JP3706485B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP3706485B2
JP3706485B2 JP30921798A JP30921798A JP3706485B2 JP 3706485 B2 JP3706485 B2 JP 3706485B2 JP 30921798 A JP30921798 A JP 30921798A JP 30921798 A JP30921798 A JP 30921798A JP 3706485 B2 JP3706485 B2 JP 3706485B2
Authority
JP
Japan
Prior art keywords
spiral
dielectric substrate
line
saw
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30921798A
Other languages
Japanese (ja)
Other versions
JP2000138552A (en
Inventor
一弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30921798A priority Critical patent/JP3706485B2/en
Publication of JP2000138552A publication Critical patent/JP2000138552A/en
Application granted granted Critical
Publication of JP3706485B2 publication Critical patent/JP3706485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車電話及び携帯電話等の移動体無線機器等に内蔵される周波数帯域フィルタ(以下、フィルタという)として用いられる弾性表面波装置であって、不平衡入力−平衡出力型あるいは平衡入力−不平衡出力型のものに関する。
【0002】
【従来の技術】
従来の弾性表面波(Surface Acoustic Wave で、以下、SAWと略す)装置Sの基本構成をを図9に示す。同図において、90はAl等から成り櫛歯状電極のIDT(Inter Digital Transducer)電極、91はIDT電極90のSAW伝搬路の両端に配置されSAWを効率良く共振させる反射器である。このSAW装置Sは、2重モード結合共振器型SAWフィルタを構成しており、92はある周波数の高周波信号を入力する入力端子、93は接地端子、94及び95は他の高周波信号を入出力する入出力端子である。尚、これらの部品はLiTaO3 等の圧電基板(図示せず)上に形成されるものであり、またIDT電極90の電極指の対数は数10〜数100対、反射器91の電極指の本数は数10〜数100本に及ぶため、同図では簡略化して描いてある。
【0003】
近年、このようなSAW装置Sについて、移動体通信機器等の高性能化、小型軽量化に伴い、新機能の付加が要求されてきている。その一つに、不平衡入力−平衡出力型あるいは平衡入力−不平衡出力型に構成することの要求がある。
【0004】
ここで、図7(A)に平衡型伝送線路における信号伝搬の原理を、(B)に不平衡型伝送線路における信号伝搬の原理を示す。(A)において、平衡入力及び平衡出力とは、信号72,72が2つの伝送線路70,71間の電位差73として入力あるいは出力するものであり、各伝送線路70,71の信号72,72は振幅が等しく、位相が逆位相になっている。このため、外来ノイズが2つの伝送線路70,71に等しく影響し、外来ノイズが相殺されその影響を受けにくいという利点がある。また、IC等の内部の回路は差動増幅器で構成されるため、ICの信号の入出力端子も信号を2つの端子間の電位差として入力あるいは出力する平衡型(バランス型)であることが多い。
【0005】
これに対して、(B)は不平衡入力あるいは不平衡出力用であり、信号76がグランド75電位に対する1本の伝送線路74の電位77として入力あるいは出力する。
【0006】
そして、SAWフィルタを不平衡入力−平衡出力回路あるいは平衡入力−不平衡出力回路に使用した従来例を図8に示す。同図は携帯電話等の高周波回路の一部であり、80はアンテナ、81はSAWフィルタ、82はインピーダンスマッチング回路、83は不平衡−平衡変換器であるバラン回路、84は高周波ミキサICである。SAWフィルタ81は、一般的に不平衡入力−不平衡出力型SAWフィルタ(以下、不平衡型SAWフィルタと略す)であるため、SAWフィルタ81後段の回路や電子部品が平衡入力型となっている場合は、SAWフィルタ81と後段との間にバラン回路83を挿入した回路構成を採っていた(特許第2773617号公報参照)。同様に、SAWフィルタ81前段の回路や電子部品が平衡出力型となっている場合は、前段とSAWフィルタ81との間にバラン回路を挿入した回路構成となっていた。
【0007】
そこで、近時、インピーダンスマッチング回路82やバラン回路83を削除し、部品点数を少なくして低コスト化するために、SAWフィルタ81に不平衡入力−平衡出力変換機能あるいは平衡入力−不平衡出力変換機能を持たせた、不平衡入力−平衡出力型SAWフィルタあるいは平衡入力−不平衡出力型SAWフィルタ(以下、平衡型SAWフィルタと略す)の実用化が進められている。
【0008】
【発明が解決しようとする課題】
上記のような、従来の不平衡型SAWフィルタとバラン回路との組合せでは、搭載される回路部品がSAWフィルタとバラン回路及びインピーダンスマッチング回路を構成する複数のインダクタ及びキャパシタであり、部品点数が多く、実装コストや小型軽量化が困難である。また、図9に示した2重モード結合共振器型SAWフィルタの場合、高周波化に伴ってIDT電極90の電極指幅が微細化され、その結果耐電力性に乏しくGHz帯高周波フィルタには不向きである。また、伝搬型SAWフィルタは原理的に挿入損失が大きくGHz帯高周波フィルタには不向きである。
【0009】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は不平衡−平衡変換機能を有し、GHz帯高周波用として十分な耐電力性と低い挿入損失を有するものとすることにある。
【0010】
【課題を解決するための手段】
本発明の弾性表面波装置は、圧電基板の主面に少なくとも一対の櫛歯状電極を有する複数の弾性表面波共振器で構成された弾性表面波素子と、平衡−不平衡変換回路を形成した第一の誘電体基板とを積層し、前記弾性表面波素子と第一の誘電体基板との間にインピーダンス変換回路を形成した第二の誘電体基板を設けて成り、
前記第一の誘電体基板は積層された二つの下側誘電体基板Aと上側誘電体基板Bから成り、下側誘電体基板Aの主面上に対称的な二つの渦巻状線路a1 ,a2 を連続したストリップラインで形成し、上側誘電体基板Bの主面上に前記渦巻状線路a1 に対応し且つ電磁結合する渦巻状線路b1 と、前記渦巻状線路a2 に対応し且つ電磁結合する渦巻状線路b2 とを形成し、
前記第二の誘電体基板の主面に前記渦巻状線路b1 ,b2 に対応する渦巻状線路c1 ,c2 を、線路幅が漸次変化するように設けたことを特徴とする。
【0011】
本発明において、好ましくは、前記渦巻状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 に代えて、蛇行状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 とする。
【0012】
また、本発明において、前記渦巻状線路a1 の一端は高周波信号の入力端子に、前記渦巻状線路a2 の一端は開放端電極に、前記渦巻状線路b1 の一端は接地電極に他端は渦巻状線路c1 に、前記渦巻状線路b2 の一端は接地電極に他端は渦巻状線路c2 に、前記渦巻状線路c1 ,c2 の各一端は前記弾性表面波素子に、各々接続して成る。
【0013】
このような誘電体基板の積層構造により、高い耐電力性が得られ、挿入損失の小さいGHz帯高周波用SAWフィルタと成り、更に不平衡−平衡変換機能を有する平衡型SAWフィルタを構成できる。
