JP3714495B2 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
JP3714495B2
JP3714495B2 JP21224596A JP21224596A JP3714495B2 JP 3714495 B2 JP3714495 B2 JP 3714495B2 JP 21224596 A JP21224596 A JP 21224596A JP 21224596 A JP21224596 A JP 21224596A JP 3714495 B2 JP3714495 B2 JP 3714495B2
Authority
JP
Japan
Prior art keywords
amount
bypass
exhaust
control valve
oxygen amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21224596A
Other languages
English (en)
Other versions
JPH1054251A (ja
Inventor
耕一 大畑
兼仁 中村
肇 勝呂
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP21224596A priority Critical patent/JP3714495B2/ja
Publication of JPH1054251A publication Critical patent/JPH1054251A/ja
Application granted granted Critical
Publication of JP3714495B2 publication Critical patent/JP3714495B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過給機と排気浄化用の触媒とを備えた内燃機関制御装置に関するものである。
【0002】
【従来の技術】
例えば、ディーゼルエンジンから排気ガスに含まれる窒素酸化物(NOx)を浄化する触媒は、図4に示すように所定の活性温度範囲(例えば200から400℃)においてのみNOx浄化率が高いことが一般的に知られている。従って、NOx排出量を低減するには、触媒温度を活性温度範囲内に維持することが効果的である。しかし、実際には、エンジンの運転状態により排気温度が大きく変化して、触媒温度が活性温度範囲から外れることがあり、安定したNOx浄化性能が得られない。
【0003】
そこで、ターボ過給機を備えたエンジンでは、特開平7−189720号公報に示すように、ターボ過給機の上流側の吸気通路とターボ過給機の下流側の排気通路とをバイパス通路で連通させ、このバイパス通路の途中に、過給圧によって開閉する通路開閉弁を設け、過給圧が所定値以上になったときに、上記通路開閉弁を開放させて過給気の一部を排気通路側にバイパスさせることで、排気温度を低下させて触媒を冷却するようにしている。しかし、過給気の一部を排気通路へバイパスさせると、エンジン出力が低下してドライバビリティが悪化するため、上記特開平7−189720号公報では、過給気の一部をバイパスさせることに伴って生じるエンジン出力低下を、ターボ過給機に過給圧を増幅させる補助機を設置することにより解決しようとしている。
【0004】
【発明が解決しようとする課題】
しかし、上記公報の構成では、バイパス通路の通路開閉弁を過給圧によって開閉するため、触媒温度が高くても、過給圧が低いと、通路開閉弁が開放されず、触媒を冷却することができない。それ故に、上記公報の構成では、エンジン負荷が小さい場合でも、触媒温度(排気温度)が高いときには、エンジンの出力で補助機を駆動して過給圧を高める必要があり、そのために燃費が悪化してしまう。しかも、エンジン負荷が大きい場合には、過給圧が高くなるので、触媒温度が適温でも、過給圧によって通路開閉弁が開放されてしまい、触媒温度が適温以下に低下して、排気浄化能力が低下してしまう。更に、補助機を設けることで、装置全体が大型化し、コンパクト化、低コスト化の要求を満たすことができない。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃費向上、コンパクト化、低コスト化を実現しながら、排気浄化性能とドライバビリティとを両立させることができる内燃機関制御装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関制御装置は、過給機よりも下流側の吸気通路と触媒よりも上流側の排気通路とをバイパスさせる吸気バイパス通路を設けると共に、この吸気バイパス通路にバイパス空気量制御弁を設ける。そして、内燃機関に供給する吸入空気の酸素量(以下「供給酸素量」という)を供給酸素量推定手段により推定すると共に、内燃機関に供給する燃料を燃焼するのに必要な吸入空気の酸素量(以下「目標酸素量」という)を目標酸素量算出手段により算出する。その上で、触媒温度判定手段で判定した触媒温度と目標触媒温度との差及び前記供給酸素量と前記目標酸素量との差に基づいて前記バイパス空気量制御弁の開度を制御手段によって制御する。ここで、「開度を制御する」とは、モータ等で弁開度を制御する場合のほか、電磁弁のON・OFFデューティの制御により弁を開閉する時間的な度合を制御する場合も含む。
【0007】
この場合、供給酸素量と目標酸素量との差が少なくなるほど、内燃機関に供給する燃料の燃焼状態が良好となり、ドライバビリティ向上、エミッション低減につながる。また、触媒温度と目標触媒温度との差が少なければ、触媒温度が所定の活性温度範囲内に収まり、NOx浄化率が高くなる。このような特性を考慮して、本発明のように、触媒温度と目標触媒温度との差及び供給酸素量と目標酸素量との差に基づいてバイパス空気量制御弁の開度を制御すれば、ドライバビリティ(内燃機関の出力)を確保しながら、過給気のバイパス量(触媒冷却効果)を調整して排気浄化性能を確保することができる。しかも、本発明では、過給圧とは関係なく、バイパス空気量制御弁の開度を制御手段によって制御できるので、従来のように内燃機関の出力で補助機を駆動して過給圧を高める必要がなくなり、燃費を向上できると共に、補助機が不要になる分、コンパクト化、低コスト化を実現することができる。
【0008】
更に、請求項1に係る発明は、過給機としてターボ過給機を用い、ターボ過給機の排気タービンの上流側と下流側とをバイパスさせる排気バイパス通路を設けると共に、該排気バイパス通路にバイパス排気量制御弁を設けた構成としている。この場合には、触媒温度と目標触媒温度との差及び供給酸素量と目標酸素量との差に基づいてバイパス空気量制御弁及びバイパス排気量制御弁の開度を総合的に制御すれば良い。このようにすれば、排気バイパス通路を流れる排気ガスのバイパス量を制御することで、排気タービンを通過する排気ガスの量を制御して、排気タービンの回転数(過給圧)を制御することができ、制御特性を向上できる。
【0009】
この場合、請求項3では、触媒温度が目標触媒温度以下の場合、つまり触媒の冷却が不要な場合には、バイパス空気量制御弁を全閉することで、排気通路の触媒上流側への過給気のバイパスを遮断して、過給気による触媒の冷却を停止し、触媒温度の上昇を促進して排気浄化能力を高める。これと共に、バイパス排気量制御弁の開度を制御することで、排気タービンの回転数(過給圧)を制御して、供給酸素量を目標酸素量に合わせるように制御し、内燃機関の燃焼効率を向上させて、燃費とドライバビリティを向上させる。
【0010】
一方、触媒温度が目標触媒温度より高い場合、つまり触媒の冷却が必要な場合には、供給酸素量を目標酸素量に合わせるようにバイパス空気量制御弁及びバイパス排気量制御弁の開度を制御する。具体的には、触媒温度が前記目標触媒温度より高い場合には、前記供給酸素量が前記目標酸素量と一致すると仮定して前記触媒温度を前記目標触媒温度に合わせるように前記バイパス空気量制御弁の開度を算出した後、この算出した前記バイパス空気量制御弁の開度にて前記供給酸素量を前記目標酸素量に合わせるように前記バイパス排気量制御弁の開度を算出し、算出したバイパス排気量制御弁の開度が0(=全閉)よりも大きい場合には、前記バイパス空気量制御弁の開度及び前記バイパス排気量制御弁の開度をそれぞれ前記算出した開度に調整する(請求項1)。また、算出したバイパス排気量制御弁の開度が0以下の場合には、バイパス排気量制御弁を全閉して前記バイパス空気量制御弁の開度を制御することで、前記供給酸素量を前記目標酸素量に合わせるように制御するようにすると良い(請求項2)。これにより、内燃機関の出力を確保した上で、ターボ過給機の過給能力に余力がある範囲内でバイパス空気量制御弁の開度を前記触媒温度と目標触媒温度との差に応じて制御し、過給気の一部を排気通路側にバイパスさせることで、排気温度を低下させて触媒を冷却して、排気浄化能力を高める。この場合、排気通路側への過給気のバイパス(触媒の冷却)は、ターボ過給機の過給能力に余力がある範囲内で行われるので、内燃機関への過給気が供給不足になることはなく、内燃機関の出力が確保されて、ドライバビリティが低下することはない。
【0011】
また、請求項4では、過給機よりも下流側の吸気通路と触媒よりも上流側の排気通路とをバイパスさせる第1の吸気バイパス通路と、前記過給機よりも下流側の吸気通路と触媒よりも下流側の排気通路とをバイパスさせる第2の吸気バイパス通路とを設け、これら両吸気バイパス通路に設けた第1及び第2の各バイパス空気量制御弁を、触媒温度と目標触媒温度との差及び供給酸素量と目標酸素量との差に基づいて制御手段により総合的に制御する。このようにすれば、第1及び第2の各バイパス空気量制御弁を制御することで、排気通路の触媒上流側への過給気のバイパス量の制御と過給圧の制御とを同時に行うことが可能となり、排気浄化性能とドライバビリティとを両立させることができる。
【0012】
この場合、請求項5では、触媒温度が目標触媒温度より低い場合(触媒の冷却が不要な場合)には、第1のバイパス空気量制御弁を閉鎖することで、排気通路の触媒上流側への過給気のバイパスを遮断して、過給気による触媒の冷却を停止し、触媒温度の上昇を促進して排気浄化能力を高める。これと共に、第2のバイパス空気量制御弁の開度を制御することで、排気通路の触媒下流側への過給気のバイパス量を制御して過給圧を制御し、供給酸素量を目標酸素量に合わせるように制御して、内燃機関の燃焼効率を向上させ、燃費とドライバビリティを向上させる。
【0013】
一方、触媒温度が目標触媒温度より高い場合には、供給酸素量を目標酸素量に合わせるように第1及び第2のバイパス空気量制御弁の開度を制御して、内燃機関の出力を確保した上で、過給機の過給能力に余力がある範囲内で触媒温度と目標触媒温度との差に応じて第1のバイパス空気量制御弁の開度を制御し、過給気の一部を排気通路の触媒上流側にバイパスさせることで、触媒上流側の排気温度を低下させて触媒を冷却する。この場合、触媒上流側への過給気のバイパス(触媒の冷却)は、過給機の過給能力に余力がある範囲内で行われるので、内燃機関への過給気が供給不足になることはなく、内燃機関の出力が確保されて、ドライバビリティが低下することはない。
【0014】
また、請求項6では、前記供給酸素量推定手段は、吸気圧を検出する吸気圧センサ、吸入空気量を検出する吸入空気量センサ、吸気系への排気ガスの還流量を検出する排気還流量センサ、前記内燃機関に吸入される酸素量を検出する酸素センサのうちの少なくとも1つのセンサの出力信号に基づいて供給酸素量を推定する。ここで、吸気圧センサや吸入空気量センサは、内燃機関の制御のために車両に搭載されている既存のセンサを用いれば良く、コスト的な負担が少なくて済む。更に、吸気圧センサと吸入空気量センサのいずれか一方の検出値と排気還流量センサの検出値とを組み合わせて供給酸素量を推定するようにしても良い。このようにすれば、吸気系へ還流する排気ガス中の酸素を考慮した正確な供給酸素量を推定することができる。また、酸素センサを用いれば、供給酸素量を直接検出することができる。
【0015】
また、請求項7では、前記目標酸素量算出手段は、前記過給機の過給圧限界値に相当する最大酸素量以下の範囲内で前記目標酸素量を内燃機関の運転状態に基づいて算出する。これにより、内燃機関が過負荷状態にならないように目標酸素量を設定でき、内燃機関の耐久性を向上できる。
【0016】
【発明の実施の形態】
以下、本発明の第1の実施形態を図1乃至図5に基づいて説明する。まず、図1に基づいてエンジン制御系全体の概略構成を説明する。内燃機関であるディーゼルエンジン11の吸気通路12にはターボ過給機13が設置されている。このターボ過給機13は、排気通路14内を流れる排気ガスの運動エネルギによって回転駆動される排気タービン15を駆動源としている。そして、排気タービン15よりも下流側の排気通路14には排気浄化用の触媒17が設置されている。
【0017】
更に、ターボ過給機13よりも下流側の吸気通路12と触媒17よりも上流側の排気通路14とをバイパスさせる吸気バイパス通路18が設けられ、この吸気バイパス通路18には、開度調節可能なバイパス空気量制御弁19が設けられている。このバイパス空気量制御弁19の開度調整は、ステップモータ等のモータ(図示せず)で行えば良い。或は、バイパス空気量制御弁19を電磁弁で構成する場合には、電磁弁のソレノイドコイルへの通電をデューティ制御することで、弁を開閉する時間的な度合を制御して弁を通過する空気量を制御すれば良い。このような電磁弁のデューティ制御により弁を開閉する時間的な度合を制御する場合も、特許請求の範囲でいう「バイパス空気量制御弁の開度を制御する」の概念に含まれる。また、吸気バイパス通路18の入口18aよりも下流側の吸気通路12には、吸気圧を検出する吸気圧センサ20が設置されている。
【0018】
一方、排気通路14には、排気タービン15の上流側と下流側とをバイパスさせる排気バイパス通路21(ウェイストゲート)が設けられ、この排気バイパス通路21には開度調節可能なバイパス排気量制御弁22が設けられている。このバイパス排気量制御弁22の開度調整も、前記バイパス空気量制御弁19の開度調整と同じく、モータ(図示せず)、又は電磁弁のデューティ制御で行えば良い。また、触媒17の上流側端面の近傍には、排気温度を検出する排気温度センサ23が設置され、この排気温度センサ23で検出した排気温度から触媒17の温度が判定される。従って、本実施形態では、排気温度センサ23を特許請求の範囲でいう触媒温度判定手段として用いる。
【0019】
尚、アクセル24には、アクセル開度(アクセル操作量)を検出するアクセル開度センサ25が設けられ、ディーゼルエンジン11には、エンジン回転数を検出するエンジン回転数センサ26が設けられている。
【0020】
これらアクセル開度センサ25、エンジン回転数センサ26、排気温度センサ23、吸気圧センサ20等、エンジン制御に関する各種情報を検出するセンサの出力信号は、エンジン制御用の電子制御回路(以下「ECU」という)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、上記各種センサ情報に基づいて燃料噴射装置(図示せず)の動作を制御すると共に、図2及び図3に示す過給制御プログラムを実行することで、触媒温度と目標触媒温度との差及び後述する供給酸素量と目標酸素量との差に基づいてバイパス空気量制御弁19とバイパス排気量制御弁22の開度を制御する制御手段として機能する。
【0021】
以下、図2及び図3の過給制御プログラムの処理の流れを説明する。本プログラムは、所定時間毎(例えば1秒毎)又は所定クランク角毎に割り込み処理にて起動される。本プログラムが起動されると、まずステップS101で、エンジン回転数センサ26、アクセル開度センサ25、吸気圧センサ20、排気温度センサ23から出力されるエンジン回転数Ne、アクセル開度Ac、吸気圧Pq及び排気温度Tを読み込む。そして、次のステップS102で、読み込んだエンジン回転数Neとアクセル開度Acとに応じて、目標とするエンジン出力を確保するのに必要な目標吸気圧P1 を予め設定されたマップデータより算出する。この際、目標吸気圧P1 は、ディーゼルエンジン11が過負荷状態にならないようにターボ過給機13の過給圧限界値以下の範囲内で設定される。
【0022】
そして、目標吸気圧P1 の算出後、ステップS103で、排気温度Tと目標触媒温度T1 とを比較し、触媒17の温度状態(活性状態)を判定する。この場合、触媒17は主として排気ガスの熱で温度上昇し、触媒温度は排気温度Tとほぼ等しいと推定できるため、本実施形態では、触媒温度の代用データとして排気温度Tを用いる。また、目標触媒温度T1 は、触媒17のNOx浄化率が最大となる触媒温度Tmax (図4参照)に設定されている。
【0023】
上記ステップS103で、排気温度T(=触媒温度)が目標触媒温度T1 以下と判定された場合には、触媒17の冷却は不要である。この場合には、ステップS104に進み、バイパス空気量制御弁19を全閉と仮定して、吸気圧Pq=目標吸気圧P1 となるようにバイパス排気量制御弁22の開度を算出する。この後、ステップS105で、バイパス空気量制御弁19の全閉信号を出力してバイパス空気量制御弁19を全閉し、排気通路14の触媒17上流側への過給気のバイパスを遮断して、排気温度の低下を防ぎ、触媒17の温度上昇を促進する。更に、このステップS105では、ステップS104で算出したバイパス排気量制御弁22の開度信号を出力し、バイパス排気量制御弁22の開度を調整して、ターボ過給機13の排気タービン15をバイパスさせる排気ガス量を調整する。これにより、排気タービン15を通過する排気ガス量を調整して、排気タービン15の回転数を調整し、ターボ過給機13の過給圧を吸気圧Pqが目標吸気圧P1 となるように調整し、ディーゼルエンジン11の燃焼効率を向上させて、燃費とドライバビリティを向上させる。
【0024】
この場合、ディーゼルエンジン11に供給する吸入空気の酸素量(供給酸素量)は、吸気圧Pqから推定できるため、供給酸素量の代用データとして吸気圧Pqを用いる。従って、本実施形態では、吸気圧Pqを検出する吸気圧センサ20が特許請求の範囲でいう供給酸素量推定手段として用いられる。そして、ディーゼルエンジン11に供給する燃料を燃焼するのに必要な吸入空気の酸素量(目標酸素量)の代用データとしてステップS102で算出する目標吸気圧P1 を用いる。従って、本実施形態では、目標吸気圧P1 を算出するステップS102の処理が特許請求の範囲でいう目標酸素量算出手段としての役割を果たしている。
【0025】
一方、前述したステップS103で、排気温度T(=触媒温度)が目標触媒温度T1 より高いと判定された場合には、触媒17の冷却が必要となる。この場合には、図3のステップS106に進み、吸気圧Pq=目標吸気圧P1 と仮定して排気温度T=目標触媒温度T1 となるようにバイパス空気量制御弁19の開度を算出する。この後、ステップS107に進み、上記ステップS106で算出したバイパス空気量制御弁19の開度で、吸気圧Pq=目標吸気圧P1 となるようにバイパス排気量制御弁22の開度を算出する。
【0026】
この後、ステップS108で、バイパス排気量制御弁22の開度が0(=全閉)よりも大きいか否かを判定し、大きい場合には、ステップS109に進んで、ステップS106で算出したバイパス空気量制御弁19の開度信号と、ステップS107で算出したバイパス排気量制御弁22の開度信号とを出力し、両制御弁19,22の開度を調整する。これにより、吸気圧Pq=目標吸気圧P1 となるように過給圧を制御して、必要なエンジン出力を確保すると共に、排気温度T(=触媒温度)を目標触媒温度T1 に一致させるようにバイパス空気量制御弁19の開度を制御して、過給気の一部を排気通路14側にバイパスさせて排気ガスと混合させることで、排気温度を低下させて触媒17を冷却し、触媒温度を目標触媒温度T1 まで速やかに低下させる。
【0027】
一方、前述したステップS108で、バイパス排気量制御弁22の開度が0(=全閉)以下と判定された場合には、ステップS110に進み、バイパス排気量制御弁22を全閉と仮定して、吸気圧Pq=目標吸気圧P1 となるようにバイパス空気量制御弁19の開度を算出する。この後、ステップS111で、上記ステップS110で算出したバイパス空気量制御弁19の開度信号とバイパス排気量制御弁22の全閉信号を出力し、バイパス排気量制御弁22を全閉して、バイパス空気量制御弁19の開度調整により吸気圧Pq=目標吸気圧P1 となるように過給圧を制御して、必要なエンジン出力を確保した上で、ターボ過給機13の過給能力に余力がある範囲内で過給気の一部を排気通路14側にバイパスさせることで、排気温度を低下させて触媒17を冷却し、触媒温度を低下させる。
【0028】
以上説明した過給制御によれば、触媒温度(排気温度T)が目標触媒温度T1 以下の場合、つまり触媒17の冷却が不要な場合には、バイパス空気量制御弁19を全閉することで、排気通路14側への過給気のバイパスを遮断して、過給気による触媒の冷却を停止し、触媒温度の上昇を促進して排気浄化能力を高める。これと共に、バイパス排気量制御弁22の開度を制御することで、排気タービン15の回転数(過給圧)を制御して吸気圧Pq(供給酸素量)を目標吸気圧P1 (目標酸素量)に合わせるように制御し、ディーゼルエンジン11の燃焼効率を向上させて、燃費とドライバビリティを向上させる。
【0029】
一方、触媒温度(排気温度T)が目標触媒温度T1 より高い場合、つまり触媒17の冷却が必要な場合には、吸気圧Pq(供給酸素量)を目標吸気圧P1 (目標酸素量)に合わせるようにバイパス空気量制御弁19及びバイパス排気量制御弁22の開度を制御して、ディーゼルエンジン11の出力を確保した上で、ターボ過給機13の過給能力に余力がある範囲内で触媒温度(排気温度T)と目標触媒温度T1 との差に応じてバイパス空気量制御弁19の開度を制御し、過給気の一部を排気通路14側にバイパスさせることで、排気温度を低下させて触媒17を冷却し、排気浄化能力を高める。
【0030】
以上説明した過給制御の挙動を図5に示すタイムチャートに従って説明する。図5のタイムチャートは、市街地走行時に頻繁に生じる加速→定速走行→減速の走行パターンの例である。アイドル運転中の時刻t0 では、触媒温度が目標触媒温度T1 よりも低いため、バイパス空気量制御弁19が全閉されて、触媒17の冷却は行われない。また、アイドル運転中は、ディーゼルエンジン11の出力は最低で良いため、バイパス排気量制御弁22が全開され、排気タービン15を通過する排気ガスの量が最少となって、ターボ過給機13の仕事量(過給圧)が最低となる。
【0031】
その後、時刻t1 で加速を開始すると、エンジン出力を大きくする必要があるため、バイパス排気量制御弁22が全閉され、ターボ過給機13の仕事量が増大されて過給圧が高められる。この加速開始とほぼ同時に、排気温度が上昇するが、触媒17には熱容量があるため、触媒温度の上昇が排気温度の上昇よりも遅れる。従って、加速時間(t1 −t2 )が比較的短ければ、その加速中は、触媒温度が目標触媒温度T1 よりも低いため、触媒17の冷却は必要ない。この場合には、加速中(t1 −t2 )は、バイパス空気量制御弁19が引き続き全閉状態に維持され、排気通路14側への過給気のバイパスが遮断されて過給気が全て過給圧を高めるのに使用され、エンジン出力が効果的に高められ、良好な加速性が確保される。
【0032】
その後、時刻t2 で加速を終了して定速走行に移行すると、エンジン出力は加速時よりも少なくて済むため、バイパス排気量制御弁22が開放されてターボ過給機13の仕事量(過給圧)が加速時よりも低下する。
【0033】
このとき、触媒温度は、定速走行に移行しても、暫く上昇し続け、時刻t3 で触媒温度が目標触媒温度T1 を越える。このようになると、触媒17の冷却が必要となるため、バイパス空気量制御弁19が触媒温度と目標触媒温度T1 との差に応じた開度まで開放され、過給気の一部が排気通路14側にバイパスされて、触媒17が冷却される。このようにして、過給気の一部を触媒17の冷却に用いると、ディーゼルエンジン11に供給する過給気が減少するため、それを補うように、バイパス排気量制御弁22の開度が絞られ、ターボ過給機13の仕事量が増大されて、定速走行を維持するために必要なエンジン出力が確保される。
【0034】
触媒温度が目標触媒温度T1 に達してからは、エンジン出力を確保した上で、ターボ過給機13の過給能力に余力がある範囲内で触媒温度を目標触媒温度T1 に一致させるようにバイパス空気量制御弁19の開度を制御し、排気浄化能力を高める。
【0035】
従来の一般的なディーゼルエンジンのように、触媒17の冷却(過給気のバイパス)を行わない場合には、図5に点線で示すように、定速走行中に触媒温度が目標触媒温度T1 を大きく越えて、触媒温度と目標触媒温度T1 との差が大きくなり、NOx浄化率が低下してNOx排出量が多くなる。
【0036】
これに対し、本実施形態では、エンジン出力を確保した上で、ターボ過給機13の過給能力に余力がある範囲内で触媒温度と目標触媒温度T1 との差に応じてバイパス空気量制御弁19の開度を制御して、触媒17を冷却する過給気のバイパス量を調整するので、NOx浄化率が高い触媒温度に維持できて、NOx排出量を効果的に低減できる。しかも、排気通路14側への過給気のバイパス(触媒17の冷却)は、ターボ過給機14の過給能力に余力がある範囲内で行われるので、ディーゼルエンジン11への過給気が供給不足になることはなく、エンジン出力が確保されて、ドライバビリティが低下することはなく、排気浄化能力とドライバビリティとを両立できる。
【0037】
尚、ターボ過給機13の下流側の吸気通路12にインタークーラ(過給気を冷却する熱交換器)を設けて、過給効率を高めるようにしても良い。この場合には、吸気バイパス通路18の入口18aをインタークーラよりも下流側に設けることが好ましい。このようにすれば、インタークーラにより冷却された過給気の一部を排気通路14側にバイパスさせることで、触媒17の冷却効果をより高めることができる。
【0039】
一方、図6に示す本発明の第2の実施形態では、ターボ過給機13よりも下流側の吸気通路12と触媒17よりも上流側の排気通路14とをバイパスさせる第1の吸気バイパス通路31が設けられ、この第1の吸気バイパス通路31の出口側には、開度調節可能な第1のバイパス空気量制御弁32が設けられている。更に、第1のバイパス空気量制御弁32よりも上流側の第1の吸気バイパス通路31と触媒17よりも下流側の排気通路14とをバイパスさせる第2の吸気バイパス通路33が設けられ、この第2の吸気バイパス通路33には、開度調節可能な第2のバイパス空気量制御弁34が設けられている。前記第1の実施形態で設けた排気バイパス通路21とバイパス排気量制御弁22は廃止されている。これ以外の構成は、第1の実施形態と同じである。
【0040】
以上のように構成した第2の実施形態では、第1の吸気バイパス通路31と第1のバイパス空気量制御弁32が、第1の実施形態における吸気バイパス通路18とバイパス空気量制御弁19と全く同じ役割を果たす。また、第2の吸気バイパス通路33と第2のバイパス空気量制御弁34は、触媒17の下流側にバイパスさせる過給気の量を調整することで、ディーゼルエンジン11に供給する過給圧を調整するものであり、第1の実施形態における排気バイパス通路21とバイパス排気量制御弁22とほぼ同じ役割を果たす。従って、第1のバイパス空気量制御弁32と第2のバイパス空気量制御弁34の制御は、第1の実施形態におけるバイパス空気量制御弁19とバイパス排気量制御弁22の制御と同一であり、図2及び図3に示す過給制御プログラムにおいて、「バイパス空気量制御弁19」を「第1のバイパス空気量制御弁32」と読み替え、「バイパス排気量制御弁22」を「第2のバイパス空気量制御弁34」と読み替えて制御すれば良い。
【0041】
以上説明した第2の実施形態では、第1の実施形態と同じ効果が得られる上に、排気バイパス通路21(ウェイストゲート)を廃止しても、第2のバイパス空気量制御弁34の開度調整によってディーゼルエンジン11への過負荷を防止することができて、エンジンルーム内のスペースが問題でウェーストゲートを設置できない場合に有効である。
【0042】
尚、第2の実施形態では、第2の吸気バイパス通路33を第1の吸気バイパス通路31の途中から分岐させた構成としたが、これら両吸気バイパス通路31,33を完全に独立させた構成としても良い。
【0043】
また、上記各実施形態では、ディーゼルエンジン11に供給する吸入空気の酸素量(供給酸素量)を吸気圧Pqから推定できる点に着目し、供給酸素量の代用データとして吸気圧Pqを用いるようにした。つまり、吸気圧Pqを検出する吸気圧センサ20を供給酸素量推定手段として用いるようにしたが、吸入空気量を検出する吸入空気量センサ、吸気系への排気ガスの還流量を検出する排気還流量センサ、ディーゼルエンジン11に吸入される酸素量を検出する酸素センサのうちの少なくとも1つのセンサの出力信号に基づいて供給酸素量を推定するようにしても良い。
【0044】
この場合、吸気圧センサ20や吸入空気量センサは、ディーゼルエンジン11の制御のために車両に搭載されている既存のセンサを用いれば良く、コスト的な負担が少なくて済む。更に、吸気圧センサと吸入空気量センサのいずれか一方の検出値と排気還流量センサの検出値とを組み合わせて供給酸素量を推定するようにしても良い。このようにすれば、吸気系へ還流する排気ガス中の酸素を考慮した正確な供給酸素量を推定することができ、制御精度を向上できる。また、酸素センサを用いれば、供給酸素量を直接検出することができて、制御精度を向上できる。
【0045】
また、上記各実施形態では、触媒温度判定手段として排気温度センサ23を用い、触媒温度の代用データとして排気温度Tを用いるようにしたが、触媒温度を直接検出する触媒温度センサを触媒温度判定手段として設けるようにしても良い。その他、本発明は、ガソリンエンジンに適用して実施しても良い等、要旨を逸脱しない範囲内で、種々変更して実施できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態におけるエンジン制御システム全体の概略構成を示す図
【図2】過給制御プログラムの処理の流れを示すフローチャート(その1)
【図3】過給制御プログラムの処理の流れを示すフローチャート(その2)
【図4】触媒温度とNOx浄化率との関係を示す図
【図5】過給制御の挙動を示すタイムチャート
【図6】本発明の第2の実施形態におけるエンジン制御システム全体の概略構成を示す図
【符号の説明】
11…ディーゼルエンジン(内燃機関)、12…吸気通路、13…ターボ過給機(過給機)、14…排気通路、15…排気タービン、17…触媒、18…吸気バイパス通路、19…バイパス空気量制御弁、20…吸気圧センサ(供給酸素量推定手段)、21…排気バイパス通路、22…バイパス排気量制御弁、23…排気温度センサ(触媒温度判定手段)、25…アクセル開度センサ、26…エンジン回転数センサ、27…ECU(制御手段,目標酸素量算出手段)、31…第1の吸気バイパス通路、32…第1のバイパス空気量制御弁、33…第2の吸気バイパス通路、34…第2のバイパス空気量制御弁。

Claims (7)

  1. 吸気通路に設けられた過給機と、排気通路に設けられた排気浄化用の触媒とを備え、前記過給機として、排気エネルギで駆動される排気タービンを駆動源とするターボ過給機を用いた内燃機関制御装置において、
    前記触媒の温度を判定する触媒温度判定手段と、
    前記過給機よりも下流側の吸気通路と前記触媒よりも上流側の排気通路とをバイパスさせる吸気バイパス通路と、
    前記吸気バイパス通路を通過する空気量を制御するバイパス空気量制御弁と、
    前記排気通路に設けられ、前記排気タービンの上流側と下流側とをバイパスさせる排気バイパス通路と、
    前記排気バイパス通路に設けられたバイパス排気量制御弁と、
    内燃機関に供給する吸入空気の酸素量(以下「供給酸素量」という)を推定する供給酸素量推定手段と、
    内燃機関に供給する燃料を燃焼するのに必要な吸入空気の酸素量(以下「目標酸素量」という)を算出する目標酸素量算出手段と、
    前記触媒温度判定手段で判定した触媒温度と目標触媒温度との差及び前記酸素量推定手段で求めた供給酸素量と前記目標酸素量算出手段で求めた目標酸素量との差に基づいて前記バイパス空気量制御弁の開度及び前記バイパス排気量制御弁の開度を制御する制御手段とを備え
    前記制御手段は、前記触媒温度が前記目標触媒温度より高い場合には、前記供給酸素量が前記目標酸素量と一致すると仮定して前記触媒温度を前記目標触媒温度に合わせるように前記バイパス空気量制御弁の開度を算出した後、この算出した前記バイパス空気量制御弁の開度にて前記供給酸素量を前記目標酸素量に合わせるように前記バイパス排気量制御弁の開度を算出し、算出した前記バイパス排気量制御弁の開度が0よりも大きい場合に前記バイパス空気量制御弁の開度及び前記バイパス排気量制御弁の開度をそれぞれ前記算出した開度に調整することを特徴とする内燃機関制御装置。
  2. 前記制御手段は、算出した前記バイパス排気量制御弁の開度が0以下の場合には、前記バイパス排気量制御弁を全閉して前記バイパス空気量制御弁の開度を制御することで、前記供給酸素量を前記目標酸素量に合わせるように制御することを特徴とする請求項1に記載の内燃機関制御装置。
  3. 前記制御手段は、前記触媒温度が前記目標触媒温度以下の場合には、前記バイパス空気量制御弁を全閉して、前記バイパス排気量制御弁の開度を制御することで、前記供給酸素量を前記目標酸素量に合わせるように制御することを特徴とする請求項1又は2に記載の内燃機関制御装置。
  4. 吸気通路に設けられた過給機と、排気通路に設けられた排気浄化用の触媒とを備えた内燃機関制御装置において、
    前記触媒の温度を判定する触媒温度判定手段と、
    前記過給機よりも下流側の吸気通路と前記触媒よりも上流側の排気通路とをバイパスさせる第1の吸気バイパス通路と、
    前記第1の吸気バイパス通路を通過する空気量を制御する第1のバイパス空気量制御弁と、
    前記過給機よりも下流側の吸気通路と前記触媒よりも下流側の排気通路とをバイパスさせる第2の吸気バイパス通路と、
    前記第2の吸気バイパス通路を通過する空気量を制御する第2のバイパス空気量制御弁と、
    内燃機関に供給する吸入空気の酸素量(以下「供給酸素量」という)を推定する供給酸素量推定手段と、
    内燃機関に供給する燃料を燃焼するのに必要な吸入空気の酸素量(以下「目標酸素量」という)を算出する目標酸素量算出手段と、
    前記触媒温度判定手段で判定した触媒温度と目標触媒温度との差及び前記酸素量推定手段で求めた供給酸素量と前記目標酸素量算出手段で求めた目標酸素量との差に基づいて前記第1及び第2のバイパス空気量制御弁の開度を制御する制御手段と
    を備えていることを特徴とする内燃機関制御装置。
  5. 前記制御手段は、前記触媒温度が目標触媒温度より低い場合には、前記第1のバイパス空気量制御弁を閉鎖して、前記第2のバイパス空気量制御弁の開度を制御することで、前記供給酸素量を前記目標酸素量に合わせるように制御し、
    前記触媒温度が目標触媒温度より高い場合には、前記供給酸素量を前記目標酸素量に合わせるように前記第1及び第2のバイパス空気量制御弁の開度を制御した上で前記過給機の過給能力に余力がある範囲内で前記触媒温度と目標触媒温度との差に応じて前記第1のバイパス空気量制御弁の開度を制御することを特徴とする請求項4に記載の内燃機関制御装置。
  6. 前記供給酸素量推定手段は、吸気圧を検出する吸気圧センサ、吸入空気量を検出する吸入空気量センサ、吸気系への排気ガスの還流量を検出する排気還流量センサ、前記内燃機関に吸入される酸素量を検出する酸素センサのうちの少なくとも1つのセンサの出力信号に基づいて供給酸素量を推定することを特徴とする請求項1乃至5のいずれかに記載の内燃機関制御装置。
  7. 前記目標酸素量算出手段は、前記過給機の過給圧限界値に相当する最大酸素量以下の範囲内で前記目標酸素量を内燃機関の運転状態に基づいて算出することを特徴とする請求項1乃至6のいずれかに記載の内燃機関制御装置。
JP21224596A 1996-08-12 1996-08-12 内燃機関制御装置 Expired - Fee Related JP3714495B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21224596A JP3714495B2 (ja) 1996-08-12 1996-08-12 内燃機関制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21224596A JP3714495B2 (ja) 1996-08-12 1996-08-12 内燃機関制御装置

Publications (2)

Publication Number Publication Date
JPH1054251A JPH1054251A (ja) 1998-02-24
JP3714495B2 true JP3714495B2 (ja) 2005-11-09

Family

ID=16619386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21224596A Expired - Fee Related JP3714495B2 (ja) 1996-08-12 1996-08-12 内燃機関制御装置

Country Status (1)

Country Link
JP (1) JP3714495B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818928B1 (ko) * 2010-11-02 2018-02-28 히다치 조센 가부시키가이샤 배기가스 정화장치

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120246B2 (ja) * 2002-03-26 2008-07-16 トヨタ自動車株式会社 過給機付き内燃機関及びその排気構造
JP4552763B2 (ja) * 2005-06-02 2010-09-29 トヨタ自動車株式会社 内燃機関の制御装置
US20090271094A1 (en) * 2006-10-02 2009-10-29 Mack Trucks, Inc. Engine with charge air recirculation and method
GB2442794B (en) * 2006-10-11 2011-05-18 Bentley Motors Ltd An internal combustion engine having a turbocharger
JP4803059B2 (ja) * 2007-02-07 2011-10-26 トヨタ自動車株式会社 内燃機関のシリンダヘッド
JP4858278B2 (ja) * 2007-04-06 2012-01-18 トヨタ自動車株式会社 内燃機関の排気再循環装置
BRPI0906010A2 (pt) * 2008-02-29 2015-06-30 Borgwarner Inc Sistema de turbocompressão de estágios múltiplos
US7980061B2 (en) 2008-03-04 2011-07-19 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
JP5757709B2 (ja) * 2010-08-31 2015-07-29 ダイハツ工業株式会社 内燃機関
KR101300706B1 (ko) * 2011-07-27 2013-08-26 대우조선해양 주식회사 선박 또는 해양 구조물의 배기가스 정화장치 및 방법
JP5814078B2 (ja) * 2011-10-31 2015-11-17 ダイハツ工業株式会社 車載発電システム
JP6203599B2 (ja) 2013-10-22 2017-09-27 ヤンマー株式会社 過給機付エンジン
JP5737662B2 (ja) * 2013-10-24 2015-06-17 国立研究開発法人海上技術安全研究所 船舶の噴出気体供給方法及び噴出気体制御装置
JP6520887B2 (ja) * 2016-10-28 2019-05-29 トヨタ自動車株式会社 排気装置の暖機システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818928B1 (ko) * 2010-11-02 2018-02-28 히다치 조센 가부시키가이샤 배기가스 정화장치

Also Published As

Publication number Publication date
JPH1054251A (ja) 1998-02-24

Similar Documents

Publication Publication Date Title
US6851256B2 (en) Exhaust emission control device
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US6314735B1 (en) Control of exhaust temperature in lean burn engines
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP4124143B2 (ja) 電動機付過給機の制御装置
JP3714495B2 (ja) 内燃機関制御装置
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
JP5839633B2 (ja) 排気ガス後処理システムを運転温度範囲内に保つための方法及び内燃エンジンシステム
EP1205655A1 (en) Device and method for exhaust gas circulation of internal combustion engine
JP2008280923A (ja) エンジンの過給装置
JP2008163794A (ja) 内燃機関の排気再循環装置
JPH07332072A (ja) ターボチャージャ付内燃機関の排気ガス浄化装置
JP2003097298A (ja) 過給機付き内燃機関の制御装置
JPH0828253A (ja) 内燃機関の2次空気供給装置
JP2014169648A (ja) 内燃機関の過給機制御装置
JP6763488B2 (ja) 車両用内燃機関の制御方法および制御装置
EP1350937A2 (en) Energy regeneration control system and method for an internal combustion engine
JPH11229885A (ja) ディーゼルエンジン
JP3387257B2 (ja) 排気ガス還流制御装置付き過給式内燃機関
JP2004316558A (ja) 電動機付過給機の制御装置
JP4877272B2 (ja) Egr流量制御装置及びegr流量制御システム
JP2002188524A (ja) ターボチャージャ付きエンジンのegr制御装置
JP3580140B2 (ja) 機械式過給機付エンジンの制御装置
KR20190071077A (ko) 응축수 배출을 위한 엔진 시스템 및 이를 이용한 제어 방법
JP3448862B2 (ja) ディーゼル機関の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees