JP3716980B2 - Ferritic stainless steel welded structure - Google Patents

Ferritic stainless steel welded structure Download PDF

Info

Publication number
JP3716980B2
JP3716980B2 JP2002030412A JP2002030412A JP3716980B2 JP 3716980 B2 JP3716980 B2 JP 3716980B2 JP 2002030412 A JP2002030412 A JP 2002030412A JP 2002030412 A JP2002030412 A JP 2002030412A JP 3716980 B2 JP3716980 B2 JP 3716980B2
Authority
JP
Japan
Prior art keywords
less
weld metal
stainless steel
ferritic stainless
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002030412A
Other languages
Japanese (ja)
Other versions
JP2003231950A (en
Inventor
和博 小川
信彦 平出
良明 野口
悟 西村
毅志 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002030412A priority Critical patent/JP3716980B2/en
Publication of JP2003231950A publication Critical patent/JP2003231950A/en
Application granted granted Critical
Publication of JP3716980B2 publication Critical patent/JP3716980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、溶接金属がフェライト系ステンレス鋼である、溶接部によって一体化され形成される部品、容器、装置等の溶接構造物に関する。
【0002】
【従来の技術】
フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と同じ耐食性を示す環境下で適用されるとき、Niが少ない分経済的であり、また応力腐食割れに対して高い抵抗性を持っている。しかし、溶接構造物として使用する場合、溶接部の溶接金属の靱性が低い難点があり、とくに厚肉材への適用にはこれが大きな障害になって、フェライト系ステンレス鋼は薄板材として用いられることにとどまっている。
【0003】
溶接部の靱性が低い理由は、溶接金属が粗大結晶粒組織になるためであることはよく知られている。これはCr含有量が増すとオーステナイト相が生じなくなり、凝固点から常温までフェライト相のみの一相で変態がなく、粒成長はあっても再結晶などによる結晶粒微細化は生じないからである。
【0004】
これに対し、フェライト系ステンレス鋼の溶接金属の結晶組織を微細化し、溶接部の靱性を改善しようとする試みがいくつかなされている。たとえば、特開平9-225680号公報に開示されたフェライト系ステンレス鋼の溶接ワイヤの発明は、鋼組成中にAlを0.005〜0.5%およびMgを0.001〜0.05%含有させる。これにより、溶接時に溶融池内で微細な酸化物が形成され、溶接金属組織の微細化が達成できるとしている。
【0005】
また、特開平11-256285号公報には、Mgを0.0005〜0.01%含有させることにより、溶接部および溶接熱影響部にて、最大径が0.01〜5μmであるMgを含有する酸化物粒子が任意断面観察で1個/mm以上の密度で含まれるようにした、フェライト系ステンレス鋼薄鋼板の発明が開示されている。
【0006】
さらに特開2001-254153号公報では、上記のMgに加えてTiを0.01〜0.8%またはAlを0.005〜0.2%添加して、この微細に分散したMg酸化物粒子に複合させ、最大径が0.01〜5μmの酸化物粒子を3個/mm以上の分布密度で含有させた、溶接性にすぐれたフェライト系ステンレス鋼の発明を開示している。
【0007】
特開2001-219291号公報では、溶接金属が粒子径0.5μm以上のTiおよびAlの窒化物または酸化物を250個/mm以上の密度で含有する、フェライト系ステンレス鋼の溶接部の発明を開示している。溶接金属にはTiおよび(または)Alが0.05〜0.3%含有されるが、これら成分は母材または溶加材から供給され、母材、溶加材あるいはシールドガスからの酸素および窒素により上述の酸化物および窒化物が形成される。
【0008】
これらの方法は、いずれも酸化物や窒化物の微細粒子を溶接金属中に存在させることにより、これが溶接溶融部の凝固核となって凝固組織を微細化させ、さらに凝固後または母材中では、この粒子の粒界移動ピニング効果により粒成長が抑止され、溶接部分の組織微細化を得ると考えている。
【0009】
しかしながら上述の発明の方法は、主として板厚の薄い鋼板が対象になっていて、いずれも入熱が15kJ/cm以下の低い溶接熱入力の溶接部に関するものであり、板厚の厚い大入熱溶接が対象の場合、どの程度の効果が得られるのか明らかでない。
【0010】
【発明が解決しようとする課題】
本発明の目的は、溶接金属がフェライト系ステンレス鋼である溶接構造物の溶接部において、40kJ/cm以上の大入熱溶接を用いた際の、靱性および耐溶接割れ性を改善した溶接金属の提供にある。
【0011】
【課題を解決するための手段】
本発明者らはより板厚の厚いフェライト系ステンレス鋼を溶接する際、溶接の施工効率を増すために入熱を大きくすると、高温割れが生じやすく溶接金属の靱性が劣ることに対し、これを改善すべく種々検討をおこなった。
【0012】
まず、酸化物や窒化物の粒子分散による組織の微細化を試みたが、大入熱溶接では必ずしも有効でなかった。これは溶融時の温度勾配が小さいため、酸化物や窒化物が有効な凝固核にならないからではないかと思われた。
【0013】
さらに検討を進める中で、一つの対処法になると考えられたのは、Bを多く含有する原子炉用のオーステナイト系ステンレス鋼の熱間加工方法の改善である。この鋼はBを多く含むため、熱間圧延の過程で側面に耳割れを生じやすく、圧延の歩留まりがよくない。これに対して、B含有オーステナイト系ステンレス鋼片の側面にBを含むフェライト系ステンレス鋼を肉盛り溶接し、熱間圧延をおこなうと耳割れが抑止できる。この発明は、特開2001-239364号公報に開示されている。
【0014】
上述の方法の開発過程で、施工速度を増すために大入熱の肉盛溶接をおこない、その溶着金属を調べていたところ、Bを多く含むフェライト系ステンレス鋼の溶着金属が、溶接高温割れを生じ難いばかりでなく、微細な結晶組織になっていることがわかった。溶接金属の微細化が可能になればフェライト系ステンレス鋼の厚肉材に対する大入熱溶接が可能になる。
【0015】
B含有により凝固時の結晶組織が微細化する理由は、少量の含有で液相線と固相線との温度幅が小さくなり、そして融点が低下するためと推測された。これは凝固開始からわずかな温度低下で固相線温度に達するので、液相中に多数の凝固核発生しやすくなり、融点の低下はこれらの核の成長を抑止し、結果として凝固組織が微細になると考えられる。また、高温割れは、凝固後期の残存した液膜に熱応力が作用して生じるとされているが、固液共存温度幅の減少は、この液膜の残存量を減じ、高温割れを減少させるのではないかと思われる。
【0016】
このBと同様な、固液共存温度幅減少の効果をもたらす添加元素を、さらに種々調べてみると、NbまたはZrが有効であり、その場合、Cが共に含有されている必要があることもわかった。NbCまたはZrCとの共晶により固液共存温度幅が減少するものと思われる。これに対しB含有の場合、Cr、FeおよびBの共晶関係が有効に作用しており、その効果はC量には影響されない。
【0017】
固液共存温度幅減少による溶接金属の細粒化は、同時に酸化物や窒化物の微細粒子が存在することにより、さらに一層確実にすることができる。これは、このような微細粒子は凝固の核にもなり得るので、固液共存温度幅減少と組み合わせることによって、細粒化の効果がより促進されると考えられる。
【0018】
以上のような知見に基づき、通常のJIS規格にて規制されるフェライト系ステンレス鋼の厚さ10mm以上の鋼板を用い、溶接入熱が40kJ/cmを超える溶接部を対象に、溶接金属の組成と溶接欠陥や靱性を種々調査した。その結果、溶接金属にTiおよびAlを含有させ、これにB、またはNbとZrの一方、もしくは両方を含有させることにより、溶接金属の結晶組織が微細化され、欠陥のない靱性のすぐれた溶接部が得られることが明らかになった。
【0019】
上述の結果から、さらにそれぞれの組成の限界を明確にし、本発明を完成させた。本発明の要旨は次のとおりである。
【0020】
(1) 溶接金属が、質量%にてC:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、B:0.1〜0.6%を含み、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。
【0021】
(2)溶接金属が、質量%にて、C:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0.1〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、ならびにNb:0.4〜2%およびZr:0.4〜2%の一方または両方を含み、かつ[(Nb+Zr)/16]%がCの含有量以下であり、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。
【0022】
(3)溶接金属が、質量%にて、C:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0.1〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、B:0.1〜0.6%、ならびにNb:0.4〜2%およびZr:0.4〜2%の一方または両方を含み、かつ[(Nb+Zr)/16]%がCの含有量以下であり、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。
【0023】
(4)40kJ/cm以上の大入熱で溶接した溶接構造物であって、溶接金属の0℃の衝撃値が20J/cm以上であることを特徴とする上記(1) から (3) までのいずれかの溶接構造物。
【0024】
【発明の実施の形態】
溶接金属の組成は、溶融した母材組成と溶着した溶加材組成とが混合し、これにフラックスや雰囲気などとの接触による成分の増減が加わって定まる。本発明の溶接構造物の母材は、フェライト系ステンレス鋼鋼材が好ましいが、一般の鋼材あるいは、その他のステンレス鋼鋼材であってもよい。ここでは溶接金属の組成を、溶接中に溶融凝固した金属部分全体の平均値とするが、局所的に本発明にて規制する範囲から外れていてもよい。その平均組成を、質量%にて以下のように限定する。
【0025】
C:0.13%以下
CはCrと結合して炭化物を形成し、靱性を低下させ耐食性を劣化させるので、少なければ少ないほどよい。C量が増加すると炭化物が増し、溶接金属の耐食性および靱性を大きく低下させるので、0.13%以下とする。ただし、NbまたはZrを含有させるときは、固液共存温度幅低減による溶接金属の結晶粒微細化を得るため、[(Nb+Zr)/16]%を超える量含有している必要がある。
【0026】
Si:1.5%以下
Siは、脱酸のため鋼に添加され、その結果として含有されるが、溶接金属を脆化させるので、少なければ少ないほどよい。大きな影響を及ぼさない範囲として、多くても1.5%以下とするのがよい。
【0027】
Mn:3%以下
Mnは、鋼の原料から混入してくるが、耐食性を悪くし、溶接母材や溶加材の加工性を低下させるので低いほど好ましい。大きな影響を及ぼさない範囲として上限を3%とする。
【0028】
P:0.04%以下
鋼の不純物として混入してくるPは、靱性を低下させるので低いほどよい。悪影響が大きくない範囲として0.04%以下とする。
【0029】
S:0.01%以下
Sは鋼の不純物として混入してくるが、靱性を低下させ、耐食性を劣化させるので少なければ少ないほどよい。このような悪影響が顕著でない範囲として0.01%以下とする。
【0030】
Cr:13〜25%
Crはステンレス鋼の耐食性をもたらす必須含有元素である。13%未満ではステンレス鋼としての耐食性が不十分となり、25%を超えると靱性が低下するので13〜25%の範囲で含有させる。
【0031】
Mo:0〜4%
Moは含有させなくてもよいが、炭化物生成の抑止や孔食腐食の防止効果があり、必要により含有させる。含有させる場合、その効果を得るためには0.05%以上が望ましい。しかし、多く含有しすぎると靱性が低下してくるので、多くても4%までとする。
【0032】
Ni:0〜4%
Niは含有させなくてもよいが、靭性の向上や耐食性向上の効果があり、本発明の溶接金属には含有させるのが望ましい。このような効果を得るためには、少なくとも0.1%以上含有させるとよい。しかし、多く含有しすぎると、オーステナイト相が残る傾向があり、炭化物が形成されやすくなるので、4%以下の範囲とする。
【0033】
Al:0.003〜0.4%
Alは鋼製造の際の脱酸剤として添加される。また、溶接時溶融金属中に微細な酸化物を形成し、溶接金属の細粒化に有効である。このような効果を得るには0.003%以上の含有が必要であるが、多くなりすぎると靱性を低下させるので、0.4%までとする。
【0034】
Ti:0.01〜0.8%
Tiは溶接時溶融金属中にてTiNを形成し、さらにAlの酸化物と結合してフェライトの結晶と整合する微細なAl-O-Ti-N複合粒子となり、これが凝固核になって溶接金属の結晶粒を細かくする作用がある。このような効果を得るためには、少なくとも0.01%の含有が必要である。しかし、多く含有しすぎると鋼の加工性を悪くするので、多くても0.8%までとする。
【0035】
N:0.004〜0.045%
Nは上記のようにTiと結合して微細粒子を形成し、溶接金属の結晶粒を小さくする作用がある。このような効果を得るためには、0.004%以上の含有が必要である。しかし多く含有しすぎると溶接部の靱性を低下させるので、0.045%までとする。
【0036】
O(酸素):0.1%以下
鋼の不純物であり、加工性および靱性を低下させる点からは、酸素は少ないほどよい。しかし、溶接時フラックスや雰囲気からの混入は避け難く、AlやTiと結合して溶接金属の結晶を細かくする作用があるので、0.01%以上の含有が好ましい。だだし、Oが過剰に含まれると靱性に影響が出てくるので、0.1%以下とするのがよい。
【0037】
Bを含有させることにより、40kJ/cmを超える大入熱のフェライト系ステンレス鋼の溶接金属の高温割れを抑止し、溶接金属を細粒組織にすることができる。これは、固液共存温度幅の減少によると考えられるが、このような効果は0.1%未満では得られない。しかし多く含有させすぎると靱性が低下するので、0.6%までとする。
【0038】
Nb:0.4〜2%、Zr:0.4〜2%
NbおよびZrの一方または両方を含有させることにより、大入熱のフェライト系ステンレス鋼の溶接金属の高温割れを抑止し、溶接金属を細粒組織にすることができる。これは、Cと共晶を形成して固液共存温度幅を減少させることによると考えられるが、このような効果を得るためには、どちらの元素も0.4%以上の含有を必要とする。ただし、この場合Cと共存させる必要があり、過度に多く含有させると靱性が低下するので、[(Nb+Zr)/16]%の値がC含有量以下の範囲で、かつそれぞれ2%までとする。
【0039】
本発明の溶接金属を有する溶接構造物の施工方法は、被覆アーク溶接法、サブマージドアーク溶接法、エレクトロスラグ溶接法、エレクトロガス溶接法などが適用できる。溶接金属の組成の制御は、用いる母材組成と同等またはそれに近い組成をベースとした溶接ワイヤあるいは帯状電極などの溶加材を用い、母材から供給されない必要成分は希釈分を見込んで合金元素としてこれに含有させるか、あるいは目的とする組成となるよう、添加成分をフラックスに配合しておこなう。
【0040】
本発明は40kJ/cm以上の大入熱の溶接をおこなうときにとくに有効で、溶接金属の靱性を高め高温割れを抑止するが、より入熱の小さいTIG、MIGあるいはMAGに適用しても十分な効果が得られる。
【0041】
【実施例】
〔実施例1〕
表1に示す組成の鋼を高周波真空溶解炉にて溶製し、鍛造、圧延、伸線をおこなって直径4mmの線の溶接用溶加材を作製した。溶接母材は、表2に示す組成のSUS430鋼の厚さ18mm、長さ600mm、幅150mmの鋼板を用い、長さ600mmの溶接線方向にI形開先を設けて、開先間隔10mmにて突き合わせ、溶け落ちを防ぐためにフラックスバッキング(裏当て材)を使用して、サブマージアーク溶接をおこなった。
【0042】
【表1】

Figure 0003716980
【0043】
【表2】
Figure 0003716980
【0044】
溶接条件は、溶接電流を450A、溶接電圧28V、溶接速度15cm/min(入熱量50.4kJ/cm)とし、フラックスは、質量%で、Al:30%、SiO:20%、MgO:15%、CaF:15%を基本組成とし、残部の20%分の中に添加元素用配合剤を加えた。添加元素用配合剤は、Cについては黒鉛粉末、Ni、Al、Mo、ZrおよびNbについてはいずれも金属粉末、Tiについては低炭素フェロチタンの粉末、BについてはBを用い、含有目標量に応じてこれら配合剤の量を変え、残部は等量のAlおよびSiOとし、合計量が20%となるようにした。
【0045】
得られた溶接部にて、溶接金属部分の溶接線と直交する板厚方向断面を5ヶ所研磨し、浸透探傷試験により割れの有無を調べた後、この溶接線に垂直な断面の金属組織から溶接金属を観察し、この溶接金属を断面の複数箇所から削りだして組成の分析をおこなった。分析結果を表3に示すが、これらは溶接金属の平均組成である。これらの溶接部から、機械加工により溶接金属の中央にVノッチを有する、幅方向が溶接方向と同じ4号試験片を採取し、0℃にて試験してシャルピー衝撃値を測定した。試験結果を表4に示す。
【0046】
【表3】
Figure 0003716980
【0047】
【表4】
Figure 0003716980
【0048】
表3および表4の結果から明らかなように、溶接金属が本発明で定める組成範囲内である試番1〜10の場合は、いずれも溶接割れは認められず、すぐれた衝撃値を示している。これに対し、その組成範囲が本発明の範囲を逸脱する試番11〜16では、いずれも低い衝撃値になっており、さらに[(Nb+Zr)/16]%の値がC含有量を超える試番14および15においては、溶接割れも生じていることがわかる。
【0049】
【発明の効果】
本発明は、フェライト系ステンレス鋼の溶接部の靱性を向上させたものであり、とくに大入熱の溶接金属の結晶組織が微細化させている。これにより従来、耐食性では、フェライト系ステンレス鋼で十分であるにもかかわらず、溶接部の靱性が劣るために高価なオーステナイト系ステンレス鋼を使わざるを得なかった、板厚の厚いステンレス鋼溶接構造物に対し、低コストのフェライト系ステンレス鋼が適用できるようになる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a welded structure such as a component, container, or apparatus integrally formed by a welded portion, wherein the weld metal is ferritic stainless steel.
[0002]
[Prior art]
Ferritic stainless steel, when applied in an environment exhibiting the same corrosion resistance as austenitic stainless steel, is economical because it contains less Ni and has high resistance to stress corrosion cracking. However, when used as a welded structure, there is a drawback that the toughness of the weld metal in the weld zone is low, and this is a big obstacle especially for application to thick materials, and ferritic stainless steel should be used as a thin plate material Stays on.
[0003]
It is well known that the reason for the low toughness of the weld is that the weld metal has a coarse grain structure. This is because when the Cr content is increased, the austenite phase is not generated, only the ferrite phase is transformed from the freezing point to room temperature, and there is no transformation, and there is no grain refinement due to recrystallization even if there is grain growth.
[0004]
On the other hand, some attempts have been made to refine the crystal structure of the weld metal of ferritic stainless steel and improve the toughness of the weld. For example, the invention of a ferritic stainless steel welding wire disclosed in JP-A-9-225680 contains 0.005 to 0.5% Al and 0.001 to 0.05% Mg in the steel composition. Thereby, a fine oxide is formed in the molten pool at the time of welding, and the refinement of the weld metal structure can be achieved.
[0005]
Further, in JP-A-11-256285, by containing 0.0005 to 0.01% of Mg, oxide particles containing Mg having a maximum diameter of 0.01 to 5 μm are optional at the welded portion and the weld heat affected zone. An invention of a ferritic stainless steel thin steel sheet that is contained at a density of 1 piece / mm 2 or more by cross-sectional observation is disclosed.
[0006]
Furthermore, in Japanese Patent Application Laid-Open No. 2001-254153, in addition to the above Mg, 0.01 to 0.8% Ti or 0.005 to 0.2% Al is added and combined with the finely dispersed Mg oxide particles, and the maximum diameter is 0.01. An invention of a ferritic stainless steel having excellent weldability, in which oxide particles of ˜5 μm are contained at a distribution density of 3 particles / mm 2 or more is disclosed.
[0007]
Japanese Patent Laid-Open No. 2001-219291 discloses an invention of a welded portion of ferritic stainless steel in which the weld metal contains a nitride or oxide of Ti and Al having a particle diameter of 0.5 μm or more at a density of 250 pieces / mm 2 or more. Disclosure. The weld metal contains 0.05 to 0.3% of Ti and / or Al. These components are supplied from the base material or filler metal, and the above-mentioned components are supplied by oxygen and nitrogen from the base material, filler material or shield gas. Oxides and nitrides are formed.
[0008]
In any of these methods, fine particles of oxide or nitride are present in the weld metal, which becomes the solidification nuclei of the weld melt and refines the solidified structure, and after solidification or in the base metal It is considered that grain growth is suppressed by the grain boundary migration pinning effect of the grains, and the microstructure of the welded portion is obtained.
[0009]
However, the above-described methods of the present invention are mainly intended for thin steel plates, both of which relate to welds with a low welding heat input with a heat input of 15 kJ / cm or less. When welding is the target, it is not clear how much effect will be obtained.
[0010]
[Problems to be solved by the invention]
It is an object of the present invention to provide a weld metal having improved toughness and weld crack resistance when using a high heat input welding of 40 kJ / cm or more in a welded portion of a welded structure in which the weld metal is ferritic stainless steel. On offer.
[0011]
[Means for Solving the Problems]
When the present inventors weld a ferritic stainless steel with a thicker plate thickness, if the heat input is increased in order to increase the welding construction efficiency, hot cracking is likely to occur, and the toughness of the weld metal is inferior. Various studies were conducted to improve it.
[0012]
First, an attempt was made to refine the structure by dispersing oxide or nitride particles, but this was not always effective in high heat input welding. This was thought to be because oxides and nitrides do not become effective solidification nuclei because of the small temperature gradient during melting.
[0013]
In the course of further study, it was thought that one countermeasure would be to improve the hot working method for austenitic stainless steel for reactors containing a large amount of B. Since this steel contains a large amount of B, the side cracks easily occur during the hot rolling process, and the rolling yield is not good. On the other hand, ear cracking can be suppressed by overlay welding a ferritic stainless steel containing B on the side surface of a B-containing austenitic stainless steel piece and performing hot rolling. This invention is disclosed in Japanese Patent Laid-Open No. 2001-239364.
[0014]
In the development process of the above-mentioned method, build-up welding with high heat input was performed to increase the construction speed, and the weld metal was examined. The weld metal of ferritic stainless steel containing a large amount of B was subject to weld hot cracking. Not only was it difficult to occur, it was found that the crystal structure was fine. If miniaturization of the weld metal becomes possible, high heat input welding to thick materials of ferritic stainless steel becomes possible.
[0015]
The reason why the crystal structure at the time of solidification is refined by the inclusion of B is presumed to be that the temperature range between the liquidus and the solidus becomes small and the melting point is lowered when a small amount is contained. Since this reaches the solidus temperature with a slight temperature drop from the start of solidification, a large number of solidification nuclei are likely to occur in the liquid phase, and a decrease in melting point suppresses the growth of these nuclei, resulting in a fine solidification structure. It is thought that it becomes. In addition, hot cracking is said to be caused by thermal stress acting on the remaining liquid film in the late stage of solidification, but a decrease in the solid-liquid coexistence temperature range reduces the remaining amount of this liquid film and reduces hot cracking. I think that.
[0016]
When the additional elements that bring about the effect of reducing the temperature range of solid-liquid coexistence as in B are further examined, Nb or Zr is effective, and in that case, it is necessary that C is contained together. all right. It seems that the solid-liquid coexistence temperature range is reduced by eutectic with NbC or ZrC. On the other hand, in the case of containing B, the eutectic relationship of Cr, Fe, and B acts effectively, and the effect is not affected by the amount of C.
[0017]
The refinement of the weld metal by reducing the solid-liquid coexistence temperature range can be further ensured by the presence of fine oxide and nitride particles at the same time. This is because such fine particles can also serve as solidification nuclei, and it is considered that the effect of finer particles is further promoted by combining with the reduction of the solid-liquid coexistence temperature range.
[0018]
Based on the above knowledge, the composition of the weld metal is used for welds where the weld heat input exceeds 40 kJ / cm, using a ferritic stainless steel steel plate with a thickness of 10 mm or more regulated by the normal JIS standard. And various investigations were made on welding defects and toughness. As a result, by including Ti and Al in the weld metal and adding B or one or both of Nb and Zr to the weld metal, the weld metal has a refined crystal structure and has excellent toughness without defects. It became clear that part was obtained.
[0019]
From the above results, the limits of the respective compositions were further clarified, and the present invention was completed. The gist of the present invention is as follows.
[0020]
(1) Weld metal in mass% C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13-25%, Mo: Ferrite containing 0 to 3%, Ni: 0 to 4%, Ti: 0.01 to 0.8%, Al: 0.003 to 0.4%, N: 0.004 to 0.045%, B: 0.1 to 0.6%, the balance being Fe and impurities Welded structure characterized in that it is a stainless steel.
[0021]
(2) Weld metal in mass%, C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13-25%, Mo : 0 to 3%, Ni: 0.1 to 4%, Ti: 0.01 to 0.8%, Al: 0.003 to 0.4%, N: 0.004 to 0.045%, and Nb: 0.4 to 2% and Zr: 0.4 to 2% Alternatively, a welded structure including both, and [(Nb + Zr) / 16]% is a C content or less, and the balance is ferritic stainless steel made of Fe and impurities.
[0022]
(3) When the weld metal is in mass%, C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13-25%, Mo : 0-3%, Ni: 0.1-4 %, Ti: 0.01-0.8%, Al: 0.003-0.4%, N: 0.004-0.045%, B: 0.1-0.6%, and Nb: 0.4-2% and Zr : wherein one or both of 0.4 to 2%, and [(Nb + Zr) / 16 ]% is Ri der less content and C, and the balance being a ferritic stainless steel consisting of Fe and impurities welding Structure.
[0023]
(4) A welded structure welded with a high heat input of 40 kJ / cm or more, wherein the weld metal has an impact value at 0 ° C. of 20 J / cm 2 or more, (1) to (3) either welded structures up.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The composition of the weld metal is determined by mixing the molten base material composition and the welded filler material composition, and adding or decreasing components due to contact with the flux or atmosphere. The base material of the welded structure of the present invention is preferably a ferritic stainless steel material, but may be a general steel material or other stainless steel materials. Here, the composition of the weld metal is the average value of the entire metal portion melted and solidified during welding, but may be locally out of the range regulated in the present invention. The average composition is limited by mass% as follows.
[0025]
C: 0.13% or less C is combined with Cr to form carbides, lowering toughness and deteriorating corrosion resistance. Therefore, the smaller the better, the better. If the amount of C increases, carbides increase and the corrosion resistance and toughness of the weld metal are greatly reduced, so the content is made 0.13% or less. However, when Nb or Zr is contained, it is necessary to contain an amount exceeding [(Nb + Zr) / 16]% in order to obtain crystal grain refinement of the weld metal by reducing the solid-liquid coexistence temperature range.
[0026]
Si: 1.5% or less Si is added to the steel for deoxidation and is contained as a result. However, since it makes the weld metal brittle, the smaller the better. As a range that does not have a great influence, it is good to be 1.5% or less at most.
[0027]
Mn: 3% or less Although Mn is mixed from the raw material of steel, it is more preferable as it is lower because it deteriorates the corrosion resistance and lowers the workability of the weld base material and filler metal. The upper limit is set to 3% as a range that does not have a large effect.
[0028]
P: 0.04% or less P mixed as an impurity of steel lowers the toughness, so the lower the better. 0.04% or less as a range where the adverse effect is not great.
[0029]
S: 0.01% or less S is mixed as an impurity of steel, but the lower the better, the lower the toughness and the corrosion resistance. The range in which such adverse effects are not remarkable is 0.01% or less.
[0030]
Cr: 13-25%
Cr is an essential element that brings about the corrosion resistance of stainless steel. If it is less than 13%, the corrosion resistance as stainless steel becomes insufficient, and if it exceeds 25%, the toughness decreases, so it is contained in the range of 13 to 25%.
[0031]
Mo: 0-4%
Mo does not need to be contained, but has the effect of suppressing carbide formation and preventing pitting corrosion, and is contained if necessary. When contained, 0.05% or more is desirable to obtain the effect. However, if too much is contained, the toughness will decrease, so at most 4%.
[0032]
Ni: 0-4%
Ni does not need to be contained, but it has an effect of improving toughness and corrosion resistance, and is desirably contained in the weld metal of the present invention. In order to acquire such an effect, it is good to make it contain at least 0.1% or more. However, if the content is too large, an austenite phase tends to remain, and a carbide is easily formed. Therefore, the content is made 4% or less.
[0033]
Al: 0.003-0.4%
Al is added as a deoxidizer during steel production. In addition, a fine oxide is formed in the molten metal during welding, which is effective for making the weld metal finer. In order to obtain such an effect, the content of 0.003% or more is necessary. However, if the content is too large, the toughness is lowered, so the content is limited to 0.4%.
[0034]
Ti: 0.01 to 0.8%
Ti forms TiN in the molten metal at the time of welding, and further combines with Al oxide to form fine Al-O-Ti-N composite particles that match with ferrite crystals, which become solidification nuclei and become weld metal Has the effect of making the crystal grains fine. In order to obtain such an effect, the content must be at least 0.01%. However, if too much is contained, the workability of the steel deteriorates, so at most 0.8%.
[0035]
N: 0.004-0.045%
N combines with Ti as described above to form fine particles, and has the effect of reducing the crystal grains of the weld metal. In order to acquire such an effect, 0.004% or more needs to be contained. However, if too much is contained, the toughness of the welded portion is lowered, so the content is limited to 0.045%.
[0036]
O (oxygen): 0.1% or less Steel is an impurity. Less oxygen is better in terms of reducing workability and toughness. However, it is difficult to avoid mixing from the flux and atmosphere during welding, and since it has an effect of combining with Al or Ti to make the weld metal crystal finer, the content is preferably 0.01% or more. However, if O is excessively contained, the toughness is affected, so 0.1% or less is preferable.
[0037]
By containing B, hot cracking of the weld metal of ferritic stainless steel having a large heat input exceeding 40 kJ / cm can be suppressed, and the weld metal can be made into a fine grain structure. This is considered to be due to a decrease in the solid-liquid coexistence temperature range, but such an effect cannot be obtained at less than 0.1%. However, if too much is included, the toughness decreases, so the content is limited to 0.6%.
[0038]
Nb: 0.4-2%, Zr: 0.4-2%
By containing one or both of Nb and Zr, high temperature cracking of the weld metal of high heat input ferritic stainless steel can be suppressed, and the weld metal can be made into a fine grain structure. This is thought to be due to the formation of a eutectic with C to reduce the solid-liquid coexistence temperature range, but in order to obtain such an effect, both elements must contain 0.4% or more. However, in this case, it is necessary to coexist with C, and if it is contained excessively, the toughness decreases, so the value of [(Nb + Zr) / 16]% is within the range of C content or less and up to 2% each. .
[0039]
As a method for constructing a welded structure having a weld metal according to the present invention, a covering arc welding method, a submerged arc welding method, an electroslag welding method, an electrogas welding method, or the like can be applied. Control of the composition of the weld metal uses a filler metal such as a welding wire or strip electrode based on a composition similar to or close to the composition of the base metal used, and the necessary components not supplied from the base metal are expected to be diluted. The additive component is added to the flux so that the desired composition is obtained.
[0040]
The present invention is particularly effective when welding with a large heat input of 40 kJ / cm or more, and enhances the toughness of the weld metal and suppresses hot cracking, but is sufficient even when applied to TIG, MIG or MAG with lower heat input Effects can be obtained.
[0041]
【Example】
[Example 1]
Steel having the composition shown in Table 1 was melted in a high-frequency vacuum melting furnace, and forging, rolling, and wire drawing were performed to produce a welding filler material having a diameter of 4 mm. The weld base material is SUS430 steel with the composition shown in Table 2 with a thickness of 18mm, a length of 600mm, and a width of 150mm. An I-shaped groove is provided in the weld line direction with a length of 600mm, with a gap interval of 10mm. Submerged arc welding was performed using a flux backing (backing material) to prevent burn-off.
[0042]
[Table 1]
Figure 0003716980
[0043]
[Table 2]
Figure 0003716980
[0044]
The welding conditions were a welding current of 450 A, a welding voltage of 28 V, a welding speed of 15 cm / min (a heat input amount of 50.4 kJ / cm), a flux in mass%, Al 2 O 3 : 30%, SiO 2 : 20%, MgO. : 15%, CaF 2 : 15% as the basic composition, and the additive element compounding agent was added to the remaining 20%. Ingredients for additive elements include graphite powder for C, metal powder for Ni, Al, Mo, Zr and Nb, low carbon ferrotitanium powder for Ti, and B 2 O 3 for B The amounts of these compounding agents were changed according to the target amount, and the balance was equal amounts of Al 2 O 3 and SiO 2 so that the total amount was 20%.
[0045]
In the obtained welded portion, the plate thickness direction cross section perpendicular to the weld line of the weld metal part is polished at five locations, and after checking for cracks by a penetration inspection test, from the metal structure of the cross section perpendicular to the weld line The weld metal was observed, and the weld metal was cut out from a plurality of locations on the cross section to analyze the composition. The analysis results are shown in Table 3, which are the average composition of the weld metal. From these welds, No. 4 test pieces having a V notch in the center of the weld metal by machining and having the same width direction as the weld direction were collected and tested at 0 ° C. to measure Charpy impact values. The test results are shown in Table 4.
[0046]
[Table 3]
Figure 0003716980
[0047]
[Table 4]
Figure 0003716980
[0048]
As is apparent from the results of Tables 3 and 4, when the weld metal is in the trial numbers 1 to 10 within the composition range defined in the present invention, no weld cracks are observed, and excellent impact values are shown. Yes. On the other hand, in the trial numbers 11 to 16 whose composition range deviates from the range of the present invention, the impact values are all low, and the value of [(Nb + Zr) / 16]% exceeds the C content. In numbers 14 and 15, it can be seen that weld cracks also occur.
[0049]
【The invention's effect】
The present invention improves the toughness of the welded portion of ferritic stainless steel, and in particular, the crystal structure of the weld metal with high heat input is refined. As a result, in the past, ferritic stainless steel was sufficient for corrosion resistance, but the toughness of the welded part was inferior, so expensive austenitic stainless steel had to be used. Low-cost ferritic stainless steel can be applied to objects.

Claims (4)

溶接金属が、質量%にて、C:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、B:0.1〜0.6%を含み、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。Weld metal in mass%, C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13 to 25%, Mo: 0 to Ferritic stainless steel containing 3%, Ni: 0-4%, Ti: 0.01-0.8%, Al: 0.003-0.4%, N: 0.004-0.045%, B: 0.1-0.6%, the balance being Fe and impurities A welded structure characterized by being steel. 溶接金属が、質量%にて、C:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0.1〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、ならびにNb:0.4〜2%およびZr:0.4〜2%の一方または両方を含み、かつ[(Nb+Zr)/16]%がCの含有量以下であり、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。Weld metal in mass%, C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13-25%, Mo: 0 3%, Ni: 0.1-4 %, Ti: 0.01-0.8%, Al: 0.003-0.4%, N: 0.004-0.045%, and one or both of Nb: 0.4-2% and Zr: 0.4-2% A welded structure comprising: a ferritic stainless steel containing and containing [(Nb + Zr) / 16]% less than or equal to the C content, the balance being Fe and impurities. 溶接金属が、質量%にて、C:0.13%以下、Si:1.5%以下、Mn:3%以下、P:0.04%以下、S:0.01%以下、Cr:13〜25%、Mo:0〜3%、Ni:0.1〜4%、Ti:0.01〜0.8%、Al:0.003〜0.4%、N:0.004〜0.045%、B:0.1〜0.6%、ならびにNb:0.4〜2%およびZr:0.4〜2%の一方または両方を含み、かつ[(Nb+Zr)/16]%がCの含有量以下であり、残部がFeおよび不純物からなるフェライト系ステンレス鋼であることを特徴とする溶接構造物。Weld metal in mass%, C: 0.13% or less, Si: 1.5% or less, Mn: 3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 13-25%, Mo: 0 3%, Ni: 0.1-4 %, Ti: 0.01-0.8%, Al: 0.003-0.4%, N: 0.004-0.045%, B: 0.1-0.6%, and Nb: 0.4-2% and Zr: 0.4- wherein one or both of 2%, and [(Nb + Zr) / 16 ]% is Ri der less content and C, the welding structure and the balance being a ferritic stainless steel consisting of Fe and impurities. 40kJ/cm以上の大入熱で溶接した溶接構造物であって、溶接金属の0℃の衝撃値が20J/cm以上であることを特徴とする請求項1から3のいずれかの溶接構造物。4. A welded structure welded with a large heat input of 40 kJ / cm or more, wherein the weld metal has an impact value at 0 ° C. of 20 J / cm 2 or more. object.
JP2002030412A 2002-02-07 2002-02-07 Ferritic stainless steel welded structure Expired - Lifetime JP3716980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030412A JP3716980B2 (en) 2002-02-07 2002-02-07 Ferritic stainless steel welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030412A JP3716980B2 (en) 2002-02-07 2002-02-07 Ferritic stainless steel welded structure

Publications (2)

Publication Number Publication Date
JP2003231950A JP2003231950A (en) 2003-08-19
JP3716980B2 true JP3716980B2 (en) 2005-11-16

Family

ID=27774172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030412A Expired - Lifetime JP3716980B2 (en) 2002-02-07 2002-02-07 Ferritic stainless steel welded structure

Country Status (1)

Country Link
JP (1) JP3716980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410224B2 (en) * 2009-09-29 2014-02-05 株式会社小松製作所 TUBE BODY AND METHOD FOR MANUFACTURING TUBE BODY
JP5041029B2 (en) * 2010-04-30 2012-10-03 住友金属工業株式会社 Method for producing high manganese steel
CN113789469A (en) * 2021-08-09 2021-12-14 河钢工业技术服务有限公司 Metal powder for repairing continuous casting crystallizer foot roller through laser cladding and preparation method thereof
CN117506230B (en) * 2024-01-05 2024-03-15 成都工业学院 Welding rod core wire and wear-resistant surfacing welding electrode

Also Published As

Publication number Publication date
JP2003231950A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP5172970B2 (en) Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JP6226542B2 (en) Steel with excellent toughness in weld heat affected zone
JP2006289395A (en) Solid wire for gas shielded arc welding
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP5576640B2 (en) Steel with excellent toughness in weld heat affected zone
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
KR100709521B1 (en) Welding joint of large heat input welding and welding method thereof
JP5303571B2 (en) Steel for welded structures including weld joints with excellent CTOD characteristics
JP6665658B2 (en) High strength steel plate
JP3716980B2 (en) Ferritic stainless steel welded structure
JPH044079B2 (en)
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
JP2002371338A (en) Steel superior in toughness at laser weld
JP2004091860A (en) Weld metal for low-alloy heat-resisting steel
JP2022061854A (en) Method for manufacturing welded joint
JP4374104B2 (en) Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
CN110773903A (en) CO suitable for ultralow heat input automatic welding 2Gas shielded welding wire and method for manufacturing same
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JPS60261690A (en) Coated electrode for cr-mo low alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Ref document number: 3716980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term