【0014】
【発明の実施の形態】
本発明のSAW装置について以下に説明する。図1は、本発明のSAW装置S1を各誘電体基板毎に分離した分解斜視図である。SAW装置S1は、誘電体セラミック、耐熱性ガラスエポキシ樹脂等から成る誘電体基板2,3,4,5,6(A,B),7,8を積層し、その最上部にAl,Cu等の金属、誘電体セラミック又は耐熱性ガラスエポキシ樹脂等から成る蓋体1を被せた構成である。10はSAW素子であり、LiNbO3 等の圧電基板の主面上に、少なくとも一対のIDT電極を有する複数のSAW共振器を形成して成る。このような積層型のSAW装置S1は高い耐電力性があり、挿入損失の小さいGHz帯高周波用SAWフィルタとして使用できると共に、本発明では更に不平衡−平衡変換機能を付与し、かつ渦巻状にストリップライン(以下、SLと略す)を形成したことにより極めて小型軽量化されたものとなる。
【0015】
更に具体的に説明すると、2はSAW素子10の上面側の振動部を妨げないように枠状(リング状)にし空洞部を形成した誘電体基板、3はSAW素子10を載置するための空洞部を形成し、入力用のSL15,16及び出力用のSL13,14を設けた誘電体基板である。4は、SAW素子10載置部(誘電体基板1〜3側)とその下側の誘電体基板5上のSLとの電磁結合を遮断する接地電極17が形成された誘電体基板である。
【0016】
ここで、6は平衡−不平衡変換回路を形成した第一の誘電体基板であり、積層された二つの下側誘電体基板Aと上側誘電体基板Bから成り、下側誘電体基板Aの主面上に対称的な二つの渦巻状線路a1 ,a2 を連続したSLで形成し、上側誘電体基板Bの主面上に前記渦巻状線路a1 に対応し且つ電磁結合する渦巻状線路b1 を一本のSLで、前記渦巻状線路a2 に対応し且つ電磁結合する渦巻状線路b2 をもう一本のSLでもって形成して成る。
【0017】
また、5は、前記第一の誘電体基板6とSAW素子10との間に積層されインピーダンス変換回路を形成した第二の誘電体基板であり、第二の誘電体基板5の主面に前記渦巻状線路b1 ,a2 に対応する渦巻状線路c1 ,c2 を、線路幅が漸次変化する二本のSLで形成している。
【0018】
前記渦巻状線路c1 ,c2 は、インピーダンスを調整する上で線路幅を漸次変化させており、例えば渦巻状線路c1 ,c2 の中途で線路幅を部分的に大きくするとインピーダンスが離散的に大きく変化し、インピーダンス整合が困難になる。
【0019】
また、前記渦巻状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 は、これらが電磁結合する上で電磁場が集中して結合効率が良好な形状である。この渦巻状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 に代えて、蛇行状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 としても良く、その場合にもほぼ同様に良好な結合効率が得られる。また、蛇行状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 として、単に蛇行させた形状に限らず、蛇行しつつその蛇行部にループを形成するような形状等でも構わない。
【0020】
そして、前記渦巻状線路a1 の一端は、誘電体基板7の主面上に形成され高周波信号の入力端に続くSL11に接続され、前記渦巻状線路a2 の一端は、誘電体基板7の主面上に形成され開放端電極用のSL12に接続される。前記渦巻状線路b1 の一端は接地電極4に他端は渦巻状線路c1 に、前記渦巻状線路b2 の一端は接地電極4に他端は渦巻状線路c2 に、前記渦巻状線路c1 ,c2 の各一端はSAW素子10の入力用のSL15,16に、各々接続している。尚、これらの接続は、公知のビアホール電極、スルーホール電極等により容易に行うことができる。
【0021】
また、渦巻状線路a1 ,a2 用のSLは、通過させる高周波信号の波長λの約2分の1の線路長を持ち、渦巻状線路b1 ,b2 用の各SLは約λ/4の線路長であり、渦巻状線路c1 ,c2 用の各SLは約λ/4の線路長である。これらのSLの厚さは5μm〜50μmが良く、5μm未満では誘電体基板をグリーンシートで作成する際に断線し易くなり、50μmを超えると誘電体基板を積層する際に全体の厚さが大きくなる。
【0022】
更に、8は、外部との電磁結合を遮断するために一主面のほぼ全面に接地電極18が形成された誘電体基板である。
【0023】
上記誘電体基板3〜8に形成されたSL、電極等は、上下方向の隣接する誘電体基板のSL、電極等に直接接触しないように、一様に上側又は下側の主面上に形成されている。
【0024】
本発明において、第二の誘電体基板5上に形成されたインピーダンス変換回路用のSLは、図2に示すように、渦巻状線路c1 ,c2 の線路幅が徐々に変化するように構成される。図2(A)は、渦巻状線路c1a,c2aの線路幅が、折り曲げ部を境に段階的に変化しており、SAW素子10の入力部(中心部の端部)へ向かって小さくしたものである。(B)は、渦巻状線路c1b,c2bの線路幅が、連続的(テーパ状)に変化しており、SAW素子10の入力部(中心部の端部)へ向かって小さくしたタイプである。
【0025】
このように、渦巻状線路c1 ,c2 の線路幅を変化させることにより、インピーダンス整合特性が非常に良好なものとなる。例えば、従来、線路幅250μmで一定のSLで形成した場合、SLの長さが設計値から±1%程度ずれただけでインピーダンス整合がとれなくなっていた。これに対し、例えば図2(A)の場合、線路幅を400μm,350μm,300μm,250μm,200μm,150μm,100μmのように変化させると、SLの長さが設計値から±10%程度ずれてもインピーダンス整合をとることができる。即ち、約10倍のインピーダンス整合特性が得られる。同様に、図2(B)の場合、最大線路幅400μm、最小線路幅100μmで、最大線路幅から最小線路幅に向かって連続的に変化するようにしており、(A)とほぼ同じインピーダンス整合特性が得られる。
【0026】
また、本発明においては、上記の理由で渦巻状線路c1 ,c2 の線路長をレーザ等によりカットすることにより、容易に高精度のインピーダンス調整が可能になる。
【0027】
ここで、図3は本発明のSAW装置S1の等価回路図であり、31は高周波信号の入力端子、32は開放端、33は入力端子31及び開放端32側のSL、34は一端が接地電極40に他端がインピーダンス調整用SL36に接続され且つSL33に電磁結合したSL、35は一端が接地電極40に他端がインピーダンス調整用SL37に接続され且つSL33に電磁結合したSLである。これらはバラン回路部50を構成する。
【0028】
また、36,37はインピーダンス調整用SLであり、インピーダンス変換回路部51である。41はSAW共振器であり、ラダー型及びブリッジ型に接続され、SAWフィルター部52を構成する。38,39は高周波信号の出力端子である。同図において、入力端子31から入力された不平衡信号は、不平衡−平衡変換部のバラン回路部50を通り、平衡信号に変換される。この平衡信号はインピーダンス変換回路部51を通り、SAW素子にマッチする低インピーダンスに変換され、SAWフィルター部52にて急峻なフィルタリングが施される。
【0029】
更に、図4は本発明のSAW装置S1を用いた携帯電話等の高周波回路のブロック図であり、60はアンテナ、61はSAW装置S1を用いた平衡型SAWフィルター、62は高周波用ミキサICである。このように、バラン回路及びインピーダンス変換回路を別個に設ける必要がなくなる。
【0030】
本発明の誘電体基板2〜8は、その厚さは50μm〜500μmが良く、500μm未満では誘電体基板をグリーンシートで作成するのが困難になり、500μmを超えるとSAW装置S1全体が厚くなりすぎる。
【0031】
上記誘電体基板2〜8としては、アルミナセラミック、ガラスセラミック、窒化アルミニウムセラミック等が好適であり、その製法は以下のようなものである。セラミック原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿水になすとともにこれを公知のドクターブレード法、カレンダーロール法等によりシート状に成すことによってセラミックグリーンシートを得、その後、複数枚のセラミックグリーンシートの各々を打ち抜き加工法等で加工してこれらを積層する。そして、アルミナセラミックの場合は1500〜1700℃、ガラスセラミックの場合は850〜1000℃、窒化アルミニウムセラミックの場合は1600〜19000℃の温度で焼成することによって製造される。
【0032】
また、SLとしては、誘電体基板2〜8がアルミナセラミックから成る場合、タングステン等の金属粉末にアルミナ、シリカ、マグネシア等の酸化物や有機溶剤、溶媒等を添加混合してペースト状にしたものを厚膜印刷法によりセラミックグリーンシート上に印刷し、その後、約1600℃で焼成し、厚さ10〜15μm程度に形成する。また、上記金属粉末は、ガラスセラミックの場合はCu,Au,Ag等が、窒化アルミニウムセラミックの場合はタングステン・モリブデンが好適である。
【0033】
また、本発明のSAW共振器は、IDT電極がAlあるいはAl合金(Al−Cu系,Al−Ti系等)からなるのが良く、特にAlが励振効率が高く、材料コストが低いため好ましい。また、IDT電極は蒸着法、スパッタリング法又はCVD法等の薄膜形成法により形成する。
【0034】
そして、IDT電極の電極指の対数は50〜200程度、電極指の線幅は0.1〜10.0μm程度、電極指の間隔は0.1〜10.0μm程度、電極指の開口幅(交差幅)は10〜100μm程度、IDT電極の厚みは0.2〜0.4μm程度とすることが、SAW共振子あるいはSAWフィルタとしての所期の特性を得るうえで好適である。また、IDT電極の電極指間に酸化亜鉛,酸化アルミニウム等の圧電材料を成膜すれば、SAWの共振効率が向上し好適である。
【0035】
圧電基板としては、36°±10°Yカット−X伝搬のLiTaO3 単結晶、64°Yカット−X伝搬のLiNbO3 単結晶、45°Xカット−Z伝搬のLiB4 7 単結晶等が、電気機械結合係数が大きく且つ群遅延時間温度係数が小さいため好ましく、特に電気機械結合係数の大きな36°±10°Yカット−X伝搬のLiTaO3 単結晶が良い。また、結晶Y軸方向におけるカット角は36°±10°の範囲内であれば良く、その場合十分な圧電特性が得られる。圧電基板の厚みは0.1〜0.5mm程度がよく、0.1mm未満では圧電基板が脆くなり、0.5mm超では材料コストが大きくなる。
【0036】
かくして、本発明は不平衡−平衡変換機能を有し、GHz帯高周波用として十分な耐電力性と低い挿入損失、更に良好なインピーダンス整合特性を有するという作用効果を有する。
【0037】
尚、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更は何等差し支えない。
【0038】
【実施例】
本発明の実施例を以下に示す。
【0039】
(実施例)
図1のSAW装置S1及び図2(A)の第二の誘電体基板5を以下のように構成した。ガラスセラミックから成り、3mm×3mm×0.1mmの寸法で、厚さ0.1mmの誘電体基板2〜8を用い、渦巻状線路c1 ,c2 用のSL以外のSLについて、Cuの材料で15μmの厚さで形成した。蓋体1は誘電体基板2〜8とほぼ同じ寸法のAl板とした。
【0040】
渦巻状線路c1 ,c2 用のSLは、Cuの材料を用い15μmの厚さで、中心部に向かって折り曲げ部を境に線路幅を、400μm,350μm,300μm,250μm,200μm,150μm,100μmのように変化させ形成した。
【0041】
このSAW装置S1を、図4のような高周波回路に組み込み、1.64GHz〜2.04GHz帯域の高周波信号を入力し、その通過特性(フィルタ特性)、定在波比(インピーダンス特性)を測定した結果を図5、図6に示す。
【0042】
図5において、(A)は本発明品、(B)は図8のようにSAW素子単独をSAWフィルタ81として用いた従来品の特性であり、本発明品は中心周波数1.84GHz近傍の通過帯域の損失が小さくなり、通過帯域の平坦性が改善され、また特に高周波側で急峻なフィルタ特性が得られた。
【0043】
図6の定在波比は、|(1+|入出力インピーダンス/公称終端抵抗|)/(1−|入出力インピーダンス/公称終端抵抗|)|で表され、1に近いほど良好なインピーダンス特性、即ち良好な信号通過特性となる。同図において、(A)は本発明品、(B)は図8のようにSAW素子単独をSAWフィルタ81として用いた従来品の特性であり、同図の実線部はSAW装置の入力側の定在波比、破線部はSAW装置の出力側の定在波比を示す。同図に示すように、本発明品は、入力側と出力側のいずれにおいても、従来品に比較して極めて良好なインピーダンス特性が得られた。
【0044】
【発明の効果】
本発明は、圧電基板の主面に形成した弾性表面波素子と、平衡−不平衡変換回路を形成した第一の誘電体基板とを積層し、弾性表面波素子と第一の誘電体基板との間にインピーダンス変換回路を形成した第二の誘電体基板を設け、
第一の誘電体基板は積層された二つの下側誘電体基板Aと上側誘電体基板Bから成り、下側誘電体基板Aの主面上に対称的な二つの渦巻状線路a1 ,a2 を連続したストリップラインで形成し、上側誘電体基板Bの主面上に渦巻状線路a1 に対応し且つ電磁結合する渦巻状線路b1 と、渦巻状線路a2 に対応し且つ電磁結合する渦巻状線路b2 とを形成し、
第二の誘電体基板の主面に渦巻状線路b1 ,a2 に対応する渦巻状線路c1 ,c2 を、線路幅が漸次変化するように設けることにより、極めて小型軽量で低コストな上、不平衡−平衡変換機能を有し、GHz帯高周波用として十分な耐電力性と小さな挿入損失を有するという作用効果を有する。また、インピーダンス整合特性に優れ、従来の約10倍程度の高精度でインピーダンス整合ができる。
【図面の簡単な説明】
【図1】本発明のSAW装置S1の分解斜視図である。
【図2】本発明の第二の誘電体基板の平面図であり、(A)はストリップラインが段階的に変化するタイプ、(B)はストリップラインが連続的に変化するタイプである。
【図3】本発明のSAW装置S1の等価回路図である。
【図4】本発明のSAW装置S1を携帯電話等の高周波回路に組み込んだ場合のブロック回路図である。
【図5】(A)は本発明のSAW装置S1の通過特性(フィルタ特性)を示すグラフ、(B)は従来品の通過特性を示すグラフである。
【図6】(A)は本発明のSAW装置S1の定在波比特性を示すグラフ、(B)は従来品の定在波比特性を示すグラフである。
【図7】(A)は平衡型伝送線路の信号伝搬の原理を示す説明図、(B)は不平衡型伝送線路の信号伝搬の原理を示す説明図である。
【図8】従来のSAW装置を携帯電話等の高周波回路に組み込んだ場合のブロック回路図である。
【図9】従来の2重モード結合共振器型SAWフィルタの基本構成の平面図である。
【符号の説明】
1:蓋体
2〜8:誘電体基板
10:SAW素子
11:入力端に続くストリップライン
12:開放端電極用のストリップライン
13:出力用のストリップライン
14:出力用のストリップライン
15:入力用のストリップライン
16:入力用のストリップライン
17:接地電極
18:接地電極
A:下側誘電体基板
B:上側誘電体基板
a1 :渦巻状線路
a2 :渦巻状線路
b1 :渦巻状線路
b2 :渦巻状線路
c1 :渦巻状線路
c2 :渦巻状線路
[0001]
BACKGROUND OF THE INVENTION
The present invention is a surface acoustic wave device used as a frequency band filter (hereinafter referred to as a filter) built in a mobile wireless device such as a car phone and a mobile phone, and is an unbalanced input-balanced output type or balanced input. -For unbalanced output types.
[0002]
[Prior art]
The basic structure of a conventional surface acoustic wave (hereinafter abbreviated as SAW) device S is shown in FIG. In the figure, reference numeral 90 is an IDT (Inter Digital Transducer) electrode made of Al or the like, and 91 is a reflector disposed at both ends of the SAW propagation path of the IDT electrode 90 to resonate the SAW efficiently. This SAW device S constitutes a dual mode coupled resonator SAW filter, 92 is an input terminal for inputting a high frequency signal of a certain frequency, 93 is a ground terminal, and 94 and 95 are input / output of other high frequency signals. This is an input / output terminal. These components are formed on a piezoelectric substrate (not shown) such as LiTaO 3 , and the number of electrode fingers of the IDT electrode 90 is several tens to several hundreds, and the number of electrode fingers of the reflector 91 is Since the number ranges from several tens to several hundreds, the drawing is simplified in FIG.
[0003]
In recent years, the addition of new functions has been required for such SAW devices S as the performance of mobile communication devices and the like has been reduced. For example, there is a demand to configure an unbalanced input-balanced output type or a balanced input-unbalanced output type.
[0004]
Here, FIG. 7A shows the principle of signal propagation in a balanced transmission line, and FIG. 7B shows the principle of signal propagation in an unbalanced transmission line. In (A), balanced input and balanced output are signals 72 and 72 that are input or output as a potential difference 73 between the two transmission lines 70 and 71. The signals 72 and 72 of the transmission lines 70 and 71 are The amplitude is equal and the phase is opposite. For this reason, there is an advantage that the external noise equally affects the two transmission lines 70 and 71, and the external noise is offset and hardly affected. In addition, since an internal circuit such as an IC is composed of a differential amplifier, an input / output terminal of an IC signal is often a balanced type (balanced type) that inputs or outputs a signal as a potential difference between two terminals. .
[0005]
On the other hand, (B) is for unbalanced input or unbalanced output, and the signal 76 is input or output as the potential 77 of one transmission line 74 with respect to the ground 75 potential.
[0006]
FIG. 8 shows a conventional example in which the SAW filter is used for an unbalanced input-balanced output circuit or a balanced input-unbalanced output circuit. This figure is a part of a high-frequency circuit such as a cellular phone, 80 is an antenna, 81 is a SAW filter, 82 is an impedance matching circuit, 83 is a balun circuit that is an unbalance-balance converter, and 84 is a high-frequency mixer IC. . Since the SAW filter 81 is generally an unbalanced input-unbalanced output type SAW filter (hereinafter abbreviated as an unbalanced SAW filter), circuits and electronic components subsequent to the SAW filter 81 are of a balanced input type. In this case, a circuit configuration in which a balun circuit 83 is inserted between the SAW filter 81 and the subsequent stage has been adopted (see Japanese Patent No. 2773617). Similarly, in the case where the circuit or electronic component in the previous stage of the SAW filter 81 is a balanced output type, the circuit configuration is such that a balun circuit is inserted between the previous stage and the SAW filter 81.
[0007]
Therefore, recently, the impedance matching circuit 82 and the balun circuit 83 are eliminated, and the SAW filter 81 is provided with an unbalanced input-balanced output conversion function or a balanced input-unbalanced output conversion in order to reduce the number of parts and reduce the cost. An unbalanced input / balanced output SAW filter or a balanced input / unbalanced output SAW filter (hereinafter, abbreviated as a balanced SAW filter) having a function has been put into practical use.
[0008]
[Problems to be solved by the invention]
In the combination of the conventional unbalanced SAW filter and the balun circuit as described above, the mounted circuit components are a plurality of inductors and capacitors constituting the SAW filter, the balun circuit and the impedance matching circuit, and the number of components is large. It is difficult to reduce the mounting cost and size. In the case of the dual-mode coupled resonator type SAW filter shown in FIG. 9, the electrode finger width of the IDT electrode 90 is made finer as the frequency increases, resulting in poor power durability and unsuitable for the GHz band high frequency filter. It is. Propagation SAW filters have a large insertion loss in principle and are not suitable for GHz band high frequency filters.
[0009]
Therefore, the present invention has been completed in view of the above circumstances, and its purpose is to have an unbalanced-balanced conversion function and to have sufficient power resistance and low insertion loss for high frequency in the GHz band. It is in.
[0010]
[Means for Solving the Problems]
In the surface acoustic wave device of the present invention, a surface acoustic wave element composed of a plurality of surface acoustic wave resonators having at least a pair of comb-like electrodes on the main surface of a piezoelectric substrate and a balanced-unbalanced conversion circuit are formed. A first dielectric substrate is laminated, and a second dielectric substrate in which an impedance conversion circuit is formed between the surface acoustic wave element and the first dielectric substrate is provided.
The first dielectric substrate comprises two laminated lower dielectric substrates A and B, and two symmetrical spiral lines a1 and a2 on the main surface of the lower dielectric substrate A. Are formed on the main surface of the upper dielectric substrate B, the spiral line b1 corresponding to the spiral line a1 and electromagnetically coupled, and the spiral corresponding to the spiral line a2 and electromagnetically coupled. A line-shaped line b2,
The spiral lines c1 and c2 corresponding to the spiral lines b1 and b2 are provided on the main surface of the second dielectric substrate so that the line width gradually changes.
[0011]
In the present invention, preferably, meandering lines a1, a2, b1, b2, b1, c1, c2 are used instead of the spiral lines a1, a2, b1, b2, c1, c2.
[0012]
In the present invention, one end of the spiral line a1 is an input terminal for a high frequency signal, one end of the spiral line a2 is an open end electrode, one end of the spiral line b1 is a ground electrode, and the other end is a spiral shape. One end of the spiral line b2 is connected to the ground electrode, the other end is connected to the spiral line c2, and one end of each of the spiral lines c1 and c2 is connected to the surface acoustic wave element.
[0013]
With such a laminated structure of dielectric substrates, a high power durability can be obtained, a high-frequency SAW filter with a low insertion loss can be obtained, and a balanced SAW filter having an unbalance-balance conversion function can be configured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The SAW device of the present invention will be described below. FIG. 1 is an exploded perspective view in which the SAW device S1 of the present invention is separated for each dielectric substrate. The SAW device S1 is formed by laminating dielectric substrates 2, 3, 4, 5, 6 (A, B), 7, 8 made of dielectric ceramic, heat-resistant glass epoxy resin, etc., and Al, Cu, etc. on the top. The lid 1 is made of a metal, a dielectric ceramic, a heat-resistant glass epoxy resin, or the like. Reference numeral 10 denotes a SAW element, which is formed by forming a plurality of SAW resonators having at least a pair of IDT electrodes on the main surface of a piezoelectric substrate such as LiNbO 3 . Such a stacked SAW device S1 has high power durability and can be used as a high-frequency SAW filter with a low insertion loss, and in the present invention, it is further provided with an unbalance-balance conversion function and is formed in a spiral shape. By forming a strip line (hereinafter abbreviated as SL), the size and weight are extremely reduced.
[0015]
More specifically, 2 is a dielectric substrate in which a cavity is formed in a frame shape (ring shape) so as not to interfere with the vibration portion on the upper surface side of the SAW element 10, and 3 is for mounting the SAW element 10 This is a dielectric substrate in which a hollow portion is formed and SL15 and 16 for input and SL13 and 14 for output are provided. Reference numeral 4 denotes a dielectric substrate on which a ground electrode 17 for blocking electromagnetic coupling between the SAW element 10 mounting portion (dielectric substrates 1 to 3 side) and SL on the lower dielectric substrate 5 is formed.
[0016]
Here, reference numeral 6 denotes a first dielectric substrate on which a balanced-unbalanced conversion circuit is formed. The first dielectric substrate is composed of two stacked lower dielectric substrates A and B. Two symmetrical spiral lines a1 and a2 are formed by continuous SL on the main surface, and a spiral line b1 corresponding to the spiral line a1 and electromagnetically coupled is formed on the main surface of the upper dielectric substrate B. A single SL forms a spiral line b2 corresponding to the spiral line a2 and electromagnetically coupled with the other SL.
[0017]
Reference numeral 5 denotes a second dielectric substrate that is laminated between the first dielectric substrate 6 and the SAW element 10 to form an impedance conversion circuit, and is formed on the main surface of the second dielectric substrate 5. The spiral lines c1 and c2 corresponding to the spiral lines b1 and a2 are formed by two SLs whose line widths gradually change.
[0018]
The spiral lines c1 and c2 gradually change the line width in adjusting the impedance. For example, when the line width is partially increased in the middle of the spiral lines c1 and c2, the impedance changes discretely and greatly. Impedance matching becomes difficult.
[0019]
Further, the spiral lines a1, a2, b1, b2, c1, c2 have a good coupling efficiency because they are electromagnetically coupled and the electromagnetic field is concentrated. Instead of the spiral lines a1, a2, b1, b2, c1, c2, meandering lines a1, a2, b1, b2, c1, c2 may be used, and in that case, a good coupling efficiency can be obtained in the same manner. It is done. Further, the meandering lines a1, a2, b1, b2, c1, and c2 are not limited to a meandering shape, but may be a shape that forms a loop in the meandering portion while meandering.
[0020]
One end of the spiral line a1 is formed on the main surface of the dielectric substrate 7 and connected to the SL 11 following the high-frequency signal input end, and one end of the spiral line a2 is connected to the main surface of the dielectric substrate 7. It is formed on and connected to SL12 for open end electrode. One end of the spiral line b1 is connected to the ground electrode 4, the other end is connected to the spiral line c1, one end of the spiral line b2 is connected to the ground electrode 4, the other end is connected to the spiral line c2, and the spiral lines c1, c2 are connected. Each end is connected to SL15 and 16 for input of SAW element 10, respectively. These connections can be easily made by a known via hole electrode, through hole electrode, or the like.
[0021]
In addition, the SL for the spiral lines a1 and a2 has a line length of about one half of the wavelength λ of the high-frequency signal to be passed, and each SL for the spiral lines b1 and b2 has a line length of about λ / 4. Each of the SLs for the spiral lines c1 and c2 has a line length of about λ / 4. The thickness of these SL is preferably 5 μm to 50 μm. If the thickness is less than 5 μm, the dielectric substrate is likely to be disconnected when the dielectric substrate is made of a green sheet. If the thickness exceeds 50 μm, the entire thickness increases when the dielectric substrate is laminated. Become.
[0022]
Further, 8 is a dielectric substrate in which a ground electrode 18 is formed on almost the entire main surface in order to block electromagnetic coupling with the outside.
[0023]
The SL and electrodes formed on the dielectric substrates 3 to 8 are uniformly formed on the upper or lower main surface so as not to directly contact the SL and electrodes of the adjacent dielectric substrates in the vertical direction. Has been.
[0024]
In the present invention, the SL for the impedance conversion circuit formed on the second dielectric substrate 5 is configured such that the line widths of the spiral lines c1 and c2 gradually change as shown in FIG. . In FIG. 2A, the line widths of the spiral lines c1a and c2a are changed stepwise from the bent part and are reduced toward the input part (end part of the central part) of the SAW element 10. It is. (B) is a type in which the line widths of the spiral lines c1b and c2b are continuously changed (tapered) and are reduced toward the input part (end part of the center part) of the SAW element 10.
[0025]
As described above, by changing the line widths of the spiral lines c1 and c2, the impedance matching characteristic becomes very good. For example, conventionally, when the line width is 250 μm and a constant SL is used, impedance matching cannot be achieved if the SL length is shifted by about ± 1% from the design value. On the other hand, in the case of FIG. 2A, for example, when the line width is changed to 400 μm, 350 μm, 300 μm, 250 μm, 200 μm, 150 μm, 100 μm, the SL length is shifted by about ± 10% from the design value. Can also be impedance matched. That is, about 10 times the impedance matching characteristic can be obtained. Similarly, in the case of FIG. 2B, the maximum line width is 400 .mu.m and the minimum line width is 100 .mu.m, and continuously changes from the maximum line width toward the minimum line width. Characteristics are obtained.
[0026]
In the present invention, the impedance length can be easily adjusted with high precision by cutting the lengths of the spiral lines c1 and c2 with a laser or the like for the above reasons.
[0027]
Here, FIG. 3 is an equivalent circuit diagram of the SAW device S1 of the present invention, in which 31 is an input terminal for high-frequency signals, 32 is an open end, 33 is SL on the input terminal 31 and open end 32 side, and 34 is grounded at one end. SL, 35, whose other end is connected to the impedance adjustment SL 36 and electromagnetically coupled to SL 33, is connected to the ground electrode 40 and the other end is connected to the impedance adjustment SL 37, and is electromagnetically coupled to SL 33. These constitute the balun circuit unit 50.
[0028]
Reference numerals 36 and 37 denote impedance adjustment SLs, which are impedance conversion circuit units 51. Reference numeral 41 denotes a SAW resonator, which is connected to a ladder type and a bridge type, and constitutes a SAW filter unit 52. Reference numerals 38 and 39 denote high-frequency signal output terminals. In the figure, the unbalanced signal input from the input terminal 31 passes through the balun circuit section 50 of the unbalance-balance conversion section and is converted into a balanced signal. This balanced signal passes through the impedance conversion circuit unit 51, is converted to a low impedance that matches the SAW element, and is sharply filtered by the SAW filter unit 52.
[0029]
Further, FIG. 4 is a block diagram of a high-frequency circuit such as a cellular phone using the SAW device S1 of the present invention, wherein 60 is an antenna, 61 is a balanced SAW filter using the SAW device S1, and 62 is a high-frequency mixer IC. is there. Thus, it is not necessary to provide a balun circuit and an impedance conversion circuit separately.
[0030]
The thickness of the dielectric substrates 2 to 8 of the present invention is preferably 50 μm to 500 μm. If the thickness is less than 500 μm, it becomes difficult to produce the dielectric substrate with a green sheet, and if it exceeds 500 μm, the entire SAW device S1 becomes thick. Too much.
[0031]
As the dielectric substrates 2 to 8, alumina ceramic, glass ceramic, aluminum nitride ceramic or the like is suitable, and the manufacturing method thereof is as follows. A ceramic green sheet is obtained by adding a suitable organic solvent and a solvent to the ceramic raw material powder to form slurry, and forming this into a sheet by a known doctor blade method, calender roll method, etc. Each of the ceramic green sheets is processed by a punching method or the like and laminated. And it is manufactured by firing at a temperature of 1500 to 1700 ° C. in the case of alumina ceramic, 850 to 1000 ° C. in the case of glass ceramic, and 1600 to 19000 ° C. in the case of aluminum nitride ceramic.
[0032]
In addition, as SL, when the dielectric substrates 2 to 8 are made of alumina ceramic, paste is made by adding and mixing oxides such as alumina, silica, and magnesia, organic solvents, solvents, etc. to metal powder such as tungsten. Is printed on a ceramic green sheet by a thick film printing method, and then fired at about 1600 ° C. to form a thickness of about 10 to 15 μm. The metal powder is preferably Cu, Au, Ag or the like in the case of glass ceramic, and tungsten / molybdenum in the case of aluminum nitride ceramic.
[0033]
In the SAW resonator of the present invention, the IDT electrode is preferably made of Al or an Al alloy (Al—Cu type, Al—Ti type, etc.), and Al is particularly preferable because of high excitation efficiency and low material cost. The IDT electrode is formed by a thin film forming method such as an evaporation method, a sputtering method, or a CVD method.
[0034]
The number of electrode fingers of the IDT electrode is about 50 to 200, the line width of the electrode fingers is about 0.1 to 10.0 μm, the distance between the electrode fingers is about 0.1 to 10.0 μm, and the opening width of the electrode fingers ( In order to obtain the desired characteristics as a SAW resonator or SAW filter, it is preferable that the cross width is about 10 to 100 μm and the thickness of the IDT electrode is about 0.2 to 0.4 μm. In addition, it is preferable to form a piezoelectric material such as zinc oxide or aluminum oxide between electrode fingers of the IDT electrode because SAW resonance efficiency is improved.
[0035]
Piezoelectric substrates include 36 ° ± 10 ° Y cut-X propagation LiTaO 3 single crystal, 64 ° Y cut-X propagation LiNbO 3 single crystal, 45 ° X cut-Z propagation LiB 4 O 7 single crystal, etc. A 36 ° ± 10 ° Y cut-X propagation LiTaO 3 single crystal having a large electromechanical coupling coefficient and a small group delay time temperature coefficient is preferable. Further, the cut angle in the crystal Y-axis direction may be in the range of 36 ° ± 10 °, and in that case, sufficient piezoelectric characteristics can be obtained. The thickness of the piezoelectric substrate is preferably about 0.1 to 0.5 mm. If the thickness is less than 0.1 mm, the piezoelectric substrate becomes brittle, and if it exceeds 0.5 mm, the material cost increases.
[0036]
Thus, the present invention has an effect of having an unbalanced-balanced conversion function, sufficient power durability, a low insertion loss, and a better impedance matching characteristic for a high frequency band in the GHz band.
[0037]
In addition, this invention is not limited to the said embodiment, A various change does not interfere in the range which does not deviate from the summary of this invention.
[0038]
【Example】
Examples of the present invention are shown below.
[0039]
(Example)
The SAW device S1 in FIG. 1 and the second dielectric substrate 5 in FIG. 2A were configured as follows. It is made of glass ceramic and has a size of 3 mm × 3 mm × 0.1 mm and a dielectric substrate 2 to 8 having a thickness of 0.1 mm. SL other than the SLs for the spiral lines c1 and c2 is 15 μm in Cu material. The thickness was formed. The lid 1 was an Al plate having substantially the same dimensions as the dielectric substrates 2 to 8.
[0040]
The SL for the spiral lines c1 and c2 is made of Cu material and has a thickness of 15 μm, and the line width is 400 μm, 350 μm, 300 μm, 250 μm, 200 μm, 150 μm, and 100 μm at the bent part toward the center. It was changed and formed.
[0041]
This SAW device S1 is incorporated in a high-frequency circuit as shown in FIG. 4, a high-frequency signal in the 1.64 GHz to 2.04 GHz band is input, and its pass characteristics (filter characteristics) and standing wave ratio (impedance characteristics) are measured. The results are shown in FIGS.
[0042]
In FIG. 5, (A) shows the characteristics of the product of the present invention, and (B) shows the characteristics of the conventional product using a SAW element alone as the SAW filter 81 as shown in FIG. 8, and the product of the present invention passes near the center frequency of 1.84 GHz. Band loss is reduced, the flatness of the pass band is improved, and steep filter characteristics are obtained particularly on the high frequency side.
[0043]
The standing wave ratio in FIG. 6 is represented by | (1+ | input / output impedance / nominal termination resistance |) / (1- | input / output impedance / nominal termination resistance |) |. That is, good signal passing characteristics are obtained. In the same figure, (A) is the product of the present invention, and (B) is the characteristic of the conventional product using a SAW element alone as the SAW filter 81 as shown in FIG. 8, and the solid line part of the figure is the input side of the SAW device. The standing wave ratio, the broken line portion indicates the standing wave ratio on the output side of the SAW device. As shown in the figure, the product according to the present invention has very good impedance characteristics compared to the conventional product on both the input side and the output side.
[0044]
【The invention's effect】
In the present invention, a surface acoustic wave element formed on a main surface of a piezoelectric substrate and a first dielectric substrate on which a balanced-unbalanced conversion circuit is formed are stacked, and the surface acoustic wave element, the first dielectric substrate, A second dielectric substrate having an impedance conversion circuit formed between them,
The first dielectric substrate comprises two stacked lower dielectric substrates A and B, and two symmetrical spiral lines a1 and a2 are formed on the main surface of the lower dielectric substrate A. A spiral line b1 formed of continuous strip lines and corresponding to the spiral line a1 on the main surface of the upper dielectric substrate B and electromagnetically coupled, and a spiral line b2 corresponding to the spiral line a2 and electromagnetically coupled And form the
By providing the spiral lines c1 and c2 corresponding to the spiral lines b1 and a2 on the main surface of the second dielectric substrate so that the line width gradually changes, it is extremely small, light and low cost and unbalanced. -It has a balance conversion function, and has the effect of having sufficient power durability and a small insertion loss for high frequency in the GHz band. In addition, the impedance matching characteristic is excellent, and impedance matching can be performed with high accuracy about 10 times that of the conventional one.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a SAW device S1 of the present invention.
FIGS. 2A and 2B are plan views of a second dielectric substrate according to the present invention, in which FIG. 2A shows a type in which the stripline changes stepwise, and FIG. 2B shows a type in which the stripline changes continuously.
FIG. 3 is an equivalent circuit diagram of the SAW device S1 of the present invention.
FIG. 4 is a block circuit diagram when the SAW device S1 of the present invention is incorporated in a high-frequency circuit such as a cellular phone.
5A is a graph showing the pass characteristic (filter characteristic) of the SAW device S1 of the present invention, and FIG. 5B is a graph showing the pass characteristic of a conventional product.
6A is a graph showing the standing wave ratio characteristics of the SAW device S1 of the present invention, and FIG. 6B is a graph showing the standing wave ratio characteristics of a conventional product.
7A is an explanatory diagram showing the principle of signal propagation in a balanced transmission line, and FIG. 7B is an explanatory diagram showing the principle of signal propagation in an unbalanced transmission line.
FIG. 8 is a block circuit diagram when a conventional SAW device is incorporated in a high-frequency circuit such as a cellular phone.
FIG. 9 is a plan view of a basic configuration of a conventional dual mode coupled resonator SAW filter.
[Explanation of symbols]
1: Lid 2-8: Dielectric substrate 10: SAW element 11: Strip line 12 following input end: Strip line 13 for open end electrode 13: Strip line 14 for output 14: Strip line 15 for output 15: For input Strip line 16: input strip line 17: ground electrode 18: ground electrode A: lower dielectric substrate B: upper dielectric substrate a1: spiral line a2: spiral line b1: spiral line b2: spiral Line c1: spiral line c2: spiral line

Claims (2)

圧電基板の主面に少なくとも一対の櫛歯状電極を有する複数の弾性表面波共振器で構成された弾性表面波素子と、平衡−不平衡変換回路を形成した第一の誘電体基板とを積層し、前記弾性表面波素子と第一の誘電体基板との間にインピーダンス変換回路を形成した第二の誘電体基板を設けて成り、
前記第一の誘電体基板は積層された二つの下側誘電体基板Aと上側誘電体基板Bから成り、下側誘電体基板Aの主面上に対称的な二つの渦巻状線路a1 ,a2 を連続したストリップラインで形成し、上側誘電体基板Bの主面上に前記渦巻状線路a1 に対応し且つ電磁結合する渦巻状線路b1 と、前記渦巻状線路a2 に対応し且つ電磁結合する渦巻状線路b2 とを形成し、
前記第二の誘電体基板の主面に前記渦巻状線路b1 ,b2 に対応する渦巻状線路c1 ,c2 を、線路幅が漸次変化するように設けたことを特徴とする弾性表面波装置。
A surface acoustic wave element composed of a plurality of surface acoustic wave resonators having at least a pair of comb-like electrodes on the main surface of a piezoelectric substrate and a first dielectric substrate on which a balanced-unbalanced conversion circuit is formed are stacked. And providing a second dielectric substrate having an impedance conversion circuit formed between the surface acoustic wave element and the first dielectric substrate,
The first dielectric substrate comprises two laminated lower dielectric substrates A and B, and two symmetrical spiral lines a1 and a2 on the main surface of the lower dielectric substrate A. Are formed on the main surface of the upper dielectric substrate B, the spiral line b1 corresponding to the spiral line a1 and electromagnetically coupled, and the spiral corresponding to the spiral line a2 and electromagnetically coupled. A line-shaped line b2,
A surface acoustic wave device characterized in that spiral lines c1, c2 corresponding to the spiral lines b1, b2 are provided on the main surface of the second dielectric substrate so that the line width gradually changes.
前記渦巻状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 に代えて、蛇行状線路a1 ,a2 ,b1 ,b2 ,c1 ,c2 とした請求項1記載の弾性表面波装置。2. The surface acoustic wave device according to claim 1, wherein the spiral lines a1, a2, b1, b2, c1, c2 are replaced with meandering lines a1, a2, b1, b2, c1, c2.
JP30921798A 1998-10-29 1998-10-29 Surface acoustic wave device Expired - Fee Related JP3706485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30921798A JP3706485B2 (en) 1998-10-29 1998-10-29 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30921798A JP3706485B2 (en) 1998-10-29 1998-10-29 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2000138552A JP2000138552A (en) 2000-05-16
JP3706485B2 true JP3706485B2 (en) 2005-10-12

Family

ID=17990349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30921798A Expired - Fee Related JP3706485B2 (en) 1998-10-29 1998-10-29 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3706485B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253702B2 (en) * 2000-11-01 2007-08-07 Hitachi Metals, Ltd. High-frequency switch module
JP4710174B2 (en) * 2001-06-13 2011-06-29 株式会社村田製作所 Balanced LC filter
US7277403B2 (en) * 2001-12-13 2007-10-02 Avago Technologies Wireless Ip (Singapore) Pte Ltd Duplexer with a differential receiver port implemented using acoustic resonator elements
KR101031692B1 (en) * 2002-12-18 2011-04-29 파나소닉 주식회사 Radio communication apparatus, radio communication method, antenna apparatus and first duplexer
WO2004077601A1 (en) * 2003-02-28 2004-09-10 Ykc Corporation Organic resin multi-layered substrate
JP5214338B2 (en) * 2008-06-04 2013-06-19 株式会社東芝 Merchant balun, transmitter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136108A (en) * 1982-02-08 1983-08-13 Nec Corp Meander type transmission line
JPS60181917U (en) * 1984-05-11 1985-12-03 クラリオン株式会社 surface acoustic wave device
JPH01101718A (en) * 1987-10-14 1989-04-19 Clarion Co Ltd Surface acoustic wave device
JPH02101810A (en) * 1988-10-11 1990-04-13 Clarion Co Ltd Surface acoustic wave device
JP3179164B2 (en) * 1992-01-13 2001-06-25 岩崎通信機株式会社 High frequency power amplifier
JPH07106759A (en) * 1993-09-30 1995-04-21 Sony Corp Thin-film multilayered substrate
JP2773617B2 (en) * 1993-12-17 1998-07-09 株式会社村田製作所 Balun Trance
JP2905094B2 (en) * 1994-07-01 1999-06-14 富士通株式会社 Demultiplexer package
JP3515811B2 (en) * 1994-08-30 2004-04-05 三菱電機株式会社 Impedance matching circuit
JPH09270604A (en) * 1996-03-29 1997-10-14 Oki Electric Ind Co Ltd Branching filter package
JP3644619B2 (en) * 1997-06-25 2005-05-11 株式会社村田製作所 Electronic components with high-frequency transmission lines
JP3525408B2 (en) * 1998-05-07 2004-05-10 富士通株式会社 Demultiplexer package

Also Published As

Publication number Publication date
JP2000138552A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
JP6959819B2 (en) Multiplexer
US6756864B2 (en) Branching filter and communication apparatus
JP3482957B2 (en) Surface acoustic wave filter
JP4523637B2 (en) A duplexer based on coupled BAW resonators
EP1464115B1 (en) Bulk acoustic wave resonator with two piezoelectric layers as balun in filters and duplexers
CN101212211B (en) Duplexer and communications equipment
JP3960551B2 (en) Antenna duplexer and communication telephone using the same
JP5356194B2 (en) Filter, duplexer, communication module
EP0897218A2 (en) Surface acoustic wave filter
WO2002093763A1 (en) Filter using film bulk acoustic resonator and transmission/reception switch
JP2006094457A (en) Fbar filter having unbalanced-balanced input/output structure
KR20050074332A (en) Surface acoustic wave device
CN100452650C (en) Surface acoustic wave device and communication apparatus using the same
US7215224B2 (en) Surface acoustic wave filter, surface acoustic wave device and communication device
US5604393A (en) Surface acoustic wave device
KR100555762B1 (en) Air-gap type ???? fabrication method and FBAR fabricated by the same, filter and duPlexer using the FBAR.
JP2003347889A (en) Piezoelectric filter, and electronic component having the same
JP3706485B2 (en) Surface acoustic wave device
JPH0669750A (en) Surface acoustic wave filter
WO2004066495A1 (en) Circuit arrangement providing impedance transformation
JP2009182368A (en) Duplexer
JP3729185B2 (en) Surface acoustic wave filter
JP4552389B2 (en) Surface acoustic wave filter
JP3642656B2 (en) Surface acoustic wave filter
KR20070040516A (en) Saw duplexer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees