨水貯留構造物として使用されるのみならず、道路盛土、地滑り地の頭部盛土、公園盛土、軟弱地盤上の盛土、補強土盛土など各種盛土工事用として、更には水位の高い場所における浮力低減用ブロックなどとして使用することもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る貯水ブロックを示し、(a)は平面図、(b)は正面図
【図2】図1の貯水ブロックを複数個配置した例を示す部分斜視図
【図3】図1の貯水ブロックを用いた雨水貯留構造物の一例を示す断面図
【図4】図1の貯水ブロックを用いた別の雨水貯留構造物の例を示す断面図
【図5】図1の貯水ブロックにおける外壁面の変形例を示す部分拡大平面図
【図6】従来技術の貯水ブロックを積み重ねた状態を示す部分斜視図
【符号の説明】
1 貯水ブロック
2 空洞
3 外壁面支持部
4 斜方支持部
8 遮水材層
17 蓋体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water storage block and a rainwater storage structure using the same, and more particularly to a water storage block that is embedded in soil and capable of storing rainwater therein and a rainwater storage structure using the same.
[0002]
[Prior art]
With rapid land development in recent years and road paving, etc., the installation area of buildings and the area occupied by paved roads will inevitably increase, resulting in a decrease in land with exposed soil. It does not penetrate inside and is discharged into sewers and rivers through drainage channels. As a result, (1) ground subsidence due to groundwater reduction and depletion, (2) occurrence of heat island phenomenon caused by heat removal by evaporation due to water evaporation from the surface, (3) rainy season, typhoon season Due to the occurrence of heavy rains, etc., flooding of sewage channels and rivers due to rainwater flowing into the sewage channels and rivers at a stretch, or the occurrence of floods, (4) Problems such as an increase in economic burden accompanying the occurrence of maintenance work have occurred.
[0003]
Therefore, development and construction of facilities for storing rainwater are being carried out to solve such problems. The following facilities have been developed for this. (1) A tank made of reinforced concrete is formed as a water shielding material layer, and concrete blocks with a side of 1 m or more having a cavity of about 80% are stacked and accommodated in this tank, and a lid layer is provided on the upper part and further on the upper part. A soil layer is provided to make a park or the like (concrete unit construction method). (2) A tank is formed using a waterproof sheet as a water-shielding material layer, and the tank is made of a pyramid-shaped polypropylene having a cavity of about 95%. A water storage layer is formed by stacking and containing bowl-shaped hollow blocks, a cover layer is provided on the upper side, and a soil layer is further provided on the upper side.
[0004]
However, in the concrete unit method, the concrete block is heavy, so it is necessary to strengthen the water shielding layer (for example, to make it from reinforced concrete), and the construction period becomes longer and the construction cost increases overall. Since it is necessary to use heavy machinery for the construction, it is necessary to widen the construction space, and there is a problem that the rainwater storage capacity is limited.
[0005]
On the other hand, the method of stacking and accommodating polypropylene bowl-shaped hollow blocks has a limit in stacking polypropylene blocks by increasing the embedding depth to increase the water storage capacity because the strength of polypropylene itself is not high (3 m It is difficult to provide a large-capacity water storage facility. Moreover, polypropylene is prone to degradation by microorganisms and has a problem with durability.
[0006]
In order to solve this problem, a method using a hard polystyrene foam (foamed polystyrene) block (hereinafter sometimes simply referred to as “block”) has been developed. As shown in FIG. 6, the block 20 has a substantially square pillar-shaped outer shape, and includes four substantially square pillar-shaped cavities 21 surrounded by a linear partition wall 23. In addition, two slits 22 are formed on each side in order to allow the blocks to pass through the bottom of the side wall 25. Then, the side walls 25 of these blocks 20 are brought into contact with each other to ensure a large water storage area, and a fixing bracket 24 is attached to the intersection of the partition walls 23, and the same block 20 is placed on the upper surface of the block 20 located in the lower layer. Are stacked, and a block laminate that can secure a large volume of water storage in the height direction is completed.
[0007]
Although not shown, a rubber impermeable sheet is laid under the laminated body of these blocks. That is, prior to the installation of the block, a water shielding sheet is laid in the excavated water storage pit, and the laminate block is installed thereon. Thereafter, the upper opening surface is similarly covered with a water-permeable cover body, and soil and the like are further piled up to complete the rainwater storage structure.
[0008]
This rainwater storage structure is made of foamed polystyrene, so it is lightweight and easy to work, yet high in strength, so it can have a high stacking height and can store a large volume of water, and is less susceptible to deterioration by microorganisms. It is a rainwater structure with excellent durability.
[0009]
[Problems to be solved by the invention]
However, when the block shown in FIG. 6 is buried in the soil, it cannot be said that it has sufficient strength against the earth pressure from the side surface, and is not suitable for use in places where earth pressure is applied. However, there is a problem that the side surface exposed to the earth pressure is bent and damaged or destroyed. Therefore, when installing a block deeply in the soil to increase the amount of stored water, the side wall portion cannot be sufficiently compacted when the installation is completed in the pit and backfilled. Therefore, in order to reduce earth pressure, it is necessary to consider that the excavation cross section of the soil is a reverse trapezoidal shape whose surface is wider and narrower inside, and that the blocks are assembled along the sloped slope. It was imperative to limit the rainwater storage capacity.
[0010]
Accordingly, an object of the present invention is to embed deeply in the soil and not bend easily even when subjected to strong earth pressure on the side surface, and therefore can be difficult to be damaged or broken, yet it is a rigid polystyrene foam. Since the advantage which a block has can be maintained, it is providing the water storage block which can achieve a large capacity | capacitance water storage capacity, and a rainwater storage structure using the same.
[0011]
[Means for Solving the Problems]
The above object can be achieved by the inventions described in the claims. That is, the characteristic configuration of the water storage block according to the present invention has an outer wall shape that forms an octagonal prism shape with four corners of a substantially square pillar vertically chamfered, and has a cavity capable of storing water inside, and can be embedded in the soil. A water storage block made of a hard resin foam, which has an outer wall surface supporting portion for receiving a surface pressure applied to one surface of the outer wall constituting the polygonal column shape, and an inclined surface capable of dispersing the surface pressure following the outer wall surface supporting portion. And a support portion.
[0012]
According to this configuration, even if the earth wall is buried deeply and receives a strong earth pressure from the side of the water storage block, the outer wall surface support portion that receives the surface pressure applied to one surface of the outer wall constituting the polygonal column shape is first strong. Shows resistance, and for larger earth pressures, the oblique support part following the outer wall support part effectively disperses and weakens the earth pressure, making it difficult for the side walls of the block to bend and causing damage or destruction. Can be difficult. Accordingly, it is not always necessary to incline the excavation cross section so that the surface side becomes wider and assemble the block along the slope, and the water storage capacity can be increased. In addition, since the block is made of a hard resin foam, it is lightweight, there is no problem in strength even if it is laminated in multiple stages, construction is easy, and construction costs are not increased. As a result, not only the advantages of the rigid polystyrene foam block can be maintained, but also a block capable of achieving a large capacity water storage capacity can be provided.
In addition, by bringing sides other than the chamfered corners into contact with each other, a large number of blocks can be stably disposed in a plane, and cavities can be formed between the corners, so that the porosity can be increased. The amount of stored water can be increased.
[0013]
It is preferable that the cavity is formed of a plurality of cavities and has a cavity surrounded by at least the oblique support portion.
[0014]
According to this configuration, a large number of wall portions surrounding the cavity are formed, providing strong resistance to earth pressure from above, and earth pressure from the side through the wall portion surrounding the cavity surrounded by the oblique support portion. Can be effectively dispersed.
[0015]
It is preferable that the outer wall shape is formed in an arc shape in which an end portion of each side is convex outward, and an inner wall corner portion of the cavity is formed in an arc shape .
[0016]
According to this structure, since the edge part of each side is formed in the circular arc shape which protrudes outside, the stress concentration in each edge part can be avoided and durability can be improved. In addition, since the corners of the inner wall of the cavity are formed in an arc shape, it is possible to achieve stress distribution at the corners where stress concentration is likely to occur, and the durability is further improved.
[0019]
It is preferable that the hard resin foam is made of expanded polystyrene having an expansion ratio of at least 20 times or more.
[0020]
According to this structure, it is lightweight and can reduce raw material cost lowly. Moreover, it is easy to stack and can be stacked in multiple stages even in a deeply excavated pit. Therefore, it is convenient to increase the water storage capacity.
[0021]
Furthermore, the characteristic structure of the rainwater storage structure according to the present invention includes a water shielding material layer disposed in the ground recess, and a water storage block according to any one of claims 1 to 5 installed on the water shielding material layer. And a water-permeable lid layer disposed on the upper portion of the water storage block.
[0022]
According to this structure, even if it is buried deeply in the soil and receives a strong earth pressure on the side surface, it does not flex easily and it is difficult to be damaged or destroyed. Nevertheless, since the advantage of the rigid polystyrene foam block can be maintained, it is possible to provide a rainwater storage structure capable of achieving a large capacity of water storage capacity. In this case, a large number of water storage blocks can be arranged so as to be in contact with each other, and a large-capacity rainwater storage structure can be formed by stacking a large number of layers above, or by combining a single or several water storage blocks. Even rainwater storage structures can be formed.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. Fig.1 (a) shows the planar structure of the water storage block which concerns on this embodiment, FIG.1 (b) shows the front structure of a water storage block. FIG. 2 shows an example in which the water storage blocks are planarly and partially stacked. The water storage block 1 is made of styrene foam which is an example of a hard resin foam, has an octagonal prism shape with four corners of a substantially square pillar shape chamfered in the vertical direction, four wide outer wall surfaces 1a, An outer wall is formed from a slightly narrow corner surface 1b connected to the outer wall surface 1a. Each side 1c where the outer wall surface 1a and the corner surface 1b cross each other is preferably formed in an arc shape having a rounded outer shape without forming a sharp protrusion. This is because stress concentration at this portion due to external force can be avoided. When the water storage blocks 1 are stacked as shown in part of FIG. 2, the water storage blocks 1 are fixed with fixing brackets as shown in FIG. 6 (not shown) so that the water storage blocks 1 are not easily displaced. ing. In FIG. 2, the upper and lower water storage blocks are stacked without shifting as a stacking method of the water storage blocks 1. However, the upper and lower water storage blocks are stacked in an oblique direction so that the cavities 2b and 2c overlap each other. You may do it.
[0024]
A plurality of partitioned cavities 2 capable of storing water are formed inside the outer wall constituting the water storage block 1. These cavities 2 are formed along a first cavity 2a having a substantially large square prism shape at the center and along each side of the first cavity 2a, and between each side and each corner surface 1b, Each side of the one cavity 2a and four second cavities 2b formed narrowly along each corner surface 1b. And the wall part surrounding these 1st, 2nd cavities 2a and 2b exhibits the reinforcement effect from the external force which acts on the water storage block 1. FIG. That is, the wall portion extending from the substantially central portion of each outer wall surface 1a toward the inside in a direction substantially perpendicular to the outer wall surface 1a and sandwiched between the adjacent second cavities 2b is the outer wall surface support portion. 3 and a wall portion surrounded by the second cavity 2b and the first cavity 2a from the outer wall surface support portion 3 forms an oblique support portion 4, and an external force acts on the outer wall surface 1a. In this case, since the external force is supported by the outer wall surface support portion 3, the outer wall surface 1a is not easily bent. Even when a larger external force acts on the outer wall surface 1a, the outer force is supported by the outer wall surface support portion 3, and the oblique support portion 4 following the outer wall surface support portion 3 effectively transfers the external force in two directions. Even in this case, the outer wall surface 1a does not bend easily and exhibits a strong resistance. Therefore, the water storage tank composed of a plurality of the water storage blocks 1 is not damaged or destroyed, and can retain a large water storage capacity. Both of the cavities 2a and 2b described above are formed such that the corners of the inner walls are formed in a concave arc shape, and sharp ends that are likely to cause stress concentration are not formed.
[0025]
Further, when a plurality of water storage blocks 1 are arranged in a plane, a cavity 2c surrounded by the water storage blocks 1 is formed inside. That is, the cavity 2c surrounded by the corner surface 1b of the water storage block 1 is formed, so that the water content can be increased by increasing the porosity.
[0026]
A substantially semicircular through-hole 5 is formed in each of the corners 1b of the water storage block 1 and has a substantially semicircular cross-section through each of the cavities 2 in the wall portion on the extension. The water level between the cavities 2 can be made the same by avoiding the storage of water only in the cavities. When the water storage blocks 1 are stacked, as shown in FIG. 2, the substantially semicircular through holes 5 are formed into a tubular shape having a substantially circular cross section by the upper and lower water storage blocks 1 stacked. However, the through-hole 5 may be formed in another shape, for example, a slit shape, and when the upper and lower water storage blocks 1 are stacked, it may be a long-hole-like through-hole or may be formed in an elliptical shape. However, it is preferable to form a tube having a substantially circular cross section as in this embodiment because resistance to external force is large and strength is excellent, and stress concentration on the inner peripheral surface can be reliably avoided. 1 and 2 show an example in which one through hole is formed at the substantially center upper part and bottom part of each corner surface 1b. However, the number and the formation position are not limited to this, and a plurality of through holes are provided. You may form, and it may be formed in positions other than the approximate center part of each corner face 1b.
[0027]
【Example】
A rubber water-impervious sheet is laid in the underground pit, and 16 octagonal blocks made of polystyrene foam with a foaming ratio of 30 times and having the shape shown in FIG. The water storage capacity was calculated while comparing with the conventional block shown. The size of the block at that time is 1 m × 1 m square × 0.25 m (height), the length of one side constituting the outer wall surface is 0.5 m, the thickness of the outer wall surface support portion is 0.15 m, and the oblique support The other wall thickness is 0.075 m.
[0028]
As a result, the compressive strength (N / m 2 ) from the vertical direction (at 5% strain) was 1 × 10 5 or more, but the compressive strength at the side was in the case of the block of this embodiment. The pressure strength was approximately twice that of the conventional example. Further, the water storage rate (%) was 63% per unit volume in the block of this embodiment, whereas it was 50% in the conventional example.
[0029]
In this way, the block of this embodiment has a higher pressure resistance from the side and can achieve a higher water storage rate than the block of the conventional example.
[0030]
Next, an example in which a rainwater storage structure is constructed in the soil using the water storage block 1 of the present embodiment will be described with reference to FIGS.
[0031]
FIG. 3 shows a cross-sectional structure of a rainwater storage structure constructed in the soil. This rainwater storage structure is provided along the excavation surface of the ground excavated so that the inclination angle of the side surface is 45 degrees, the bottom surface is about 6 m × 6 m, the depth is about 4 m, and the side surface is about 45 mm from the bottom surface. The upper surface is formed into a square of about 12 m in length and width, and has an inverted truncated pyramid shape as a whole. However, it is not always necessary to form the inclined surface (slope). The rainwater storage structure includes a water shielding sheet layer 8 having a composite sheet (trade name Custom NT, manufactured by Nisshin Special Construction Co., Ltd.) having a thickness of 4 mm and an organic fiber nonwoven fabric and an asphalt material, A water-permeable foamed polystyrene board layer 9 disposed in the lower layer, a water storage tank 6 in which a large number of water storage blocks 1 having cavities 2 are laminated, and a two-stage water-permeable foamed polystyrene board disposed above the water storage tank 6 And a lid body layer 17 made of a water-permeable sheet 13 disposed above the layer 11 and the like. Further, the upper surface of the lid layer 17 has a surface layer 7 in which a crushed stone layer 32, a gravel layer 31, and a covering soil layer 15 are arranged in this order.
[0032]
Furthermore, this rainwater storage structure is equipped with a fire hydrant or pump 18 so that the stored rainwater can be pumped at any time, and is used for fire prevention water, emergency water for use, watering for parks, etc. It can be done. When the rainwater storage structure is installed higher than the surroundings like a road, it is possible to install water discharge means such as a valve in place of the pump. The pipe connected to the lower part of the fire hydrant or the pump 18 can be disposed at a position penetrating the second cavity 2b. Moreover, it is preferable to provide the laying sand layer 10 on the outer side of the water-impervious sheet layer 8.
[0033]
The water-impervious sheet layer 8 may be constructed up to the upper end of the water storage layer 6 formed by the water-permeable foamed polystyrene board 11 and the water storage block 1, and is fixed to the excavated surrounding soil. Such fixing of the water shielding sheet layer 8 is performed by digging the surrounding land widely in the vicinity of the fixing part and then laying the water shielding sheet layer 8, and using, for example, rafters 41 and anchor pins 43. Then, a layer 11 composed of a predetermined water storage block 1 and a water-permeable foamed polystyrene board is applied, and a water-permeable sheet 13 is further laid on the layer 11 and fixed appropriately.
[0034]
FIG. 4 shows an example of another rainwater storage structure in which a rainwater storage permeation layer is provided in the lower part of the paved road. The paved road is provided with a paved road surface 51, a concrete floor board 52 as a cover layer 15 and a cover layer 17 below it, a water storage layer 6 provided with the water storage block 1 and a water shielding sheet 8 below it. . In addition, in order to receive the load of the concrete floor board 52 uniformly, in this example, the normal polystyrene block layer 57 is installed as a lower layer of the concrete floor board 52. A water collecting basin 53 is arranged on the shoulder of the road, and rainwater penetrates into the water reservoir 6 through a water passage hole 55 provided at the bottom of the water collecting basin 53.
[0035]
In recent years, a water-permeable pavement method has been developed. When such a water-permeable pavement is used, a water-permeable pavement as shown in FIG. Sexual lids can be used.
[0036]
The shape of the rainwater storage and infiltration layer at the lower part of the paved road shown in FIG. 4 is basically the same as that illustrated in FIG. 3, and the road on which the paving is performed has a width of about 7 m. However, the rainwater storage structure of the present embodiment is applicable to a wider or narrower roadway, and the rainwater storage and penetration layer may be formed continuously in the length direction of the road surface. , May be provided intermittently.
[0037]
Planting and sidewalks are formed on both sides of the paved roadway, and a water-permeable pavement layer 59 is provided on the surface layer of the sidewalks. As in the example shown in FIG. 3, the lower layer is provided with a covering layer 15, a gravel layer 31, and a crushed stone layer 32 from above, and a layer made of a water-permeable sheet layer and a water-permeable foamed polystyrene board as a lid body layer. 11 is provided so that both rainwater on the roadway and rainwater on the sidewalk can be guided to the reservoir 6 and stored.
[0038]
[Another embodiment]
(1) As shown in FIG. 5, the side 1c where the outer wall surface 1a and the corner surface 1b intersect is formed in a protruding shape in which the outer wall surface 1a is somewhat elongated, and the inner side 1d of the protruding portion is formed in a concave arc shape. You may form as follows. In this way, when a large number of water storage blocks 1 are placed in contact with each other, the contact area of the outer wall surface 1a increases, so that resistance to movement increases, and the overall structure becomes difficult to deform, and the side 1c. It is convenient that stress concentration at can be avoided.
[0039]
(2) In order to increase the porosity of the water storage block, the corners constituting the outer wall may be notched. In this way, when a water storage layer is formed by arranging or stacking a plurality of water storage blocks in parallel with each other, a cavity surrounded by a notch formed at each corner is formed, and the porosity is increased. The amount of water stored can be increased.
[0040]
(3) In the said embodiment, although the example which used the foamed polystyrene was shown as resin which comprises a water storage tank, you may use hard polyurethane foam resin and other various foam resins, without being limited to this. Further, as the foam resin, a resin having a fine foam radius of 1 to 30 μm and a high strength by impregnating the resin with carbon dioxide gas in a supercritical state and foaming the resin may be used. In this case, it is convenient that the resistance to earth pressure can be further increased.
[0041]
(4) The water storage block of the present invention is not only used as an original rainwater storage structure, but also various banking work such as road embankment, landslide head embankment, park embankment, embankment on soft ground, and reinforced embankment. In addition, it can be used as a buoyancy reduction block in a place where the water level is high.
[Brief description of the drawings]
FIG. 1 shows a water storage block according to an embodiment of the present invention, (a) is a plan view, (b) is a front view. FIG. 2 is a partial perspective view showing an example in which a plurality of water storage blocks in FIG. 3 is a cross-sectional view showing an example of a rainwater storage structure using the water storage block of FIG. 1. FIG. 4 is a cross-sectional view showing an example of another rainwater storage structure using the water storage block of FIG. 1 is a partially enlarged plan view showing a modification of the outer wall surface of the water storage block in FIG. 1. FIG. 6 is a partial perspective view showing a state in which water storage blocks of the prior art are stacked.
DESCRIPTION OF SYMBOLS 1 Water storage block 2 Cavity 3 Outer wall surface support part 4 Oblique support part 8 Water shielding material layer 17 Cover body layer

Claims (4)

略正方柱形の四隅を上下方向に面取りした八角柱形をなす外壁形状を有すると共に、内側に貯水可能な空洞を備え、土中に埋設可能な硬質樹脂発泡体製からなり、前記多角柱形を構成する外壁の一面にかかる面圧を受け止める外壁面支持部と、この外壁面支持部に続き前記面圧を分散可能な斜方支持部とを有する貯水ブロック。 It has an outer wall shape that forms an octagonal column shape with four corners of a substantially square column shape chamfered in the vertical direction, and has a cavity that can store water inside, and is made of a hard resin foam that can be embedded in the soil, and has the polygonal column shape. A water storage block having an outer wall surface support portion that receives a surface pressure applied to one surface of the outer wall that constitutes and an oblique support portion that can disperse the surface pressure following the outer wall surface support portion. 前記空洞が複数に区画された空洞からなり、少なくとも前記斜方支持部に囲まれた空洞を有する請求項1の貯水ブロック。The water storage block according to claim 1, wherein the cavity comprises a plurality of cavities, and has a cavity surrounded by at least the oblique support portion. 前記外壁形状が、各辺の端部が外に凸となる円弧状に形成されていると共に、前記空洞の内壁隅部が、円弧状に形成されている請求項1又は2の貯水ブロック。3. The water storage block according to claim 1 , wherein the outer wall shape is formed in an arc shape with end portions of each side protruding outward, and an inner wall corner portion of the cavity is formed in an arc shape . 地面凹部に配置されている遮水材層と、この遮水材層上に設置される請求項1〜3のいずれか1の貯水ブロックと、この貯水ブロックの上部に配置される透水性の蓋体層とを備えた雨水貯留構造物。A water-impervious material layer disposed in the ground recess, the water storage block according to any one of claims 1 to 3 installed on the water-impervious material layer, and a water-permeable lid disposed on an upper portion of the water storage block A rainwater storage structure comprising a body layer.
JP30018599A 1999-10-21 1999-10-21 Water storage block and rainwater storage structure using the same Expired - Fee Related JP3717353B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP30018599A JP3717353B2 (en) 1999-10-21 1999-10-21 Water storage block and rainwater storage structure using the same
US09/869,024 US6626609B1 (en) 1999-10-21 2000-04-12 Water storing block and connecting member for water storing block and rain water storing/infiltrating structure
KR1020017007904A KR20010099883A (en) 1999-10-21 2000-04-12 Water storing block and connecting member for water storing block and rain water storing/infiltrating structure
CNB008023697A CN1152992C (en) 1999-10-21 2000-04-12 Water storage block and connecting member for storing block and rain water storing/infiltration structure
SG200206881A SG121746A1 (en) 1999-10-21 2000-04-12 Water storing block and connecting member for water storing block and rain water storing/infiltrating structure
PCT/JP2000/002359 WO2001029332A1 (en) 1999-10-21 2000-04-12 Water storing block and connecting member for water storing block and rain water storing/infiltrating structure
TW089106856A TW482844B (en) 1999-10-21 2000-04-13 Water storage block, connecting member for water storage block and rain-water storage permeation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30018599A JP3717353B2 (en) 1999-10-21 1999-10-21 Water storage block and rainwater storage structure using the same

Publications (2)

Publication Number Publication Date
JP2001115508A JP2001115508A (en) 2001-04-24
JP3717353B2 true JP3717353B2 (en) 2005-11-16

Family

ID=17881768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30018599A Expired - Fee Related JP3717353B2 (en) 1999-10-21 1999-10-21 Water storage block and rainwater storage structure using the same

Country Status (1)

Country Link
JP (1) JP3717353B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721093B2 (en) * 2005-02-15 2011-07-13 株式会社 林物産発明研究所 Rainwater storage tank with permeable pavement at the top
JP4509853B2 (en) * 2005-05-17 2010-07-21 三菱樹脂株式会社 Rainwater underground storage and penetration tank
JP2008127961A (en) * 2006-11-24 2008-06-05 Keiko Takatani Rainwater storage type greening device, and rainwater storage system provided with the rainwater storage type greening device
CN106223550B (en) * 2016-07-21 2019-01-22 中国建筑第八工程局有限公司 The off-loading structure and load reducing measure of construction landscape high fill body
CN108193758B (en) * 2018-03-15 2024-01-09 郑州市市政工程总公司 Sponge urban road storing and draining structure

Also Published As

Publication number Publication date
JP2001115508A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US6626609B1 (en) Water storing block and connecting member for water storing block and rain water storing/infiltrating structure
AU724847B2 (en) Subsurface fluid drainage and storage systems
JP3363805B2 (en) Rainwater storage infiltration structure
KR101020718B1 (en) Seepaging structure using absorbent pavement geo-cell for material and rainforced of ground
JP2003193543A (en) Construction method for draining ground and member used therefor
JP2665144B2 (en) Reinforced soil structure
KR102095581B1 (en) Rainwater storage block, rainwater storage structure using the block and its construction method
JP3717353B2 (en) Water storage block and rainwater storage structure using the same
JP6240625B2 (en) Retaining wall, creation site and creation method of creation site
JP2013083144A (en) Liquefaction preventing structure
JP2012255250A (en) Rainwater disposal facility
KR100719231B1 (en) Smooth ground improvement construction
JPH1171789A (en) Rainwater storage device and structural member therefor
JP2005023589A (en) Rainwater storing and/or permeating facility
GB2300009A (en) Foundations for poor soils
JP2814898B2 (en) Underground storage facility
JPH07180132A (en) Method of preventing liquefaction of foundation ground
JPH0453205B2 (en)
JP4445892B2 (en) Lightweight embankment water storage structure
JP2561965B2 (en) Water tank for agricultural water
KR101733481B1 (en) Pavement structure using assembly type under stream block having rainwater storage function
RU2288986C2 (en) Construction of earth roadbed
JP3714653B2 (en) Foamed resin block for embankment, embankment unit using the same, construction body comprising embankment unit, and embankment construction method
JP3325924B2 (en) Structure of underground storage infiltration facility
JPH08302661A (en) Mat constructing method for prevention of sand spout

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees