JP2022061854A - Method for manufacturing welded joint - Google Patents

Method for manufacturing welded joint Download PDF

Info

Publication number
JP2022061854A
JP2022061854A JP2020170056A JP2020170056A JP2022061854A JP 2022061854 A JP2022061854 A JP 2022061854A JP 2020170056 A JP2020170056 A JP 2020170056A JP 2020170056 A JP2020170056 A JP 2020170056A JP 2022061854 A JP2022061854 A JP 2022061854A
Authority
JP
Japan
Prior art keywords
less
flux
welded joint
wear
brinell hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020170056A
Other languages
Japanese (ja)
Inventor
孝浩 加茂
Takahiro Kamo
耕太郎 渡邊
Kotaro Watanabe
雄三 川本
Yuzo Kawamoto
学 星野
Manabu Hoshino
浩幸 白幡
Hiroyuki Shirahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020170056A priority Critical patent/JP2022061854A/en
Publication of JP2022061854A publication Critical patent/JP2022061854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a method enabling a welded joint to be manufactured by practically reducing a load of preheating work in welding a wear resistant steel.SOLUTION: A welded joint in which a weld metal has a prescribed chemical composition is manufactured by subjecting a wear resistant steel having a prescribed Brinell hardness and having a small amount of Mn segregation at a plate thickness center, to gas shielded welding using a flux-cored wire in which a content of fluoride relative to a total wire mass is 0.10-2.50% in terms of F, and a moisture content is 300 ppm or less, and further which has a seamless shape with no slit-like gaps.SELECTED DRAWING: None

Description

この発明は、建設機械や産業機械分野で利用される耐摩耗性に優れた高硬度鋼板を溶接する際に、低温割れの発生し難い溶接金属を得ることができる溶接継手の製造方法に関する。 The present invention relates to a method for manufacturing a welded joint capable of obtaining a weld metal in which low-temperature cracks are unlikely to occur when welding a high-hardness steel plate having excellent wear resistance, which is used in the fields of construction machinery and industrial machinery.

例えば、鉱山での掘削や土木作業用の建設機械に用いられる鋼板は、摩耗のために交換を要するが、その使用寿命を極力長くするために、鋼板の硬さを高めた耐摩耗鋼が用いられる。 For example, steel plates used in construction machinery for excavation in mines and civil engineering work require replacement due to wear, but in order to maximize the service life, wear-resistant steel with increased hardness is used. Be done.

耐摩耗鋼は、耐摩耗性を確保するため、すなわち硬さを増すために、炭素量(C含有量)が多くなる。そのため、溶接時には低温割れが問題になる。特に、建設機械のような厚鋼板を母材とする溶接では、拘束力が強くなることも低温割れが発生し易い要因となる。 The wear-resistant steel has a large carbon content (C content) in order to secure wear resistance, that is, to increase the hardness. Therefore, low temperature cracking becomes a problem during welding. In particular, in welding using a thick steel plate as a base material such as a construction machine, a strong binding force also causes low temperature cracking to occur easily.

この低温割れを回避するために、一般には、溶接に先立って予熱が行われる。ところが、建設機械等で用いられる耐摩耗鋼のような厚鋼板では(Cを主体とする合金添加量が非常に多く)低温割れ感受性が非常に高いため、より高温であったり、長時間の予熱作業が強いられる。そのため、作業環境の改善や作業効率の観点から、できるだけ予熱作業を減らすことが望まれている。 In order to avoid this low temperature cracking, preheating is generally performed prior to welding. However, thick steel sheets such as wear-resistant steel used in construction machinery have a very high sensitivity to low-temperature cracking (the amount of alloy mainly composed of C is very large), so the temperature is higher or preheating for a long time. Work is forced. Therefore, from the viewpoint of improving the working environment and working efficiency, it is desired to reduce the preheating work as much as possible.

一方で、鋼製外皮にフラックスを充填してなるフラックス入りワイヤでは、フラックスとしてアーク安定剤や合金材、脱酸材等を含有させることで、例えばビード外観を美麗なものにしたり、スパッタの発生を少なくするなど、溶接時に様々な機能を付与することができる。しかしながら、フラックスが水素の吸着源ともなり得ることから、耐摩耗鋼の溶接では低温割れを引き起こしてしまうおそれがある。耐力690MPa以上の高強度鋼を溶接する場合の例であるが、溶接金属の拡散性水素量が4ml/100gを超えると、高強度鋼の溶接金属では低温割れの感受性が高まるとされている(特許文献1参照)。 On the other hand, in a flux-cored wire in which a steel outer skin is filled with flux, by containing an arc stabilizer, an alloy material, a deoxidizing material, etc. as the flux, for example, the bead appearance can be made beautiful and spatter can be generated. Various functions can be imparted at the time of welding, such as reducing the number of. However, since the flux can also be an adsorption source of hydrogen, welding of wear-resistant steel may cause low-temperature cracking. This is an example of welding high-strength steel with a proof stress of 690 MPa or more, but when the amount of diffusible hydrogen in the weld metal exceeds 4 ml / 100 g, it is said that the weld metal of high-strength steel is more susceptible to low-temperature cracking ( See Patent Document 1).

このようなフラックス入りワイヤにおいて、弗化物を適量添加することで、低温割れを抑制する方法が知られている(例えば特許文献2参照)。すなわち、弗化物が溶接アークにより分解し、分解により生成したフッ素が水素と結合してHFガスとなり、このHFガスが大気中に散逸したり、溶接金属中に水素がHFとして固定されることで、溶接金属の拡散性水素が低減されると考えられる。 A method of suppressing low temperature cracking by adding an appropriate amount of fluoride to such a flux-cored wire is known (see, for example, Patent Document 2). That is, the fluoride is decomposed by the welding arc, and the fluorine generated by the decomposition is combined with hydrogen to become HF gas, and this HF gas is dissipated into the atmosphere or hydrogen is fixed as HF in the weld metal. , It is considered that the diffusible hydrogen of the weld metal is reduced.

また、ブリネル硬さが450~600クラスの耐摩耗鋼を溶接した場合、溶接部、特に溶接熱影響部(HAZ)が著しく硬化することが低温割れの発生に影響するとして、それに対応するために、溶接直後の溶接金属中の拡散性水素量が1.0ml/100g未満となるようにした溶接継手の製造方法が提案されている(特許文献3参照)。すなわち、この方法では、溶接金属の拡散性水素量を十分低くするために、所定量の弗化物と酸化物をフラックスに含有させると共に、これらの配合比を所定の範囲内にしたフラックス入りワイヤを用いるようにしている。 In addition, when welding wear-resistant steel with Brinell hardness of 450 to 600 class, the welded part, especially the weld heat-affected zone (HAZ), is significantly hardened, which affects the occurrence of low-temperature cracks. A method for manufacturing a welded joint in which the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g has been proposed (see Patent Document 3). That is, in this method, in order to sufficiently reduce the amount of diffusible hydrogen in the weld metal, a flux-cored wire containing a predetermined amount of fluoride and oxide in the flux and having a blending ratio of these within a predetermined range is used. I try to use it.

更には、耐摩耗鋼を溶接するにあたり、上記と同様に溶接金属中の拡散性水素量を十分低くすることができるフラックス入りワイヤを用いると共に、溶接金属中の合金成分で規定されるCENを所定の範囲となるようにすることで、低温割れを防いで耐摩耗鋼を溶接する方法が提案されている(特許文献4参照)。 Furthermore, when welding wear-resistant steel, a flux-filled wire that can sufficiently reduce the amount of diffusible hydrogen in the weld metal is used as described above, and CEN specified by the alloy component in the weld metal is specified. A method of welding wear-resistant steel by preventing low-temperature cracking by making it within the range of (see Patent Document 4) has been proposed.

特許第5136466号Patent No. 5136466 特許第5644984号Patent No. 5644984 国際公開第2017/154122号International Publication No. 2017/154122 特許第5696824号Patent No. 5696824

先に述べたように、耐摩耗鋼は溶接の際に低温割れを発生し易いと言った一面を有している。一方で、フラックス入りワイヤは、フラックスを用いないコアードワイヤに比べて水素を持ち込み易い。そのため、フラックス入りワイヤを用いて耐摩耗鋼を溶接するには、溶接前の予熱作業が必要となるが、建設機械等で用いられる耐摩耗鋼のような厚鋼板では、予熱作業に多大な負荷が掛かってしまう。このような予熱作業を減らすために、上述した特許文献3や特許文献4では、所定のフラックス入りワイヤを用いることで、予熱温度を低下させたり、予熱作業を行わずに耐摩耗鋼を溶接することができる方法を提案している。 As mentioned above, wear-resistant steel has one aspect that low-temperature cracking is likely to occur during welding. On the other hand, the flux-cored wire is easier to bring in hydrogen than the cored wire that does not use flux. Therefore, welding of wear-resistant steel using a flux-filled wire requires preheating work before welding, but thick steel sheets such as wear-resistant steel used in construction machinery and the like require a large load on the preheating work. Will be hung. In order to reduce such preheating work, in the above-mentioned Patent Documents 3 and 4, by using a predetermined flux-containing wire, the preheating temperature is lowered or the wear-resistant steel is welded without performing the preheating work. We are proposing a method that can be done.

ところが、これらのフラックス入りワイヤを用いても、予熱作業を行わなければ、低温割れを確実に抑えるまでには至らないことがある。例えば、建設機械に用いられる耐摩耗鋼を作業現場で交換するような場合であったり、寒冷地や外気が5℃を下回るような低温環境等では、予熱作業が十分でなければ、低温割れが発生してしまうことがある。そのため、まだ改善の余地があると言える。 However, even if these flux-containing wires are used, it may not be possible to reliably suppress low-temperature cracking unless preheating work is performed. For example, when the wear-resistant steel used for construction machinery is replaced at the work site, or in a cold region or in a low temperature environment where the outside air is below 5 ° C, if the preheating work is not sufficient, low temperature cracking will occur. It may occur. Therefore, it can be said that there is still room for improvement.

このような状況のもと、本発明者らは、低温環境のように溶接に不向きな環境下であっても、予熱作業による負荷を減らして、耐摩耗鋼の溶接施工が可能になる方法について鋭意検討した。その際、溶接対象となる耐摩耗鋼についても着目し、低温割れの改善には、溶接材料であるフラックス入りワイヤのみならず、鋼材についても対策が必要であると考えて、種々の実験を繰り返した結果、鋼材の板厚中心部における凝固偏析による局所的な合金濃化域および非金属介在物の存在が、耐摩耗鋼における低温割れの起点となることが明らかとなった。そのため、これを制御した耐摩耗鋼を所定のフラックス入りワイヤを用いて溶接することで、上記のような課題が解決できることを見出し、本発明を完成させた。 Under such circumstances, the present inventors have described a method that enables welding of wear-resistant steel by reducing the load due to preheating work even in an environment unsuitable for welding such as a low temperature environment. We examined it diligently. At that time, we also paid attention to the wear-resistant steel to be welded, and repeated various experiments, considering that it is necessary to take measures not only for the flux-filled wire, which is the welding material, but also for the steel material in order to improve the low temperature cracking. As a result, it was clarified that the local alloy thickening region and the presence of non-metal inclusions due to solidification segregation in the center of the plate thickness of the steel material are the starting points of low temperature cracking in the wear-resistant steel. Therefore, it has been found that the above-mentioned problems can be solved by welding the wear-resistant steel in which this is controlled by using a predetermined flux-cored wire, and the present invention has been completed.

したがって、本発明の目的は、耐摩耗鋼を溶接するにあたり、予熱作業の負荷を実質的に減らして、溶接継手を製造することができる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of manufacturing a welded joint by substantially reducing the load of preheating work when welding wear-resistant steel.

すなわち、本発明の要旨は次のとおりである。
(1)化学組成が、質量%で、
C:0.100~0.350%;
Si:0.10~1.00%;
Mn:0.50~1.50%;
P:0.020%以下;
S:0.005%以下;
Al:0.010~0.100%;
B:0.0005~0.0030%;
N:0.008%以下;
O:0.0050%以下;
Cu:0~1.0%;
Ni:0~3.0%;
Cr:0~2.0%;
Mo:0~2.0%;
Nb:0~0.100%;
V:0~0.100%;
Ti:0~0.100%;
Ca:0~0.005%;
Mg:0~0.005%;
REM:0~0.005%;
残部:Fe及び不純物;
であり、板厚が12~100mmの耐摩耗鋼板に対して、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いてガスシールド溶接を行い、溶接継手を製造する方法であって、
(a)前記耐摩耗鋼板は、表面から1mm深さ位置におけるブリネル硬さである表層ブリネル硬さYが400~550であると共に、板厚中心部でのブリネル硬さである中心部ブリネル硬さYと前記表層ブリネル硬さYとの差(Y-Y)は前記表層ブリネル硬さYに対して40%以内であり、かつ、連続鋳造により製造されて板厚中心部におけるMnの偏析量が2.0%以下であり、
(b)前記フラックス入りワイヤは、ワイヤ全質量に対して弗化物をF換算値で0.10~2.50%含有すると共に、水分含有量が300ppm以下であり、かつ、前記鋼製外皮にスリット状の隙間がないシームレス形状を有しており、
(c)前記溶接継手の溶接金属の化学組成が、質量%で、
C:0.01~0.15%;
Si:0.10~2.00%;
Mn:0.50~2.00%;
P:0.050%以下;
S:0.020%以下;
Al:0.003~0.100%;
N:0.015%以下;
B:0.0100%以下;
O:0.100%以下;
Ti:0.010~0.100%;
Cu:0~1.0%;
Ni:0~3.0%;
Cr:0~2.0%;
Mo:0~2.0%;
Nb:0~0.100%;
V:0~0.100%;
Ca:0~0.005%;
Mg:0~0.005%;
REM:0~0.005%;
残部:Fe及び不純物;
であることを特徴とする、溶接継手の製造方法。
(2)前記耐摩耗鋼板は、板厚中心部において観察される長径10μm以上の非金属介在物の個数密度が5.0個/mm以下である、(1)に記載の溶接継手の製造方法。
(3)前記耐摩耗鋼板に対してガスシールド溶接を行う際に、予熱処理を行わずに溶接継手を製造する、(1)又は(2)に記載の溶接継手の製造方法。
(4)5℃以下の低温環境下において前記耐摩耗鋼板に対してガスシールド溶接を行う際に、予熱処理を行わずに溶接継手を製造する、(1)~(3)のいずれかに記載の溶接継手の製造方法。
That is, the gist of the present invention is as follows.
(1) The chemical composition is mass%.
C: 0.100 to 0.350%;
Si: 0.10 to 1.00%;
Mn: 0.50 to 1.50%;
P: 0.020% or less;
S: 0.005% or less;
Al: 0.010 to 0.100%;
B: 0.0005 to 0.0030%;
N: 0.008% or less;
O: 0.0050% or less;
Cu: 0-1.0%;
Ni: 0-3.0%;
Cr: 0-2.0%;
Mo: 0-2.0%;
Nb: 0 to 0.100%;
V: 0 to 0.100%;
Ti: 0 to 0.100%;
Ca: 0 to 0.005%;
Mg: 0 to 0.005%;
REM: 0 to 0.005%;
Remaining: Fe and impurities;
It is a method of manufacturing a welded joint by performing gas shield welding on a wear-resistant steel sheet having a plate thickness of 12 to 100 mm using a flux-cored wire having a steel outer skin filled with flux.
(A) The wear-resistant steel plate has a surface Brinell hardness Y1 of 400 to 550, which is the Brinell hardness at a depth of 1 mm from the surface, and a central Brinell hardness, which is the Brinell hardness at the center of the plate thickness. The difference ( Y1 - Y2 ) between the surface layer Brinell hardness Y1 and the surface layer Brinell hardness Y1 is within 40% with respect to the surface layer Brinell hardness Y1 and is manufactured by continuous casting to form the central portion of the plate thickness. The segregation amount of Mn in the above is 2.0% or less.
(B) The flux-cored wire contains 0.10 to 2.50% of fluoride in terms of F with respect to the total mass of the wire, has a water content of 300 ppm or less, and has a steel outer skin. It has a seamless shape with no slit-shaped gaps,
(C) The chemical composition of the weld metal of the welded joint is mass%.
C: 0.01-0.15%;
Si: 0.10 to 2.00%;
Mn: 0.50 to 2.00%;
P: 0.050% or less;
S: 0.020% or less;
Al: 0.003 to 0.100%;
N: 0.015% or less;
B: 0.0100% or less;
O: 0.100% or less;
Ti: 0.010 to 0.100%;
Cu: 0-1.0%;
Ni: 0-3.0%;
Cr: 0-2.0%;
Mo: 0-2.0%;
Nb: 0 to 0.100%;
V: 0 to 0.100%;
Ca: 0 to 0.005%;
Mg: 0 to 0.005%;
REM: 0 to 0.005%;
Remaining: Fe and impurities;
A method for manufacturing a welded joint, characterized in that.
(2) The welded joint according to (1), wherein the wear-resistant steel sheet has a density of 5.0 pieces / mm 2 or less of non-metal inclusions having a major axis of 10 μm or more observed in the center of the plate thickness. Method.
(3) The method for manufacturing a welded joint according to (1) or (2), wherein the welded joint is manufactured without performing preheat treatment when gas shield welding is performed on the wear-resistant steel sheet.
(4) Described in any one of (1) to (3), wherein a welded joint is manufactured without preheat treatment when gas shield welding is performed on the wear-resistant steel sheet in a low temperature environment of 5 ° C. or lower. How to manufacture welded joints.

本発明によれば、低温環境のように溶接に不向きな環境下であっても、予熱温度を低下させたり、予熱作業の時間を短縮したり、或いは、予熱作業を行わないようにするなど、予熱作業の負荷を実質的に減らしながら、低温割れを防いで耐摩耗鋼の溶接を行うことができるようになる。 According to the present invention, even in an environment unsuitable for welding such as a low temperature environment, the preheating temperature is lowered, the preheating work time is shortened, or the preheating work is not performed. It becomes possible to weld wear-resistant steel by preventing low-temperature cracking while substantially reducing the load of preheating work.

一般に、耐摩耗鋼の耐摩耗性を上げるためには各種金属や合金の添加が必要であり、C含有量も多くなるが、それに伴い、溶接時の低温割れが起こり易くなってしまう。耐摩耗性の向上と耐低温割れ性との両立を図る上で、鋼材自体での対応には限界があり、溶接材料であるフラックス入りワイヤにおける検討が、これまで主になされてきた。
それに対して、本発明では、主として、鋼材である耐摩耗鋼板と、溶接材料であるフラックス入りワイヤと、これら両方の成分が影響する溶接金属との3つの観点に基づき溶接継手を製造するようにして、低温環境のように溶接に不向きな環境下であっても、予熱作業の負荷を実質的に減らして、低温割れを防ぐことができるようにする。
以下、それぞれについて詳しく説明する。
Generally, in order to improve the wear resistance of wear-resistant steel, it is necessary to add various metals and alloys, and the C content also increases, but with this, low-temperature cracking during welding tends to occur. In order to achieve both improvement of wear resistance and low temperature crack resistance, there is a limit to the correspondence with the steel material itself, and studies on flux-cored wire, which is a welding material, have been mainly conducted so far.
On the other hand, in the present invention, the welded joint is manufactured mainly from the three viewpoints of the wear-resistant steel plate which is a steel material, the flux-cored wire which is a welding material, and the weld metal which both components affect. Therefore, even in an environment unsuitable for welding such as a low temperature environment, the load of preheating work can be substantially reduced and low temperature cracking can be prevented.
Each of them will be described in detail below.

〔耐摩耗鋼板〕
本発明では、母材とする耐摩耗鋼板について、表面から1mm深さ位置におけるブリネル硬さである表層ブリネル硬さYが400~550、好ましくは420~530であると共に、板厚中心部でのブリネル硬さである中心部ブリネル硬さYと表層ブリネル硬さYとの差(Y-Y)が表層ブリネル硬さYに対する割合〔(Y-Y)/Y〕で40%以内、好ましくは37%以内、より好ましくは35%以内であるようにする。
[Abrasion resistant steel plate]
In the present invention, the wear-resistant steel plate used as a base material has a surface Brinell hardness Y1 of 400 to 550, preferably 420 to 530, which is a Brinell hardness at a depth of 1 mm from the surface, and at the center of the plate thickness. The difference (Y 1 − Y 2 ) between the central Brinell hardness Y 2 and the surface Brinell hardness Y 1 which is the Brinell hardness of the surface is the ratio of the surface Brinell hardness Y 1 [(Y 1 − Y 2 ) / Y 1 ], 40% or less, preferably 37% or less, more preferably 35% or less.

この表層ブリネル硬さYが400~550であれば、耐摩耗鋼板として必要な耐摩耗性の要件を満たすことができる。400未満では耐摩耗性が不足し、550を超えると鋼板自体の靱性確保が困難となり建設機械等での実用性に課題が生じる。また、中心部ブリネル硬さYと表層ブリネル硬さYとの差(Y-Y)が表層ブリネル硬さYに対して40%以内であれば、長期間の使用による板厚減少後においても良好な耐摩耗性の確保が可能である。ここで、中心部ブリネル硬さYについては、上記の割合〔(Y-Y)/Y〕を満たせばよいが、その値として、好ましくはY=300~550であるのがよい。なお、ここでのブリネル硬さは、JIS Z2243-1:2018及びJIS Z2243-2:2018で規定のブリネル硬さ試験により測定されるブリネル硬さ(HBW10/3000)を表す。 When the surface Brinell hardness Y 1 is 400 to 550, the wear resistance requirement required for the wear resistant steel sheet can be satisfied. If it is less than 400, the wear resistance is insufficient, and if it exceeds 550, it becomes difficult to secure the toughness of the steel sheet itself, which causes a problem in practicality in construction machinery and the like. If the difference (Y1 −Y 2 ) between the central Brinell hardness Y 2 and the surface Brinell hardness Y 1 is within 40% of the surface Brinell hardness Y 1 , the plate thickness due to long - term use It is possible to secure good wear resistance even after the reduction. Here, the central Brinell hardness Y 2 may satisfy the above ratio [(Y 1 − Y 2 ) / Y 1 ], but the value is preferably Y 2 = 300 to 550. good. The Brinell hardness here represents the Brinell hardness (HBW10 / 3000) measured by the Brinell hardness test specified in JIS Z2243-1: 2018 and JIS Z2243-2: 2018.

また、本発明における溶接継手の製造方法では、耐摩耗鋼板として、連続鋳造により製造されたものを用いるが、板厚中心部におけるMnの偏析量が2.0%以下のものを使用する。鋼材の製造方法としては、一般に、分塊法と連続鋳造法がある。このうち、製造コストの観点から連続鋳造法が用いられることが多いいが、連続鋳造法では、その製造過程において最終凝固部になる板厚中心部に凝固偏析に起因する合金元素濃化域が形成される。そして、本発明者らは、これらが低温割れの起点になると考えた。すなわち、低温割れ試験に用いられるJIS Z3158:1993規定のy形溶接割れ試験方法では、板厚中心部で低温割れが発生することから、板厚中心部における局所的な合金元素濃化域は、溶接時に硬化組織となって低温割れの起点になると考えられる。凝固偏析は元素の種類によりその傾向が異なるが、特に、本発明における溶接材料との組み合わせにおいては、Mnの偏析が低温割れに影響すると考えられる。そこで、予熱作業の負荷を低減させるために、板厚中心部でのMn偏析量が2.0%以下のものを用いるようにする。なお、Mn偏析量の求め方については後述の実施例で記載するように、耐摩耗鋼板の断面で厚み方向の中心位置を中央値とする板厚方向2mm以上の範囲について電子プローブマイクロアナライザー(EPMA)によりMn濃度を線分析して、最高値(C)を全体の平均値(Co)で除した成分値比(C/Co)を求め、これをMn偏析量とした。 Further, in the method for manufacturing a welded joint in the present invention, a wear-resistant steel sheet manufactured by continuous casting is used, but a steel sheet having an segregation amount of Mn at the center of the plate thickness of 2.0% or less is used. As a method for manufacturing a steel material, there are generally a slabbing method and a continuous casting method. Of these, the continuous casting method is often used from the viewpoint of manufacturing cost, but in the continuous casting method, the alloy element enrichment region due to solidification segregation is located in the center of the plate thickness, which is the final solidified portion in the manufacturing process. It is formed. Then, the present inventors considered that these are the starting points of low temperature cracking. That is, in the y-shaped weld cracking test method specified in JIS Z3158: 1993 used for the low temperature cracking test, low temperature cracking occurs in the center of the plate thickness. It is considered that the structure becomes hardened during welding and becomes the starting point of low temperature cracking. The tendency of solidification segregation differs depending on the type of element, but it is considered that the segregation of Mn affects low temperature cracking, especially in combination with the welding material in the present invention. Therefore, in order to reduce the load of the preheating work, the one having the Mn segregation amount at the center of the plate thickness of 2.0% or less is used. As for the method of obtaining the Mn segregation amount, as described in Examples described later, an electron probe microanalyzer (EPMA) is used for a range of 2 mm or more in the thickness direction with the center position in the thickness direction as the median in the cross section of the wear-resistant steel plate. ), The Mn concentration was line-analyzed to obtain the component value ratio (C / Co) obtained by dividing the maximum value (C) by the overall average value (Co), and this was used as the Mn segregation amount.

また、板厚中心部には、合金元素の濃化のみならず、介在物も存在する。このような介在物のうち、粗大なものの数が増えると低温割れの起点になる。特に、MnSのように圧延方向に延伸するものは起点として作用しやすい。そこで、Mnの偏析量に加えて、MnSのようなMn系の粗大介在物(非金属介在物)についても制御するのがよく、具体的には、板厚中心部において観察される長径10μm以上のMn系の粗大介在物(非金属介在物)の個数密度が5.0個/mm以下であるのが好ましい。より好ましくは4.0個/mm以下である。ここで、板厚中心部におけるMnの偏析量と長径10μm以上の非金属介在物の単位面積当たりの個数は、いずれも後述する実施例に記載する方法で測定することができる。また、板厚中心部におけるMnの偏析や非金属介在物の制御方法としては、現時点においては、連造鋳造時の凝固組織制御と鋼板素材であるスラブの高温熱処理とが有効であると考えられる。ちなみに、これまで低温割れは、鋼材の硬さに比例して発生するとして、溶接金属の硬さを如何に制御するかが重要であるとマクロ的に考えられてきたところ、本発明では、Mnの偏析や金属介在物のようなミクロ的な視点で制御する点で特徴がある。なお、長径10μm以上のMn系の粗大介在物(非金属介在物)を制御する方法は上述したとおりであるが、その個数密度を確実にゼロにするのは難しく、下限値としては0.01個/mm、或いは0.1個/mmが実質的な値である。 Further, in the central portion of the plate thickness, not only the enrichment of the alloying elements but also inclusions are present. As the number of such inclusions increases, it becomes the starting point of low temperature cracking. In particular, a material that stretches in the rolling direction, such as MnS, tends to act as a starting point. Therefore, in addition to the segregation amount of Mn, it is preferable to control Mn-based coarse inclusions (non-metal inclusions) such as MnS. Specifically, the major axis observed in the central portion of the plate thickness is 10 μm or more. The number density of Mn-based coarse inclusions (non-metal inclusions) is preferably 5.0 pieces / mm 2 or less. More preferably, it is 4.0 pieces / mm 2 or less. Here, the segregation amount of Mn in the central portion of the plate thickness and the number of non-metal inclusions having a major axis of 10 μm or more per unit area can both be measured by the methods described in Examples described later. At present, it is considered that solidification structure control during continuous casting and high-temperature heat treatment of slab, which is a steel plate material, are effective as methods for controlling Mn segregation and non-metal inclusions in the central portion of the plate thickness. .. By the way, it has been considered macroscopically that how to control the hardness of the weld metal is important because low temperature cracking occurs in proportion to the hardness of the steel material. It is characterized in that it is controlled from a microscopic viewpoint such as segregation and metal inclusions. The method for controlling Mn-based coarse inclusions (non-metal inclusions) having a major axis of 10 μm or more is as described above, but it is difficult to ensure that the number density is zero, and the lower limit is 0.01. Pieces / mm 2 or 0.1 pieces / mm 2 is a substantial value.

耐摩耗鋼板の板厚については、一般に厚鋼板と言われて、土木・建築機械や産業機械分野等で耐摩耗性が必要な個所で広く用いられている12~100mmのものを使用する。また、耐摩耗鋼板の化学組成を特定する理由については、次に説明するとおりである。なお、これらの説明における「%」は、特に断りがない限り「質量%」を表す。 Regarding the thickness of the wear-resistant steel plate, it is generally called a thick steel plate, and a steel plate having a thickness of 12 to 100 mm, which is widely used in places where wear resistance is required in the fields of civil engineering / construction machinery and industrial machinery, is used. The reason for specifying the chemical composition of the wear-resistant steel sheet will be described below. In addition, "%" in these explanations represents "mass%" unless otherwise specified.

(C:0.100~0.350%)
Cは、耐摩耗鋼板の表面硬さの向上に最も有効であり、かつ安価な元素である。C含有量が0.100%未満の場合、他の合金元素を含有させて硬さ低下を補う必要が生じるためコスト増となる。一方、その含有量が0.350%を超えると、加工性を著しく劣化させると共に、耐遅れ破壊性が著しく阻害されてしまう。
(C: 0.100 to 0.350%)
C is the most effective and inexpensive element for improving the surface hardness of the wear-resistant steel sheet. If the C content is less than 0.100%, it is necessary to add other alloying elements to compensate for the decrease in hardness, which increases the cost. On the other hand, if the content exceeds 0.350%, the processability is significantly deteriorated and the delayed fracture resistance is significantly impaired.

(Si:0.10~1.00%)
Siは、耐摩耗鋼板の表面硬さと耐遅れ破壊性のそれぞれの向上に寄与する。Si含有量が0.10%未満ではこれらの効果が不十分である。反対に、その含有量が1.00%を超えると、加工性を著しく劣化させると共に耐熱亀裂発生性に影響を与える靱性を劣化させてしまう。
(Si: 0.10 to 1.00%)
Si contributes to the improvement of the surface hardness and the delayed fracture resistance of the wear-resistant steel sheet. If the Si content is less than 0.10%, these effects are insufficient. On the contrary, when the content exceeds 1.00%, the workability is remarkably deteriorated and the toughness which affects the heat cracking property is deteriorated.

(Mn:0.50~1.50%)
Mnは、焼入れ性向上を通じて耐摩耗鋼板の表面硬さを向上させる。Mn含有量が0.50%未満では、他の合金元素を含有させて硬さを補う必要が生じてコスト増となる。一方で、その含有量が1.50%を超えると、加工性を著しく劣化させると共に耐遅れ破壊性能を著しく損なわせてしまう。
(Mn: 0.50 to 1.50%)
Mn improves the surface hardness of the wear-resistant steel sheet through the improvement of hardenability. If the Mn content is less than 0.50%, it becomes necessary to add other alloying elements to supplement the hardness, resulting in an increase in cost. On the other hand, if the content exceeds 1.50%, the workability is significantly deteriorated and the delayed fracture resistance is significantly impaired.

(P:0.020%以下)
Pは、鋼中に不可避的不純物として存在し、結晶粒界に偏析して鋼の耐遅れ破壊性および靱性を劣化させるため、その含有量はできるだけ低いことが望ましい。特に、P含有量が0.020%を超えると劣化が著しくなる。
(P: 0.020% or less)
Since P exists as an unavoidable impurity in the steel and segregates at the grain boundaries and deteriorates the delayed fracture resistance and toughness of the steel, its content is desirable to be as low as possible. In particular, when the P content exceeds 0.020%, the deterioration becomes remarkable.

(S:0.005%以下)
Sは、鋼の延性及び靱性を劣化させる不可避的不純物元素である。その含有量が0.005%を超えると、このような悪影響が顕在化してくる。
(S: 0.005% or less)
S is an unavoidable impurity element that deteriorates the ductility and toughness of steel. When the content exceeds 0.005%, such an adverse effect becomes apparent.

(Al:0.010~0.100%)
Alは、スラブ加熱時にAlNを生成することにより初期オーステナイト粒の過成長を効果的に抑制する。Al含有量が0.010%未満ではその効果が少ない。一方、その含有量が0.100%を超えると、加工性を著しく劣化させると共に靱性が著しく劣化してしまう。
(Al: 0.010 to 0.100%)
Al effectively suppresses the overgrowth of the initial austenite granules by forming AlN during slab heating. If the Al content is less than 0.010%, the effect is small. On the other hand, if the content exceeds 0.100%, the processability is significantly deteriorated and the toughness is significantly deteriorated.

(B:0.0005~0.0030%)
Bは、焼入れ性の向上に有効な元素である。マルテンサイトの生成を促進し、耐摩耗鋼板のブリネル硬さを高めるために、B含有量を0.0005%以上とする。一方、B含有量が過剰であると母材及び溶接部の靭性が劣化するため、0.0030%を上限とする。
(B: 0.0005 to 0.0030%)
B is an element effective for improving hardenability. In order to promote the formation of martensite and increase the Brinell hardness of the wear-resistant steel sheet, the B content is set to 0.0005% or more. On the other hand, if the B content is excessive, the toughness of the base metal and the welded portion deteriorates, so the upper limit is 0.0030%.

(N:0.008%以下)
Nは、鋼中に不可避的に含有する不純物である。多量に存在する場合にはHAZ靭性の悪化原因となる。また、N含有量が0.008%を超えると、加工性を著しく劣化させると共に母材、HAZともに靱性が劣化するのを避けることができなくなる。
(N: 0.008% or less)
N is an impurity inevitably contained in steel. If it is present in a large amount, it causes deterioration of HAZ toughness. Further, when the N content exceeds 0.008%, it is unavoidable that the processability is significantly deteriorated and the toughness of both the base material and HAZ is deteriorated.

(O:0.0050%以下)
Oも、鋼中に不可避的に含有する不純物である。O含有量が0.0050%を超えると鋼中の非金属介在物が増して、加工性を著しく劣化させると共に低温靱性が損なわれる。
(O: 0.0050% or less)
O is also an impurity inevitably contained in steel. When the O content exceeds 0.0050%, non-metal inclusions in the steel increase, which significantly deteriorates workability and impairs low temperature toughness.

(Cu:0~1.0%、Ni:0~3.0%、Cr:0~2.0%、Mo:0~2.0%)
Cu、Ni、Cr、及び、Moは、母材の強度と靱性を向上させる効果があるので、必要に応じて含有させてもよい。但し、その含有量が過剰な場合、特にHAZの硬さが高まり、靱性が損なわれるおそれがあるため、それぞれ上記のように上限を規定する。添加の効果を得るための好ましい含有量(下限)としては、Cuであれば0.05%、Niであれば0.05%、Crであれば0.05%、Moであれば0.02%である。
(Cu: 0 to 1.0%, Ni: 0 to 3.0%, Cr: 0 to 2.0%, Mo: 0 to 2.0%)
Since Cu, Ni, Cr, and Mo have the effect of improving the strength and toughness of the base metal, they may be contained as necessary. However, if the content is excessive, the hardness of HAZ may increase and the toughness may be impaired. Therefore, the upper limit is set as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.05% for Cu, 0.05% for Ni, 0.05% for Cr, and 0.02 for Mo. %.

(Nb:0~0.100%、V:0~0.100%、Ti:0~0.100%)
Nb、V、及び、Tiは、炭化物や窒化物を形成することで結晶粒の粗大化を抑制する効果があるので、必要に応じて含有させてもよい。但し、その含有量が過剰な場合、析出物の粗大化が顕著になり、靱性を低下させてしまうおそれがあるため、それぞれ上記のように上限を規定する。添加の効果を得るための好ましい含有量(下限)としては、Nbであれば0.010%、Vであれば0.010%、Tiであれば0.005%である。
(Nb: 0 to 0.100%, V: 0 to 0.100%, Ti: 0 to 0.100%)
Since Nb, V, and Ti have the effect of suppressing the coarsening of crystal grains by forming carbides and nitrides, they may be contained as necessary. However, if the content is excessive, the coarsening of the precipitate becomes remarkable and the toughness may be lowered. Therefore, the upper limit is set as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.010% for Nb, 0.010% for V, and 0.005% for Ti.

(Ca:0~0.005%、Mg:0~0.005%、REM:0~0.005%)
Ca、Mg、及び、REMは、含有させると非金属介在物が球状化し、低温靱性を向上させることができるので、必要に応じて含有させてもよい。但し、その含有量が過剰な場合、介在物が粗大になるため破壊の起点となり、靱性を損なう恐れがあるため、それぞれ上記のように上限を規定する。添加の効果を得るための好ましい含有量(下限)としては、Caであれば0.001%、Mgであれば0.001%、REMであれば0.001%である。ここでREMとは、原子番号57~71の15元素、ならびにScおよびYの2元素の合計17元素をさし、そのうちの任意の1種類、あるいは2種類以上の混合物を用いることができる。REMの含有量は前記17元素の合計含有量である。
(Ca: 0 to 0.005%, Mg: 0 to 0.005%, REM: 0 to 0.005%)
When Ca, Mg, and REM are contained, non-metal inclusions are spheroidized and low temperature toughness can be improved. Therefore, Ca, Mg, and REM may be contained as necessary. However, if the content is excessive, the inclusions become coarse and may become a starting point of fracture and impair toughness. Therefore, the upper limit is set as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.001% for Ca, 0.001% for Mg, and 0.001% for REM. Here, REM refers to 15 elements having atomic numbers 57 to 71 and a total of 17 elements including two elements Sc and Y, and any one of them, or a mixture of two or more kinds can be used. The content of REM is the total content of the 17 elements.

上記成分の残部は、鉄(Fe)及び不純物である。ここで、不純物とは、鋼を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 The rest of the above components are iron (Fe) and impurities. Here, the impurity is a component mixed by various factors in the manufacturing process, including raw materials such as ore and scrap, when steel is industrially manufactured, and does not adversely affect the present invention. Means what is acceptable in the range.

また、下式(1)で表されて鋼成分(質量%)から計算される炭素当量式(Ceq)は0.35~0.70%であることが望ましい。Ceqを0.35%以上とすることにより耐摩耗性の確保が容易になる。一方、Ceqを0.70%以下とすることにより、低温割れをより一層確実に抑制することができる。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
〔C、Mn、Cu、Ni、Cr、Mo及びVは、各元素の含有量(質量%)を表し、含有しない場合は0とする。〕
Further, it is desirable that the carbon equivalent formula (Ceq) represented by the following formula (1) and calculated from the steel component (mass%) is 0.35 to 0.70%. By setting Ceq to 0.35% or more, it becomes easy to secure wear resistance. On the other hand, by setting Ceq to 0.70% or less, low temperature cracking can be suppressed more reliably.
Ceq = C + Mn / 6 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 ... (1)
[C, Mn, Cu, Ni, Cr, Mo and V represent the content (mass%) of each element, and if they are not contained, they are set to 0. ]

〔フラックス入りワイヤ〕
本発明において、溶接材料とするのは、鋼製外皮にフラックスが充填されたフラックス入りワイヤであり、このフラックス入りワイヤは、ワイヤ全質量に対して弗化物をF換算値で0.10~2.50%、好ましくは0.15~2.00%含有する。上述したように、一般に、フラックス入りワイヤにおいては、フラックスが水素の吸着源となるために低温割れを発生し易いが、弗化物を適量添加することで溶接中のアーク雰囲気における水素量を低減させることができる。これは溶接中に弗素と水素が化合物を形成するためと考えられる。このような働きを発現させるためには、F換算値での弗化物の含有量がフラックス入りワイヤの全質量に対して0.10%以上であることが必要である。一方で、過剰な添加はスパッタの発生等の溶接性を阻害するおそれがあるため、その上限は2.50%以下とする。なお、フラックス入りワイヤの説明における「%」は、特に断りがない限り「質量%」を表す。
[Wire with flux]
In the present invention, the welding material is a flux-cored wire in which a steel outer skin is filled with flux, and the flux-cored wire contains fluoride in an F-equivalent value of 0.10 to 2 with respect to the total weight of the wire. It contains .50%, preferably 0.15 to 2.00%. As described above, in general, in a flux-cored wire, low-temperature cracking is likely to occur because the flux becomes an adsorption source of hydrogen, but by adding an appropriate amount of fluoride, the amount of hydrogen in the arc atmosphere during welding is reduced. be able to. It is considered that this is because fluorine and hydrogen form a compound during welding. In order to exhibit such a function, it is necessary that the content of fluoride in F-equivalent value is 0.10% or more with respect to the total mass of the flux-cored wire. On the other hand, excessive addition may hinder weldability such as generation of spatter, so the upper limit is 2.50% or less. In addition, "%" in the description of a flux-cored wire represents "mass%" unless otherwise specified.

この弗化物について特に制限はないが、好ましくは、CaF、BaF、SrF、MgF、LiF、NaF、KZrF、KSiF、NaAlF等を挙げることができ、これらの1種又は2種以上を用いるのがよい。これら弗化物が電離して生じたCa、Ba、Sr、Mg、Li、Na、K、Zr、Si、及びAlは、酸素と結合して溶接金属中の酸素量を低減させる脱酸元素として作用するため、これらの弗化物であれば溶接金属の靱性を向上させる点でも有利である。なお、F換算値は、弗化物に含まれる弗素(F)の量をフラックス入りワイヤの全質量に対する質量%で示すものであることから、例えば上記のような弗化物の場合、このF換算値は次の式(2)より求めることができる。ここで、式(2)中の弗化物の化学式は、各化学式に対応する弗化物の、フラックス入りワイヤの全質量に対する質量%を示す。また、各弗化物の化学式の係数は、各弗化物の化学式量から算出したものである。
0.487×CaF+0.610×MgF+0.732×LiF+0.452×NaF+0.402×KZrF+0.217×BaF+0.517×KSiF+0.543×NaAlF … …式(2)
The fluoride is not particularly limited, but preferably CaF 2 , BaF 2 , SrF 2 , MgF 2 , LiF, NaF, K 2 ZrF 6 , K 2 SiF 6 , Na 3 AlF 6 , and the like can be mentioned. It is preferable to use one or more of these. Ca, Ba, Sr, Mg, Li, Na, K, Zr, Si, and Al generated by ionization of these fluorides act as deoxidizing elements that combine with oxygen to reduce the amount of oxygen in the weld metal. Therefore, these fluorides are also advantageous in improving the toughness of the weld metal. Since the F-converted value indicates the amount of fluorine (F) contained in the fluoride in mass% with respect to the total mass of the flux-cored wire, for example, in the case of the above-mentioned fluoride, this F-converted value. Can be obtained from the following equation (2). Here, the chemical formula of the fluoride in the formula (2) indicates the mass% of the fluoride corresponding to each chemical formula with respect to the total mass of the flux-cored wire. The coefficient of the chemical formula of each fluoride is calculated from the amount of the chemical formula of each fluoride.
0.487 x CaF 2 +0.610 x MgF 2 +0.732 x LiF +0.452 x NaF +0.402 x K 2 ZrF 6 +0.217 x BaF 2 +0.517 x K 2 SiF 6 +0.543 x Na 3 AlF 6 ……… Equation (2)

また、本発明で用いるフラックス入りワイヤは、水分含有量が300ppm以下、好ましくは250ppm以下となるようにする。先に述べたように、フラックス入りワイヤでは、特にフラックス中に多くの水素が含まれる可能性があり、これが低温割れの原因となる。そこで、本発明のように、予熱作業の負荷を減らすことを目的とし、特に、低温環境のように溶接に不向きな条件下においても、予熱作業による負荷を減らして耐摩耗鋼の溶接施工を可能にするために、所定の弗化物の添加に加えて、上記のようにワイヤ中の水分含有量の低減が必要である。 Further, the flux-cored wire used in the present invention has a water content of 300 ppm or less, preferably 250 ppm or less. As mentioned earlier, flux-cored wires can contain a large amount of hydrogen, especially in the flux, which causes low temperature cracking. Therefore, as in the present invention, the purpose is to reduce the load of preheating work, and in particular, even under conditions unsuitable for welding such as low temperature environment, the load of preheating work can be reduced to weld wear-resistant steel. In addition to the addition of the predetermined fluoride, it is necessary to reduce the water content in the wire as described above.

ここで、フラックス入りワイヤの製造段階において低水素化を図った場合でも、実際の溶接施工までの経時変化で吸湿が生じるおそれがある。なかでも、ワイヤにフラックスを充填する際に採用されることがあるかしめでは、製造後のフラックス入りワイヤを長期間保管するような場合に吸湿の問題が顕著となる。そのため、本発明では、鋼製外皮にスリット状の隙間がない、シームレス形状を有したフラックス入りワイヤを用いるようにする。 Here, even if low hydrogenation is attempted at the manufacturing stage of the flux-cored wire, there is a possibility that moisture absorption will occur due to changes over time until the actual welding work. In particular, in the case of caulking, which is sometimes used when filling a wire with flux, the problem of moisture absorption becomes remarkable when the flux-cored wire after production is stored for a long period of time. Therefore, in the present invention, a flux-cored wire having a seamless shape without a slit-shaped gap in the steel outer skin is used.

このようなシームレスタイプのフラックス入りワイヤとするには、例えば、鋼製外皮となる鋼帯を長手方向に送りながら成形ロールにより成形してオープン管(U字型)とし、これを鋼製外皮とする。その際、鋼帯の成形の途中でオープン管の開口部からフラックスを供給し、鋼帯の成形の後に、開口部の相対するエッジ面を突合せシーム溶接して、継目無し管を得る。次いで、この継目無し管を伸線して、この伸線を行う伸線工程の途中又は伸線工程の完了後に継目無し管を焼鈍処理することで、シームレスタイプのフラックス入りワイヤを得ることができる。このように、シームレス形状として内部のフラックスを完全密閉することで、例えば上記のような焼鈍処理により、フラックスが内部に持ち込んだ水分を除去することが可能になる。なお、水分含有量の低減を図るには、このような焼鈍処理に限られずに、例えば、フラックスとして充填するフラックス成分をアークで溶解したり、高周波誘導加熱で溶解するなどしてるつぼに取り出し、これを粉砕して非晶質の粉体としたり、ガスアトマイズ法により非晶質の粉体にし、吸湿し難い溶融フラックスにして充填する方法等を挙げることができる。 In order to obtain such a seamless type flux-cored wire, for example, a steel strip to be a steel outer skin is fed in the longitudinal direction and molded by a forming roll to form an open pipe (U-shaped), which is referred to as a steel outer skin. do. At that time, flux is supplied from the opening of the open pipe during the forming of the steel strip, and after the forming of the steel strip, the facing edge surfaces of the openings are butt-welded and seam welded to obtain a seamless pipe. Next, the seamless tube is drawn, and the seamless tube is annealed during the wire drawing process for performing the wire drawing process or after the wire drawing process is completed, whereby a seamless type flux-containing wire can be obtained. .. In this way, by completely sealing the internal flux as a seamless shape, it is possible to remove the moisture brought into the inside by, for example, the annealing treatment as described above. In order to reduce the water content, the flux component to be filled as a flux is not limited to such an annealing treatment, but is taken out into a crucible by melting it with an arc or melting it by high frequency induction heating. Examples thereof include a method in which this is crushed into an amorphous powder, or an amorphous powder is obtained by a gas atomizing method, and a melt flux that is difficult to absorb moisture is used for filling.

また、フラックス中には、溶接ビード形状を良好に維持する効果を有するスラグ形成材として、TiO、SiO、ZrO、MgO、Al、CaO等の金属酸化物を1種又は2種以上含有してもよい。更には、フラックスの造粒に使用されるバインダー等に含まれる金属酸化物を含有してもよい。これら以外にも、フラックス中には、例えば鉄粉やその他合金粉末を添加してもよく、また、金属炭酸塩(CaCO3)等をアーク安定剤として含有するようにしてもよい。 Further, in the flux, as a slag forming material having an effect of maintaining a good weld bead shape, one or two metal oxides such as TiO 2 , SiO 2 , ZrO 2 , MgO, Al 2 O 3 , and CaO are contained. It may contain more than seeds. Further, it may contain a metal oxide contained in a binder or the like used for granulating the flux. In addition to these, for example, iron powder or other alloy powder may be added to the flux, or a metal carbonate (CaCO 3 ) or the like may be contained as an arc stabilizer.

〔溶接金属〕
本発明では、上述したように、所定の耐摩耗鋼板に対して、上記のようなフラックス入りワイヤを用いてガスシールド溶接を行うことで、溶接継手を製造するが、低温割れを抑制するには、溶接金属における成分値にも配慮が必要である。特に、溶接金属の化学成分は溶接材料からの供給と母材希釈とにより決定されるため、フラックス入りワイヤと耐摩耗鋼板の成分を設定するにあたり、目標とする溶接金属の化学組成は次に説明するとおりである。なお、これらの説明における「%」は、特に断りがない限り「質量%」を表す。
[Welded metal]
In the present invention, as described above, a welded joint is manufactured by performing gas shield welding on a predetermined wear-resistant steel sheet using a flux-cored wire as described above, but in order to suppress low-temperature cracking, It is also necessary to consider the component values in the weld metal. In particular, since the chemical composition of the weld metal is determined by the supply from the welding material and the dilution of the base metal, the chemical composition of the target weld metal is described below when setting the components of the flux-filled wire and the wear-resistant steel plate. As you do. In addition, "%" in these explanations represents "mass%" unless otherwise specified.

(C:0.01~0.15%)
Cは、溶接金属の硬さに最も影響する元素である。鋼材を耐摩耗鋼とした場合、予熱省略のためにはこのC量を0.15%以下とする必要がある。一方で、C量の過剰な低下は溶接金属強度の低下を招くため0.01%以上とする。
(C: 0.01-0.15%)
C is an element that most affects the hardness of the weld metal. When the steel material is wear-resistant steel, the amount of C must be 0.15% or less in order to omit preheating. On the other hand, an excessive decrease in the amount of C causes a decrease in the strength of the weld metal, so the amount is set to 0.01% or more.

(Si:0.10~2.00%)
Siは、脱酸元素であり、溶接金属のO含有量を低減して清浄度を高めるために、フラックス入りワイヤのフラックスには一定量添加する必要があり0.10%以上とする必要がある。一方で、過剰な添加は溶接金属の靱性を劣化させるため2.00%以下とする必要がある。
(Si: 0.10 to 2.00%)
Si is a deoxidizing element, and in order to reduce the O content of the weld metal and improve the cleanliness, it is necessary to add a certain amount to the flux of the flux-cored wire, and it is necessary to make it 0.10% or more. .. On the other hand, excessive addition deteriorates the toughness of the weld metal, so it needs to be 2.00% or less.

(Mn:0.50~2.00%)
Mnは、MnSを形成してSによる粒界脆化を抑制する効果がある。また、Mnは溶接金属の焼入性を確保して強度を高める効果のある元素であるので、硬さを安定的に得るために必要であるため0.50%以上とする。一方、過剰に含有すると、粒界脆化感受性が増加して溶接金属の靱性が劣化するため2.00%以下とする。
(Mn: 0.50 to 2.00%)
Mn has the effect of forming MnS and suppressing grain boundary embrittlement due to S. Further, Mn is an element having an effect of ensuring the hardenability of the weld metal and increasing the strength, and is necessary for stably obtaining the hardness, so the content is 0.50% or more. On the other hand, if it is contained in an excessive amount, the sensitivity to grain boundary embrittlement increases and the toughness of the weld metal deteriorates, so the content is set to 2.00% or less.

(P:0.050%以下)
Pは不純物元素であり、靱性を劣化させる。そのため極力低減する必要があるが、靱性への悪影響が許容できる範囲として、溶接金属のP含有量は0.050%以下とする。
(P: 0.050% or less)
P is an impurity element and deteriorates toughness. Therefore, it is necessary to reduce it as much as possible, but the P content of the weld metal should be 0.050% or less within the range where an adverse effect on toughness can be tolerated.

(S:0.020%以下)
Sも不純物元素であり、溶接金属中に過大に存在すると靱性と延性とを共に劣化させるため、極力低減することが好ましい。靱性、延性への悪影響が許容できる範囲として、溶接金属のS含有量は0.020%以下とする。
(S: 0.020% or less)
S is also an impurity element, and if it is excessively present in the weld metal, both toughness and ductility are deteriorated, so it is preferable to reduce it as much as possible. The S content of the weld metal shall be 0.020% or less within the range where adverse effects on toughness and ductility can be tolerated.

(Al:0.003~0.100%)
Alは脱酸元素であり、Siと同様に、溶接金属中のO含有量を低減することにより、溶接金属の清浄度を向上させる効果があるので、0.003%以上含有させる必要がある。一方、過剰に含有させると、窒化物や酸化物を形成して、溶接金属の靱性を劣化させるために0.100%以下とする。
(Al: 0.003 to 0.100%)
Al is a deoxidizing element, and like Si, it has an effect of improving the cleanliness of the weld metal by reducing the O content in the weld metal, so it is necessary to contain 0.003% or more. On the other hand, if it is contained in an excessive amount, nitrides and oxides are formed and the toughness of the weld metal is deteriorated, so that the content is 0.100% or less.

(N:0.015%以下)
Nは、溶接金属中には不可避的に含有されるが、過剰に含有すると粗大なAlNやBNを形成して靭性を低下させるため0.015%以下とする。
(N: 0.015% or less)
N is unavoidably contained in the weld metal, but if it is excessively contained, coarse AlN and BN are formed and the toughness is lowered, so the content is 0.015% or less.

(B:0.0100%以下)
Bは、溶接金属中に適正量含有させると、固溶Nと結びついてBNを形成して、固溶Nの靭性に対する悪影響を減じる効果がある。また、Bは、焼入性を高めて強度向上に寄与する効果もある。これらの効果を得るため、選択元素として含有させることができる。一方、B含有量が0.0100%超になると、溶接金属中のBが過剰となり、粗大なBNやFe23(C、B)等のB化合物を形成して靭性を逆に劣化させるため、好ましくない。そこで、Bを含有させる場合のB含有量の上限は0.0100%とする。また、このような効果を得るための好ましい下限は0.0003%である。なお、フラックス入りワイヤがBを含まずに、耐摩耗鋼板でのBの含有量が下限に近い値の場合、溶接金属中のBが分析限界を下回るようなごく微量になる可能性があるため、ここでの下限は規定していない。
(B: 0.0100% or less)
When B is contained in the weld metal in an appropriate amount, it has an effect of combining with the solid solution N to form BN and reducing the adverse effect on the toughness of the solid solution N. In addition, B also has the effect of increasing the hardenability and contributing to the improvement of strength. In order to obtain these effects, it can be contained as a selective element. On the other hand, when the B content exceeds 0.0100%, B in the weld metal becomes excessive and forms B compounds such as coarse BN and Fe 23 (C, B) 6 to conversely deteriorate the toughness. , Not desirable. Therefore, the upper limit of the B content when B is contained is 0.0100%. Further, the preferable lower limit for obtaining such an effect is 0.0003%. If the flux-cored wire does not contain B and the content of B in the wear-resistant steel sheet is close to the lower limit, the amount of B in the weld metal may be very small so as to fall below the analysis limit. , The lower limit here is not specified.

(O:0.100%以下)
Oは、溶接金属中には不可避的に含有されるが、過剰に含有すると靱性、延性への悪影響が避けられないため、O含有量の上限は0.100%とする。
(O: 0.100% or less)
O is inevitably contained in the weld metal, but if it is excessively contained, adverse effects on toughness and ductility are unavoidable, so the upper limit of the O content is set to 0.100%.

(Ti:0.010~0.100%)
TiもAlと同様、脱酸元素として有効であり、溶接金属中のO含有量を低減させる効果があるので、0.010%以上を含有させる必要がある。一方で過剰になると、粗大な酸化物の形成に起因した靱性劣化、過度な析出強化による靱性劣化が生じるため上限を0.100%とする。
(Ti: 0.010 to 0.100%)
Like Al, Ti is also effective as a deoxidizing element and has the effect of reducing the O content in the weld metal, so it is necessary to contain 0.010% or more. On the other hand, if it becomes excessive, the toughness deterioration due to the formation of coarse oxides and the toughness deterioration due to excessive precipitation strengthening occur, so the upper limit is set to 0.100%.

(Cu:0~1.0%、Ni:0~3.0%、Cr:0~2.0%、Mo:0~2.0%)
Cu、Ni、Cr、及び、Moは、固溶元素として溶接金属の強度と靭性とを向上させることができるので、選択元素として含有できる。一方で過剰に含有させた場合には経済性を損なうばかりでなく靱性の低下を招く場合があるため、それぞれ上記のように上限を規定する。添加の効果を得るための好ましい含有量(下限)としては、Cuであれば0.05%であり、Niであれば0.05%であり、Crであれば0.05%であり、Moであれば0.03%である。
(Cu: 0 to 1.0%, Ni: 0 to 3.0%, Cr: 0 to 2.0%, Mo: 0 to 2.0%)
Cu, Ni, Cr, and Mo can be contained as selective elements because they can improve the strength and toughness of the weld metal as solid solution elements. On the other hand, if it is contained in an excessive amount, not only the economic efficiency is impaired but also the toughness may be lowered. Therefore, the upper limit is set as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.05% for Cu, 0.05% for Ni, 0.05% for Cr, and Mo. If so, it is 0.03%.

(Nb:0~0.100%、V:0~0.100%)
Nb、及び、Vは、固溶元素として又は炭窒化物形成により溶接金属の硬さ向上に有効な元素であり、選択元素として含有できる。一方、過剰に含有させると、靱性を低下させることがあるため、それぞれ上記のようにその上限が規定される。添加の効果を得るための好ましい含有量(下限)としては、Nbであれば0.010%であり、Vであれば0.010%である。
(Nb: 0 to 0.100%, V: 0 to 0.100%)
Nb and V are elements effective for improving the hardness of the weld metal as a solid solution element or by forming a carbonitride, and can be contained as a selective element. On the other hand, if it is contained in an excessive amount, the toughness may be lowered, and therefore the upper limit thereof is defined as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.010% for Nb and 0.010% for V.

(Ca:0~0.005%、Mg:0~0.005%、REM:0~0.005%)
Mg、Ca、及び、REMは、溶接金属中での硫化物の構造を変化させ、また、硫化物、酸化物のサイズを微細化して延性及び靭性向上に有効であり、選択元素として含有できる。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くので、それぞれ上記のように上限を規定する。添加の効果を得るための好ましい含有量(下限)としては、Caであれば0.001%であり、Mgであれば0.001%であり、REMでは0.001%である。なお、REMについては前述した内容と同様である。
(Ca: 0 to 0.005%, Mg: 0 to 0.005%, REM: 0 to 0.005%)
Mg, Ca, and REM change the structure of the sulfide in the weld metal, and are effective in reducing the size of the sulfide and the oxide to improve ductility and toughness, and can be contained as select elements. On the other hand, if it is contained in an excessive amount, sulfides and oxides are coarsened, resulting in deterioration of ductility and toughness. Therefore, the upper limit is set as described above. The preferable content (lower limit) for obtaining the effect of addition is 0.001% for Ca, 0.001% for Mg, and 0.001% for REM. The REM is the same as described above.

以上の化学組成を有する溶接金属は、鉄(Fe)を主成分とする残部が本実施形態に係る溶接継手の特性を阻害しない範囲で、製造過程等で混入する不純物を含有してもよい。 The weld metal having the above chemical composition may contain impurities mixed in the manufacturing process or the like as long as the balance containing iron (Fe) as a main component does not impair the characteristics of the welded joint according to the present embodiment.

本発明においては、所定のフラックス入りワイヤを溶接材料として用いるだけではなく、鋼材についても所定の耐摩耗鋼板を用いることで、予熱作業の負荷を実質的に減らして、低温割れを防ぐことができる。例えば、予熱温度を低下させたり、予熱作業の時間を短縮できるようになるほか、予熱作業を行わずに溶接継手を製造しても低温割れを防ぐことができるようになる。特に、本発明によれば、低温環境のように溶接に不向きな状況であっても、予熱作業による負荷を減らすことができる。これまで、通常、低温割れの評価にはJIS Z3158:1993規定のy形溶接割れ試験方法が採用されているところ、このときは入熱量17kJ/cm及び室温での評価である。一方で、実施工時では、更なる低温環境、更なる小入熱量となる状況もあり得るため、本発明では、後述する実施例で示すように、5℃以下の低温環境下であっても予熱作業の負荷を減らして、低温割れを防ぐことができるようにしている。 In the present invention, not only a predetermined flux-cored wire is used as a welding material, but also a predetermined wear-resistant steel plate is used for a steel material, whereby the load of preheating work can be substantially reduced and low-temperature cracking can be prevented. .. For example, the preheating temperature can be lowered, the preheating work time can be shortened, and low temperature cracking can be prevented even if the welded joint is manufactured without the preheating work. In particular, according to the present invention, the load due to the preheating work can be reduced even in a situation unsuitable for welding such as a low temperature environment. So far, the y-shaped weld crack test method specified in JIS Z3158: 1993 has been usually used for the evaluation of low temperature cracks, but at this time, the heat input amount is 17 kJ / cm and the evaluation is performed at room temperature. On the other hand, at the time of the implementation work, there may be a situation where the temperature is further lowered and the amount of heat input is further small. Therefore, in the present invention, as shown in Examples described later, even in a low temperature environment of 5 ° C. or lower. The load of preheating work is reduced so that low temperature cracking can be prevented.

また、本発明において、ガスシールドアーク溶接の方法については特に制限されず、通常用いられる方法を採用することができる。例えば、シールドガスとしては、100%COガスのほか、Arガスと3~20vol%のCOガスとの混合ガスなどを用いることができる。シールドガスの流量は、通常の条件、すなわち約15~30L/minとすることができる。また、電流や電圧等の溶接条件についても特に制限はなく、例えば、電流200~350A、電圧25~35V等である。その際、溶接入熱が10~50kJ/cmとなるように、溶接速度を制御してもよい。 Further, in the present invention, the method of gas shielded arc welding is not particularly limited, and a commonly used method can be adopted. For example, as the shield gas, in addition to 100% CO 2 gas, a mixed gas of Ar gas and 3 to 20 vol% CO 2 gas can be used. The flow rate of the shield gas can be set to normal conditions, that is, about 15 to 30 L / min. Further, the welding conditions such as current and voltage are not particularly limited, and are, for example, a current of 200 to 350 A and a voltage of 25 to 35 V. At that time, the welding speed may be controlled so that the welding heat input becomes 10 to 50 kJ / cm.

更には、製造される溶接継手の形状は用途等に応じて決定され、特に限定されるものではない。通常の突合せ継手、角継手、T継手など、開先を形成する溶接継手に適用できる。したがって、溶接される鋼板の形状も、少なくとも溶接継手を形成する部分が板状であればよく、全体が板でなくともよく、例えば、形鋼なども含むものである。また、別々の鋼板から構成されるものに限定されず、1枚の鋼板を管状などの所定の形状に成形したものの突合せ溶接継手であってもよい。 Further, the shape of the welded joint to be manufactured is determined according to the application and the like, and is not particularly limited. It can be applied to welded joints that form grooves, such as ordinary butt joints, square joints, and T-joints. Therefore, the shape of the steel plate to be welded may be at least as long as the portion forming the welded joint is plate-shaped, and the whole may not be a plate, and includes, for example, shaped steel. Further, the joint is not limited to one composed of separate steel plates, and may be a butt welded joint formed by molding one steel plate into a predetermined shape such as a tubular shape.

次に、実施例に基づいて本発明について説明するが、本発明はこれらの内容に制限されるものではない。 Next, the present invention will be described based on examples, but the present invention is not limited to these contents.

(試験例1)
表1-1に示す成分(残部はFe及び不純物である)と表1-2に示す板厚等を有した鋼板1~35を母材(被溶接材)として使用した。なお、溶接の裏当金には母材と同じ鋼板を使用した。また、表1-1中のCeqは、上述した式(1)で表される炭素当量である。
(Test Example 1)
Steel plates 1 to 35 having the components shown in Table 1-1 (the balance is Fe and impurities) and the plate thickness shown in Table 1-2 were used as the base material (welded material). The same steel plate as the base metal was used for the backing metal for welding. Further, Ceq in Table 1-1 is a carbon equivalent represented by the above-mentioned formula (1).

これらの鋼板を得るにあたり、それぞれ250mm厚のスラブを連続鋳造法にて作製した。その際、板厚中心位置の介在物制御の観点より、連続鋳造過程においては、溶鋼の温度を過度に高くせず、溶鋼組成から決まる凝固温度に対し、その差が50℃以内になるように管理して、更に凝固直前の電磁攪拌、凝固時の圧下を行った。スラブは必要に応じて1200~1300℃で5時間以上保持する加熱処理を行うことで中心偏析の制御を行った。続いて、熱間圧延により厚さ12~100mmの鋼板を製造した。圧延した鋼板は900~1000℃で加熱後水冷することで表層硬さを調整した。なお、鋼板の作りこみは、圧延後直接水冷を行ってもよい。 In obtaining these steel plates, slabs having a thickness of 250 mm were produced by a continuous casting method. At that time, from the viewpoint of controlling inclusions at the center position of the plate thickness, the temperature of the molten steel should not be excessively raised in the continuous casting process, and the difference should be within 50 ° C. with respect to the solidification temperature determined by the composition of the molten steel. After control, electromagnetic stirring immediately before solidification and reduction during solidification were performed. If necessary, the slab was heat-treated at 1200 to 1300 ° C. for 5 hours or more to control the central segregation. Subsequently, a steel sheet having a thickness of 12 to 100 mm was manufactured by hot rolling. The surface hardness of the rolled steel sheet was adjusted by heating it at 900 to 1000 ° C. and then cooling it with water. The steel sheet may be directly water-cooled after rolling.

得られた鋼板1~35について、それぞれ鋼板の圧延垂直方向(C方向)の断面で板厚中心部におけるMnの偏析量を求めると共に、長径10μm以上の非金属介在物の測定を行った。このうち、Mnの偏析量を求めるにあたっては電子プローブマイクロアナライザー(EPMA)により測定した。具体的には、耐摩耗鋼板の断面で厚み方向の中心位置を中央値とする板厚方向2mm以上の範囲について電子プローブマイクロアナライザー(EPMA)によりMn濃度を線分析して、最高値(C)を全体の平均値(Co)で除した成分値比(C/Co)を求め、これをMn偏析量とした。一方で、長径10μm以上の非金属介在物の測定は、厚み方向の中心位置を中央値とする板厚方向2mm、幅10mmの範囲を光学顕微鏡により観察して、長径が10μm以上の非金属介在物の数をカウントして、単位面積(mm)あたりの数を求めた。 For each of the obtained steel sheets 1 to 35, the segregation amount of Mn at the center of the sheet thickness was determined from the cross section of the steel sheet in the vertical direction (C direction) of rolling, and the non-metal inclusions having a major axis of 10 μm or more were measured. Of these, the amount of Mn segregation was determined by measuring with an electron probe microanalyzer (EPMA). Specifically, the Mn concentration is linearly analyzed by an electron probe microanalyzer (EPMA) in the range of 2 mm or more in the thickness direction with the center position in the thickness direction as the median in the cross section of the wear-resistant steel sheet, and the maximum value (C) is obtained. Was divided by the total average value (Co) to obtain the component value ratio (C / Co), which was used as the Mn segregation amount. On the other hand, for the measurement of non-metal inclusions with a major axis of 10 μm or more, a range of 2 mm in the plate thickness direction and a width of 10 mm with the center position in the thickness direction as the center value is observed with an optical microscope, and non-metal inclusions with a major axis of 10 μm or more are observed. The number of objects was counted to obtain the number per unit area (mm 2 ).

また、これら鋼板1~35の表面から1mm深さ位置におけるブリネル硬さである表層ブリネル硬さYと、板厚中心部でのブリネル硬さである中心部ブリネル硬さYを測定した。このうち、表層ブリネル硬さYの測定では、板厚方向に研削を行い、表面から1mm深さ位置の試験面として、この試験面を研磨した後、JIS Z2243-1:2018及びJIS Z2243-2:2018に準拠してブリネル硬さを測定した。また、中心部ブリネル硬さYの測定では、板厚中心部まで研削及び切削を行い、板厚中心部での試験面として、この試験面を研磨した後、JIS Z2243-1:2018及びJIS Z2243-2:2018に準拠してブリネル硬さを測定した。これらの結果を表1-2に示すと共に、表層ブリネル硬さYと中心部ブリネル硬さYとの差の表層ブリネル硬さYに対する割合を示した。なお、ブリネル硬さの測定には直径10mmのタングステン硬球を使用し、荷重は3000kgfとし、各試験面について5点で試験を行い、それぞれの平均値をブリネル硬さHBW(10/3000)とした。 Further, the surface Brinell hardness Y 1 which is the Brinell hardness at a depth of 1 mm from the surfaces of the steel sheets 1 to 35 and the central Brinell hardness Y 2 which is the Brinell hardness at the central portion of the plate thickness were measured. Of these, in the measurement of the surface Brinell hardness Y1, grinding was performed in the plate thickness direction, and after polishing this test surface as a test surface at a depth of 1 mm from the surface, JIS Z2243-1: 2018 and JIS Z2243- Brinell hardness was measured according to 2: 2018. In the measurement of the central Brinell hardness Y2, grinding and cutting are performed up to the central portion of the plate thickness, and after polishing this test surface as a test surface at the central portion of the plate thickness, JIS Z2243-1: 2018 and JIS Brinell hardness was measured according to Z2243-2: 2018. These results are shown in Table 1-2, and the ratio of the difference between the surface Brinell hardness Y 1 and the central Brinell hardness Y 2 to the surface Brinell hardness Y 1 is shown. A tungsten hard ball having a diameter of 10 mm was used to measure the Brinell hardness, the load was 3000 kgf, the test was performed at 5 points on each test surface, and the average value of each was taken as the Brinell hardness HBW (10/3000). ..

Figure 2022061854000001
Figure 2022061854000001

Figure 2022061854000002
Figure 2022061854000002

また、溶接材料であるフラックス入りワイヤとしては表2に示したワイヤ1~35を使用した。これらは以下の方法により製造した。
先ず、フラックスはボンド型とし、酸化物、弗化物及び金属の粉体を混合し、粘結剤で粒状化させ、乾燥させてフラックスとした。フラックス中の弗化物については、CaF、BaF、SrF、MgF、LiF、NaF、KZrF、KSiF、及びNaAlFから選ばれるいずれか1種又は2種以上を使用し、F換算値は表2に記したとおりである。その他、スラグ形成材およびアーク安定剤としての金属酸化物を含有させた。
Further, as the flux-cored wire which is a welding material, the wires 1 to 35 shown in Table 2 were used. These were manufactured by the following methods.
First, the flux was made into a bond type, and an oxide, a fluoride and a metal powder were mixed, granulated with a binder, and dried to obtain a flux. For fluoride in the flux, one or more selected from CaF 2 , BaF 2 , SrF 2 , MgF 2 , LiF, NaF, K 2 ZrF 6 , K 2 SiF 6 , and Na 3 AlF 6 . Is used, and the F conversion value is as shown in Table 2. In addition, a metal oxide as a slag forming material and an arc stabilizer was contained.

また、鋼製外皮として鋼帯を成形してU型のオープン管とし、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ両端を突合せて溶接して(シーム溶接して)、継ぎ目の無いシームレス管とした。その際、一部は比較材として、シーム溶接を行うかわりにかしめて、隙間を有した管とした。これらについて、それぞれ伸線することで、最終ワイヤ径がφ1.2mmフのラックス入りワイヤを得た。その際、継ぎ目の無いシームレス管については、伸線作業の途中で650~950℃の温度範囲で4時間以上の焼鈍を行った。 In addition, a steel strip is formed as a steel outer skin to form a U-shaped open pipe, flux is supplied from the opening of the open pipe during this molding, and both ends of the opposite edges of the opening are abutted and welded (seam welding). Then, a seamless tube was used. At that time, a part of the pipe was used as a comparative material by caulking instead of performing seam welding to form a pipe having a gap. By drawing each of these wires, a lux-filled wire having a final wire diameter of φ1.2 mm was obtained. At that time, the seamless pipe was annealed in the temperature range of 650 to 950 ° C. for 4 hours or more during the wire drawing work.

上記で得られたワイヤ1~35について、水分含有量(水分量)を測定した。水分はJIS K 0068:2001に準拠したカールフィッシャー法(KF法)により測定した。測定試料はワイヤを1~2mmの長さに切断し、1~5gとなるだけ採取した。測定試料を900℃に加熱した炉内に挿入し、気化させた水分を電量滴定法にて測定した。 The water content (moisture content) of the wires 1 to 35 obtained above was measured. Moisture was measured by the Karl Fischer method (KF method) according to JIS K 0068: 2001. As the measurement sample, the wire was cut to a length of 1 to 2 mm, and only 1 to 5 g was collected. The measurement sample was inserted into a furnace heated to 900 ° C., and the vaporized water content was measured by a potentiometric titration method.

Figure 2022061854000003
Figure 2022061854000003

このフラックス入りワイヤを用い、上記の鋼板を、ルートギャップ16mm、開先角度20°で突き合わせ、裏当金を用いて溶接した。溶接条件は、電流値270A、電圧30V、溶接速度30cm/minとした。また、シールドガスとしては100%COを使用し、流量25L/minとした。予熱は実施せず、溶接パス間温度は200℃以下とした。得られた溶接金属の化学成分分析結果を表3に示す。なお、この溶接試験の各試験番号は、母材である鋼板の番号とフラックス入りワイヤの番号との組み合わせを示している。つまり、試験番号1-1は、鋼板1を母材とし、ワイヤ1を溶接材料として溶接することを意味し、以下同様に、試験番号は「鋼板番号-ワイヤ番号」の組み合わせを表す。 Using this flux-cored wire, the above steel sheets were butted at a root gap of 16 mm and a groove angle of 20 °, and welded using a backing metal. The welding conditions were a current value of 270 A, a voltage of 30 V, and a welding speed of 30 cm / min. Further, 100% CO 2 was used as the shield gas, and the flow rate was 25 L / min. No preheating was performed, and the temperature between welding passes was set to 200 ° C. or lower. Table 3 shows the results of chemical composition analysis of the obtained weld metal. Each test number of this welding test indicates a combination of the number of the steel plate as the base material and the number of the flux-cored wire. That is, the test number 1-1 means that the steel plate 1 is used as a base material and the wire 1 is used as a welding material for welding, and similarly, the test number represents a combination of "steel plate number-wire number".

また、鋼板とフラックス入りワイヤとの組み合わせを上記と同じにした試験番号での溶接について、低温割れ試験を行った。低温割れ試験は、JIS Z3158:2016(y形溶接割れ試験方法)に準拠した。但し、試験温度は5℃とした。その際、フラックス入りワイヤ側がプラスとなるようにし、溶接姿勢は下向き、電流値270A、電圧30V、溶接速度30cm/minとした。また、シールドガスとしては100%COを使用し、流量25L/minとした。そして、表面及び断面のいずれにも割れがないことをもって合格(割れ無し)とし、いずれか一方でも割れが確認されたときは不合格(割れあり)とした。更には、鋼板とフラックス入りワイヤとの組み合わせを上記と同じにして溶接したときの溶接金属の質量当たりの拡散性水素量を測定した。測定は、JIS Z 3118:2007(鋼溶接部の水素量測定方法)に準拠したガスクロマトグラフ法にて実施し、その際、シールドガスとしては100%COを使用して流量25L/minとし、溶接姿勢は下向き、電流値270A、電圧30V、溶接速度35cm/minとした。これらの結果を表4に示す。 In addition, a low temperature crack test was performed for welding with the same test number as the above for the combination of the steel plate and the flux-cored wire. The low temperature crack test was based on JIS Z3158: 2016 (y-type weld crack test method). However, the test temperature was 5 ° C. At that time, the flux-cored wire side was set to be positive, the welding posture was downward, the current value was 270 A, the voltage was 30 V, and the welding speed was 30 cm / min. Further, 100% CO 2 was used as the shield gas, and the flow rate was 25 L / min. Then, if there was no crack on either the surface or the cross section, it was judged as acceptable (no crack), and if crack was confirmed on either one, it was rejected (with crack). Further, the amount of diffusible hydrogen per mass of the weld metal was measured when the combination of the steel plate and the flux-containing wire was the same as described above and welded. The measurement was carried out by a gas chromatograph method based on JIS Z 3118: 2007 (method for measuring the amount of hydrogen in steel welds), and at that time, 100% CO 2 was used as the shield gas and the flow rate was 25 L / min. The welding posture was downward, the current value was 270 A, the voltage was 30 V, and the welding speed was 35 cm / min. These results are shown in Table 4.

Figure 2022061854000004
Figure 2022061854000004

Figure 2022061854000005
Figure 2022061854000005

表4に示した通り、本発明に係る方法であれば、試験温度を5℃としたy形溶接割れ試験方法において、割れの無い溶接継手が得られることが分かる。したがって、板厚中心部でのMnの偏析量が少ない耐摩耗鋼板に対して、所定のフラックス入りワイヤを用いてガスシールド溶接を行うことで、溶接に不向きな低温環境下であっても、予熱温度を低下させたり、予熱作業の時間を短縮したり、或いは、予熱作業を行わないようにして、予熱作業の負荷を実質的に減らしながら、低温割れを防いで耐摩耗鋼の溶接を行うことができるようになる。
As shown in Table 4, it can be seen that according to the method according to the present invention, a welded joint without cracks can be obtained in the y-shaped weld crack test method in which the test temperature is 5 ° C. Therefore, by performing gas shield welding on a wear-resistant steel sheet with a small amount of Mn segregation at the center of the plate thickness using a predetermined flux-cored wire, preheating is performed even in a low temperature environment unsuitable for welding. Welding of wear-resistant steel to prevent low-temperature cracking while substantially reducing the load of preheating work by lowering the temperature, shortening the time of preheating work, or eliminating preheating work. Will be able to.

Claims (4)

化学組成が、質量%で、
C:0.100~0.350%;
Si:0.10~1.00%;
Mn:0.50~1.50%;
P:0.020%以下;
S:0.005%以下;
Al:0.010~0.100%;
B:0.0005~0.0030%;
N:0.008%以下;
O:0.0050%以下;
Cu:0~1.0%;
Ni:0~3.0%;
Cr:0~2.0%;
Mo:0~2.0%;
Nb:0~0.100%;
V:0~0.100%;
Ti:0~0.100%;
Ca:0~0.005%;
Mg:0~0.005%;
REM:0~0.005%;
残部:Fe及び不純物;
であり、板厚が12~100mmの耐摩耗鋼板に対して、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いてガスシールド溶接を行い、溶接継手を製造する方法であって、
(a)前記耐摩耗鋼板は、表面から1mm深さ位置におけるブリネル硬さである表層ブリネル硬さYが400~550であると共に、板厚中心部でのブリネル硬さである中心部ブリネル硬さYと前記表層ブリネル硬さYとの差(Y-Y)は前記表層ブリネル硬さYに対して40%以内であり、かつ、連続鋳造により製造されて板厚中心部におけるMnの偏析量が2.0%以下であり、
(b)前記フラックス入りワイヤは、ワイヤ全質量に対して弗化物をF換算値で0.10~2.50%含有すると共に、水分含有量が300ppm以下であり、かつ、前記鋼製外皮にスリット状の隙間がないシームレス形状を有しており、
(c)前記溶接継手の溶接金属の化学組成が、質量%で、
C:0.01~0.15%;
Si:0.10~2.00%;
Mn:0.50~2.00%;
P:0.050%以下;
S:0.020%以下;
Al:0.003~0.100%;
N:0.015%以下;
B:0.0100%以下;
O:0.100%以下;
Ti:0.010~0.100%;
Cu:0~1.0%;
Ni:0~3.0%;
Cr:0~2.0%;
Mo:0~2.0%;
Nb:0~0.100%;
V:0~0.100%;
Ca:0~0.005%;
Mg:0~0.005%;
REM:0~0.005%;
残部:Fe及び不純物;
であることを特徴とする、溶接継手の製造方法。
The chemical composition is by mass%,
C: 0.100 to 0.350%;
Si: 0.10 to 1.00%;
Mn: 0.50 to 1.50%;
P: 0.020% or less;
S: 0.005% or less;
Al: 0.010 to 0.100%;
B: 0.0005 to 0.0030%;
N: 0.008% or less;
O: 0.0050% or less;
Cu: 0-1.0%;
Ni: 0-3.0%;
Cr: 0-2.0%;
Mo: 0-2.0%;
Nb: 0 to 0.100%;
V: 0 to 0.100%;
Ti: 0 to 0.100%;
Ca: 0 to 0.005%;
Mg: 0 to 0.005%;
REM: 0 to 0.005%;
Remaining: Fe and impurities;
It is a method of manufacturing a welded joint by performing gas shield welding on a wear-resistant steel sheet having a plate thickness of 12 to 100 mm using a flux-cored wire having a steel outer skin filled with flux.
(A) The wear-resistant steel plate has a surface Brinell hardness Y1 of 400 to 550, which is the Brinell hardness at a depth of 1 mm from the surface, and a central Brinell hardness, which is the Brinell hardness at the center of the plate thickness. The difference ( Y1 - Y2 ) between the surface layer Brinell hardness Y1 and the surface layer Brinell hardness Y1 is within 40% with respect to the surface layer Brinell hardness Y1 and is manufactured by continuous casting to form the central portion of the plate thickness. The segregation amount of Mn in the above is 2.0% or less.
(B) The flux-cored wire contains 0.10 to 2.50% of fluoride in terms of F with respect to the total mass of the wire, has a water content of 300 ppm or less, and has a steel outer skin. It has a seamless shape with no slit-shaped gaps,
(C) The chemical composition of the weld metal of the welded joint is mass%.
C: 0.01-0.15%;
Si: 0.10 to 2.00%;
Mn: 0.50 to 2.00%;
P: 0.050% or less;
S: 0.020% or less;
Al: 0.003 to 0.100%;
N: 0.015% or less;
B: 0.0100% or less;
O: 0.100% or less;
Ti: 0.010 to 0.100%;
Cu: 0-1.0%;
Ni: 0-3.0%;
Cr: 0-2.0%;
Mo: 0-2.0%;
Nb: 0 to 0.100%;
V: 0 to 0.100%;
Ca: 0 to 0.005%;
Mg: 0 to 0.005%;
REM: 0 to 0.005%;
Remaining: Fe and impurities;
A method for manufacturing a welded joint, characterized in that.
前記耐摩耗鋼板は、板厚中心部において観察される長径10μm以上の非金属介在物の個数密度が5.0個/mm以下である、請求項1に記載の溶接継手の製造方法。 The method for manufacturing a welded joint according to claim 1, wherein the wear-resistant steel sheet has a density of 5.0 pieces / mm 2 or less of non-metal inclusions having a major axis of 10 μm or more observed in the center of the plate thickness. 前記耐摩耗鋼板に対してガスシールド溶接を行う際に、予熱処理を行わずに溶接継手を製造する、請求項1又は2に記載の溶接継手の製造方法。 The method for manufacturing a welded joint according to claim 1 or 2, wherein the welded joint is manufactured without performing preheat treatment when gas shield welding is performed on the wear-resistant steel sheet. 5℃以下の低温環境下において前記耐摩耗鋼板に対してガスシールド溶接を行う際に、予熱処理を行わずに溶接継手を製造する、請求項1~3のいずれかに記載の溶接継手の製造方法。
The manufacture of a welded joint according to any one of claims 1 to 3, wherein the welded joint is manufactured without preheat treatment when gas shield welding is performed on the wear-resistant steel sheet in a low temperature environment of 5 ° C. or lower. Method.
JP2020170056A 2020-10-07 2020-10-07 Method for manufacturing welded joint Pending JP2022061854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020170056A JP2022061854A (en) 2020-10-07 2020-10-07 Method for manufacturing welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020170056A JP2022061854A (en) 2020-10-07 2020-10-07 Method for manufacturing welded joint

Publications (1)

Publication Number Publication Date
JP2022061854A true JP2022061854A (en) 2022-04-19

Family

ID=81210434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170056A Pending JP2022061854A (en) 2020-10-07 2020-10-07 Method for manufacturing welded joint

Country Status (1)

Country Link
JP (1) JP2022061854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446497A (en) * 2022-10-18 2022-12-09 包头钢铁(集团)有限责任公司 Rare earth treated NM500 wear-resistant steel welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446497A (en) * 2022-10-18 2022-12-09 包头钢铁(集团)有限责任公司 Rare earth treated NM500 wear-resistant steel welding method

Similar Documents

Publication Publication Date Title
US10065272B2 (en) Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
KR101651698B1 (en) Flux and wire for submerged arc welding of crmov steels
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP7353393B2 (en) Welded joints and welded joint manufacturing methods
KR20190124253A (en) Longitudinal seam welded steel pipe
JP5928726B2 (en) Covered arc welding rod
US20240051070A1 (en) Submerged arc welded joint
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
WO2014199488A1 (en) Ultrahigh-tensile-strength steel plate for welding
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
WO2022130759A1 (en) Submerged arc welding wire, and method for manufacturing weld joint using same
KR100709521B1 (en) Welding joint of large heat input welding and welding method thereof
JP6665658B2 (en) High strength steel plate
JP2022061854A (en) Method for manufacturing welded joint
JP7156585B1 (en) submerged arc welded fittings
US20240131632A1 (en) Tig welded joint
JP7485920B2 (en) Intermediate bending roll steel pipe
KR100581027B1 (en) Flux cored wire for martensitic stainless steel
JP7267521B1 (en) Submerged arc welding method
JP7205618B2 (en) steel
WO2022230615A1 (en) Submerged arc welded joint
JP6885219B2 (en) Welding method of steel materials and manufacturing method of welded joints
JP2003231950A (en) Welded structure of ferritic stainless steel
KR20240026304A (en) Metal cored wire for submerged arc welding and submerged arc welding method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522